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Introduction

Let G be a reductive Lie group (e.g. GL(2, R)) and g0 its Lie algebra. One of the longstand-
ing questions in representation theory is to describe Ĝ the space of all irreducible represen-
tations of G up to isomorphism. If G was compact, there is a complete classification as a
result of the Peter-Weyl and Borel-Weil-Bott theorems. Therefore, we shall consider when
G to be non-compact. The problem in this case is that, unlike for compact groups, almost
all of the irreducible representation of G are infinite dimensional. These representations
are significantly harder to study.

In [HC53] Harsih-Chandra developed a systematic way of transforming infinite dimen-
sional representations of G into a purely algebraic object. In the broadest scope, he asso-
ciated to each representation (π, H) of G a subspace H f in which comes equipped with the
structure of a representation of the complexified Lie algebra g = g0⊗R C and of a maximal
compact subgroup K that are compatible (see §2.4 for more details). These new objects,
aptly called (g, K)-modules, form a suitably nice category C (g, K). The natural functor

Mod(G)→ C (g, K)

sends irreducible modules to irreducible modules and thus reduces the problem of finding
all irreducible representations of G to finding those simple (g, K)-modules. There turn out
to be many important classes of these modules, the largest one being the admissible mod-
ules (aka. Harish-Chandra modules). These are, in some sense, the class of well behaved
(g, K)-modules. In [Lan89] 1 Langlands discovered a parametrization of the admissible dual
Ĝadm. The goal of this text is to provide a thorough introduction to the infinite dimen-
sional representation theory of real reductive groups and will culminate with the Lang-
lands classification of admissible modules as well as the Knapp-Zuckerman classification
of tempered modules. Once this is done, we shall conclude the text with an exposition on
the Vogan-Zuckerman classfication of unitary representations with certain non-zero (g, K)-
cohomology.

1Langlands originally published this result in 1973.

2



Chapter 1

Structure Theory of Real Lie
Groups

Before we get to any representation theory, we shall first discuss some key decompositions
of reductive Lie groups and Lie algebras. As it will turn out, using these decompositions
we will get a complete picture of the topology of the Lie groups as well as some interesting
information about integration on these manifolds.

1.1 Cartan Involutions

Let g be a complex semisimple Lie algebra. It is well known that g admits a non-degenerate
symmetric bilinear form B(−,−) (the Killing form) which is invariant under the Lie bracket:
namely B([X, Y], Z) = B(X, [Y, Z]).

Definition 1.1.1. A real form of g is a real Lie subalgebra g0 such that g ∼= (g0)C
∼= g0 + ig0.

More generally, a real form for a finite-dimensional complex vector space V is a pair (V0, J)
consisting of a real subspace V0 and an R-linear endomorphism J of V such that J2 = − IdV
and V = V0 ⊕ JV0. In this case the complex multiplication is given by (a + bi)v = av +
bJ(v).

Theorem 1.1.2. Every semisimple Lie algebra over C admits a real form. Furthermore, this real
form is compact.

Lemma 1.1.3.

(a) Let g be a real semisimple Lie algebra. Then g is compact if and only if the Killing form is
strictly negative definite.

(b) Every compact Lie algebra can be written as a direct sum z(g)⊕ [g, g] where z(g) denotes the
center and [g, g] is semisimple and compact.

Proof. We shall prove both statements simultaneously, noting that (b) =⇒ (a) once we
show that the condition on the Killing form is sufficient. Suppose g is a real Lie algebra
whose Killing form is strictly negative definite. Let O(B) denote the group of linear trans-
formations of g fixing B. Then O(B) is a compact subgroup of GL(g). As g is semisimple,
Int(g) is closed in Aut(g) ⊆ GL(g). Hence, Int(g) is compact and g is compact.
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Now let g be an arbitrary compact Lie algebra. There exists a strictly positive definite
quadratic form on g such that for a given basis X1, ..., Xn, Q is given by

Q(∑ aiXi) = ∑ a2
i

Furthermore, this form is invariant under Int(g). Each inner automorphism of g is repre-
sented by an orthogonal matrix and each ad X is represented by a skew-symmetric matrix
(aij). As the center of g is invariant under Int(g) consider the orthogonal complement of
z(g) with respect to Q. Call this g′. As this subalgebra is necessarily invariant under ad(g),
we know that g′ is an ideal. Therefore, the Killing form of g′ is the restriction of the Killing
form on g. Now for all X ∈ g we have

B(X, X) = Tr(ad X ad X) = ∑
i,j

aijaji = −∑
i,j

a2
ij ≤ 0

Equality in the above equation holds only if ad X = 0 which is true if and only if X ∈ z(g).
Hence, g′ is semisimple and compact. Furthermore, g′ = [g′, g′] and thus g′ = [g, g]. This
completes the proof.

Proof of Theorem 1.1.2. Let h be a Cartan subalgebra of g and ∆ := ∆(g, h). For each root α,
there exists a vector Hα ∈ h such that B(H, Hα) = α(H) for all H ∈ h. Further, we can pick
vectors Xα ∈ gα such that [H, Xα] = α(H)Xα and [Xα, X−α] = Hα. Hence, B(Xα, X−α) = 1.
Consequently,

B(Xα − X−α, Xα − X−α) = −2
B(i(Xα + X−α), i(Xα + X−α)) = −2

B(Xα − X−α, i(Xα + X−α)) = 0
B(iHα, iHα) < 0

Since B(Xα, Xβ) = 0 when α + β 6= 0, it follows that B is strictly negative definite on

gk =
⊕

α

RiHα ⊕
⊕

α

R(Xα − X−α)⊕
⊕

α

Ri(Xα + X−α)

Moreover, g = gk ⊕ igk. It is then readily checked that gk is a Lie algebra and hence, by the
lemma, is compact.

Using this theorem, we can now begin the constructions of Cartan involutions. These
play an important role in the decompositions of the later sections and will give rise to some
surprising results on the structure of non-compact groups. We start with a theorem which
compares the automorphisms of gC given by the real form and a compact form.

Theorem 1.1.4. Let g0 be a real semisimple Lie algebra, g its complexification, and u a compact
form of g. Denote by σ and τ the natural automorphisms of g with respect to g0 and u. Then there
exists an automorphism ϕ of g such that ϕ(u) is invariant under σ.

Proof. Consider the bilinear form Bτ(X, Y) = −B(X, τY) on g. This is strictly positive defi-
nite on u as u is compact. Now, let N = στ. As τ2 = σ2 = 1, we have that

Bτ(NX, Y) = Bτ(X, NY)
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. and thus N is self adjoint with respect to this Hermitian form. Let X1, ...Xn be a basis of
g such that N is diagonal with respect to this basis. Put P = N2, then P is diagonal with
positive entries λ1, ..., λn > 0. Now consider the one parameter group Pt, t ∈ R which is
defined to be the diagonal matrix with entries λt

i . Notice that each Pt is an automorphism
of g. If we denote by τ′ = PtτP−t, then

στ′ = σPtτP−t = στP−2t = NP−2t

τ′σ = PtτP−tσ = P2tτσ = N−1P2t

An easy check now shows that if t = 1
4 then στ1 = τ1σ. Hence, ϕ := P1/4 has the desired

properties.

Definition 1.1.5. Let g0 be a real semisimple Lie algebra and g is complexification. Denote
by σ conjugation with respect to g0. We say that a decomposition g0 = k0 ⊕ p0 is a Cartan
Decomposition if there exists a compact real form gk of g such that

σ(gk) ⊆ gk k0 = g0 ∩ gk p0 = g0 ∩ igk

By the previous theorem, we have shown that Cartan decompositions always exist for
semisimple Lie algebras. It remains to check that if we have two Cartan decompositions of
the same Lie algebra, then they are conjugate by an element of Int(g0).

Proposition 1.1.6. Let g0 = k1 ⊕ p1 = k2 ⊕ p2 be two Cartan decompositions of g0. Then there
exists an inner automorphism ψ of g0 such that ψk1 = k2 and ψp1 = p2.

Proof. Let u1 and u2 be the compact forms of g = (g0)C which give rise to the Cartan
decompositions of the problem statement. By the proof of the. previous theorem, we know
that P1/4 is an automorphism which takes u1 to another compact form. Notice that the
killing form of g is strictly negative definite on P1/4u1 and strictly positive definite on iu2.
Hence, P1/4u1 ∩ iu2 = {0} and

u2 = P1/4u1

. Now let σ be conjugation of g with respect to g0. Then by construction στi = τiσ and
σui ⊆ ui. Since σ commutes with Pt for all t, we know Pt leaves g0 invariant. As a result,
Pt corresponds to a one-parameter subgroup of Int(g0) given by exp tX for some X ∈ g0.
Taking ψ = exp 1

4 X, we have the desired automorphism.

Remark 1.1.7. Consequently, for every pair of compact Lie subalgebras of a semisimple Lie
algebra over C, there exists a one parameter subgroup of Int(g0) such that ψ1 carries one
of the compact Lie algebras to the other.

Similar to Cartan’s criterion for semisimplicity, we want another characterization of the
Cartan decomposition in terms of the Bilinear form associated to an automorphism.The
motivation for this comes form the fact that the proofs of the above statements only ever
made use of the automorphisms associated to the decompositions and not the actual de-
compositions themselves.

Theorem 1.1.8. Let g0 be a real Lie algebra and suppose g0 = k⊕ p. Then the the following are
equivalent:

(a) The decomposition is a Cartan decomposition.

5



(b) The mapping θ : k + p 7→ k− p, (k ∈ k, p ∈ p) is an automorphism of g0 and the Hermitian
form

Bθ(X, Y) = −B(X, θY)

is strictly positive definite (B < 0 on k and B > 0 on p).

This implies k is a maximally compact subalgebra.

Proof. Clearly (a) =⇒ (b) by the definition of a Cartan decomposition. For (b) =⇒ (a),
notice that as B(k0, p0) = 0 and θ is an involutive automorphism, we have that gk = k0 ⊕
ip0 is a compact real form of (g0)C satisfying the relations of a Cartan decomposition. It
remains to show that k0 is a maximally compact subalgebra.

Let gR be g := (g0)C treated as a real Lie algebra. Then g0 and gk are subalgebras of
gR and thus Int(g0) and Int(gk) are closed subgroups of Int(gR). Furthermore, Int(g0) ∩
Int(gk) is a closed subgroup and in fact compact. The Lie algebra of this group is g0 ∩ gk =
k0. Hence, k0 is compactly embedded in g0. Assume for the sake of contradiction that k0 is
not maximally compact but instead properly contained in k1 another compactly embedded
subalgebra of g0. Then there exists a non-trivial element X ∈ k1 ∩ p0. If we put η to be the
conjugation of g with respect to gk, then ηg0 ⊆ g0 and the bilinear form Bη is symmetric
and strictly positive definite on g0. Since,

B([X, Y], ηZ) = −B(X, [Y, ηZ]) = B(Y, [ηX, ηZ])

we see that ad X has all its eigenvalues real and not all zero. However, this implies that
en ad X cannot lie in a compact Lie group. This is a contradiction.

Definition 1.1.9. An involutive automorphism θ of g0 is called a Cartan Involution if the
Hermitian form Bθ is strictly positive definite. We then identify k0 with the +1 eigenspace
and p0 with the −1 eigenspace.

Remark 1.1.10. The previous theorem shows that giving a Cartan decomposition to a Lie
algebra is equivalent to equipping the Lie algebra with a Cartan involution. It should be
nearly obvious that if we pick a compact real form, then conjugation with respect to this
form induces a Cartan decomposition for g0. Hence, a Cartan involution always exists for
semisimple Lie algebras. The existence of such involutions plays a key role in the following
sections where we are able to decompose Lie groups using them.

1.2 Decompositions of Non-compact Groups

We begin this section by specifying the class of groups for which we shall concern ourselves
for the remainder of the text.

Definition 1.2.1. A real Lie group G is said to be in the Harish-Chandra class if the follow-
ing conditions are satisfied:

(a) g0 is a reductive Lie algebra,

(b) G has finitely many connected components,

(c) The analytic subgroup Gss corresponding to the Lie subalgebra [g0, g0] has a finite
center.
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(d) Ad(G) ⊆ Int(g).

Theorem 1.2.2. The following collections of groups are all in the Harish-Chandra class:

(a) Compact Lie groups

(b) Semisimple Lie groups with finitely many connected components

(c) Reductive Lie groups (Lie(G) = g is reductive)

For a proof of this see [Kna05, VII.2].

Remark 1.2.3. It should be noted that the results that will be presented in the next few
sections are true for all G in the Harish-Chandra class. We shall only prove them in the case
that G is a non-compact connected semisimple Lie group with finite center for simplicity
and will sketch how to extend the proofs for the general class.

1.2.1 The Cartan Decomposition and Maximal Compact Subgroups

In the previous section, we proved that for every semisimple Lie algebra, there exists a Car-
tan Involution θ and an associated decomposition g = k⊕ p into the +1 and−1 eigenspaces
of the involution. The goal of this subsection is to prove that we can construct a group level
analog to this. The following proposition makes this precise.

Proposition 1.2.4. Let g0 be a real semisimple Lie algebra and θ any Cartan involution so that
g0 = k0⊕ p0 is the associated Cartan decomposition. If G is any Lie group with Lie algebra g0, then
there exists an involutive automorphism Θ of G such that TeΘ = θ. Moreover, the fixed point set
Fix(Θ) is a compact Lie subgroup of G with Lie algebra k0 and this group is maximally compact.

Proof. Let G̃ be the universal cover of G and π the covering homomorphism. Then, any
Lie algebra homomorphism of g0 descends to a Lie group homomorphism. Let Θ̃ be the
involution of Ĝ corresponding to θ. By construction TeΘ̃ = θ. Let K̃ be the fixed points of
Θ̃. This has Lie algebra k0. Now, the kernel of π is a discrete normal subgroup and therefore
contained in the center Z̃. As we assume G has finite center, this implies that ker π is finite.
Realizing G as G̃/ ker π, we see that Θ̃ descends to an automorphism Θ of G with TeΘ = θ.
Then Fix(Θ) is a closed Lie subgroup and its Lie algebra is {X ∈ g0 : θ(X) = X} = k0.
Hence, Fix(Θ) is compact. Maximality now follows from Theorem 1.1.8 (k0 is a maximally
compact embedded subalgebra of g0).

For the remainder of the text, we denote by K := Fix(Θ) and refer to Θ as the global
Cartan Involution attached to the pair (g0, θ).

Theorem 1.2.5. (The Cartan decomposition) Let g0 be a real semisimple Lie algebra with Cartan
involution θ. Denote by G and Θ the corresponding Lie group and global Cartan involution. Then
the multiplication map K× p0 → G given by (k, X) 7→ k exp X is a diffeomorphism.

Remark 1.2.6. This theorem is important because it tells us that the topology of G is com-
pletely controlled by K. That is of course because exp p0 is a Euclidean space and therefore
contractible. Hence, all of the interesting properties of G should somehow arise as proper-
ties of K. This will play a massive role in understanding the motivation for (g, K)-modules
in the next chapter. The main punchline being that g becomes too local of an object to un-
derstand infinite dimensional representations as it misses all of the interesting topology of
the group. By also considering K, we capture all of the necessary topological information.
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Lemma 1.2.7. Let g0 be a real Lie algebra and ρ an automorphism that is diagonalizable with all
positive eigenvalues d1, ..., dn. Then {ρt} for t ∈ R is a one-parameter subgroup of automorphisms
of g0.

Proof. Let g0,di
be the di-eigenspace of ρ. If X ∈ g0,di

and Y ∈ g0,dj
then

ρ[X, Y] = [ρX, ρY] = didj[X, Y]

Hence, [X, Y] ∈ g0,didj
. As all of the eigenvalues are positive, we see that

ρt[X, Y] = (didj)
t[X, Y] = [dt

i X, dt
jY] = [ρtX, ρtY]

Hence, ρt is an automorphism for all t ∈ R and {ρt} is a one-parameter subgroup.

Lemma 1.2.8. Every one-parameter subgroup of G is given by exp tX for some unique (up to
scaling) X ∈ g0.

See [Hel78] for details.

Proof of Theorem 1.2.5 . It suffices to prove this for Ad(G) with the associated involution to
be Θ(x) = (x∗)−1, K := Fix(Θ) and p0 := adg0(p0). Then, using the commuting diagram

K× p0 G

K× p0 Ad(G)

ϕG

Ad× adg0 Ad

ϕAd(G)

we have that the vertical maps are covering homomorphisms and thus ϕG is a diffeomor-
phism if and only if ϕAd(G) is a diffeomorphism.

Let x ∈ Ad(G) ⊆ Int(g0) and x∗ the adjoint automorphism. Then x∗x is a self-adjoint
for the Killing form and thus is positive definite. By lemmata 1.2.7-1.2.8 we have that
(x∗x)t = exp tX, X ∈ ad g0. Therefore, put p = exp 1

2 X and k = xp−1. Then x = kp
and k

∗
k = 1 by an easy computation. Applying Θ to k we see that Θ(k) = (k

∗
)−1 = k

and Θ(p) = p−1. Hence, ϕAd G is onto. Injectivity is obvious as each x ∈ Ad(G) deter-
mines X and hence k uniquely (Lemma 1.2.8). The map is smooth by definition. It remains
to prove that the inverse mapping is smooth. To show this, consider the identification
of Ad(G) ⊆ Int(g0) ↪→ GLdimg0(R). The inverse map is thus the Polar Decomposition
([Hal15, Theorem 2.17]) of the matrix image of Ad(G). This is smooth as each entry of the
matrices in the polar decomposition is a rational function in the entires of the original ma-
trix. Hence, the inverse is smooth and ϕAd(G) is a diffeomorphism. This completes the
proof.

Corollary 1.2.9. G ' K.

Proof. As p0 is a real vector space it is contractible. Hence, by the Cartan decomposition for
G, we see that G ' K× p0 ' K× {∗} ∼= K.
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To generalize the above results to the entire Harish-Chandra class (g0 is a reductive Lie
algebra), we proceed in an identical manner. Now, K is significantly more complicated but
still can be realized as the fixed points of a global Cartan Involution associated to the Lie
algebra. In this case, we have additional results on the structure of G. For instance, we now
see that K must meet all of the components of G and thus G = KG0 where G0 is the identity
component. We can still conclude that K is maximally compact by a similar argument to
the one given above. What should be noted is that the above corollary still holds in this
general context.

Example 1.2.10. Let G = GL(n, R). By taking θ(X) = −XT , we have that gl(n, R) =
o(n)⊕ p where p consists of all symmetric matrices. Then the corresponding decomposition
of G is G = O(n) exp p. Note that O(n) has two connected components and in fact G
decomposes as a semidirect product

G = O(n)n GL(n, R)+

Notice that the first. decomposition is nothing more that the polar decomposition of non-
singular matrices. Using this example, we can generalize this to any matrix group H by
taking H ∩O(n) and H ∩ exp p.

The final discussion of this section will be about maximal compact subgroups of G.
Assuming once again that G is connected, we have the following theorem:

Theorem 1.2.11. Let K1 and K2 be different maximal compact subgroups of G. Then there exists
an element g ∈ G such that gK1g−1 = K2. Hence, the set of all maximal compact subgroups of G
form a single orbit under the natural action of G on itself.

Proof. Let k1 = z1 ⊕ s1 be the decomposition as in Lemma 1.1.3 and Kz and Ks the analytic
subgroups of K1 corresponding to the respective Lie algebra. The group Kz can be written
as a direct product T×V where T is a torus and V is analytically isomorphic to a Euclidean
space. Put K′ = KsT. Then K′ is compact as Ks is compact. It then follows immediately
that K′ ∩V = {e} and thus K1 = K′ ×V and K′ is maximally compact in K1.

It remains to show that the element g in the problem statement exists. This follows form
[Hel78, Theorem 13.5]. Hence, every compact subgroup of G is conjugate to a subgroup of
K′ and gK1g−1 = K2 by maximality.

To generalize this to the Harish-Chandra class, notice that combining the proof above
with the general statement of the Cartan Decomposition is sufficient to show the existence
of the necessary element and thus all maximal compact subgroups are conjugate.

1.2.2 Iwasawa Decomposition

This section will go through the second decomposition of a semisimple Lie group. Unlike
the Cartan decomposition, this decomposition has profound consequences for integration
on G. Integration enters the theory of representations when we consider intertwining op-
erators as well as the spaces L2(G) and L2(Γ\G). The Iwasawa decomposition will allow
us to break up integrals over G in terms of integrals over compact spaces (which always
converge) and integrals on abelian and nilpotent groups. Lastly, this will provide a quick
proof to the Langlands decomposition of parabolic subgroups. This in turn will eventually
lead to the full Langlands classification.

We start with a definition.
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Definition 1.2.12. Let a be a maximal abelian subalgebra of p0. Then the restricted roots
Σ(g0, a) are the set of roots λ ∈ a∗ such that the space

g0,λ = {X ∈ g : [X, H] = λ(H)X, ∀H ∈ a, λ ∈ a∗}

is non-zero.

Proposition 1.2.13. The restricted root spaces have the following properties:

(a) g0 = g0,0 ⊕
⊕

λ∈Σ g0,λ,

(b) [g0,λ, g0,µ] ⊆ g0,λ+µ,

(c) θg0,λ = g0,−λ,

(d) g0,0 = a⊕m where m = Zk0(a).

Proof. (a) follows from the fact that a is abelian and thus {ad H : H ∈ a} is a commut-
ing family of self-adjoint transformations of g0 and g0 is an orthogonal direct sum of the
eigenspaces. (b) then follows from the Jacobi identity. For (c) let X ∈ g0,λ. Then

[H, θX] = θ[θH, X] = θ[H, X] = −λ(H)θX

This proves (c) and (d) follows immediately.

Theorem 1.2.14 (Iwasawa Decomposition for Lie Algebras). Let g0 be a real semisimple Lie
algebra. Then there exist Lie subalgebras k0 compact,a0 abelian, and n0 nilpotent such that

g0 = k0 ⊕ a0 ⊕ n0

Proof. Let (g, θ) by a semisimple Lie algebra together with a Cartan involution. Put g =
k⊕ p the associated Cartan decomposition and hp be a maximal abelian subspace of p. Pick
an ordering on h∗p and let n =

⊕
α>0 gα. Since hp is θ-invariant and maximal abelian, we

have that
g0 = (g0 ∩ k) + hp

Now if X ∈ ⊕
α<0 gα we can write it as X = X + θ(X) − θ(X). This decomposition has

X ∈ k⊕ n. Therefore, we have a decomposition

g = k+ hp + n

Applying θ we conclude that this decomposition is direct.

There is an associated group decomposition which requires a few technical lemmata to
prove. We present them with no proof as they are nearly obvious.

Lemma 1.2.15. Let H be an analytic group with Lie algebra h. Suppose that h decomposes as a
vector space direct sum s⊕ t. If S and T are analytic subgroups with the respective Lie algebras,
then the multiplication map S× T → H is everywhere regular.

Lemma 1.2.16. There is a basis of g0 such that the matrices of ad g0 have the following properties:

(a) ad k consists of skew-symmetric matrices.

(b) ad a consists of diagonal matrices.
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(c) ad n consists of strictly upper-triangular matrices.

Theorem 1.2.17 (The Iwasawa Decomposition). Let G be a semisimple Lie group with Lie alge-
bra g0. If g0 = k0 ⊕ a0 ⊕ n0 is an Iawasawa decomposition, and A and N are analytic subgroups of
G corresponding to the respective Lie algebras, then the multiplication map K × A× N → G is a
diffeomorphism. Further, A and N are simply connected.

Proof. Similar to the proof of the group level Cartan decomposition, we shall prove the
decomposition for Ad(G) ⊆ Int(g) and then lift the result to G. Let K = Adg0(K), A =
Adg0(A), and N = Adg0(N). In the basis of the previous lemma, K consists of rotation
matrices, A consists of diagonal matrices with. positive entries, and N consists of strictly
upper triangular matrices. As the diagonal subgroup of Aut(()g0) is simply connected and
abelian, we see that A is simply connected and abelian. Similarly, N is simply connected.
Further, as they are analytic subgroups, they are closed in Ad(G).

Consider the canonical map A× N → Ad(G). This map is injective as we can recover
ā from the diagonal entries of the matrix image. Therefore, it is isomorphic to a subgroup
AN. This subgroup is closed as both components are closed. Clearly, it has Lie algebra
a⊕ n and by Lemma 1.2.15, the map is a diffeomorphism.

Lastly, we see that K ∩ AN = {1} as the only rotation matrices with positive eigen-
values is 1. Therefore, the map K × AN → Ad(G) is injective and applying Lemma 1.2.15
again, we see that it is a diffeomorphism. This completes the proof for Ad(G). Now, using
the commutative diagram

K× A× N G

K× A× N Ad(G)

ιG

Ad×Ad×Ad Ad

ιAd(G)

we see that the result holds for G as well.

Example 1.2.18. (a) Let g = sl(n, R). SO(n) ↪→ SL(n, R) is a maximal compact subgroup
and therefore so(n) is the corresponding compact lie algebra. Let a be the traceless
diagonal matrixes and n be strictly upper triangular matrices. Then

sl(n, R) = so(n)⊕ a⊕ n

We can equivalently realize this on the group level as SL(n, R) = SO(n) · T ·N where
N is upper triangular matrices and T is the maximal torus. Notice that this is equiv-
alent to the Gram-Schmidt orthogonalization of a matrix in sl(n).

Now lets consider the Cartan decomposition of sln(R) = so(n) ⊕ p0 where p0 are
symmetric matrices. Notice that so(n) appears in both decompositions yet for the
Cartan decomposition we have no lie algebra structure on p0. This should not be
surprising however as both decompositions are equivalences as vector spaces.

(b) Now consider sp(2n, C). We have that

k =

{(
U V
−V̄ Ū

)
: U skew-Hermitian, V symmetric

}

11



Similar to sln we have a =

{(
A 0
0 −A

)
: A real diagonal matrix

}
which are the di-

agonal matrices and the nilpotent lie algebra are all upper triangular matrices, but
now we can decompose them further into

n =

{(
Z1 Z2
0 −ZT

1

)
: Z1 strictly upper triangular, Z2 symmetric

}
Then sp(2n, C) = k⊕ a⊕ n.

We shall end this chapter with some beautiful corollaries of the Iwasawa decomposi-
tion.

Definition 1.2.19. We call c ⊆ g0 a Cartan Subalgebra if cC is a Cartan subalgebra of (g0)C.

Corollary 1.2.20. If t is a maximal abelian subspace of m = Zk(a), then h = a0 ⊕ t is a Cartan
subalgebra of g0.

Proof. It suffices to show that hC is maximal abelian in (g0)C and that ad(g0)C
(hC) is si-

multaneously diagonalizable. Clearly, the first condition is satisfied as any element which
commutes with hC necessarily commutes component-wise. In the basis of Lemma 1.2.16,
each t is skew-symmetric and hence diagonalizable. As every element of a is diagonal,
ad(g0)C

(hC) is simultaneously diagonalizable. This completes the proof.

Corollary 1.2.21. All of the roots of h = a0 ⊕ t are real valued on a0 ⊕ it.

Corollary 1.2.22. If a1 and a2 are distinct maximal abelian subspaces of p0, then there exists an
element k ∈ K such that Ad(k)a1 = a2. Consequently, p0 =

⋃
k∈K Ad(k)a.

Proof. There are finitely many restricted roots with respect to a1 and thus the union of the
kernels cannot exhaust a1. We can fine H1 ∈ a such that Zp0(H) = a1 and similarly for a2.
By the compactness of Ad(K), we can find an element k ∈ K such that B(Ad(k)H2, H1) is
minimized. For any Q ∈ k, we have that

r 7→ B(Ad(exp rZ)Ad(k)H2, H1)

is a smooth function of r and is minimized at r = 0. By differentiating, we see that 0 =
B(Z, [Ad(k)H2, H1]). Since, B(k, p) = 0 and B is non-degenerate, we see that [Ad(k)H2, H1] =
0. Thus Ad(k)H2 ∈ Zp0(H1) = a1. Since, a1 is abelian, it implies that a1 ⊆ Ad(k)a2 and by
maximality they are equal.

Now let X ∈ p0. Then we can extend RX to a maximal abelian subspace. By what we
have just shown, there is an element k such that X ∈ Ad(k)a. Hence, p0 =

⋃
k∈K Ad(k)a.

Theorem 1.2.23 (The KAK decomposition). Let G be a connected semisimple Lie group, and
K× p0 a Cartan Decomposition. Then there for any maximal abelian subspace a ⊆ p0 and associated
analytic subgroup A, we have the decomposition G = KAK.

Proof. By the Cartan decomposition, we see that G/K = exp p0 = exp
⋃

k∈K Ad(k)a by
Corollary 1.2.22. Therefore, for any P ∈ p0, we have that exp P = gk1 = exp Ad(k)a =
Ad(k) exp a = k exp ak−1. Therefore, g = k exp a(k1k)−1. As A = exp a, we see that G =
KAK.

12



As wel will see in the second half of Chapter 2, the KAK decomposition becomes incred-
ibly important for understanding spherical vectors and spherical principal series represen-
tations. These are defined in terms of K bi-invariant functions f ∈ C∞

c (K\G/K). For this
reason, we can turn integrals of these functions over G into integrals over A by the above
decomposition. This makes understanding them far easier. Also, a theorem of Gel’fand
tells us. that this ring is commutative which again simplifies the situation mightily.

Before we finish this section, we want to know that if we have two different Iwasawa
decompositions, then they are conjugate. That is if a and a′ are different maximal ablian
subspaces of p0, then we would like to find an element of Int(g0) which carries k⊕ a⊕ n to
k⊕ a′ ⊕ n′.

Proposition 1.2.24. Every Iwasawa decomposition is conjugate by an inner automorphism on both
the Lie algebra and group level.

Proof. It remains to show that there are elements in Ad(K) which conjugate the nilpotent
parts of the Iwasawa decompositions. This follows from the fact that Σ(g0, a) is an abstract
root system in a∗. Then, each choice of simple system is conjugate by an element of the
Weyl group W(Σ). In particular, we can realize these elements as sitting inside NK(a).
Hence, each n is conjugate via Ad(K). Combining this with Corollary 1.2.22, we see that
every Iwasawa decomposition of g0 is conjugate.

The final application of this decomposition is to integration on G. The key to under-
standing a majority of the representation theory of reductive, semisimple, or compact Lie
groups is the existence of a Haar Measure. This is a left invariant Borel measure on G. The
existence of such a measure implies, as an example, that all representations of compact Lie
groups can be taken to be unitary without a loss of generality. Additionally, combined with
the Iwasawa decomposition, we get a variety of strong results. This will play a key role in
the proof of the Borel-Weil theorem. Let us first show that such a measure exists.

Let G be a Lie group of dimension n with Lie algebra g. Then as T1(G) = g and there
is an isomorphism g→ ΓL(G, TG) the set of left-invariant smooth vector fields on G. From
this we conclude that G is parallelizable. For this reason, we know that there exists an
n−form ω ∈ Ωn(G) such that ω is positive relative to a chosen atlas on G, is nowhere
vanishing, and is left-invariant. Further, by the Riesz Representation theorem, there exists
a Borel measure dµω on G such that

∫
G f ω =

∫
G f dµω for all f ∈ Cc(G).

Lemma 1.2.25. dµω is left invariant in the sense that dµω(LgE) = dµω(E) for all Borel sets
E ⊆ G and all g ∈ G.

Proof. As ω is left-invariant, we know that L∗gω = ω. Therefore, we have that∫
G

f ω =
∫

G
f (gx)L∗gω =

∫
G

f (gx)dµω(x) =
∫

G
f (x)dµω(x)

Hence, dµω is left-invariant. If K ⊆ G is compact, we apply the above integral formula
to all f ≥ 1K. Taking the infimum over these. functions we see that dµω(L∗gK) = dµω(K).
Since G has a countable base, dµω is regular and the lemma follows.

Definition 1.2.26. A left-invariant, positive, Borel measure on G is called a left Haar mea-
sure.

Proposition 1.2.27. Every left Haar measure on G is proportional.
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Proof. See [Kna05, Theorem 8.23].

We could have equivalently defined right Haar measures. For most groups these are
different from the left Haar measures. Let dl x denote a left Haar measure and drx a right
Haar measure. Notice that Lg and Rg commute with one another. Then, for any t ∈ G, the
measure dl(·t) is a left Haar measure. For this reason, we get a function ∆ : G → R+ called
the modular homomorphism which satisfies

dl(·t) = ∆−1(t)dl(·)

This is a smooth function.

Lemma 1.2.28. ∆(t) = 1 for all t ∈ K a compact subgroup of G.

Proof. As ∆ is smooth, ∆(K) is a compact subgroup of R+. Therefore ∆(K) = {1}.

Definition 1.2.29. A Lie group G is called unimodular if ∆ = 1. Equivalently, if dr(x) =
dl(x).

We now want to know what groups are unimodular. Then, when integration arises on
these groups we do not have to worry about the choice of Haar measure.

Theorem 1.2.30. The following groups are unimodular:

(a) Compact groups

(b) semisimple groups

(c) Reductive groups

Lemma 1.2.31. If G is any Lie group, then the modular function is given by ∆(t) = |det Ad(t)|.

Proof. Let g be the Lie algebra of G. If X ∈ g, denote by X̃ the left-invariant vector field on
G defined by X. Then by definition, for any h ∈ C∞(G)

(dRt−1)pX̃ph = Ãd(t)Xh(pt−1

and therefore as operators dRt−1)pX̃p = Ad(t)Xpt−1 . Now, if ω ∈ Ωtop
L (G) we have by the

previous relation
R∗t−1 ω = det Ad(t)ω

Now assuming that ω is the positive choice of orientation, we see that det Ad(t) deter-
mines the sign of the form R∗t−1 ω. If det Ad(t) > 0, then

det Ad(t)
∫

G
f ω =

∫
G

f R∗t−1 ω

=
∫

G
( f ◦ Rt)ω

=
∫

G
f (xt)dl(x)

=
∫

G
f (x)dl(xt−1

= ∆(t)
∫

G
f (x)dl(x)

for all f ∈ C∞
c (G). Hence, ∆(t) = det Ad(t). If det Ad(t) < 0, then the second line has an

additional negative sign. Therefore ∆(t) = |det Ad(t)| for all t ∈ G.
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Lemma 1.2.32. For any a ∈ A, we have that ∆(a) = e2ρA log a.

Proof. Notice that ∆(an) = |det Ada⊕n(an)| by the previous lemma. On each g0,λ, a acts
by eλ log a. As a ⊆ g0,0, we see that a acts by 0 on a. Hence, a acts on n =

⊕
λ∈Σ+ g0,λ by

e2ρA log a.

Proposition 1.2.33. Let G be a Lie group, and let S and T closed subgroups such that S ∩ T is
compact, multiplication is an open map, and the subgroup ST exhausts G up to a set of measure 0.
Let ∆T and ∆G denote the modular functions of T and G respectively. Then the left Haar measure
on G can be normalized such that∫

G
f (x)dl x =

∫
S×T

f (st)
∆T(t)
∆G(t)

dlsdlt

We omit the proof as it is not illuminating for this discussion. From this proposition,
we can conclude the following:

Theorem 1.2.34. Let G be a semisimple Lie group and dg a Haar measure on G. Let G = KAN be
an Iwasawa decomposition and f any measurable function on G. Then there exists a decomposition
of the Haar measure for G such that dg = dkdadn and∫

G
f (g)dg =

∫
N

∫
A

∫
K

f (kan)∆AN(a)dk da dn

where dk, da, dn denote the Haar measures on K, A, and N respectively. If instead we write G =
ANK, then ∫

G
f (g)dg =

∫
K

∫
N

∫
A

f (ank)da dn dk

Proof. Let K = S and AN = T in the previous proposition. Then we have that dg =
dkdr(an) = ∆AN(an)dk da dn = e2ρA log adk da dn by the proposition. For the second
decomposition, it follows that dl(an) = da dn and thus dg = da dn dk. This completes the
proof.
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Chapter 2

Analytic Representation Theory

Most of this section will follow [VJ81], [KVJ95],and [Kna86].

2.1 Finite-dimensional Representations

We begin this chapter with some generalities about harmonic analysis on semisimple Lie
groups. In particular, the goal of this section will be to get to the Borel-Weil theorem by
way of parabolic induction. This idea generalizes to infinite dimensional representations
in a fundamental way (as the Principal Series Representations of section 2.3). The Borel-
Weil theorem is the case of compact groups and inducing representations from parabolic
subgroups. In the later sections, we will only consider non-compact groups and thus the
induced representations will be infinite dimensional.

Remark 2.1.1. For this entire section we fix a real semisimple Lie algebra g0 and its com-
plexification will be denoted by g. If t is a Cartan subalgebra of g0, denote by ∆ := ∆(g, tC)
the set of roots. By making a choice of simple system Π ⊆ ∆, we have a notion of positive
roots. Let

n =
⊕

α∈∆+

gα n− =
⊕

α∈∆+

g−α

be the nilpotent subalgebras corresponding to the positive and negative root spaces.

2.1.1 Parabolic Subalgebras: the Complex case

For the first part of this section we shall study parabolic subalgebras of g which contain
the standard Borel subalgebra b = tC ⊕ n. Then our focus will move to understanding
general parabolic subalgebras and parabolic subgroups for reductive Lie groups. As all of
this section is true, regardless of the choice of real form, we shall denote tC by h to remain
consistent with the standard notation in the literature.

Consider the root space decomposition g = h⊕⊕∆ gα. The Borel subalgebra is in some
sense the smallest non-abelian subalgebra which contains some interesting information
about the Lie algebra g.
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Definition 2.1.2. A Lie subalgebra q which contains b is called a parabolic subalgebra. As
each of the root spaces is 1-dimensional, q necessarily is of the form

q = h⊕
⊕
α∈Γ

gα (2.1)

where Γ is a subset of ∆ containing ∆+. The extreme cases are Γ = ∆ where q = g and
Γ = ∆+ where q = b. For this reason, we call b the standard minimal parabolic subalgebra.

We want to obtain further examples of parabolic subalgebras. To do this, fix Π′ ⊆ Π
and put

ΓΠ′ = ∆+ ∪ {α ∈ Span Π′}

By construction, we see that the direct sum of the root spaces associated to Γ is indeed a Lie
subalgebra. What we would like to know is that if this construction exhausts all parabolic
subalgebras containing b. The following proposition gives a positive answer to this.

Proposition 2.1.3. The parabolic subalgebras q containing b are parametrized by the set of subsets
of simple roots. The correspondence is given by Π′ 7→ q(Π′) = h⊕⊕ΓΠ′

gα.

Proof. From the discussion above, we know that all parabolic subalgebras containing b are
necessarily of the form 2.1. Notice that Γ in this decomposition is generated by ∆+ and
the set of simple roots contained in the span of Γ ∩ −Γ. Put Π′(q) to be this set of simple
roots. Then in one direction, the correspondence is given by q 7→ Π′(q). Therefore, the
main statement we need to prove is:

Claim 2.1.4. The assignments q 7→ Π′(q) and Π′ 7→ q(Π′) are inverse to one another.

To show that Π′(q(Π′)) = Π′, notice that

ΓΠ′ ∩−ΓΠ′ = (∆+ ∩−∆+) ∪ Span Π′ = Span Π′

The simple roots are then the elements of Π′. Hence, Π′(q(Π′)) = Π′.
To show that q(Π′(q1)) = q1, we argue by induction on the level of a root. Any positive

element of Span Π′(q) is a member of Γq (the set of roots defining q1). If −α is a negative
root in the span of Π′(q), we can write this as a non-positive integral combination of mem-
bers of Π′(q). Let α = ∑ niαi be such a decomposition. If ∑ ni = 1, then α is simple and
−α ∈ Γq by definition. Now, if ∑ ni > 1, there exist β, γ ∈ ∆+ such that α = β + γ. By the
induction hypothesis, −β,−γ ∈ Γq1 and hence, so is −α. This proves that ΓΠ′(q) ⊆ Γq1 and
thus q(Π′(q1)) ⊆ q1.

Now, applying the same exact argument for negative roots −α ∈ Γq ∩−Γq, we see that
Γq ∩−Γq ⊆ ΓΠ′(q1)

. Hence, ΓΠ′(q1)
= Γq1 and thus q1 = q(Π′(q1)).

Given the above proposition, we can decompose any parabolic q containing b into the
following two subspaces:

l = h⊕
⊕

α∈Γ∩−Γ
gα u =

⊕
α∈Γ

α 6∈−Γ

gα (2.2)

The following proposition characterizes l and u.
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Proposition 2.1.5. [Levi Factors] Let q be a parabolic subalgebra containing b and q = l⊕ u as
above.

(a) l and u are subalgebras of q, and u is an ideal.

(b) u is nilpotent.

(c) l is reductive with center h′′ =
⋂

α∈Γ∩−Γ ker α. It semisimple part lss has a root space decom-
position

lss = h′ ⊕
⊕

α∈Γ∩−Γ
gα

where h′ = ∑α∈Γ∩−Γ CHα.

Proof. Let q be as in the previous proposition. Then (a) is clear. For (b) we have that u ⊆ n
and thus u is nilpotent.

Therefore, we need to prove (c). Let h0 be a real form of h on which all roots are real
valued. Then h′0 = h0 ∩ h′ and h′′0 = h0 ∩ h′′ are real forms of h′ and h′′ respectively.
Then its clear that h′0 and h′′0 are orthogonal complements under the Killing form. Hence,
h0 = h′0⊕ h′′0 and h = h′⊕ h′′. If lss is as in the statement of the proposition, then l = h′′⊕ lss.
It is clear that h′′ and lss are ideals and h′′ is central. Thus it suffices to show that lss is
semisimple.

Let B′ be the Killing form on lss. It suffices to show that B′ is non-degenerate. For each
α ∈ Γ ∩ −Γ, pick root vectors so that [Eα, E−α] = Hα and B(Eα, E−α) = 1. We will show
that B′(Eα, E−α) > 0 and B′ is positive definite on h′0 × h′0. It follows from the root space.
decomposition that ad Eα ad E−α acts with a non-negative eigenvalue on any gβ. Therefore,
the trace of ad Eα ad E−α is positive and thus B′(Eα, E−α) > 0.

Now we turn our attention to h′0. If H ∈ h′0 then B′(H, H) = ∑α∈Γ∩−Γ α(H)2 with each
term ≥ 0. To get 0 one of the α(H) = 0 which implies that H ∈ h′′. As h′ ∩ h′′ = 0, we see
that H = 0 and thus B′ is non-degenerate and lss is semisimple.

We call l the Levi factor and u the nilpotent radical. The decomposition above is called
the Levi decomposition of the Lie algebra. The Levi factor depends on the choice of h as
well as q whereas u can be defined intrinsically using the Killing form. Some nice features
of the Levi decomposition are as follows.

Put q− = l⊕ θu = θq This is the opposite parabolic associated to q and contains the Borel
subalgebra b− = h⊕ n− = h⊕ θn. It then follows immediately that

l = q∩ q− g = θu⊕ l⊕ u

Lemma 2.1.6. Let q be a parabolic subalgebra of g. Then q = Ng(q) = {X ∈ g : [X, q] ⊆ q}.
Proof. Clearly q ⊆ Ng(q) and thus it suffices to prove the reverse inclusion. Let Π′ and Γ′

be the defining set of roots for q given by Proposition 2.1.3. As b ⊆ q ⊆ Ng(q), we see that
Ng(q) is a parabolic subalgebra of g. Therefore, there exists a set of simple roots Π′′ and an
associated collection Γ′′ such that

Ng(q) = h⊕
⊕

α∈Γ′′
gα

Suppose for the sake of contradiction that Γ′′ is strictly greater than Γ′ and α ∈ Γ′′ − Γ′.
Pick a root vector Xα ∈ gα ⊆ Ng(q). Then for all H ∈ h ⊆ q, [Xα, H] ∈ q by the definition of
the normalizer. However, by construction [Xα, H] = α(H)Xα. This is a contradiction as Xα

not in q as we assume α 6∈ Γ′. Hence, Γ′ = Γ′′ and q = Ng(q).
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Lemma 2.1.7. Let w ⊆ g be any Lie subalgebra and G a complex Lie group with Lie algebra g. Then
the Lie algebra of the Lie subgroup N = NG(w) is Ng(w). Similarly, the Lie algebra of ZG(w) is
Zg(w).

Proof. Let W ∈ w and X ∈ Ng(w). Then

d
dt

Ad(exp(tX))(W)t=0 =
d
dt

exp(ad(tX))(W)t=0

=
d
dt

exp(t ad(X))(W)t=0

= ad(X) exp(t ad(X))t=0(W)

= ad(X)(W) ∈ w

Hence, Ng(w) is the Lie Algebra of NG(w). Similarly, Zg(w) is the Lie algebra of ZG(w).

Corollary 2.1.8. Let q be a parabolic subalgebra of g. Then NG(q) is a Lie subgroup with Lie
algebra q.

Consider again the decomposition of l as in Proposition 2.1.5. As h′′ = z(l), then
Zg(h′′) ⊇ l by definition. In fact, the centralizer is generated by h and all roots which
vanish on h′′. Hence,

l = Zg(h
′′) (2.3)

Now, by the previous Lemma, we have that l is the Lie algebra to ZG(h
′′). As in the proof

of the Iwasawa decomposition, we see that if U = exp u, then

ZG(h
′′)×U ∼−→ Q = NG(q)

We can further understand ZG(h
′′). Notice that as l = q∩ θq we can nearly conclude that

ZG(h
′′)

?
= Q ∩ΘQ (2.4)

One obstruction to this however is that we do not know how elements of the centralizer in-
teract with Q. To fully conclude that this is an equality, we need the following Proposition.

Proposition 2.1.9. l = Nq(l) and L := NQ(l) is a closed subgroup of Q with Lie algebra l.
Further, L = Q ∩ΘQ.

Proof. Clearly, l ⊆ Nq(l). Suppose for the sake of contradiction that ∃β ∈ Γ, β /∈ −Γ with
[gβ, l] ⊆ l. Then gβ ⊆ u. As u is an ideal, we have that [gβ, l] ⊆ u. As u∩ l = 0, we conclude
that [gβ, l] = 0. In each gβ, there exists a root vector Xβ such that for all H ∈ h,

[Xβ, H] = β(H)Xβ

For this to be 0, it would imply that β(H) = 0 for all H ∈ h, and thus β = 0. This is a
contradiction and hence, l = Nq(l). Applying the above Lemma, we see that L = NQ(l) is
a closed subgroup and has Lie algebra l. Now, as Q and ΘQ are transversal submanifolds,
we have that the Lie algebra of their intersection is q∩ θq = l.

It remains to show that L = Q ∩ΘQ. Let x ∈ G. If x ∈ Q ∩ΘQ, then Ad(x)l ⊆ q and
Ad(x)l ⊆ θq. Hence, Ad(x)l ⊆ l and x ∈ L. If instead x ∈ L, then Ad(x)l ⊆ l ⊆ q and
Ad(x)l ⊆ l ⊆ θq by definition. Hence, x ∈ Q ∩ΘQ. This completes the proof.
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Combining this Proposition with the discussion above, we see that

L = NQ(l) = ZG(h
′′) = Q ∩ΘQ

Theorem 2.1.10. Every parabolic subalgebra q containing the Borel subalgebra b can be decom-
posed into a vector space direct sum m ⊕ a ⊕ n such that m is reductive, a is abelian, and n is
nilpotent.

Proof. Let q = l⊕ u be a Levi decomposition. By Proposition 2.1.5, we have that l = h′′⊕ lss.
Then q = h′′ ⊕ lss ⊕ u. Put

m = {X + θX : X ∈ gα, α ∈ Γ ∩−Γ} ⊕ h′

Then m is reductive as it is θ-stable. Further, put n = u⊕⊕α∈Γ,α>0 gα. Now,

q = m⊕ h′′ ⊕ n

by simply noticing that for any α ∈ Γ ∩ −Γ, α < 0, gα ⊆ m⊕ n by writing any element
X ∈ gα as X + θ(X) − θ(X). By writing a = h′′, we have that q = m ⊕ a ⊕ n and this
completes the proof.

Remark 2.1.11. The decomposition of q above is called the Langlands Decomposition.
Once we give the associated decomposition for real Lie algebras, we can begin to under-
stand the representation theory of non-compact Lie groups by looking at those representa-
tions which are induced from the parabolics. This will mirror the Borel-Weil theorem, but
will be a significant generalization.

The final goal of this section is to begin to investigate the significance of parabolic sub-
algebras in the finite dimensional representation theory of g. What we shall see is that the
finite dimensional representation theory of the Levi factor is incredibly similar to the finite
dimensional representation theory of g. In the infinite dimensional case, the representation
theory of parabolic subalgebras (and subgroups) plays an essential role in classifying the
irreducible representations of g and G. Before we get to the main result, we need a technical
proposition.

Proposition 2.1.12. Let q be a parabolic subalgebra containing b and l⊕ u a Levi decomposition.
Then in any representation of l where h acts completely reducibly, then l acts completely reducibly.
In particular for all g-representations, l acts irreducibly.

Proof. Let (π, V) be any representation of l. If h acts completely reducibly, then h′′ acts
completely reducibly. By considering V as a lss-module, we see that V decomposes as a
direct sum of irreducible lss-modules. As l = h′′ ⊕ lss, each simultaneous eigenspace of h′′

will induce a representation of lss and hence l. This completes the proof.

In the case of g-representations, we want to know how much information we can extract
from l. The answer will turn out to be a surprising amount. Before we get to that though,
we need to define a particular subspace on which l will act naturally.

Definition 2.1.13. Let q = l⊕ u be a Levi decomposition of a parabolic subalgebra con-
taining the standard Borel subalgebra. Let (π, V) be a g-representation. The space of u-
invariants of V is the space Vu which is defined as

Vu = {v ∈ V : π(X)v = 0, ∀X ∈ u}
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This is a representation of l as u is an ideal in q and hence

X(Lv) = L(Xv) + [X, L]v = 0

The representation Vu is determined up to equivalence by the representation of h on
the space of l∩ n invariants. Now,

(Vu)l∩n = Vu⊕(l∩n) = Vn (2.5)

and the right side is given by the Theorem of Highest Weights for g.. Therefore, the repre-
sentation Vu is a generalization of the highest weight representation of g on V. The follow-
ing theorem formalizes this relationship.

Theorem 2.1.14 (Reduction to Parabolics). Let g be a complex semisimple Lie algebra and q be a
parabolic subalgebra containing the Borel subalgebra.

(a) If (π, V) is an irreducible finite dimensional representation of g, then (π, Vu) is an irre-
ducible finite dimensional representation of l with the same highest weight.

(b) If V1 and V2 are two irreducible finite dimensional representations of g so that Vu
1 and Vu

2 are
equivalent representations of l, then V1 is equivalent to V2 as g-representations.

(c) If an irreducible finite dimensional representation M of l has highest weight dominant and
algebraically integral, then there exists a g-representation V so that M ∼= Vu.

Proof. For (a), we invoke the Theorem of Highest weights to see that Vn is 1-dimensional.
Therefore, the space of l ∩ n invariants of Vu is 1-dimensional by (2.4). Since Vu is com-
pletely reducible as an l-representation, the Theorem of Highest weights shows that it is
irreducible. If λ is the highest weight of V under g, then λ is the highest weight of Vu since
Vλ = Vn ⊆ Vu. Hence, λ is dominant and algebraically integral.

For (b), we simply apply uniqueness from the Theorem of Highest Weights. If Vu
1 is

equivalent to Vu
2 then by taking l ∩ u invariants, we see that these. spaces carry the same

representation of g. Hence, V1 and V2 are equivalent as g representations.
For (c), let M have highest weight λ. Then if V is the associated highest weight repre-

sentation of g with highest weight λ, then Vu ∼= M by the uniqueness is the theorem of
highest weights and part (a). This completes the proof.

Using this theorem, we can now decompose (π, V) into Vu and its orthogonal comple-
ment. The following proposition will give us a concrete characterization of this orthogonal
complement, as well as precisely stating how the I (and thus U(l)) structure on Vu deter-
mines the g representation.

Proposition 2.1.15. Let V be any finite dimensional U(g) module and q a parabolic subalgebra of
g. Then:

(a) V = Vu ⊕ ūV

(b) The natural map Vu → V/(ūV) is an isomorphism of U(l) modules.

(c) The U(l) module Vu determines the U(g) module V up to equivalence; the number of irre-
ducible constitutents of Vu equials number of irreducible constituents of V, and the multi-
plicities of these irreducible components are the same as for V.
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Proof. It is clear that Vu and ūV are l-representations and thus U(l)-modules. (b) follows
from (a) immediately, and (c) follows from the previous theorem. Thus is suffices to prove
(a).

Without loss of generality, assume V is irreducible with highest weight λ. Let E−α, Hα, Eα

be a Poincare-Birkoff-Witt Basis for U(g). As Vu is annihilated by all elements of the form
Eα, α ∈ Γ, α /∈ −Γ. Therefore, we have a decomposition of V as a U(g)-module

V = U(l)Vλ ⊕ ūV

As l acts irreducibly on Vu by the preceding theorem and Vλ = Vn ⊆ Vu, we see that
U(l)Vλ = Vu. This proves (a) and completes the proof of the proposition.

2.1.2 Parabolic Subalgebras: the real (reductive) case

Now we turn our attention to g0 and will attempt to mirror the above constructions in the
real case. The main difference here is that we need to be careful when discussing Cartan
subalgebras which are no longer conjugate in g0. In particular, our parabolics will depend
on the choice of Cartan decomposition. This is because we are considering the set of re-
stricted roots Σ(g0, a) and thus the choice of minimal parabolic (the analogue to the Borel
subalgebra) comes from the Cartan decomposition of g0. For ease of notation, we shall
denote the lie algebras in this section by g and their complexification as gC.

Let g be a real reductive Lie algebra and θ a Cartan involution. Let g = k⊕ p be the
associated Cartan decomposition and a a maximal abelian subalgebra of p. Put Σ = Σ(g, a)
be restricted roots and let g = k ⊕ a ⊕ n be the associated Iwasawa decomposition. If
m = Zk(a), then m⊕ a⊕ n is a subalgebra of g. Pick a maximal abelian subspace t of m.
Then t⊕ a is a Cartan subalgebra of g and by construction it is θ-stable.

Definition 2.1.16. We say that a subalgebra b is a minimal parabolic subalgebra if b is
conjugate (necessarily via an inner automorphism as reductive groups are in the Harish-
Chandra class) to m⊕ a⊕ n. Any subalgebra containing such a minimal parabolic is called
a parabolic subalgebra.

One question that may arise here is the discrepancy between the inclusion of m in the
real case versus the complex one. If we were to mirror the complex case naively we would
only want to include t⊕ a as this is a Cartan subalgebra for g. However, it is not the fact
that h is a Cartan subalgebra that is important here. The key is that h in the complex case is
the 0-root space. In the real situation, this is mirrored precisely as m⊕ a is the 0-restricted
root space and thus plays the same role as the Cartan subalgebra in the complex version of
the. decomposition.

Remark 2.1.17. Equivalently, we could have used our discussion from above to define
parabolic subalgebras in the real setting as subalgebras s for which sC is a parabolic sub-
algebra of gC. As it turns out, these definitions are equivalent. We shall not prove this
here.

Similar to the complex case, we can immediately build a family of parabolic subalgebras
containing b : let Π′ ⊆ Π be a subset of the simple restricted roots, and put

ΓΠ′ = Σ+ ∪ SpanZ(Π
′).
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Then the parabolic subalgebra associated to Π′ is defined as

q = m⊕ a⊕
⊕

α∈ΓΠ′

gα

By inspecting the proof of Proposition 2.1.3, we see that nowhere do we use the fact that q
is defined over C and thus can apply this result here to conclude the following

Proposition 2.1.18. The parabolic subalgebras q containing b are parametrized by the set of subsets
of simple roots. The correspondence is given by Π′ 7→ q(Π′) = m⊕ a

⊕
ΓΠ′

gα.

From this we again deduce the Levi decomposition of q with

l = m⊕ a⊕
⊕

α∈Γ∩−Γ
gα u =

⊕
α∈Γ

α 6∈−Γ

gα

By construction l is θ-stable, hence reductive, and u is an ideal.

Theorem 2.1.19 (Langlands Decomposition of the Lie algebra). Let q be a parabolic subalgebra
containing b. Then there exist Lie subalgebras m0, a, n so that q = m0 ⊕ a⊕ n.

Proof. Put a′ =
⋂

α∈Γ∩−Γ ker α ⊆ a. This is clearly abelian and central in l. Further, by the
argument for (2.3) we see that l = Zg(a′). Let a′⊥ be the orthogonal complement to a′ in a.
As a is abelian, we see that a′⊥ ⊆ l. Further, m ⊆ l by definition. Thus, if

m0 = m⊕ a′⊥ ⊕
⊕

α∈Γ∩−Γ
gα

we see that l = m0 ⊕ a′. By the Levi decomposition, we see that

q = l⊕ u = m0 ⊕ a′ ⊕ u

Finally, m0 is θ-stable as each summand is θ-stable. Hence, we have found the desired
decomposition.

Continuing as in the previous section define the following groups:

Q = NG(q) L = Q ∩ΘQ = ZG(a
′) M = (L ∩ K) exp(a′⊥ ⊕ l∩ n)

A′ = exp a′ U = exp u

Theorem 2.1.20 (Langlands Decomposition of the Lie Group). In the notation above, we have
that following:

(a) The multiplication map M× A′ ×U → Q is a diffeomorphism.

(b) MA′ normalizes U.

(c) ΘU ∩Q = {1}
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Proof. For (a), notice that by Lemma 1.2.15 we have that the map M× A′ ×U → Q is ev-
erywhere regular. It remains to prove that it is injective. To do this, consider an Iwasawa
decomposition of M = KM AM NM. Then it is clear that if G = KAN is an Iwasawa decom-
position, then A = AM A′ and N = NMU. Now, injectiviity of the multiplication map is
equivalent to showing that M ∩ A′U = {1}. To do this, let X ∈ a′ ⊕ u such that exp X ∈ M.
Then X centralizes a′ and hence, X ∈ m0 ∩ a′ ⊕ u = {0}. Hence, X is 0 and exp X = 1.
Therefore, the map is a diffeomorphism.

(b) and (c) follow from the definitions on the Lie algebra level and arguing by contra-
diction.

There is a particular case of parabolic subgroups which are of such interest, they have
a special name.

Definition 2.1.21. Let Q = MA′U be a parabolic subgroup. We say that Q is cuspidal if
m0 contains a θ-stable, compact Cartan subalgebra t. In particular, t ⊆ m. We shall not go
into any detail of cuspidal parabolics but instead suggest [Kna05] for a full account. As it
turns out, the cuspidal parabolic subgroups are particularly easy to work with because the
Langlands decomposition arises naturally from the root system of gC with respect to the
θ-stable Cartan subalgebra h = (t⊕ a′)C.

2.2 Infinite-dimensional representations

We can now begin to tackle infinite dimensional representations of G. As it will turn out,
most of the irreducible representations of a non-compact Lie group are infinite dimen-
sional. This introduces many analytic obstructions to mimicking the compact story. It
was the great insight of Harish-Chandra and later Lepowsky, that for reductive Lie groups
there is a certain functor which can be applied to any complex representation (π, V) of G to
produce a so-called (gC, K)-module (π, VK). This infinitesimal version of the global repre-
sentation (infinitesimal here is with respect to the Lie algebra) will turn out to house nearly
all of the information about (π, V) and it comes with the great advantage: it is purely
algebraic. For this reason, (gC, K)-module theory has become an essential tool in under-
standing representations and (as well shall see in the next chapter) it is. the correct setting
for the Langlands classification. Broadly, this classifies all (gC, K)-modules of a given type.

Before we can get into this theory, we first need to continue where we left off: that
is with parabolic subgroups. As a heuristic for the future, when we want to understand
representations of G, there are two ways of doing so: (1) restriction to a subgroup (this
could be any group: K, Q, M, etc.) or (2) induction where by we start with a representation
of a subgroup H and enlarge it to G. The goal of the next subsection is to write this story
down in the case where G is compact.

Remark 2.2.1. A note to someone reading this: you may wonder why we care about com-
pact groups in this setting. G for instance is non-compact and thus it would seem on first
glance that the compact picture should be irrelevant: this is wrong. Similar to how the
Cartan decomposition told us that G and K have the same homotopy type, we can further
this result (using induction and restriction) to show that the representation theory of G is
highly controlled by restricting these representations to K. So controlled in fact, that when
we want to classify all representations of a given type, we shall find that we only need to
inspect K and the closely related subgroup K ∩M. The first hint that this is the correct ap-
proach is the combination of the Langlands and Iwasawa decompositions for G. If we were
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to induce a representation from MA′U → KAN, we see will see that the induction mainly
acts on M ∩ K and K.

2.2.1 Frobenius Reciprocity and Compact Induction

For this section, let K be a compact Lie group and M a subgroup. In the case that K and M
are finite, we have the well known result under the name Frobenius reciprocity which gives
an adjoint pair of functors

IndK
K∩M : K ∩M−Mod � K−Mod : ResK

K∩M

The goal of this section is to prove Frobenius reciprocity in the more general setting above.
Once complication that will arise fairly naturally is that because K and M have differen-
tiable (and analytic) structures, we can induce representations and only look at the contin-
uous, differentiable, L2, Lp etc. class of functions inside there. This causes some small tech-
nical points, but is dealt with quite nicely in this compact case. As we shall see in Section
2.4, we care about such a construction because we want to understand induced represen-
tations from Parabolic subgroups. By the Langlands and Iwasawa decompositions, we see
that this boils down to understanding the induced representation of K ∩M to K.

The story here begins with some generalities about representation theory of K on a
complex Hilbert space H (of possibly infinite dimension). By writing 〈, 〉 for the inner
product onH, we have the associated sublinear functional || · || give by ||h|| =

√
〈h, h〉 for

any h ∈ H.

Definition 2.2.2. We say that a linear operator T (linear endomorphism) is unitary if ||Tv|| =
||v|| for all v ∈ H. In this way, T−1 = T∗, the adjoint, and the set of unitary operators forms
a group denoted by U(H). This is called the unitary group ofH.

The most important Hilbert space for our purposes (and for the purposes of Harmonic
analyists and Harish-Chandra) will be L2(K) (and more generally L2(G)). On this space,
there are two natural actions given by the following formulas:

L(g)( f )(x) = f (g−1x) R(g)( f )(x) = f (xg)

these are called the left regular and right regular representations of K on L2(K). In fact, if F
is any space of functions whose source space is K, then the left and right regular represen-
tations are defined there. It is a well known fact that these two representations commute
with one another and is easily checked that for each g ∈ K both L(g) and R(g) are unitary
operators on L2(K).

Definition 2.2.3. By a unitary representation K on H, we mean a group homomorphism
K → U(H) such that the map

K×H → H (k, v) 7→ Π(k)v

is continuous. We say that two unitary representations (π, V), (σ, U) are unitarily equiv-
alent if there exists a norm-preserving linear map T : V → U with a norm-preserving
inverse such that π(k)T = Tσ(k) for all k ∈ K.

Lemma 2.2.4. Let Π : K → U(H) be a group homomorphism. Then Π is a unitary representation
if and only if the map k 7→ Π(k)v is continuous for all v ∈ H.
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Remark 2.2.5. It will sometimes be of great use to consider an extension of the representa-
tion to C(K), C∞(K), and L1(K) (when G is a non-compact group, we extend to C∞

c (G) the
compactly supported functions under convolution). To do so, put

Π( f )v =
∫

K
f (x)Π(x)vdx

It is then (somewhat tediously) checked that Π( f ∗ g) = Π( f )Π(g) and thus Π extends to
a representation of the Banach algebras above.

By the Peter-Weyl theorem, all of the irreducible representations of K are finite dimen-
sional and can be taken to be unitary. What we would like to know is that H decomposes
into irreducible representations. As we are in the infinite dimensional domain, we need to
not only consider algebraic decompositions, but also analytic ones. The following propo-
sition simplifies our situation:

Proposition 2.2.6. Every unitary representation of K decomposes as a Hilbert space direct sum of
irreducible finite dimensional representations of K.

Definition 2.2.7. Let K̂ denote the collection of all equivalence classes of irreducible repre-
sentations of K. Let (Π,H) be any unitary Hilbert space representation of K, then for any
γ ∈ K̂ denote by

mγ(H) := dimC Hom(Vγ,H)

This is the multiplicity of γ inH.

As it will turn out, the multiplicities of all irreducible representations contained in the
decomposition ofH are a fairly strong invariant and thus can be used to separate inequiv-
alent representations. Furthermore, multiplicities interact well with the restriction and
induction operators hinted at above. The precise formulation of this statement will be seen
shortly.

Before then, we need to generalize the induced representations of the Borel-Weil theo-
rem. In the context of that theorem we take an analytically integral, dominant weight λ,
construct a homogeneous line bundle Lλ over the complex flag manifold K/T and build
an irreducible representation out of holomorphic sections of this bundle. The assumption
of holomorphicity is to ensure that dimC ΓHol(K/T, Lλ) < ∞. If we remove this restric-
tion, we immediately get an infinite dimensional representation, and call also extend our
notions away from the complex domain. To generalize this correctly, we proceed in the
following way: let T ≤ K be a closed subgroup. Then K/T has the structure of a manifold,
and any Hilbert space representation (σ, V) of T creates a homogenous vector bundle

Wσ := K×T V → K/T

Definition 2.2.8. Denote by (IndK
T(σ), C0(K/T, Wσ)) the representation of K on the space

of continuous sections of Wσ. This is called the continuous induced representation from T
to K. If instead we wanted to look at smooth sections, or even L2 sections, we can similarly
do this. The L2-case requires a bit of comment. Let V a Hilbert space. A function F : K → V
is measurable if x 7→ 〈F(x), v〉 is Borel measurable. Then if {vn} is an orthonormal basis of
V, we put |F(x)|2 = ∑ | 〈F(x), vn〉 |2. Put L2(K, V) to be the set of all functions F : K → V
which are measurable and if ||F||2 =

(∫
K |F(x)|2dx

)1/2 . Denote by

L2(K, V, σ) = { f ∈ L2(K, V) f (kt) = σ(t)−1 f (k) for almost every pair (k, t) ∈ K× T}
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These are the L2-sections of the bundle. Defining these functions almost everywhere indi-
cates that we may have some issue with evaluation at given points, but this can be avoided
in nearly all instances.

Remark 2.2.9. For the purposes of this section, we shall always consider L2 sections of Wσ.

The following theorem is a more general version of Frobenius reciprocity from the char-
acter theory on finite groups.

Theorem 2.2.10 (Frobenius Reciprocity). Let L ≤ K be a closed subgroup, (σ, Vσ) any irre-
ducible unitary representation of L, and (τ, Vτ) any irreducible unitary representation of G. Then
we have the following natural isomorphism

HomK(Vτ , L2(K, Vσ, σ)) ∼= HomL(Vτ , Vσ)

and the following equality of multiplicities

mτ(IndK
L (σ)) = mσ(τ|L)

Proof. Observe first that L2(K, V, σ) is the direct sum of dσ := dim Vσ copies of L2(K).
Therefore, we see that τ occurs exactly dσdτ times in L2(K, Vσ) and at most this many
times in L2(K, Vσ, σ). By Schur’s Lemma, any member of Hom(Vτ , L2(K, Vσ, σ)) consists
of continuous function and thus, can evaluate the images in a well-defined fashion. Now
consider the "evaluation at 1" morphism ev1 . Then for every A ∈ Hom(Vτ , L2(K, Vσ, σ)),
we can take the composite map

ev1 ◦A : Vτ → V

By restricting the domain, we get an element in HomL(Vτ , Vσ). It remains to show that the
assignment

A 7→ A(−)(1)

is bijective.
To show it is injective, suppose A ∈ ker ev1 . Then (Av)(1) = 0 for all v ∈ Vτ . Applying

this conclusion to an element τ(k)−1v′ we see that

0 = (Aτ(k)−1v′)(1) = (IndK
L (σ)(k)Av′)(1) = Av′(k)

by definition. Hence, Av′ ≡ 0. Since, v′ is arbitrary, we see that A = 0 and ev1 is injective.
To show it is surjective, let a ∈ HomL(Vτ , Vσ). Put Av(k) = a(τ(k)−1v) for all v ∈

Vτ , k ∈ K. Then by construction

Av(gh) = σ(h)−1(Av)(g)

and thus Av ∈ L2(K, Vσ, σ). It remains to show that A ∈ HomK(Vτ , L2(K, Vσ, σ)). This
follows though, from the equality

(IndK
L (σ)(k)Av)(k′) = a(τ(k′)−1(τ(k)v)) = A(τ(k)v)(g)

Hence, IndK
L (σ)(k)A = Aτ(k) for all k ∈ K. Lastly, it is obvious that A 7→ a and hence ev1

is a bijection. The formula for multiplicities then follows immediately.
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In particular, this result tells us that ResK
L a IndK

L as functors between the respective
categories of modules. It should be clear that ResK

L ResL
L′ = ResK

L′ as functors. The story for
Ind is not too different, but a small technical point must be made.

Proposition 2.2.11 (Induction in Stages). Let K be a compact Lie group and L, L1 closed sub-
groups such that L ⊆ L1 ⊆ K. If σ is an irreducible unitary representation of L, then

IndK
L (σ) is unitarily equivalent with IndK

L1
IndL1

L (σ)

Proof. Notice that for any unitary representation τ of K, we have the following formula for
multiplicities:

mσ(τ) = ∑
γ∈L̂1

mγ(τ)mσ(γ)

Frobenius reciprocity, then gives

mτ(IndK
L (σ)) = ∑

γ∈L1

mτ(IndK
L1
(γ))mγ(IndL1

L (σ))

The representation IndL1
L (σ) is an orthogonal direct sum over all γ ∈ L̂1 with a multiplicity

number of copies, and hence is unitarily equivalent to the orthogonal direct sum over all
γ ∈ L̂1 of mγ(IndH1

H (σ)) copies of IndG
H1
(γ). Thus, the right side of the formula above is

mτ(IndK
L1

IndL1
L (σ))

Hence, the representations have the same multiplicities and thus are unitarily equivalent.

Notice that we do not get equality on the nose unlike in the case of restrictions. For
this reason, there is a question as to which induction we should use. One may wonder if
instead of L2 induction we do C∞ or just continuous induction, we may get equality. As it
will turn out, the answer is still no. What will be particularly interesting however, is that
to each of these representations we can associate an infinitesimal (or well-behaved in the
language of Harish-Chandra) representation and these representations will turn out to be
the same! To make some sense of this, and to fully pass to the world of (gC, K)-modules,
we need to understand how to build these infinitesimal representations and in particular,
how to define an action of the Lie algebra on an infinite dimensional representation of G.

2.2.2 Smooth and K-finite vectors

We now return to the general case. What we present here again will be true for groups
in the Harish-Chandra class, but the proofs will be presented for reductive groups unless
noted otherwise. Let G be a real reductive Lie group, g0 its Lie algebra, and g its com-
plexification. Let Θ be a global Cartan involution and K the maximal compact subgroup
corresponding to the choice of Θ. We have the following decompositions from chapter 1:

G = K× p0 Polar Decomposition
G = KAN Iwasawa Decomposition
G = KAK Cartan Decomposition
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Let (Π, V) be any infinite dimensional complex representation of G on a Hilbert (or even
Banach, Fréchet, etc.) space V with inner product 〈, 〉 . Unlike the finite dimensional case,
the following limit may not exist:

lim
t→0

Π(exp tX)v− v
t

(2.6)

for g ∈ G and v ∈ V.

Definition 2.2.12. We say that a vector v ∈ V is of class C1 if the mapping v 7→ limt→0
Π(exp tX)v−v

t
is continuous. We call a vector smooth or of class C∞ if the mapping

v 7→ Π(g)v

is Ck for all k ≥ 0. Let V∞ ⊆ V denote the subspace of all smooth vectors.

Lemma 2.2.13. (Π, V∞) is a representation of G. Further, we can differentiate this action to get a
representation (π, V∞) of g.

Proof. Let v ∈ V∞. Then for all g, h ∈ G, gh 7→ Π(gh)v is C∞. As Π is a homomorphism,
Π(g)Π(h)v ∈ V∞ and by associativity

Π(gh)v = Π(g) · (Π(h)v) ∈ V∞

Thus, Π(h)v ∈ V∞. As g, h ∈ G are arbitrary, we see that Π(g)v ∈ V∞ for all v ∈ V∞ and
(Π, V∞) is a (smooth) representation of G.

To define the Lie algebra representation, let X ∈ g0 and for each v ∈ V∞ put

π(X)v = lim
t→0

Π(exp tX)v− v
t

=
d
dt

Π(exp tX)v|t=0

This is well-defined as v ∈ V∞ and also leaves V∞ invariant as Π(exp tX)v is smooth. It re-
mains to show that π is a Lie algebra homomorphism. (Note that if V is finite dimensional
then every vector is smooth and π is a Lie algebra homomorphism as it is the tangent map
to a Lie group homomorphism)

Let X ∈ g0 and put X̃ the corresponding left-invariant vector field on G. Then if we put
fv(g) = Π(g)v, we see that

Π(g)π(X)v = (X̃ fv)(g)

By putting g = exp tY for Y ∈ g0, we obtain

π(Y)π(X)v =
d
dt
∣∣
t=0Π(exp tY)π(X)v =

d
dt
∣∣
t=0(X̃ fv)(exp tY) = Ỹ(X̃ fv)(e)

Interchanging Y and X and subtracting them, we get

π(X)π(Y)v− π(Y)π(X)v = (X̃(Ỹ fv)− Ỹ(X̃ fv))(e)

The right hand side is precisely ([X̃, Ỹ] fv)(e) = [̃X, Y] fv(e) and thus π is a Lie algebra
representation. As V∞ is a complex vector space, we see that π extends to a complex Lie
algebra homomorphism g → End(V∞) and thus an associative algebra homomorphism
U(g)→ End(V∞) which sends 1 to 1.
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One key aspect of this procedure is that V∞ is not some arbitrary subspace of V as the
following example shows:

Example 2.2.14. Let G = R and (λ, L2(R)) be the left-regular representation of G. Put
V = { f ∈ C∞

c (R) : supp f ⊆ [0, 1]}. Then V is g invariant, but neither V, nor its closure are
G invariant.

What we want to show is that V∞ is not only a suitably nice subspace, but that V = V∞.
To do this, first will extend our given representation Π from G to C∞

c (G). From here, it will
then follow that the set of all matrix coefficients of this extension will be dense in V and
will all be smooth. We start with the extension.

Definition 2.2.15. Let (Π, V) be a Hilbert space representation of G. For any f ∈ C∞
c (G),

put

Π( f )v =
∫

G
f (g)Π(g)v dg

where dg denotes a left-Haar measure on G. Notice that ||Π( f )v|| ≤ CΩ||v|||| f ||1 for all
compact Ω ⊆ G, where CΩ is a constant. Define the Gårding Subspace of V to be the
linear span of the Π( f )v.

The reason we consider such a space is that we can chose a sequence of fi to be an
approximation to the identity (a net of distributions which converges to the identity element).
This in turn tells us that at least some of the Π( f )v are smooth vectors. As the following
proposition shows, in fact all of the Π( f )v are smooth. Even more convenient, the Gd̊ing
subspace is dense in V and by extension V∞ is dense.

Proposition 2.2.16. Let (Π, V) be a representation of G and f ∈ C∞
c (G). Then the following are

true:

(a) For every v ∈ V, Π( f )v ∈ V∞.

(b) The Gårding subspace of V is dense in V.

(c) V∞ is dense in V.

Proof. For (a), we first show that for X ∈ g then π(X)Π( f )v exists. By the definitions:

π(X)Π( f )v = t−1
∫

G
f (g) (Π(exp tX)Π(g)−Π(g)) dg

By making the substitution g 7→ exp(−tX)g, we get that

t−1
∫

G
f (g) (Π(exp tX)Π(g)−Π(g)) dg =

∫
G

f (exp(−tX)g)− f (g)
t

Π(g)v dg

By taking the limit as t → 0 and applying the Dominated Convergence Theorem, we see
that π(X)Π( f )v = −Π(X f )v and thus exists. This shows that the Gårding subspace is
stable under g and thus consists of smooth vectors.

For (b), let v ∈ V. By assumption Π is continuous and thus for any ε > 0 the set

T = {g ∈ G : ||Π(g)v− v|| < ε}
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is open. Therefore, there exists some C ⊆ T compact and f ∈ C∞
c (G) with supp f ⊆ C. By

normalizing, we can assume
∫

G f dg = 1 and thus

||Π( f )v− v|| = ||
∫

G
f (g)[Π(g)v− v] dg|| ≤

∫
G

f (g)||Π(g)v− v|| dg ≤ ε
∫

G
f (g) dg = ε

Hence, the Gårding subspace is dense in V. Part (c) follows from (a) and (b). This completes
the proof.

We now want to mirror the finite-dimensional case. The main obstruction to directly
doing this being that characters no longer entirely determine the representation (namely
because they do not exist in the traditonal sense) and thus only the U(g)-module structure
on V∞ is not sufficient to reconstruct the G-module structure on V. This is mainly a topo-
logical obstruction. Notice however, that we have a small work-around for this by using
the Polar (Cartan) decomposition of G. It shows that K ' G and thus morally the represen-
tation theory of G should come from the representation theory of K, possibly with some
twist. As it will turn out, this yoga is true for irreducible representations! As understand-
ing the irreducible representations of G are the real goal of representation theory, this is
exactly the result we want.

The "twist" mentioned above is that we shall consider a certain subspace of V which is
generated by suitably nice vectors which allow us to decompose V as an algebraic direct
sum of irreducible spaces. This will in turn be the correct space to study.

Definition 2.2.17. A vector v ∈ V is called K-finite if Π(K)v spans a finite dimensional
vector space. The subspace of all K-finite vectors is denoted VK.

If (Π, V) is a representation of G, then we can investigate Π|K. If K acts by unitary
operators, then (Π|K, V) decomposes as a Hilbert space direct sum of irreducible repre-
sentations of K. For each γ ∈ K̂, denote by V(γ) the sum of all of the subrepresentations
isomorphic to γ. This is called the γ− isotypic component of V.

Definition 2.2.18. A representation of G is called admissible if dimC V(γ) < ∞ for all
γ ∈ K̂. Notice that this is equivalent to mγ(Π|K) < ∞.

Proposition 2.2.19. Let (Π, V) be an admissible representation of G. Then VK ⊆ V∞.

Proof. We shall proceed in a few steps.
Step 1: Notice that VK ∩ V∞ 6= ∅ as V∞ is dense in V. We shall momentarily call vec-

tors in this intersection: smooth K-finite vectors for V. Let us show that a special class of
functions give K-finite vectors. Consider λ the left-regular representation of K on C∞(K).
Denote by λfin the K-finite vectors in C∞(K) and let f ∈ λfin. Further, let h ∈ C∞

c (exp p0)
and put

F(k exp p0) = f (k)h(exp X)

Each F of this form is compactly supported and left K-finite for λ as

λ(k0)F(k exp X) = F(k−1
0 k exp X) = f (k−1

0 k)h(exp X)

where the right hand side is K-finite by assumption.
Now, for every v ∈ V, Π(F)v ∈ V∞ by the proof of Proposition 2.2.16. Unraveling the

definitions a bit, we see that

Π(k0)Π(F)v =
∫

G
F(g)Π(k0g)v dg =

∫
G

F(k−1
0 g)Π(g)v dg = λ(k−1

0 )Π(F)v
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with the right hand side K-finite by above. Hence, Π(F)v is K-finite.
Step 2: Now we shall show that the linear span of all Π(F)v is dense in V. Let v ∈ V be

arbitrary. As Π is continuous, the set

T = {g ∈ G : ||Π(g)v− v|| < ε}

is open and contains some compact subset C. We may then choose f , h supported in C such
that

∫
G F(g) dg = 1. Then

||Π(F)v− v|| =
∣∣∣∣∣∣∣∣∫G

F(g)Π(g)v dg− v
∣∣∣∣∣∣∣∣

≤
∫

G
F(g) ||Π(g)v− v|| dg

< ε
∫

G
F(g) dg = ε

Hence, the linear span of all such Π(F)v is dense in V. This shows that the set of smooth
K-finite vectors (namely Vk ∩V∞) is dense in V.

Step 3: Now we show that for admissible representations this subspace this is precisely
all of the K-finite vectors. As V is assumed admissible, write ΠK =

⊕̂
γ∈K̂V(γ) with each

dimC V(γ) < ∞. Consider V(γ). As this is finite dimensional and irreducible, it consists
entirely of K-finite vectors. As this is true for every such γ, we see that VK =

⊕
γ∈K̂ V(γ)

(the algebraic direct sum). Combining this with the result from above, we have a dense
subspace of a linear space which in turn must be the entire space. Since, the K-finite vectors
are finite linear combinations of elements of the V(γ), we see that VK = VK ∩ V∞. Hence,
all K-finite vectors are smooth.

Similar to the smooth case above. Harish-Chandra proved that all K-finite vectors are
in fact real analytic by way of matrix coefficients and elliptic differential operators. The
main tool in that approach is the following fact which we shall not prove:

Theorem 2.2.20. Let D be an elliptic differential operator with real-analytic coefficients. Then
every element in the solution space D f = 0 is real-analytic.

It can be shown that K-finite matrix coefficients satisfy a certain elliptic differential op-
erator and thus are real-analytic. For a proof of this, see [Kna86]

Lemma 2.2.21. VK is a g invariant subspace of V∞.

Proof. Let v ∈ VK and put Wv = π(U(kC))v the necessarily finite dimensional subspace
corresponding to v. Then for X ∈ k, Y ∈ g, and v′ ∈Wv, we have that

π(X)π(Y)v′ = π(Y)π(X)v′ − π([X, Y])v′

and π(g)v′ is stable under π(k). As Wv is finite dimensional, we can exponentiate the el-
ements and conclude that π(g)Wv is Π(K)-invariant. Thus, Y ∈ g implies that π(Y)v is
an element of a finite dimensional vector space which is Π(K)-stable. Hence, π(Y)v is
K-finite

Therefore VK carries two related representations: one of g and one of K. As it turns out,
vector spaces with this property are incredibly rich in structure and thus are the next object
of study. We formalize this in the following definition.
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Definition 2.2.22. (Lepowsky) Let G be a non-compact reductive Lie group, G = KAN the
Iwasawa decomposition. A (g, K)-module is a vector space V equipped with two repre-
sentations, denoted by π : g∪ K → End(V), of g and K, such that the following conditions
are satisfied:

(a) Every v ∈ V is K-finite.

(b) The differential of π|K is the restriction of πg|k0 .

(c) For all k ∈ K and X ∈ g, we have that π(Ad(k)X) = π(k)π(X)π(k)−1.

If V is equipped with an inner product, we say that V is a unitary (g, K)-module if π(X) is
a unitary operator for all X ∈ g. We say that V is an admissible (g, K)-module if for every
γ ∈ K̂, the γ-isotypic component V(γ) is finite dimensional.

Corollary 2.2.23. If (Π, G) is an admissible representation of G, then (π, VK) is a (g, K)-module
by Lemma 2.2.21.

2.3 (g, K)-modules

This next section will cover the basics of the (g, K)-module theory. In particular, we shall
see that irreducible (g, K)-modules completely determine the irreducible G-modules. This
is the correspondence hinted at in the introduction. We have not proven this directly, but it
can be shown that the assignment V 7→ VK is functorial and this functor is fully faithful on
the category of irreducible (g, K)-modules (up to equivalence).

2.3.1 Admissible and Unitary representations

We have mirrored the finite dimensional theory fairly closely to this junction. One result
which has been starkly absent is Schur’s Lemma. The main reason for this is that in the
infinite dimensional setting, it may not hold! Luckily, if we restrict ourselves to countably
infinite bases, we get an analogous result due to Dixmier.

Lemma 2.3.1. Let V be a countable dimensional C-vector space and suppose T ∈ End(V). Then
there exists a scalar c ∈ C such that T − cI is not invertible.

Proof. Suppose for the sake of contradiction that T − cI is invertible for all c ∈ C. Then
for every polynomial P, P(T) is invertible as a function of one variable. Now, let R(T) =
P(T)/Q(T) be some rational function. This gives a linear map C(x) → End(V). For all
v ∈ V, we have that R(T)v = 0 only if P(T)v = 0. Thus the map C(x) → V given by
R 7→ R(T)v is injective. Since C(x) is uncountably infinite dimensional over C, we have a
contradiction.

Lemma 2.3.2. (Dixmier) Suppose S ⊆ End(V) is a subset of endomorphisms which acts irre-
ducibly. If T ∈ End(V) commutes with all elements of S, then T = cI for some c ∈ C.

Proof. By the preceding lemma, there exists some c ∈ C such that T − cI is not invertible.
Consider ker(T − cI) and Im(T − cI). Every element of S preserves both of these spaces
one of them is necessarily a proper subset. As T − cI is not invertible, ker(T − cI) is non-
zero. Thus ker(T − cI) = V as all of the elements of S act irreducibly. Hence T − cI = 0
and T = cI.
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Definition 2.3.3. If V and W are two (g, K)-modules, denote by Homg,K(V, W) the set of
all g homomorphisms V →W which are also K homomorphisms.

Lemma 2.3.4. Let V be an irreducible (g, K)-module. Then Homg,K(V, V) = C · Id .

Proof. Let v ∈ V and Wv the span of v under K. Then U(g)Wv is a g-invariant, K-invariant
subspace and thus V = U(g)Wv. This exhibits V as a countably infinite dimensional space.
By applying the above lemmas, we are done.

The main motivation for studying representations began with Harmonic analysis where
unitary representations arise naturally. In fact, all of the theory developed so far was orig-
inally done precisely to understand the Unitary dual of reductive Lie groups. Based on
the discussion above, one may guess that admissible representations are related to unitary
representations in some way. In fact, the precise statement is as follows:

Theorem 2.3.5. Let G be a real reductive Lie group and (π, V) an irreducible unitary representa-
tion of G. Then (π, V) is admissible as a representation of G and thus VK is an admissible, unitary
(g, K)-module.

Before getting to the proof, we need a few technical results, some of which we shall
not prove for brevity. All of the statements can be found in [HC53]. Let U(k) denote
the enveloping algebra of (k0)C considered as a subalgebra of U(g) and Y a left ideal in
U(k) such that U(k)/Y is finite dimensional and k acts by semisimple transformations.
Consider X = U(g)/U(g)Y. U(g) acts on this space by left-translation and thus restricts to
a representation of Z(g) (the center of U(g). Additionally, using the adjoint representation,
we get an action of K on this quotient. Let X(γ) denote the γ-isotypic component of X.

Lemma 2.3.6. For every γ ∈ K̂, X(γ) is a finite module over Z(g).

Proof. See [HC53, Theorem 1].

Lemma 2.3.7. Let (π, V) be an admissible representation of G and VK the associated (g, K)-module
with ψ ∈ VK. Then the closure π(U(g)ψ) is π(G) invariant.

Proof. Let ψ0 ∈ U = π(U(g)ψ, and λ ∈ V∗ such that λ vanishes on U. Since ψ0 ∈ VK, we
see that the map

g 7→ λ(π(g)ψ0)

is real analytic on G. Now, there exists a neighbourhood O of 0 in g0 such that the exponen-
tial map is given by a power series and thus

π(exp X)ψ0 =
∞

∑
m=0

1
m!

π(X)mψ0

and thus

λ(π(exp X))ψ0) =
∞

∑
m=0

1
m!

λ(π(X)mψ0)

As π(X)mψ0 ∈ U, the right hand side is 0. Therefore, λ(π(g)ψ0) vanishes on a neigh-
bourhood of 1 in G and by analyticity, vanishes everywhere. Applying the Hahn-Banach
theorem, we see that π(g)ψ0 ∈ U. Therefore π(g)U ⊆ U and by continuity, π(g)U ⊆ U.
This completes the proof.
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Lemma 2.3.8. Let (π, V) be a representation of G which admits an infinitesimal character. Then
for any K-invariant subspace W, put W(γ) = W ∩ V(γ). If

⊕
γ∈K̂ W(γ) is dense in V, then

V(γ) = W(γ).

Proof. See [HC53, Lemma 30].

Remark 2.3.9. For a moral proof of the above lemma, mimic the ideas of the proof that the
Gårding subspace is dense. Consider the integral operators associated to certain smooth
functions and use the density of these to conclude the desired lemma.

Proposition 2.3.10. Let (π, V) be a representation of G on a Hilbert space which admits an in-
finitesimal character. Let ψ0 ∈ VK =

⊕
γ∈K̂ V(γ) and U = π(U(g)ψ0). Then U is invariant

under π(G), π(U(g))ψ0 =
⊕

γ∈K̂ U(γ), and dimC U(γ) < ∞.

Proof. We know from Lemma 2.3.7 that U is π(G) invariant. Put U0 = π(U(g))ψ0. Then
U0 ⊆ VK and therefore U0 =

⊕
γ∈K̂ U0 ∩ V(γ). Let Y be the set of all elements x ∈ U(k)

such that π(x)ψ0 = 0. Then Y is a left ideal in U(k) and it satisfies the conditions prior to
Lemma 2.3.6. Set X = U(g)/U(g)Y. Put (π̃, X) the associated representation of U(g) on
X. Define the map

α : X → U0 α([x]) = π(x)ψ0

where x is a representative of [x]. This is well defined as for any two representative x, x′ ∈
[x], we have that x = x′ + y where y ∈ Y. Now α(x) = α(x′) + α(y) = α(x′) by the
definition of Y. Now, for every a ∈ U(g), we have that α(π̃(a)[b]) = π(a)α([b]). Further, α
is injective and thus by identifying X with its image in U0, can consider X ⊆ U0 and thus
we have a direct sum decomposition

X =
⊕
γ∈K̂

X(γ)

and α(X(γ)) = U0 ∩V(γ). Applying Lemma 2.3.6, we get that each X(γ) is a finite module
over Z(g). Pick [b1], [b2], ..., [bk] elements in X(γ) such that X(γ) =

⊕
i π̃(Z(g))[bi]. Hence,

U0 ∩V(γ) =
⊕

i π(Z(g))α([bi]). Now for each element of z ∈ Z(g),

π(z) = χ(z)π(1)

and thus the α([bi]) span U0 ∩V(γ) and thus dim U0 ∩V(γ) < ∞. Since U0 =
⊕

γ∈K̂ U0 ∩
U(γ) is dense in U, by Lemma 2.3.8 we conclude that U(γ) = U0 ∩U(γ) and each of these
is finite dimensional. This concludes the proof.

Proof of Theorem 2.3.5. It is known that every irreducible unitary representation has an in-
finitesimal character. As the K-finite vectors are analytic and dense in V. Pick ψ0 ∈ VK
non-zero. Then by irreducibility, V = π(U(g))ψ0 and applying the above proposition, we
conclude that dim VK(γ) < ∞. Hence, every irreducible unitary representation is admissi-
ble.

The remaining part of this section will encompass the proof that irreducibility of ad-
missible representations can be checked on either the group or (g, K) level. We will prove
this by way of considering the K-finite matrix coefficients for the given representations. In
particular, the main tool is actually a fact from the theory of partial differential equations
which we quote below:
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Theorem 2.3.11 (Regularity Theorem). Let D be an elliptic differential operator on C∞(G). Then
if the coefficients of D are real analytic and u is a solution to Du = 0, then u is real analytic.

Proof. [Gru09, Theorem 6.29].

What we shall show is that every K-finite matrix coefficient is annihilated by an elliptic
differential operator and thus by the previous theorem, every K-finite matrix coefficient is
real analytic.

Proposition 2.3.12. Let G be a real reductive group and (π, V) an admissible representation of G.
Then every matrix coefficient of the form g 7→ (π(g)u, v) for u ∈ VK is real analytic.

Proof. By unraveling the definitions, we see that for any D ∈ U(g), we have that

D(π(g)u, v) = (π(g)π(D)u, v)

We may assume without loss of generality that u is contained in some V(γ). As π is ad-
missible this is finite dimensional and there exists c1, ..., cn ∈ C such that

∏
i

π(Ω)− ci = 0

where Ω is the Casimir element in Z(g). If we denote by ΩK the Casimir element of Z(kC)
then π(ΩK) = cγ on V(γ) by Schur’s Lemma. Let g0 = k0 ⊕ p0 be a Cartan Decomposition
of the Lie algebra and pick bases for k0 and p0 which are orthogonal with respect to the
inner product Bθ(X, Y) = −B(X, θY) where θ is the Cartan involution. Then we have the
following equalities

Ω = −∑ X2
i + ∑ Y2

i

ΩK = −∑ X2
i

Ω− 2ΩK = ∑ X2
i + ∑ Y2

i

This is seen to be an elliptic differential operator by investigating its principal symbol in
a neighbourhood of the identity using coordinates defined by the exponential function.
From this, we see that the differential operator

D = ∏
i

Ω− 2ΩK + 2cγ − cj

is also elliptic with real analytic coefficients (as K is an analytic manifold). Now, from our
equation above,

D(π(g)u, v) =

(
π(g)∏

i

[
π(Ω)− π(2ΩK) + 2cγ − cj

]
u, v

)

=

(
π(g)∏

i

[
π(Ω)− cj

]
u, v

)
= 0

Hence, by the Regularity Theorem (π(g)u, v) is real analytic.
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Definition 2.3.13. Let (π, V) be a representation of G on a HIlbert (Banach,Fréchet, etc.)
space and VK the associated (g, K)-module. Then the contragredient representation or
dual representation of VK is denoted as V?

K and is defined to be

V?
K = (V∗K)K

There is a natural transpose action on V?
K and from this we see that all linear functionals

(−, v) for v K-finite are contained in V∗K . In fact, this is the entire space!

Corollary 2.3.14. Let (π, V) and (π′, V′) be irreducible admissible representations of G. If π and
π′ are infinitesimally equivalent (VK and V′K are isomorphic (g, K)-modules) then they have the
same set of matrix coefficients.

Proof. The matrix coefficients on G are characterized as the unique real analytic functions
such that their derivative at g = 1 is given by

D(π(g)u, v) = (π(D)u, v)

From the discussion in the definition of the contragredient representation, we see that this
is real analytic and given by (π(D)u, v′) for v′ ∈ V?

K not depending on D. Therefore, the
matrix coefficients are given in a way which is infinitesimally independent. This completes
the proof.

Corollary 2.3.15. The closed G-invariant subspaces of V are in one-to-one correspondence with
the g-invariant subspaces of VK with the correspondence given by

U 7→ U ∩VK

and
W ← [ W

Proof. By Lemma 2.3.7, we have that U ∩VK is g-invariant and W is π(G)-invariant. Thus,
it remains to prove that these operations are inverses. For any closed invariant subspace
U, put UK = U ∩VK. Then UK ⊆ U as U is closed. Furthermore, UK is dense in U and thus
UK = U. This completes the proof.

Theorem 2.3.16. Let (π, V) be an admissible representation of the reductive Lie group G. Then V
is irreducible if and only if VK is an irreducible (g, K)-module.

Proof. This is a particular case of the previous corollary.

Corollary 2.3.17. Let (π, V) and (π′, V′) be irreducible admissible representations of G. If V and
V′ share a single matrix coefficient in common, then VK ∼=g,K V′K.

Proof. Our assumption is that

(π(g)u, v) = (π′(g)u′, v′)

for all g ∈ G and some non-zero u, v ∈ VK and u′, v′ ∈ V′K. Let V0 = U(g)(π(g)u, v) be a
subspace of C∞(G). By the previous theorem, we have that π(U(g))u = VK. and thus

V0 = (π(g)π(U(g))u, v) = (π(g)VK, v)
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Define ϕ : VK → V0 by v 7→ (π(−)π(U(g))u, v). This map is onto by construction. Further,
it is U(g)-equivariant since

ϕ(π(D)(π(D′)u)) = ϕ(π(DD′)u) = (π(−)π(DD′)u, v)

= D(π(−)π(D′)u, v)

= Dϕ(π(D′)u)

Since π is irreducible, ker ϕ = 0 and thus it is a U(g)-module isomorphism.
Starting with π′ instead, we get a U(g)-module isomorphism ψ : V′K → V0 and thus by

taking ψ−1 ϕ be have the desired (g, K)-module isomorphism.

Corollary 2.3.18. Consider the induced representations V = L2(G, Vσ, σ), W = C∞(G, Vσ, σ), U =
C(G, Vσ, σ) where the latter two are defined naturally. Then VK ∼= WK ∼= UK.

Proof. Modulo the result that these representations are admissible, we see that for any
smooth, L2 function G → V we have that the matrix coefficient corresponding to this
element will be equal in all of the above representations. Now by the previous corollary,
we conclude the result.

This remedies our concern from above that taking different types of induction would
give substantive differences in the representation theory. Precisely all of the analytic con-
cerns are then removed from the study of the underlying (g, K)-modules and this is where
we begin the final steps towards the Langlands classification.
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