
MATH 5075 R Project 8
Your Name Here

11/22/2016

Remember: I expect to see commentary either in the text, in the code with comments created using #, or
(preferably) both! Failing to do so may result in lost points!

Because randomization is used in this assignment, I set the seed here, in addition to beginning each code block.
Do not change the seed!
set.seed(10202016)

Problem

Consider the RCA(1) model:

xt = (ρ+ φt)xt−1 + wt

1. Let φt be i.i.d for all t ∈ Z, with φt ∼ N(0, 1), likewise for wt, and let all phit and wt be independent
of each other. What is the condition for which the RCA(1) model has a stationary solution (you do not
need to prove the result; simply state it)? Assume ρ = −0.1. Use simulation to estimate the quantity
that determines stationarity (attach a 95% confidence interval to this quantity, using some appropriate
method), and decide if this model (with these particular parameters) is stationary.

Your code here

2. In this part you will write a function similar in spirit to arima.sim() that simulates an RCA(1) process
in a flexible manner; call this function rca1.sim(). The function takes the following arguments:

• rho: A numeric value corresponding to the value of ρ
• n: An integer representing number of realizations to simulate; this is NULL by default, but if innov.coeff

and innov.res are supplied, then this argument will be ignored
• rand.gen.coeff: A function for randomly generating the coefficients of the model, φt; by default, this

should be rnorm
• rand.gen.res: A function for randomly generating the residuals of the model, wt; by default, this

should be rnorm
• innov.coeff: An optional time series (that is, ts) object that, if supplied, will be used for φt instead

of randomly generating its values via rand.gen.coeff; by default, if rand.gen.coeff is supplied, this
argument is a randomly generated series

• innov.res: An optional time series (that is, ts) object that, if supplied, will be used for wt instead of
randomly generating its values via rand.gen.res; by default, if rand.gen.res is supplied, this argument
is a randomly generated series

• n.start: An integer representing number of realizations to simulate for the “burn-in” period; should be
500 by default

• start.innov.coeff: If supplied, a time series object that will be used for the “burn-in” period,
corresponding to the random coefficients; by default, if rand.gen.coeff is supplied, this argument is a
randomly generated series

• start.innov.res: If supplied, a time series object that will be used for the “burn-in” period, corre-
sponding to the residuals; by default, if rand.gen.res is supplied, this argument is a randomly generated
series

• coeff.args: A list of named arguments corresponding to arguments to be passed to rand.gen.coeff;
most usefully, if rand.gen.coeff is rnorm, you can include an argument sd to control the standard
deviation of φt

1

• res.args: A list of named arguments corresponding to arguments to be passed to rand.gen.res; most
usefully, if rand.gen.coeff is rnorm, you can include an argument sd to control the standard deviation
of wt

The function returns a time series (that is, class ts) object containing the simulated values.

I have started writing this function, giving many of the parameters sensible values. Fill in the rest of the
function so it works. (Hint: Your job is to generate an RCA(1) process using start.innov.res,
innov.res, start.innov.coeff, and innov.coeff, which are already made for you, then return
a ts object with the last n elements of the recursion.)
rca1.sim <- function(rho = 0, n = NULL, rand.gen.coeff = rnorm, rand.gen.res = rnorm,

innov.coeff = do.call(rand.gen.coeff, c(list(n), coeff.args)), innov.res = do.call(rand.gen.res,
c(list(n), res.args)), n.start = 500, start.innov.coeff = do.call(rand.gen.coeff,
c(list(n.start), coeff.args)), start.innov.res = do.call(rand.gen.res,
c(list(n.start), res.args)), coeff.args = list(sd = 1), res.args = list(sd = 1)) {

Error checking
if (length(start.innov.coeff) != length(start.innov.res)) {

stop("start.innov.coeff and start.innov.res need to be of the same length")
}
if (length(innov.coeff) != length(innov.res)) {

stop("innov.coeff and innov.res must be of the same length")
}
Coerce innov.coeff, innov.res, start.innov.coeff, and start.innov.res to
be ts objects
innov.coeff <- as.ts(innov.coeff)
innov.res <- as.ts(innov.res)
start.innov.coeff <- as.ts(start.innov.coeff)
start.innov.res <- as.ts(start.innov.res)

if (!is.null(n)) {
n <- length(innov.res)

}
if (is.null(n.start)) {

n.start <- length(start.innov.res)
}

Your code here
}

3. Using rca1.sim(), simulate RCA(1) processes with T = 100 observations each with the following
characteristics:

• ρ = 0, phit ∼ N(0, 1), wt ∼ N(0, 1)
• ρ = .1, phit ∼ N(0, 1), wt ∼ N(0, 1)
• ρ = .5, phit ∼ N(0, 1), wt ∼ N(0, 1)
• ρ = −.1, phit ∼ N(0, 1), wt ∼ N(0, 1)
• ρ = −.5, phit ∼ N(0, 1), wt ∼ N(0, 1)
• ρ = .5, phit ∼ N(0, .52), wt ∼ N(0, 20)
• ρ = .5, phit ∼ t(3), wt ∼ N(0, 1)
• ρ = .5, phit ∼ N(0, 1), wt ∼ t(3)

Use the default burn-in period, and report your results via a plot.
Your code here

4. Recall the least-squares and weighted-least-squares estimators for ρ. Write a function that, given a

2

data set (presumably a ts-class object), estimates ρ with the least-squares estimator and returns the
estimate. Do the same with the weighted-least-squares estimator. Then simulate a sample from each
process described in part 3, estimate ρ from each simulated data set with both estimators, and compare
against what ρ is known to be. Which estimator seems to perform best?

Your code here

5. The data set lynx contains the annual numbers of lynx trappings for 1821-1934 in Canada. D.F. Nicholls
and D.G. Quinn in their 1982 monograph Random coefficient autoregressive models: an introduction
suggested that an RCA(2) model would fit the data. Plot the original data and the log-transformed data,
and find the least-squares estimate and weighted-least-squares estimates for ρ in the RCA(1) model,
using the demeaned log-transformed data.

Your code here

3

	Problem

