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Introduction

RESEARCHERS’ QUESTIONS OFTEN ADDRESS not just one population
but two. Frequently the researcher’s question doesn’t specify a value
for a single parameter but gives a relationship between two parame-
ters from two groups so that a relationship can be inferred. For exam-
ple, while the effect of a new blood pressure drug on blood pressure
is good to know, a more interesting question may ask whether a new
drug reduces blood pressure more than existing methods.

This chapter discusses procedures intended to compare two sam-
ples from two different populations. We will see both how to conduct
statistical tests and confidence intervals. The framework for confi-
dence intervals and hypothesis testing hasn’t changed. That means
that for this chapter a few formulas appropriate for certain contexts
are all we need; we don’t need to reintroduce the theory.

Section 1: z Tests and Confidence Intervals for a Difference Between

Two Population Means

Throughout this chapter I will assume that, unless otherwise stated,
we have two different samples, Xj,..., X;; and Y3, ..., Y, drawn from
two independent’ samples, and that the data within a sample is i.i.d.
Let E [Xy] = ux, E[Y1] = py, Var (X;) = 0%, and Var (Y;) = 03.

We're often interested in A = ux — pyy. What is an estimator for A?
Is it unbiased?

What is the variance of this estimator?

*In Section 3, the samples are not
independent, and m = n.
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Based on this we can find the sampling distribution for A that is at
least approximately correct when sample sizes are large.

Assume that 0% and 02 are known. Using the above distribution of
A we can obtain a confidence interval for the true A that is appropri-

ate at least approximately for large m and n.? 2 Here we will say that m and n are
“large” when both quantities are
greater than 4o0.

When planning a study, if we decide in advance to set m = n, we
could obtain a formula for n (and thus m as well) that will guarantee
a chosen margin of error.
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For hypothesis testing we want to make a statement about the

value of A. The ingredients of this statistical test are listed below.3 > While the test described below is
appropriate for any proposed difference
Ao, the case Ag = 0 is certainly the most
interesting and more frequently seen, as
this corresponds to the null hypothesis
Hy : ux = py; in other words the test
determines whether the means of the
two populations are the same or differ
in some way.

Type Il error analysis formulas are provided below.
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If we require that both samples have a common sample size we
can also obtain a formula that gives sample sizes that produce a test
with a specified Type II error rate for a particular A’ for a test of
significance level a.

Example 1

A tutoring service claims to help understand difficult statistics con-
cepts. You decide to test this. You randomly assign 100 students
taking a statistics class to sign up for the tutoring students, while the
rest only attend lectures and office hours while learning statistics. At
first an equal number of students were assigned to both groups, but
after students dropped out, there were 45 students who did not use
the tutoring service and 51 who did.#

At the end of the course the final exam scores of students from
both groups were compared. The students who got tutoring (denoted
X1,...,X51) had an average score of 78.79 points. For those who
did not get tutoring (denoted Yj, ..., Yss5), the mean score was 71.09.
Assume that ox = oy = 15.

1. Compute a 95% confidence interval for the mean difference in
scores. Based on this confidence interval, is there good evidence
that the tutoring service improves students’ performance on ex-
ams?

4 This is known as dropout bias; if the
propensity to drop out does not depend
on whether someone belongs to the
control or treatment group, there is no
problem, but if there is a relationship
the results of a study could be biased.
This should be accounted for, but we
will ignore the problem.
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2. The tutoring service wants the margin of error produced by your
study to not exceed 3 points for the exam; this will help the service
determine if their product improves students’ performance by a
letter grade. What sample sizes could achieve this margin of error

(while preserving the confidence level)?

3. Perform a statistical test to determine if the tutoring service im-

proves students’ scores on exams.
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4. The tutoring service wants a statistical test that detects a differ-
ence of three points with a Type II error rate of 10% for a test with
a Type I error rate of & = 0.05. Assuming equal sample sizes for
both samples, find sample sizes that leads to a test meeting these

requirements.

5. Suppose a statistical has sample sizes of m = n = 450, find the
Type II error rate when the true difference between the two groups

of students is one point.



78.79
71.09

xbar <-
ybar <-

sigma_X <- 15

sigma_Y <- sigma_X
m<- 51

n <- 45

alpha <- .05

(z <- gnorm(alpha/2, lower.tail = FALSE))
## [1] 1.959964

# Part 1
(se <- sqrt(sigma_X"2/m + sigma_Y"2/n))

## [1] 3.06786

(moe <- z x se)

## [1] 6.012895

(est <- xbar - ybar)
## [1] 7.7

c(est - moe, est + moe)
## [1]

1.687105 13.712895

# Part 2
ceiling(z”2 * (sigma_X"2 + sigma_Y"2) / 372)

## [1] 193

# Part 3
(z_stat <- (est - 0)/se)

## [1] 2.509893

pnorm(z_stat, lower.tail = FALSE) # p-value
## [1] 0.006038389

# Part 4
ceiling(((sigma_X"2 + sigma_Y"2) =*
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(qnorm( .05, lower.tail = FALSE) + gnorm(.1, lower.tail = FALSE))”"2/3"2))

## [1] 429

7
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# Part 5
pnorm(gnorm(.05, lower.tail = FALSE) - 1/
(sqrt(1572/450 + 1572/450)))

## [1] 0.740489

Of course we very rarely know what ox and oy are and often
need to estimate them from the sample. Then we have an estimated
standard error

We would use this for our confidence intervals:

In hypothesis testing our test statistic would be

All the rest is the same. Procedures using these Cls and statistics
are appropriate for large sample sizes.

Example 2

The sample standard deviation for the students who got tutoring was
14.52 points. The sample standard deviation for the students who did
not get tutoring was 11.87 points. Recompute the confidence interval,
test statistic, and py, computed in Example 1.
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(se_est <- sqrt(14.52"2/m + 11.87"2/n))
## [1] 2.695361

c(est - z *x se_est, est + z * se_est)
## [1] 2.417189 12.982811

(z_stat2 <- est/se_est)

## [1] 2.85676

pnorm(z_stat2, lower.tail = FALSE)

## [1] 0.002139946

In what contexts can we claim we observe a causal effect in a
study? This depends on how the data was generated. If the data
was obtained as-is, without being assigned to their groups by the in-
vestigators, we may call the study observational. If we assigned indi-
viduals to groups after the individuals generated their data, we may
call the study a retrospective observational study. On the other hand,
if the investigator assigned individuals randomly to two groups and
applied a different treatment depending on group assignment, mea-
suring outcomes after the treatment was applied, we would call the
study a randomized controlled experiment. The latter type of study
allows us to make conclusions about causality, unlike the former.

Section 2: The Two-Sample t Test and Confidence Interval

The procedures from the previous section are appropriate for large
sample sizes. When we don’t have large sample sizes and we assume
the data was drawn from Normal distributions, we can use t proce-
dures.

Suppose we assume cx = oy. In most cases this assumption is
unrealistic, though there are contexts where the assumption makes
sense; for instance, we may be attempting to determine not just the
difference in mean but whether two samples come from the same
population (and thus would have the same population standard
deviation). Then the standard error of X — Y would be

This is estimated with

9
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Consider now the random variable

This random variable follows a ¢ distribution with m +n — 2 de-
grees of freedom. Knowing this, we can find a confidence interval
based on this random variable. Procedures that assume that the two
samples have the same standard deviation are known as pooled ¢
procedures.

We could also perform a statistical test.

10
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Example 3

Below are two datasets, with each dataset coming from some distri-
bution. Did the same distribution generate these datasets?

X <- ¢( 7.07, -0.01, 8.30, 5.70, 5.06,
1.85, 0.74, 2.11, -0.93, 15.88)

y <- ¢( 1.69, 8.83, 9.11, -1.32, 3.97,
9.40, 7.60, 4.78, 5.13, 6.38)

mean (Xx)

## [1] 4.577

sd(x)

## [1] 5.043597

mean(y)

## [1] 5.557

sd(y)

## [1] 3.472233

1. Find a 90% confidence interval for the population mean, using the
pooled t procedure.

2. Using the pooled ¢ test, test whether the datasets have the same
distribution or not, at significance level « = 0.1.
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t.test(x, y, var.equal = TRUE, conf.level = .9)

##

## Two Sample t-test

##

## data: x and y

## t = -0.50611, df = 18, p-value = 0.6189
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:

## -4.337743 2.377743

## sample estimates:

## mean of x mean of y

## 4.577 5.557

The equal variance assumption made by the pooled test, though,
is unrealistic. What if we don’t make that assumption? Then we can
create procedures based on the quantity

This random variable follows approximately a t(v) distribution.

The formula for v is given below:

From this random variable we can derive a CI:

Below is a test statistic for a test based on this random variable:

12
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In most situations you should use the test that does not assume
equal variances. When this assumption is true, there is a minor gain
in power resulting from using the pooled version of the test, but even
a slight deviation from this assumption can result in statistics that

behave very poorly; the pooled statistic® is not at all robust to the 5 The pooled two-sample test can be
viewed as an instance of the likelihood
ratio test, while the other test, known as
the Wald two-sample t-test, cannot be
derived from the likelihood ratio test.

assumption of equal variances.

Example 4

Two teams of competitive rowers locked in a bitter rivalry want to
know which team is fastest. Instead of a single race, the two teams
each engage in 10 time trials along the same 500m river length. The
mean time for team 1 (in minutes) is 1.49 with a standard deviation
of 0.12, while for team 2 the mean time was 1.37 with a standard
deviation of o.10.

1. Construct a 95% confidence interval for the difference in rowing
times.

2. Perform a statistical test to determine whether team 2 is faster
than team 1 or not at significance level x = 0.1.
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xlbar <- 1.49
x2bar <- 1.37

sdl <- 0.12
sd2 <- 0.10

n <- 10

m«<-n

(sel <- sd1/sqrt(m))

## [1] 0.03794733

(se2 <- sd2/sqrt(n))

## [1] 0.03162278

(std_err_diff <- sqrt(sel”2 + se2"2))

## [1] 0.04939636

(nu <- (sel”2 + se2”2)"2/(sel™4/(m - 1) + se2”™4/(n - 1)))
## [1] 17.43311

# Part 1
(tstar <- qt(.975, df = nu))

## [1] 2.10583
c(xlbar - x2bar - tstar x std_err_diff, xlbar - x2bar + tstar x std_err_diff)
## [1] 0.01597968 0.22402032

# Part 2
(test_stat <- (xlbar - x2bar)/std_err_diff)

## [1] 2.429329
pt(test_stat, df = nu, lower.tail = FALSE)

## [1] 0.01309898
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Section 3: Analysis of Paired Data

Up until now we have required that Xj,..., X;; and Y3,...,Y), be two
independent samples. However, in many experimental designs, the
datasets may not be independent; instead, they may be paired. That is,
we can view the datasets as (X1, Y1), ..., (Xu, Yn).

Examples of independent sample studies and paired sample stud-
ies are listed below:°

We are still primarily interested in A = up = ux — py, but since
the data is paired, we don’t approach inference in the same way.
Instead of treating Xj,..., X, and Y3,...,Y; separately, we work with
a sample of differences:

When we do this, comparing two populations reduces to the one-
sample case we saw in chapter 8. Below are CIs and statistical tests in
this context:”

©1 list these to avoid a common sit-
uation in tests: students confusing
paired-sample and independent-sample
procedures. Don’t be another statistic;
know the difference between these tests!

7 What happens when we use the two
independent sample procedures in the
presence of paired data? The biggest
difference is that the variance of our
estimator for A is no longer correct,
since the true variance is

Var (% — ¥) = 0% + 0% ; 200x0y
For independent samples, p = 0, but
that’s likely not the case for paired

data; in fact, usually p > 0. As a result
our estimate for the standard error

of the statistic is usually larger than
appropriate, which makes test statistics
smaller than they should be and CIs
wider than they should be. While this is
“conservative” and thus should be done
if you don’t know whether data was
paired or not, this is usually a major
error and needs to be avoided.
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Example 5

A drug manufacturer wants to determine if a new weight loss sup-
plement leads to weight loss in subjects. To determine if the supple-
ment leads to weight loss, the manufacturer selects a cohort of six
participants to participate. The subjects” weights are measured prior
to taking the supplement, then after two months the subjects” weights
will be measured again. Below are subjects” weights both before and
after taking the supplement:

(supp_weight_loss <- data.frame(
"before" = ¢(221, 139, 253, 230, 186, 161),
"after" = c¢(209, 121, 230, 220, 182, 162)
))

## before after

## 1 221 209
## 2 139 121
## 3 253 230
## 4 230 220
## 5 186 182
## 6 161 162

1. Compute the dataset of differences, D;.

2. Construct a 90% confidence interval for the mean difference in
weight loss.
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3. Conduct a hypothesis test to determine whether the supplement
leads to weight loss. Use a significance level of &« = 0.1 to decide
whether there is a statistically significant difference in weight after
taking the supplement.
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# Compute CI
with(supp_weight_1loss,
t.test(before, after, conf.level = .9, paired = TRUE,

alternative = "two.sided")
)
##
## Paired t-test
##

## data: before and after

## t = 3.0587, df = 5, p-value = 0.02814

## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:

##  3.753293 18.246707

## sample estimates:

## mean of the differences

# 11

# Statistical test
with(supp_weight_1loss,

t.test(before, after, paired = TRUE, alternative = "greater")
)
##
## Paired t-test
##

## data: before and after

## t = 3.0587, df = 5, p-value = 0.01407

## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:

## 3.753293 Inf

## sample estimates:

## mean of the differences

#it 11

Prior to conducting a study, should you opt for an independent-
sample study or a paired-sample study? Below are pros and cons of
the two:

18
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In general, if there is a lot of variability within a population and a
large correlation resulting from pairing, then a paired sample may be
preferred to independent samples, while if there is not a lot of vari-
ability and the sample is not large, we may prefer an independent-
sample procedure.

Section 4: Inferences Concerning a Difference Between Population
Proportions

Suppose that instead of being interesterested in the difference be-
tween two means of quantitative variables we are interested in the
difference in the population proportions from two different popu-
lations. For example, we may want to compare the rate at which a
disease appears in men versus women, or compare political affilia-
tion across different demographic groups. In any case, there is one
population at which the probability of a “success” is px and another
population where the probability of a “success” is py. If we were
conducting a hypothesis test, we may want to see if px = py or not.

We say that we have two independent samples of i.i.d. binomial
data, Xj,..., Xy and Yq,...,Y,. We're interested in estimating px —
py. The natural estimator for this parameter is:

The variance and standard error of this estimator is

When m and n are large, the following random variable follows an
approximately standard Normal distribution:

19
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We can use this to construct confidence intervals and statistical
tests.

Let’s discuss statistical testing first. When Hy is true, px = py =
p. We need to estimate p, and can do so using the pooled sample
(the sample that includes both datasets, Xj,..., Xy, Yi,...,Yy). The
resulting estimator is

We then have the following test, appropriate for large sample
sizes:

20
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Type II errors don’t depend on px — py but instead on each
specific px and py, so the Type II error function is denoted with

B(px, py)-
The following formulas can be used for Type II error analysis:

When conducting sample size planning, if we set m = n and want
to detect a difference in proportions of px — py = d, after guessing
px and py we get a guessed sample size of

This is the appropriate sample size for a one-sided alternative



CHAPTER 9: INFERENCES BASED ON TWO SAMPLES

hypothesis; for a two-sided alternative, replace « with a /2.

Example 6

A pharmaceutical company plans to release a new vaccine intended

to reduce the risk of contracting the influenza virus. The company

plans to test the vaccine by randomly assigning study participants to

a control group and a treatment group. Individuals in the treatment

group will receive the new vaccine, while individuals in the control

group will receive no treatment.® The experiment is conducted in 8 This is ethically suspect, but ignore
a double-blind fashion; that is, neither patients nor experimental ethics for now:
staff will know which patient received which vaccine until after the

experiment is complete.

1. The experimenters plan on assigning an equal number of subjects
to both control and treatment groups. They want to be able to
detect a 5% difference in contraction rate (in the new vaccine’s
favor) 95% of the time. The current influenza contraction rate is
believed to be 20%. The planned significance level is & = 0.1.
Based on this, what sample size should be used?

2. Using the answer from above, what is the probability of making a

22
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Type II error when the new vaccine reduces the rate of influenza
contraction by only 1%?

3. When the experiment was actually conducted, after participants
left the study for various reasons, the number of individuals in
the control group was 886 and the number of individuals in the
treatment group was 89o. 183 individuals in the control group
contracted the flu, while 175 contracted the virus in the treat-
ment group. Test whether the vaccine reduced the occurance of
influenza. What is the conclusion?



CHAPTER 9: INFERENCES BASED ON TWO SAMPLES

p_X <- .2
d <- .05
alpha <- .1
beta <- .05

# Part 1

(n <- ceiling((gnorm(alpha, lower.tail = FALSE) =x
sqrt(p-X + (p-X - d) * ((1 - p_X) + (1 - (p-X - d)))/2) +
gnorm(beta, lower.tail = FALSE) * sqrt(p_X * (1 - p_X) +

(1 - p_X) *
(L - (p_X - d)
)))/d"2))

## [1] 895

m<-n

# Part 2

(sigma <- sqrt(p_X * (1 - p_X)/m + (p_X - d) = (1 - (p_X - d))/n))
## [1] 0.01792286

(pbar <- (m * p_X + n * (p_X - d))/(m + n))

## [1] 0.175

(gbar <- (m * (1 - p_X) + n * (1 - (p_X - d)))/(m + n))

## [1] 0.825

pnorm( (gnorm(alpha, lower.tail = FALSE) x sqrt(pbar *x gbar x (1/m + 1/n)) - d)/
sigma)

## [1] 0.06611087

# Part 3
(phat <- (183 + 175)/(886 + 890))

## [1] 0.2015766

(z <- (183/886 - 175/890)/sqrt(phat * (1 - phat) * (1/886 + 1/890)))
## [1] 0.5208789

pnorm(z, lower.tail = FALSE) # p-value

## [1] 0.3012256

24
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We can construct a large-sample confidence interval for the differ-
ence in proportions using the formula:9 9 This interval should be appropriate
when mpx, npy, m(1 — px), and
n(1— px) are all at least 10.

Example 7

Construct a 90% CI for the difference in influenza contraction rates
based on the data in Example 6. Does this CI agree with the conclu-

sion of the test?1° ® Looking at the formulas for the test
statistic and the CI, we should not
believe that the CI will necessarily agree
with the test.
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(phat_X <- 183/886)
## [1] 0.2065463
(phat_Y <- 175/890)
## [1] 0.1966292

m <- 886
n <- 890

(se <- gnorm(.05, lower.tail = FALSE) x sqrt(phat_X * (1 - phat_X)/m +
phat_Y * (1 - phat_Y)/n))

## [1] 0.03131543
c("Lower" = phat_X - phat_Y - se, "Upper" = phat_X - phat_Y + se)

## Lower Upper
## -0.02139837 0.04123249

Section 5: Inferences Concerning Two Population Variances

So far we have been interested in comparing px and py or px and
py. Sometimes, though, we may be interested in comparing ¢% and
oZ.

Let N ~ x%(vn) and D ~ x?(v4). Consider the random variable

This random variable follows the F(v;,v,) distribution. The den-
sity curve for this distribution is illustrated below:

The pdf and cdf of the F(v,, v;) distribution is difficult to describe
but I list the expected value and variance of this distribution below:

26
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Suppose F ~ F(vy,vg). Let fau, ., satisfy P (F > fuu,.,) = a. We
will call fy 4, ., a critical value of the F(v,,v;) distribution. Critical
values (and thus some values of the cdf of) the F(v,,v;) distribution
are listed in Table A.9, for select v, and v,. v, is called the numerator
degrees of freedom and v, is called the denominator degrees of
freedom. An important identity for critical values of the F(vy,v4)
distribution is

Example 8
Let F ~ F(4,9).

1. Compute E [F| and Var (F).

2. Compute P (F < 3.63).

3. Find f.01,4,9.

27
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4. Find f999,49
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curve(df(x, 4, 9), 0, 4)

© |
o
. _|
o <
< o
><" —
=
T g
o _|
© | | | |
0 1 2 3 4
X
# Part 1

(mu_f <- integrate(function(x) {x * df(x, 4, 9)}, 0, Inf))

## 1.285714 with absolute error < 7.8e-06

(var_f <- integrate(function(x) {(x - mu_f$value)~2 x df(x, 4, 9)}, 0, Inf))
## 1.818367 with absolute error < 5.5e-05

# Part 2
pf(3.63, 4, 9)

## [1] 0.9498937

# Part 3
gqf (.01, 4, 9, lower.tail = FALSE)

## [1] 6.422085

# Part 4
gf(.999, 4, 9, lower.tail = FALSE)

## [1] 0.0206294

The F distribution matters because when Xj, ..., X, is an i.i.d.
sample with X; ~ N(ux,0x) and Yi,...,Y, is an i.i.d. sample with
HNN@MMJ%Bm%m@Mmemmﬁmmmw
and S% is the sample variance for the second dataset, we can find a
distribution for Sgg / S%,.



CHAPTER 9: INFERENCES BASED ON TWO SAMPLES 30

This distribution can be used for deriving confidence intervals
and statistical tests for (7)2( / (7% and thus make statements about the

relationship between o )2( and (712(.11 1 Thus we also have statements for oy
and oy’s relationship when we take
square roots appropriately.

Below I describe a hypothesis test for checking the relationship
between 0% and 02.

We can also derive formulas for the confidence interval for 0}2( / 0'%.
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Example 9

The standard deviation of the returns of a stock is called the stock’s
volatility in finance. Two stocks, CGM and UOU, are believed to have
Normally distributed returns. Some returns of these stocks are listed
below:

cgm <- ¢(-0.004, 0.006, 0.002, -0.023, -0.006, -0.004, 0.023, -0.011,

0.001, 0O , -0.004)
uou <- c( O, -0.011, ©0.015, 0.005, -0.012, ©0.003, -0.009, 0.005)
format(var(cgm), scientific = FALSE)
## [1] "0.0001267636"
format(var(uou), scientific = FALSE)

## [1] "0.00008971429"

1. Find a 90% confidence interval for ocgnv/oyou. Based on this CI,
is it plausible that the two stocks have the same volatility?

2. Perform a statistical test to check whether the two stocks have the
same volatility. Does the result of the test agree with the confi-
dence interval’s conclusion?
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(res <- var.test(cgm, uou, conf.level

.9))

##

## F test to compare two variances

##

## data: cgm and uou

## F = 1.413, num df = 10, denom df = 7,
## p-value = 0.6643

## alternative hypothesis: true ratio of variances is not equal to 1
## 90 percent confidence interval:

## 0.3885498 4.4303192

## sample estimates:

## ratio of variances

## 1.41297

sqrt(res$conf.int) # Need to take square root to get CI of volatility ratio

## [1] 0.6233377 2.1048323
## attr(,"conf.level")
## [1] 0.9
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