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Introduction

We may naturally inquire about collections of random vari-
ables that are related to each other in some way. For instance, we may
record an individual’s height and weight, calling these random vari-
ables X and Y, and ask if these are correlated, uncorrelated, or even
independent characteristics, and describe a probability model that
accounts for the relationship in these two characteristics.

Additionally, we may have a large collection of random variables,
say X1, X2, . . . , Xn which will be used to estimate some essential
quantity of a distribution, such as the mean µ. We compute some
quantity based on this collection of random variables, such as X̄ =
1
n ∑n

i=1 Xi, or any other T = T(X1, . . . , Xn). This quantity, dependent
on random variables, is itself a random variable, and we call it a
statistic. Being a statistic it has its own probability distribution, with
its own mean and variance and cdf, and we can use the distribution
of the statistic to make statements about the process that generated
the original dataset X1, . . . , Xn. It is here when probability theory
begins to turn into statistical theory.

Section 1: Jointly Distributed Random Variables

Suppose X and Y are two discrete random variables. Their joint
probability mass function is described below:

This can be used to compute P ((X, Y) ∈ A) for an event A:

From this we can compute the marginal probability mass func-
tions, pX(x) and pY(y), for X and Y respectively.
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These represent the probability distribution of X and Y respec-
tively regardless of what value the other rv takes.

We can also compute what is known as the conditional probabil-
ity mass function of Y given X = x, which represents the probability
distribution of Y when we know that X = x. The conditional proba-
bility mass function of X given Y = y is defined in a similar manner.

Example 1

A fair six-sided die is rolled; let X represent the number of pips
shown. At the same time, a fair coin is flipped, and Y(ω) = 1 if
the coin lands heads-up, and Y(ω) = 2 if the coin lands tails-up. The
joint pmf of X and Y is

1. Compute P (X < Y).

2. Compute P (Both X and Yare even)
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3. Find the marginal pmfs for both X and Y.

4. Find the conditional distributions pX|Y(x|y) and pY|X(y|x).



chapter 5: joint probability distributions and random samples 4

library(discreteRV)

##

## Attaching package: ’discreteRV’

## The following object is masked from ’package:base’:

##

## %in%

library(magrittr) # Adds the %>% operator

XY <- jointRV(list(1:6, 1:2), probs = rep(1/12, times = 12))

(X <- marginal(XY, 1)) # The relationship between X and Y is still preserved

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

(Y <- marginal(XY, 2))

## Random variable with 2 outcomes

##

## Outcomes 1 2

## Probs 1/2 1/2

joint(X, Y)

## Random variable with 12 outcomes

##

## Outcomes 1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2 5,1 5,2 6,1 6,2

## Probs 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

P(X < Y)

## [1] 0.08333333

P((X %in% c(2, 4, 6)) %AND% (Y %in% c(2))) # Both even

## [1] 0.25

X | Y == 2 # Gets a conditional random variable

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6
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YgivenX <- function(x) {Y | X == x}

XgivenY <- function(y) {X | Y == y}

YgivenX(2)

## Random variable with 2 outcomes

##

## Outcomes 1 2

## Probs 1/2 1/2

XgivenY(2)

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

Now suppose that X and Y are continuous random variables.
Much is the same; we work with a joint probability density func-
tion, marginal probability density functions, and conditional prob-
ability density functions.
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Example 2

A company sells bags of “deluxe” mixed nuts, containing almonds,
cashews, and peanuts. One bag is five pounds, and the joint pdf for
the amount of almonds X and cashews Y in the bag (in pounds) is
given below:

(We don’t need to worry about the amount of peanuts; this is
simply 5− X−Y and thus is completely determined given X and Y.)

The region on which the pdf is illustrated below:

1. Customers buying bags of “deluxe” mixed nuts complain when
60% of the nuts in the bag are peanuts. Compute the probability
this occurs.
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2. Find the marginal distributions of X and Y. Use this to compute
E [X], E [Y], Var (X), and Var (Y).

3. Find the conditional pdfs fX|Y(x|y) and fY|X(y|x). Use this to
compute P (X > 2|Y = 2).
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We say that two random variables X and Y are independent if

Example 3

Are the random variables in the previous two example independent?
Explain why or why not.
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independent(X, Y) # For Example 1

## [1] TRUE

We can generalize our definitions from two to n rvs, X1, . . . , Xn.

We say that X1, . . . , Xn are independent if for every subset Xi1 , . . . , Xik
of the collection, we have

If X1, . . . , Xn are independent and each has the same pmf/pdf
that X1, . . . , Xn are independent and identically distributed, often
abbreviated i.i.d..1 1 This is a typical assumption about a

dataset in statistics.

Example 4

Compute P (min{X1, ..., Xn} ≥ x) if X1, . . . , Xn are i.i.d..
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We can generalize the binomial distribution we saw before the
the multinomial distribution. We have r categories, and a single
observation belongs to category i with probability pi. We count how
many observations belong to category i; this gives Xi. Then the vector
(X1, . . . , Xr) follows the multinomial distribution, or (X1, . . . , Xr) ∼
MULTINOM(p1, . . . , pr)2, and we have the pmf 2 The binomial distribution is a par-

ticular instance of the multinomial
distribution, when r = 2. We omit the
count of tails, which we may call X2, as
it’s redundant information given X1.

Section 2: Expected Values, Covariance, and Correlation

Expectations involving two random variables are defined similarly to
the univariate cases.

Example 5

Reconsider the random variables in Examples 1 and 2. Compute
E [XY] for both cases.
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E(X * Y) # For Example 1’s random variables

## [1] 5.25

One measure of the relationship between two random variables is
the covariance.

The covariance is positive if the two random variables tend to be
large together, while the covariance is negative if one rv tends to be
large when the other tends to be small. If Cov (X, Y) = 0, then X and
Y are uncorrelated.3 3 Due to the relationship between

the covariance and the variance,
we sometimes see the notation
Cov (X, Y) = σXY .

We also have the following shortcut formula for the covariance:

It’s obtained in a similar manner to shortcut formulas found for
computing Var (X).4 4 From this it’s clear that Cov (X, X) =

Var (X).Notice that the covariance is not insensitive to the units of the ran-
dom variable; in fact, we can compute the covariance Cov (aX + b, cY + d):

Changing the units changes the covariance. A unit-free measure of
the relationship between X and Y is the correlation.5 5 The usual Greek letter representing

correlation is ρ.

The correlation is 1 if there is a perfect positive linear relationship
between X and Y, -1 if there is a perfect negative linear relationship,
and 0 if there is no linear relationship between X and Y.6 Thus |ρ| 6 Notice the emphasis on the word

“linear”; there can be a relationship
between X and Y that would make their
correlation small yet there could still be
a strong nonlinear relationship linking
the two variables.

determines the strength of the relationship7 between X and Y and

7 We can classify the strength of the
relationship between rvs using com-
pletely arbitrary cutoffs; specifically, we
could say that if |ρ| < 0.3 there is no
notable correlation, if |ρ| > 0.7 there is
a strong correlation, and otherwise the
correlation is weak.

sign(ρ) determines the direction of the relationship.8

8 There is a sample statistic for estimat-
ing ρ from paired data (x1, yi):

r =
1

sxsy(n− 1)

n

∑
i=1

(xi − x̄)(yi − ȳ)

The interpretation is the same. We do
not discuss the sample statistic in this
course.

Example 6

Compute the covariance and correlation for the random variables
mentioned in Examples 1 and 2.
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# For Example 1

(sigma_xy <- E(X * Y) - E(X) * E(Y))

## [1] 0

If X and Y are independent, then Cov (X, Y) = 0.9 The converse is 9 As a consequence, we can equivalently
say that E [XY] = E [X]E [Y] when X
and Y are idependent.

not true in general, as the following example shows.

Example 7

The point (U, V) is equally likely to be any of the points in the
sample space S = {(1, 1), (1,−1), (−1, 2), (−1,−2)}. Compute
Cov (U, V). Are U and V independent?
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(UV <- jointRV(list(c(-1, 1), c(-2, -1, 1, 2)),

probs = c(1/4, 0, 0, 1/4, 0, 1/4, 1/4, 0)))

## Random variable with 4 outcomes

##

## Outcomes -1,-2 -1,2 1,-1 1,1

## Probs 1/4 1/4 1/4 1/4

(U <- marginal(UV, 1))

## Random variable with 2 outcomes

##

## Outcomes -1 1

## Probs 1/2 1/2

(V <- marginal(UV, 2))

## Random variable with 4 outcomes

##

## Outcomes -2 -1 1 2

## Probs 1/4 1/4 1/4 1/4

E(U*V) - E(U) * E(V)

## [1] 0

independent(U, V)

## [1] FALSE

We say (X1, X2) follows the bivariate Normal distribution, or
(X1, X2) ∼ BINORM(µ1, µ2, σ1, σ2, ρ), if the joint pdf of X1 and X2

is

The pdf of the bivariate Normal distribution is illustrated below.

library(mvtnorm)

library(lattice)

my.settings <- list(superpose.polygon = list(border = "transparent"))
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points <- data.frame("x" = rep(seq(-3, 3, length.out = 100), times = 100),

"y" = rep(seq(-3, 3, length.out = 100), each = 100))

points$z <- apply(points, 1, function(r) {dmvnorm(r)})

head(points)

## x y z

## 1 -3.000000 -3 1.964128e-05

## 2 -2.939394 -3 2.351445e-05

## 3 -2.878788 -3 2.804818e-05

## 4 -2.818182 -3 3.333337e-05

## 5 -2.757576 -3 3.946923e-05

## 6 -2.696970 -3 4.656321e-05

wireframe(z ~ x * y, data = points, lines = FALSE,

col = "transparent", shade = TRUE)

xy

z

contourplot(z ~ x * y, data = points)
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If you were to slice the pdf in any direction, the resulting plot
would be another Normal distribution. Specifically, the marginal dis-
tributions fX1(x1) and fX2(x2) are Normal distributions, and condi-
tional distributions fX1|X2

(x1|x2) and fX2|X1
(x2|x1) are all all Normal

distributions.

We have E [X1] = µ1, E [X2] = µ2, SD (X1) = σ1, SD (X2) = σ2,
and Corr (X1, X2) = ρ. Crucially, when (X1, X2) follows a bivariate
Normal distribution, Cov (X1, X2) does imply independence!10 10 This is not the same as saying that

if two random variables are Normally
distributed and uncorrelated they
are independent. Joint normality
does not follow from the normality
of the marginal distributions; for
example, if we choose Z1 ∼ N(0, 1)
and Z2 = SZ1 with P (S = 1) =
P (S = −1) = 1

2 , then Z2 ∼ N(0, 1), and
the marginal distributions of (Z1, Z2)
are thus standard Normal distributions,
and Cov (Z1, Z2) = 0. However, Z1 and
Z2 are obviously not independent since
if we know Z1 then we know Z2 differs
from Z1 by at most a sign.

Example 8

Let HC represent the height of a son and HF the height of the son’s
father (in inches). Suppose

(HC, HF) ∼ BINORM(69.2, 69.2, 2.6, 2.6, 0.4)

1. What are the marginal distributions of HC and HF?
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2. Suppose a person’s father is 78 inches tall. Find an equal-tailed11 11 In general, when we say an interval
is equal-tailed, we mean that the prob-
ability that the random variable is too
small to be in the region is equal to the
probability that the random variable
is too large. We need this restriction in
order to have a unique solution; other-
wise, there could be an infinite number
of solutions.

interval such that the probability the child’s height is in this inter-
val is 0.95.
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# Marginal distributions are trivial; let’s worry about the conditional

mu1 <- 69.2; mu2 <- 69.2; sigma1 <- 2.6; sigma2 <- 2.6; rho <- 0.4

h <- 78

(mu_2g1 <- (mu1 - rho * mu2 * sigma1 / sigma2) + rho * sigma1 * h / sigma2)

## [1] 72.72

(sigma_2g1 <- sqrt((1 - rho^2) * sigma1^2))

## [1] 2.382939

qnorm(0.025, mean = mu_2g1, sd = sigma_2g1) # Lower bound

## [1] 68.04952

qnorm(0.975, mean = mu_2g1, sd = sigma_2g1) # Upper bound

## [1] 77.39048

Section 5: The Distribution of a Linear Combination12
12 In my opinion, Section 5 of this
chapter is a more logical successor of
Section 2; we will come back to Section
3 later.

Consider a collection of n random variables X1, . . . , Xn and numerical
constants a1, . . . , an. The rv Y is a linear combination of the random
variables X1, . . . , Xn if Y is of the form

Proposition 1. Suppose E [Xi] = µi and Var (Xi) = σ2
i . The following

facts are true:
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Thus we have the important property about expectations; they
are linear operators, to use linear algebra language. The variance is
not a linear operator (although it is a sublinear operator), but the
covariance is a bilinear operator (linear in both its arguments).

Corollary 1. Suppose X1 and X2 are two independent random variables.
Then:

We can weaken the independence assumption to simply being
uncorrelated and the variance computation will still be true.

Proposition 2. Suppose X1 and X2 are two Normal random variables.
Then

Corollary 2. A linear combination of Normal random variables also follows
a Normal distribution.

Example 9

Suppose X1, . . . , Xn are i.i.d. random variables. Compute the ex-
pected value, variance, and standard deviation of X̄ = 1

n ∑n
i=1 Xi.
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Example 10

Suppose X1, . . . , Xn are i.i.d. random variables. Compute the ex-
pected value, variance, and standard deviation of T = ∑n

i=1 Xi

There are several random variables where we know the distribu-
tion of sums of those random variables. Below is a summary:

Section 3: Statistics and Their Distributions

We will call the collection X1, . . . , Xn a random sample if it consists
of i.i.d. random variables. We will call any quantity we can compute
from a random sample a statistic. Before the dataset is observed, a
statistic is a random quantity, with its own distribution, referred to as
the sampling distribution; statistics in this random state are usually
referred to using upper-case letters, while the observed statistic (after
we have a dataset) is usually referred to using lower-case letters.

Examples of statistics include:
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Example 11

Let X1, . . . , Xn be i.i.d.r.v. with X1 ∼ Ber(p). What is the sampling
distribution of X̄?

Example 12

Let X1, . . . , Xn be i.i.d.r.v. with X1 ∼ N(µ, σ). What is the sampling
distribution of X̄? Use the sampling distribution to find an interval
such that P (l(X̄) ≤ µ ≤ u(X̄)) = 1− α.
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One approach to finding information about the sampling distri-
bution of statistics is to use simulations. We generate K random
samples of size n, X1,k, . . . , Xn,k, k ∈ [K]. For each sample we compute
the statistic of interest T(X1,k, . . . , Xn,k) = Tk, and then study the
random sample T1, . . . , TK.

Example 13

For the Normal distribution, we could estimate the parameter µ

using either the sample mean X̄ or the sample median X̃. What are
the properties of these two statistics’ sampling distributions? What
are their respective shapes? Which has a smaller variance?

Let’s suppose X1 ∼ N(0, 1), then conduct a simulation study to
compare these statistics. We’ll look at n = 10 and use K = 1000
samples.

# Generate 1000 random samples of size ten, storing them in a 10x1000 matrix

datamat <- replicate(1000, rnorm(10))

sim_mean <- apply(datamat, 2, mean)

sim_med <- apply(datamat, 2, median)

boxplot(sim_mean, sim_med)

1 2

−
1.

0
0.

0
1.

0

summary(sim_mean)

## Min. 1st Qu. Median Mean 3rd Qu.

## -1.00415 -0.24089 -0.01189 -0.01956 0.19948

## Max.

## 0.89499
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summary(sim_med)

## Min. 1st Qu. Median Mean

## -1.360863 -0.271161 -0.006523 -0.018751

## 3rd Qu. Max.

## 0.227032 1.171895

var(sim_mean)

## [1] 0.1017097

var(sim_med)

## [1] 0.1414632

qqnorm(sim_mean); qqline(sim_mean)
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qqnorm(sim_med); qqline(sim_med)
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Example 14

Let’s now consider the sample mean of random samples U1, . . . , Un

with U1 ∼ UNIF(0, 1). What can we say about the distribution of the
sample mean Ū as the sample size n gets large?

We will create 1000 samples for n ∈ {5, 20, 80}, then compare the
distributions.

sizes <- c(2, 5, 20, 80)

k <- 1000

datasets <- lapply(sizes, function(n) {

replicate(k, runif(n))

})

names(datasets) <- sizes

str(datasets)

## List of 4

## $ 2 : num [1:2, 1:1000] 0.3575 0.0616 0.6279 0.0724 0.015 ...

## $ 5 : num [1:5, 1:1000] 0.7801 0.4316 0.0868 0.2669 0.5255 ...

## $ 20: num [1:20, 1:1000] 0.851 0.697 0.347 0.513 0.173 ...

## $ 80: num [1:80, 1:1000] 0.436 0.665 0.468 0.503 0.514 ...

sim_mean_unif <- lapply(datasets, function(d) {apply(d, 2, mean)})

str(sim_mean_unif)
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## List of 4

## $ 2 : num [1:1000] 0.21 0.35 0.479 0.228 0.804 ...

## $ 5 : num [1:1000] 0.418 0.716 0.779 0.407 0.491 ...

## $ 20: num [1:1000] 0.48 0.377 0.504 0.568 0.483 ...

## $ 80: num [1:1000] 0.513 0.495 0.492 0.5 0.503 ...

for (x in sim_mean_unif) {

print(summary(x))

hist(x, freq = FALSE)

lines(seq(0, 1, length.out = 1000),

dnorm(seq(0, 1, length.out = 1000), mean = mean(x), sd = sd(x)))

qqnorm(x); qqline(x)

}

## Min. 1st Qu. Median Mean 3rd Qu.

## 0.007424 0.349114 0.499931 0.494561 0.641655

## Max.

## 0.986755
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.1154 0.4182 0.5044 0.5069 0.5971

## Max.

## 0.8762
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.2896 0.4593 0.5041 0.5032 0.5473

## Max.

## 0.6932
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.4104 0.4776 0.4998 0.5004 0.5218

## Max.

## 0.6080
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Section 4: The Distribution of the Sample Mean

There are two theorems that form the cornerstone of probability and
statistics: the law of large numbers and the central limit theorem. The
Law of Large Numbers (LLN) guarantees us that the sample mean
will approximately equal the population mean, while the Central
Limit Theorem (CLT) describes the distribution of the sample mean
for large n when we have a mean and a variance.

Theorem 1 (Law of Large Numbers). Let X1, X2, . . . be a sequence of of
i.i.d.r.v. with E [X1] = µ, and let X̄n = 1

n ∑n
i=1 Xi. Then the probability the

(random) sequence X̄n converges to µ is 1.

Theorem 2 (Central Limit Theorem). Under the same assumptions as the
Law of Large Numbers but with the additional assumption that Var (X1) =

σ2, P
(

X̄n−µ

σ/
√

n ≤ z
)
→ Φ(z) for all z. In other words, the distribution of X̄n

is approximately N
(

µ, σ√
n

)
, with the approximation improving as n→ ∞.

More directly, the CLT describes the behavior of sums of i.i.d.r.v.
as more random variables are summed. The CLT explains why some
distributions–like the binomial distribution, the Poisson distribution,
the gamma distribution, and the χ2-distribution–can be approxi-
mated with the Normal distribution as one of their parameters grows
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large; these distributions can be interpreted as the distributions of
sums of i.i.d.r.v.13 and thus the CLT applies.14 13 Specifically: BIN(n, p) is the sum of

n Ber(p) r.v.s; POI(n) is the sum of n
POI(1) r.v.s; GAMMA(α, n) is the sum
of n EXP(α) r.v.s; and χ2(n) is the sum
of n χ2(1) r.v.s.
14 The CLT requires that Var (X1) < ∞;
if this does not hold, the CLT no longer
applies and its conclusion may not even
be true.

Thanks to the CLT, we can describe the distribution of the sample
mean without worrying about the exact distribution of the under-
lying data if the sample size n is large enouch15, since the CLT says

15 In general it’s safe to use the CLT if
n > 30.

that the initial distribution is eventually “forgotten” by the sample
mean.

Example 15

The average customer visiting a grocery store spends X dollars,
where E [X] = 50 and SD (X) = 55.16 Every month about 30,000

16 Notice X is non-negative but
SD (X) > E [X]. This can happen
with skewed distributions.

purchases are made at the grocery store.

1. What will be the (approximate) distribution of the average pur-
chase, X̄?

2. What is the (approximate) probability that the revenue of the
grocery store in a month is less than $1,485,000
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55/sqrt(30000) # sd of xbar

## [1] 0.3175426

pnorm(1485000, mean = 50 * 30000, sd = 55 * sqrt(30000))

## [1] 0.05767537
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