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Introduction

Continuous probability models are the other major class of
probability models. In addition to extending our probabilistic frame-
work to continuous phenomena (namely, measurements), the Nor-
mal1 distribution is both a continuous distribution and arguably the 1 Another name for the Normal dis-

tribution is the Gaussian distribution,
named after the great mathematician
Carl Friedrich Gauss. No one is sure
where the name “Normal” came from,
but some theorize that the distribution
attracted so much attention authors
began to refer to it as the “typical”
distribution, although most natural
phenomena doesn’t follow a Normal
distribution. Thus I capitalize the word
“Normal” to refer to a particular dis-
tribution but as a reminder that the
distribution doesn’t automatically
describe a phenomenon.

most important distribution in statistics and probability theory, due
to its role in the central limit theorem. Many of the concepts we cov-
ered for discrete random variables carry over to the continuous case,
including pmfs (although they become density functions rather than
mass functions), cdfs, and expectations. In fact, the continuous case
may be slightly easier than the discrete case since P (X = c) = 0 for
all c ∈ R and P (X < x) = P (X ≤ x).

Section 1: Probability Density Functions

The analogue to the probability mass function seen for discrete ran-
dom variables is the probability density function (pdf). The pdf is
a non-negative function f (x) such that, for any two numbers a and b
with a ≤ b

In order for f to be a valid pdf we must also have

Example 1

Confirm that the function

f (x; a, b) =

 1
b−a a ≤ x ≤ b

0 otherwise

is a valid pdf. Then, plot the pdf. A random variable U following
this distribution is said to follow the uniform distribution, denoted
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by U ∼ UNIF(a, b).

Example 2

Confirm that the function

f (x; µ) =

 1
µ e−

1
µ x x ≥ 0

0 x < 0

is a valid pdf. Then, plot the pdf. A random variable X follow-
ing this distribution is said to follow the exponential distribution,
denoted by X ∼ EXP(µ)2. 2 This notation is not standard and

depends ultimately on who is writing
the document. It turns out that µ is
the mean of the exponential random
variable when specified this way, but
an alternative specification uses the
rate λ = 1

µ . While the rate is often
easier to work with mathematically,
statisticians usually are interested in the
mean. As a result, probabilists usually
specify exponential random variables
using the rate and write X ∼ EXP(λ)
while statisticians prefer to specify
exponential random variables using
the mean. I do the latter as this is a
statistics course, but be aware of the
controversy.
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# UNIF(0,1)

curve(dunif, -1, 2) # Plot the pdf
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integrate(dunif, -1, 2) # Integrage (numerically) the pdf to see it is one

## 1 with absolute error < 1.1e-15

# EXP(1)

curve(dexp, -1, 5)
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integrate(dexp, 0, Inf)

## 1 with absolute error < 5.7e-05
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Example 3

Accidents along a certain stretch of road are presumed to occur a dis-
tance of X miles from the nearest city center, where X ∼ UNIF(100, 150).
Compute

1. P (110 ≤ X ≤ 130)

2. P (127 < X ≤ 144)

3. P (X > 148)
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integrate(dunif, 110, 130, min = 100, max = 150) # 1

## 0.4 with absolute error < 4.4e-15

integrate(dunif, 127, 144, min = 100, max = 150) # 2

## 0.34 with absolute error < 3.8e-15

integrate(dunif, 148, Inf, min = 100, max = 150) # 3

## 0.03999993 with absolute error < 0.00011

Example 4

The time (in minutes) taken by a worker at the Tuition and Finan-
cial Aid office of a certain university to service a student follows an
exponential distribution with T ∼ Exp(10). Compute the following:

1. P (T < 20)

2. P (6 < T < 9)

3. P (T ≥ 22)
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integrate(dexp, -Inf, 20, rate = 1/10) # 1

## 0.8646644 with absolute error < 3.8e-05

integrate(dexp, 6, 9, rate = 1/10) # 2

## 0.142242 with absolute error < 1.6e-15

integrate(dexp, 22, Inf, rate = 1/10) # 3

## 0.1108032 with absolute error < 1.3e-05

Section 2: Cumulative Distribution Functions and Expected Val-
ues

The cdf of a continuous random variable is

Thanks to the fundamental theorem of calculus we have the fol-
lowing relationship between the pdf and cdf of a random variable:

Rules for using the cdf to compute the probability of a continuous
random variable taking values in an interval are given below.

Example 5

Compute the cdf of X ∼ UNIF(a, b) and plot it.
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Example 6

Compute the cdf of X ∼ EXP(µ) and plot it.
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curve(punif, -1, 2) # CDF of UNIF(0, 1)
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curve(pexp, -1, 5) # CDF of EXP(1)
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Example 7

Answer the questions posed in Example 3 and Example 4 but using
the cdf of the respective random variables.
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# Example 3

punif(130, min = 100, max = 150) - punif(110, min = 100, max = 150) # 1

## [1] 0.4

punif(144, min = 100, max = 150) - punif(127, min = 100, max = 150) # 2

## [1] 0.34

1 - punif(148, min = 100, max = 150) # 3

## [1] 0.04

# Example 4

pexp(20, rate = 1/10) # 1

## [1] 0.8646647

pexp(9, rate = 1/10) - pexp(6, rate = 1/10) # 2

## [1] 0.142242

1 - pexp(22, rate = 1/10) # 3

## [1] 0.1108032

The 100pth percentile (also referred to as quantiles) of a distribu-
tion is the number η(p) such that F(η(p)) = p. If F can be inverted
over its support, we can use F−1 to find percentiles.

A particularly interesting percentile is the 50th percentile, other-
wise known as the median, µ̃.

Example 8

Find percentile functions for the uniform and exponential distribu-
tions. Then find η(0.5).
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# Example for UNIF(0,1) and EXP(1)

qunif(0.5)

## [1] 0.5

qexp(0.5)

## [1] 0.6931472

Below are formulas for E [X], E [h(X)], and Var (X) in the continu-
ous case.

The shortcut formula for the variance in the discrete case also
holds in the continuous case.

Proposition 1.
Var (X) = E

[
X2
]
− (E [X])2

Example 9

Compute E [X] and Var (X) for uniform and exponential random
variables.
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(mu1 <- integrate(function(x) {x * dunif(x, 0, 1)}, -1, 2)) # Mean of UNIF(0,1)

## 0.5 with absolute error < 5.6e-16

integrate(function(x) {(x - mu1$value)^2 * dunif(x, 0, 1)}, # Var of UNIF(0,1)

-1, 2)

## 0.08333333 with absolute error < 8.6e-05

(mu2 <- integrate(function(x) {x * dexp(x)}, 0, Inf)) # Mean of EXP(1)

## 1 with absolute error < 6.4e-06

integrate(function(x) {(x - mu2$value)^2 * dexp(x)}, 0, Inf) # Var of EXP(1)

## 1 with absolute error < 5.8e-05

Section 3: The Normal Distribution

We say that a random variable X follows the Normal distribution3, 3 Of all the probability distributions,
the Normal distribution is arguably
the most important. It plays a promi-
nent role in one of the key theorems of
probability, the central limit theorem,
and as a result many random variables
start to resemble Normally distributed
random variables under certain con-
ditions; we will see examples in this
section. It is a well-behaved distribu-
tion; while any real number could be
generated by the Normal distribution,
it is effectively supported on the in-
terval [µ − 3σ, µ + 3σ]. It naturally
describes phenomena we would say
results from an error process. That said,
not everything is Normally distributed.
Stock price movements, for example,
are modeled with the Normal distribu-
tion yet we see fluctuations that would
never be seen in billions of years if the
Normal distribution were actually the
appropriate distribution.

or X ∼ N(µ, σ)4, if it has the pdf:

4 Frequently the Normal distribution
is specified with σ2 instead of σ. In
this class we use σ, but be aware that
in academic settings it may be more
common to see the Normal distribution
using σ2 instead. This is because the
math is generally easier when using
σ2 and the notation extends well to
multivariate or even functional cases.

Below is a sketch of the density curve for the Normal distribution:
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curve(dnorm, -4, 4) # Plot of the density curve for N(0,1)
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E [X], Var (X), and SD(X) are given below.

One property of the Normal distribution is the 68-95-99.7 rule:

If Z ∼ N(0, 1), we say that Z follows the standard Normal distri-
bution. This distribution is useful since we can relate X ∼ N(µ, σ) to
the standard Normal distribution, and vice versa:
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Let Φ(z) = P (Z ≤ z) be the cdf of the standard Normal distribu-
tion. Then if F(x) = P (X ≤ x), we have the following relationship
between F and Φ:

This means that we only need to worry about tabulating values
for Φ(z)5 for working with any Normal distribution, as done in Table 5 Notice that

Φ(z) =
1√
2π

∫ z

−∞
e−

t2
2 dt

As mentioned, there is no closed form
solution to this integral, but that is not
a problem. Numerical methods can
easily compute these quantities and
they can then be tabulated. On a more
general note, we encounter integrals
without closed form solutions all the
time, yet the functions they represent
can still be very well-behaved, so there
is no problem leaving the integral in
the expression of the quantity; we know
the integral exists, we can evaluate it
numerically, and we can even talk about
its properties. Not every integral needs
to be like the ones seen in the calculus
sequence of classes.

A.3.

Example 10

Compute the following:

1. P (Z ≤ 0)

2. P (Z ≤ 1.23)
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pnorm(0) # 1

## [1] 0.5

pnorm(1.23) # 2

## [1] 0.8906514

3. P (−1.97 ≤ Z ≤ 2.1)

4. P (Z ≥ 1.8)

5. P (Z > 5.2)
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pnorm(2.1) - pnorm(-1.97) # 3

## [1] 0.9577164

1 - pnorm(1.8) # 4

## [1] 0.03593032

pnorm(5.2, lower.tail = FALSE) # 5

## [1] 9.964426e-08

Example 11

IQ scores are said to be Normally distributed with mean 100 and
standard deviation 15. Let Q be a randomly selected individual’s IQ
score. Compute the following:

1. P (85 ≤ Q ≤ 115)

2. P (Q > 90)

3. The International Society for Philosophical Enquiry requires po-
tential members to have an IQ of at least 135 in order to join the
society. Based on this, what proportion of the population is eligible
for membership?
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pnorm(115, mean = 100, sd = 15) - pnorm(85, mean = 100, sd = 15) # 1

## [1] 0.6826895

pnorm(90, mean = 100, sd = 15, lower.tail = FALSE) # 2

## [1] 0.7475075

pnorm(135, mean = 100, sd = 15, lower.tail = FALSE) # 3

## [1] 0.009815329

Here the notation zα is used to mean Φ(zα) = 1 − α. We can
relate this back to general η(p), defined for an arbitrary Normally
distributed random variable.

z1−α can be found using Table A.3 using a reverse lookup.

Example 12

1. What is z0.5?

2. What is z0.05?
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3. What are the first and third quartiles of the standard Normal
distribution?
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qnorm(0.5) # 1

## [1] 0

qnorm(0.05, lower.tail = FALSE) # 2

## [1] 1.644854

qnorm(0.25) # 3a

## [1] -0.6744898

qnorm(0.75) # 3b

## [1] 0.6744898

Example 13

Using the description of the random variable Q from Example 11,
answer the following questions.

1. Mensa International require individuals have an IQ score that
would place them in the top 2% of the population. What is the
minimum IQ score needed to be a member of Mensa?

2. The part of the population with the lowest 5% of IQ scores is
considered to be intellectually disabled. What is the highest IQ
score needed to be in this group?
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qnorm(0.02, mean = 100, sd = 15, lower.tail = FALSE) # 1

## [1] 130.8062

qnorm(0.05, mean = 100, sd = 15) # 2

## [1] 75.3272

Due to the symmetry of the Normal distribution we have the fol-
lowing useful identities for Φ:

As mentioned before, Φ can be used to approximate the cdf of
other random variables. Below is a particular example for binomial
random variables when n is large6: 6 A rule of thumb is that if np ≥ 10

and n(1− p) ≥ 10, it is safe to use this
approximation.

Example 14

A manufacture will reject a batch of widgets if, in a sample of 100

randomly selected widgets from the batch, 15 or more are defective.
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If 12% of the widgets in the batch are defective, what is the probabil-
ity of rejecting the batch? (Use the Normal approximation to answer
this question.)
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1 - pnorm((15 + 0.5 - (.12 * 100))/sqrt(.12 * .88 * 100))

## [1] 0.1407288

The approximation works for Poisson random variables too, when
λ is large; choose µ = λ and σ =

√
λ for the approximation.7 7 Many of the distributions we see can

be related to the Normal distribution in
some way.

Example 15

Suppose X ∼ POI(100). Estimate P (X ≤ 110).
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pnorm(110 + 0.5, mean = 100, sd = sqrt(100))

## [1] 0.8531409

ppois(110, 100) # For comparison

## [1] 0.8528627

Section 4: The Exponential and Gamma Distributions

We have investigated the properties of the exponential distribution
already; below we recall what we have seen:

Exponential random variables can be used to model waiting times,
particularly when a process is memoryless; that is, the time remain-
ing until the process terminates is independent of how long the pro-
cess has currently taken.
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Proposition 2 (Memoryless property). Let T ∼ EXP(µ). Then

P (T ≥ t + t0|T ≥ t0) = P (T ≥ t)

Exponential random variablest play an important role in Poisson
processes. The time between subsequent jumps of a Poisson process
with parameter α follow an exponential distribution with mean µ =
1
α .

Example 16

Your daughter’s team score on average 10 points per game. You
model the points scored by her team in a game with a Poisson pro-
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cess, and t = 1 is a whole game.

1. Based on this, what is the expected time between points score by
your daughter’s team?

2. Suppose that by the start of the second half your daughter’s team
has scored 3 points. Given this, what is the expected time when
your daughter’s team score is 4 points?
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(mu3 <- integrate(function(x) {x * dexp(x, rate = 10)}, 0, Inf)) # 1

## 0.1 with absolute error < 4.9e-05

0.5 + mu3$value

## [1] 0.6

The gamma function, Γ(α), is given below:

The gamma function has interesting properties, including

(Based on this we can say that the gamma function is the continu-
ous analogue to n!.)

The (lower) incomplete gamma function, γ(α, x), is given below:

This yields the obvious asymptotic relationship between γ(α, x)
and Γ(α):

The following are the pdf and cdf of the gamma distribution with
parameters α and β (we write X ∼ GAMMA(α, β) to say X follows
such a distribution):



chapter 4: continuous random variables and probability distributions 28

If β = 1 then we refer to GAMMA(α, 1) as the standard gamma
distribution. Table A.4 gives values of the cdf of the standard gamma
distribution for particular α and x.

Standard gamma distributions can be used to compute probabil-
ities involving non-standard gamma distributions in the following
way:

The mean and variance of gamma-distributed random variables is
given below:

Example 17

In a paper by Husak et al. [2007] the amount of rain (in mm) in Istan-
bull is fitted to a gamma distribution and the author estimated that
the distribution of the amount of rain in April is R ∼ GAMMA(0.436, 11.05).
Based on this, compute the mean and standard deviation of April
rainfall.
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curve(dgamma(x, shape = 0.436, scale = 11.05), 0, 6)
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(mur <- integrate(function(x) {x * dgamma(x, shape = 0.436, scale = 11.05)},

0, Inf))

## 4.8178 with absolute error < 0.00029

(varr <- integrate(function(x) {(x - mur$value)^2 * dgamma(x,

shape = 0.436, scale = 11.05)},

0, Inf))

## 53.23669 with absolute error < 0.0041

sqrt(varr$value)

## [1] 7.296348

# The probability the random variable is greater than 1

pgamma(1, shape = 0.436, scale = 11.05, lower.tail = FALSE)

## [1] 0.6145785

Let Xt be a Poisson process with rate parameter α. Let Tk be the
time until the process is equal to k; that is, Tk is the smallest t such
that Xt = k, so XTk = k. The distribution of Tk is known.
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Example 18

You model the points your daughter’s soccer team scores in a single
game with a Poisson process with rate parameter α = 10, with t = 1
representing a single game.

1. What is the mean and standard deviation of the time until her
team scores 5 points?

2. What is the probability that the time until her team scores 5 points
is before half time (t = 0.5)?8 8 Consider computing P (Tk > t),

where t is a natural number. This
is the event that the time when the
process reaches k is greater than t; in
other words, at time t, the process is
less than k at time t, or Xt < k. Thus
P (Tk > t) = P (Xt < k). The left-
hand side of this equality is an integral
and the right-hand side is the sum

∑k−1
x=0

e−αt(αt)x

x! , so we have

∫ ∞

t

αkxk−1e−αx

(k− 1)!
dx =

k−1

∑
x=0

e−αt(αt)x

x!

This identity could have been found
with an inductive argument and in-
tegration by parts, but we have a
probabilistic argument that explains
why the identity holds, which is more
illuminating.
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curve(dgamma(x, shape = 5, scale = 0.1), 0, 2)
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(mus <- integrate(function(x) {x * dgamma(x, shape = 5, scale = 0.1)},

0, Inf))

## 0.5 with absolute error < 3.5e-07

(vars <- integrate(function(x) {(x - mus$value)^2 * dgamma(x,

shape = 5, scale = 0.1)},

0, Inf))

## 0.05 with absolute error < 2.7e-05

sqrt(vars$value)

## [1] 0.2236068

# The probability the random variable is greater than 1

pgamma(0.5, shape = 5, scale = 0.1)

## [1] 0.5595067

Notice that there is a relationship between the gamma distribution
and the exponential distribution:
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In this sense the exponential family of distributions is a subset of
the gamma family of distributions.

The chi-square distribution is another distribution that belongs to
the gamma family of distributions; we write X ∼ χ2(ν) to indicate a
chi-square distributed random variable. In particular, X ∼ χ2(ν) ⇐⇒
X ∼ GAMMA(ν/2, 2). This distribution is important in statistics for
describing the sampling distribution of certain statistics. Values of the
cdf of the chi-square distribution are given in Table A.7.

Example 19

Suppose S2 ∼ χ2(9). Compute E
[
S2], Var

(
S2), and P

(
S2 > 3.325

)
.
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curve(dchisq(x, 9), -1, 25)
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(mus2 <- integrate(function(x) {x * dchisq(x, 9)}, 0, Inf))

## 9 with absolute error < 7.6e-06

integrate(function(x) {(x - mus2$value)^2 * dchisq(x, 9)}, 0, Inf)

## 18 with absolute error < 0.00012

pchisq(3.325, 9, lower.tail = FALSE)

## [1] 0.9500055

Section 5: Other Continuous Distributions

We say that X follows the Weibull distribution with shape parame-
ter α > 0 and scale parameter β > 0, or X ∼ WEI(α, β)9, if the pdf of 9 Sometimes X ∼ WEI(α, β, γ) is seen,

which means that X − γ ∼ WEI(α, β);
that is, X is a shifted version of the
usual Weibull distribution.

X is

The mean, variance, and cdf of the Weibull distribution are given
below
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If α = 1 the Weibull distribution is an exponential distribution.
Below is a sketch of the pdf of the Weibull distribution
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curve(dweibull(x, 2, 2), -0.5, 5)
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Example 20

Wind speed (in meters per second) at the site of a wind turbine is
believed to follow a Weibull distribution with α = 2 and β = 8. Com-
pute the mean and median wind speeds and the standard deviation
of wind speed.
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The turbine will not turn if wind speed is below two meters per
second. Compute the probability this occurs.
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(muwind <- integrate(function(x) {x * dweibull(x, 2, 8)}, 0, Inf))

## 7.089815 with absolute error < 2.8e-06

(varwind <- integrate(function(x) {(x - muwind$value)^2 * dweibull(x, 2, 8)},

0, Inf))

## 13.73452 with absolute error < 6.6e-05

sqrt(varwind$value)

## [1] 3.706011

qweibull(0.5, 2, 8) # Median

## [1] 6.660437

pweibull(2, 2, 8)

## [1] 0.06058694

X is said to follow a lognormal distribution, denoted X ∼
LN(µ, σ), if ln(X) follows a Normal distribution, or ln(X) ∼ N(µ, σ).
X has pdf

We can express the cdf of X in terms of Φ like so:

µ and σ2 are not the mean and variance of X. Instead we have
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Below is a sketch of the pdf of X:
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curve(dlnorm, 0, 3)
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Example 21

The current price of the stock with ticker symbol CGM is $26.18. The
quants believe the the price of the stock in a year is Y = 26.18X,
where X ∼ LN(0.1, 0.2). Based on this information, find l and u such
that P (l ≤ Y ≤ u) = 0.95 and P (Y ≤ l) = 0.025.
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(lprime <- qlnorm(0.025, 0.1, 0.2))

## [1] 0.7467739

(uprime <- qlnorm(0.975, 0.1, 0.2))

## [1] 1.635572

(l <- lprime * 26.18) # lower bound

## [1] 19.55054

(u <- uprime * 26.18) # upper bound

## [1] 42.81928

X follows the beta distribution, denoted X ∼ BETA(α, β, A, B)10, if 10 It is also common to see X ∼
BETA(α, β), which refers to the stan-
dard beta distribution.

X has the pdf

If A = 0 and B = 1, then X is said to have the standard beta
distribution.

The mean and variance of X are given below:

The beta distribution can assume a large number of shapes de-
pending on its shape parameters. But it has compact support, assign-
ing positive probabilities only to regions between A and B.

Below is a sketch of what a beta distribution can look like.
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curve(dbeta(x, 4, 6))
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Example 22

Suppose X ∼ BETA(3, 2). Write down the pdf of X and compute
E [X], Var (X), and P (1/4 ≤ X ≤ 3/4).
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curve(dbeta(x, 3, 2))
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(mux <- integrate(function (x) {x * dbeta(x, 3, 2)}, 0, 1))

## 0.6 with absolute error < 6.7e-15

(varx <- integrate(function (x) {(x - mux$value)^2 * dbeta(x, 3, 2)}, 0, 1))

## 0.04 with absolute error < 4.4e-16

pbeta(.75, 3 ,2) - pbeta(.25, 3, 2)

## [1] 0.6875

Example 23

In a paper by Maltamo et al. [2007], the basal diameter (in cm) of
pine trees was fitted to a beta distribution. The paper suggests that,
if B is the diameter of a pine tree, then B ∼ BETA(1.3, 1.1, 4.0, 40.9).
What, then, is the mean diameter of the pine trees? What about the
standard deviation?
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suppressPackageStartupMessages(library(extraDistr)) # Package with more dist’s

curve(dnsbeta(x, 1.3, 1.1, 4.0, 40.9), 4.0, 40.9)
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(mudiam <- integrate(function(x) {x * dnsbeta(x, 1.3, 1.1, 4.0, 40.9)},

4.0, 40.9))

## 23.9875 with absolute error < 1.4e-06

(vardiam <- integrate(function(x) {(x - mudiam$value)^2 * dnsbeta(x, 1.3, 1.1,

4.0, 40.9)},

4.0, 40.9))

## 99.42312 with absolute error < 0.00012

sqrt(vardiam$value)

## [1] 9.971114

Section 6: Probability Plots

Probability plots are a visual method used to check whether a
dataset could plausibly have been drawn from a particular distri-
bution. In essence, we compare the observed sample percentiles with
the percentiles of a dataset if it had come from a chosen distribution.
If the relationship between the observed and the theoretical distri-
butions is linear, the distributional assumption seems reasonable. If
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there is a nonlinear relationship, the distribution chosen is not likely
a good model for the data.

While we can often argue that a certain data generating process
produces a particular probability distribution in the discrete case,
fitting data to distributions is more difficult in the continuous case;
we can’t make arguments like we could in the discrete case. Thus we
turn to probability plots or statistical tests.

Below is an example of a probability plot.
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dat1 <- rnorm(100)

dat2 <- runif(100)

# Probability plot checking for Normal distributions

qqnorm(dat1); qqline(dat1)
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qqnorm(dat2); qqline(dat2)
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Suppose we have a sample x1, . . . , xn, and r1, . . . , rn is the ordered
sample (with r1 ≤ r2 ≤ . . . ≤ rn). We call ri the [100(i − .5)/n]th
sample percentile.

To construct a probability plot, we do the following:

1. For i = 1, . . . , n, we find the [100(i − .5)/n]th percentile of the
theoretical distribution; we call these the theoretical percentiles,
referred to as η

(
i−0.5

n

)
.

2. For i = 1, . . . , n, plot the point
(

η
(

i−0.5
n

)
, ri

)
on a Cartesian

grid; the x-axis is the theoretical percentiles and the y-axis is the
observed percentiles.

If the theoretical distribution is a Normal distribution, we call the
probability plot a Normal probability plot.

We then decide if the relationship between the theoretical and
observed percentiles appears linear. If yes, then the distribution is a
good fit. Otherwise, it’s a bad fit.

Example 24

Consider the following dataset:

i 1 2 3 4 5

ri 0.22 0.26 0.97 1.04 1.59

Create a probability plot to determine if it’s plausible the data
came from a EXP(1) distribution.
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x <- c(0.22, 0.26, 0.97, 1.04, 1.59)

(theo <- qexp((1:5 - 0.5)/5))

## [1] 0.1053605 0.3566749 0.6931472 1.2039728

## [5] 2.3025851

qqplot(theo, x, xlab = "Theoretical Quantiles", ylab = "Sample Quantiles")

qqline(x, distribution = qexp)
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As described we can check whether a dataset was generated by
a particular distribution (in the last example, it was EXP(1)), but we
usually want to know whether a dataset was generated by a member
of a family of distributions (for example, EXP(µ)). Fortunately there
are tricks we can use to do the latter task.

We call θ1 a location parameter and θ2 a scale parameter if the cdf
F(x; θ1, θ2) depends on x−θ1

θ2
11. Below are examples of parameters 11 Intuitively, θ1 shifts the pdf left or

right rigidly, while θ2 stretches or
compresses the pdf.

that are either (or are neither) location or scale parameters.12

12 Notice that the mean is not always a
location parameter. For the exponen-
tial distribution, the mean is a scale
parameter.
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If the theoretical distribution involes location and scale parame-
ters, we estimate them; call the estimates θ̂1 and θ̂2. Instead of plot-

ting using ri, we use ri−θ̂1
θ̂2

, and use the standard theoretical distribu-
tion where θ1 = 0 and θ2 = 113. 13 What if we need a parameter that is

neither a location nor scale parameter?
One trick would be to transform the
data in an appropriate way. For exam-
ple, if we think Xi ∼ LN(µ, σ), neither
µ nor σ are location or scale param-
eters, but we can create a probability
plot for ln(Xi) instead and see if the
new, transformed dataset is Normally
distributed, as it should be if our hy-
pothesis is correct; in this case, µ and
σ can now be treated as location and
scale parameters, respectively. This
trick would not work if we wanted
to check if Xi ∼ BETA(α, β) since no
transformation will turn α and β into
location/scale parameters. In that case
we may be forced to estimate α and
β from the data, assuming that our
hypothesis is true; in this example, call
the estimates α̂ and β̂. Then we would
construct a probability plot to see if
the data came from the distribution
BETA(α̂, β̂).

Example 25

Construct a probability plot to check if the following dataset was
plausibly generated by a Normal distribution.

i 1 2 3 4 5 6 7

ri 8.89 25.86 26.47 32.16 34.07 37.49 86.80

i 8 9 10

ri 125.02 146.36 379.06
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y <- c(8.89, 25.86, 26.47, 32.16, 34.07, 37.49, 86.80, 125.02, 146.36, 379.06)

qqnorm(y)

qqline(y)
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