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Introduction

Next we focus on probability. Probability is the mathematical
study of randomness and uncertain outcomes. The subject may be as
old as calculus. Modern statistics is based on probability theory, often
estimating parameters that arise from a probability model. The sub-
ject is big and fascinating and sometimes shockingly counterintuitive.
In this chapter we introduce basic ideas in probability theory and the
theory of counting and combinatorics.

Section 1: Sample Spaces and Events

An experiment is an activity or process with an uncertain outcome.
Example experiments include:

• Flipping a coin
• Flipping a coin until the coin lands heads-up
• Rolling a six-sided die
• Rolling two six-sided dice
• The time in the morning you wake up

When we have an experiment we need to describe the sample
space, S1, which is the set of all possible outcomes of the experiment. 1 Another extremely common notation

for the sample space is Ω.A set is loosely defined as a collection of objects.2 Events are subsets
2 This definition cannot be rigorous
because it leads to paradoxes. Bertrand
Russell was able to find sets that,
while legally defined this way, cannot
logically exist. Examples include “a
set of all sets” and “a set of sets that
do not have themselves as members.”
Axiomatic set theory defines sets
in a way that avoids paradoxes but
the theory is more complicated than
necessary for typical use; the “naive”
definition is usually fine.

of the sample space3, defining possible outcomes of an experiment.

3 The sample space is a subset of the
sample space and thus is an event,
which can be thought of as the event
that anything happens.

The empty set or null event, ∅, is a set with no members; it can be
thought of as the event that nothing happens.



chapter 2: probability 2

Example 1

Define a sample space for the experiment of flipping a coin. List all
possible events for this experiment.

Example 2

Define a sample space for the experiment of rolling a six-sided die.
List three events based on this sample space.

Example 3

Define a sample space describing the experiment of flipping a coin
until it lands heads-up. List five events for this sample space.
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Example 4

Define a sample space describing the experiment of rolling two six-
sided die simultaneoulsy. List three events from this sample space.

Example 5

Define a sample space describing the experiment of waking up in
the morning at a particular time, where the time you wake up at
(thought of as a real number) is the outcome of interest. List three
events from this sample space.
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Events can be manipulated in ways to “create” new events. Let
A and B be events. The complement of A, denoted A′4 is the set of 4 Other common notation includes A

and Ac.outcomes of S not in A, which in words is the event “not A”. The
union of two sets, A ∪ B, is the set that combines the contents of the
sets A and B, which in words means “A or B”.5 The intersection of 5 Sets only ever include one copy of

each element, so {H, H} = {H}. This
implies that if there is a copy of x in
both A and B, there will not be two
copies of x in A ∪ B; there is only one
copy.

two sets, A ∩ B, is the set that only includes objects that appear in
both A and B, which in words means “A and B”.

Two sets are disjoint if they have no elements in common. In that
case, A ∩ B = ∅.

An intuitive approach to set theory is the use of Venn diagrams,
where set-theoretic relations are illustrated by depicting objects as
points on a plane and denoting set membership with enclosed re-
gions. Below are Venn diagrams illustrating the relations between
two sets just described.
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Example 6

Use a Venn diagram to illustrate (A ∪ B)′ ∪ (A ∩ B).

Example 7

Consider three sets A, B, and C. Illustrate:

1. A ∪ B ∪ C

2. A ∩ B ∩ C
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3. (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)

Example 8

Describe the intersection, complement, and union of events described
in Examples 1 through 5



chapter 2: probability 7

Section 2: Axioms, Interpretations, and Properties of Probability

In probability our objective is to assign numbers to events describing
how likely that event is to occur. Thus, a probability measure, P, is
a function taking events as inputs and returning numbers between 0

and 1, and satisfies the following three axioms:

1. P (A) ≥ 0
2. P (S) = 1
3. If A1, A2, ... is a sequence of disjoint events (so that for any i 6= j,

Ai ∩ Aj = ∅), then P (A1 ∪ A2 ∪ ...) = P (
⋃∞

i=1 Ai) = ∑∞
i=1P (Ai)

6 6 You may understand this in the more
common situation where if A ∩ B = ∅,
P (A ∪ B) = P (A) +P (B).From these, we get all other intuitive relations in probability.

Proposition 1. P (∅) = 0

Proposition 2. P (A′) = 1−P (A)
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Proposition 3. P (A) ≤ 1 for any event A.

Proposition 4. P (A ∪ B) = P (A) +P (B)−P (A ∩ B) for any events
A and B.
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Proposition 5. For any events A, B, and C,

P (A ∪ B ∪ C) = P (A) +P (B) +P (C)

−P (A ∩ B)−P (A ∩ C)−P (B ∩ C)

+P (A ∩ B ∩ C)

Example 9

Reconsider the experiment of flipping a coin, and assume that the
coin is equally likely to land with each face facing up. Assign proba-
bilities to all outcomes in the sample space.

Example 10

Do the same as Example 9, but when rolling a single dice.

Example 11

The dice from Example 10 has been altered with weights. Now, the
probability of the dice rolling a 6 is twice as likely as rolling a 1,
while all other sides still have the same probability of appearing as
before. What is the new probability model?
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Example 12

Reconsider the experiment of rolling two six-sided die. It’s reason-
able to assume that each outcome in S is equally likely. What, then,
is the probability of each outcome in S?

Use this model to find the probability of event E, where:

1. E = {At least one dice is a 6}

2. E = {The sum of the pips showing on the two die is 5}

3. E = {The maximum of the two numbers showing on the die is greater than 2}



chapter 2: probability 11

Example 13

Reconsider the experiment of flipping a coin until H is seen. What is
one way to assign probabilities to all outcomes of this experiment so
that we have a legal probability model? Justify your answer.

With this model, answer the following questions:

1. What is the probability the number of flips needed to see the first
H exceeds 4?

2. What is the probability the number of flips until the experiment
ends is between 3 and 20?

3. What is the probability that an even number of flips is seen before
the experiment ends?

Example 14

In a small town, 20% of the population is considered “wealthy”, 30%
of the population identifies as “black”, and 5% of the population is
“wealthy” and “black”. Select a random individual from this popula-
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tion (everyone equally likely to be selected). What is the probability
this individual is “wealthy” and “not black”?

What is the probability this individual is neither wealthy nor
black?

Example 15

A bag contains balls and blocks. 30% of the bag’s contents are balls.
An object is either red or blue, and 40% of the objects are red. An
object is made of either wood or plastic, and 65% of the objects are
wooden. 10% of the objects are wooden balls, 5% of the objects are
red balls, and 20% of the objects are red and plastic. 2% of the objects
are red plastic blocks.

Reach into the bag and pick out an object at random, each object
equally likely to be selected.

1. What is the probability the object selected is a ball, red, or wooden?
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2. What is the probability the object is a red wooden ball?

3. What is the probability that the object is a blue plastic block?
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How do we interpret probabilies? The frequentist interpretation
of probability7 interprets probabilities as the long-run relative fre- 7 This interpretation isn’t the only one.

Any interpretation limits the kind of
questions you can obtain probabilities
for. In this case, the frequentist inter-
pretation suggests that probabilities
can be assigned only to repeatable
experiments. While the frequentist
interpretation is simple it can lead to
convoluted language as we avoid refer-
encing probabilities for nonrepeatable
circumstances. The convoluted inter-
pretation of confidence intervals, for
example, is due to this interpretation of
what a probability means. It turns out
though that the rigorous mathematical
theory of probability, which is based
on measure theory and real analysis,
does not care about the “interpretation”
of a probability, so all the mathemat-
ics remain the same no matter what
interpretation we choose.

quency as we repeat an experiment many times. For example, if we
were to flip a fair coin many times, the proportion of times the coin
lands heads up would approach 1

2 .
The chart below illustrates this idea.
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set.seed(11618) # Choosing a number to set the seed, for replicability

n <- 15

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")
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n <- 50

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")
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n <- 500

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")
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Section 3: Counting Techniques

Consider a burger shop, Bob’s Burgers, that offers three types of
bread: white, rye, and sourdough. A burger can come with or with-
out cheese. How many burgers are possible?
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We first answer this question using a tree diagram:

Or we can answer using the product rule:

Proposition 6. If there are n1 possibilities for choice 1, n2 possibilities for
choice 2, ..., nk possibilities for choice k, then there are n1n2...nk = ∏k

i=1 ni

total possible combinations.

Using the product rule:

Example 16

The sandwich shop Deluxe Deli offers four bread options (white,
sourdough, whole wheat and rye), five meat options (turkey, ham,
beef, chicken, no meat), six cheese options (cheddar, white cheddar,
swiss, American, pepperjack, no cheese), with or whithout lettuce,
with or without tomatoes, with or without bacon, with or without
mayonaise, and with or without mustard. How many sandwiches are
possible?
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Suppose that out of n possibilities we will be choosing k. We have
two essential questions to answer:

1. Do we choose with or without replacement?
2. Does order matter?

Depending on our answer our question has different solutions,
summarized below:

With replacement Without replacement
Ordered nk Pn,k =

n!
(n−k)!

Not ordered (k+n−1
n−1 ) (n

k) =
n!

k!(n−k)!

Justifications
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Example 17

When we roll two six-sided die, we assume each outcome is equally
likely (if the dice are different colors). How many possible outcomes
are there? What about for three six-sided die?

Example 18

A high school has 27 boys playing men’s basketball. In basketball,
there are five positions: point guard (PG), shooting guard (SG), small
forward (SF), power forward (PF), and center (C). Each assignment of
player to position is unique. How many teams can be formed?

Example 19

When playing poker, players draw five cards from a 52-card deck.
Every card is distinct, but the order of the draw does not matter.
How many hands are possible?
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# Example 16

6^2

## [1] 36

6^3

## [1] 216

# Example 17

factorial(27)/factorial(27 - 5)

## [1] 9687600

# Example 18

choose(52, 5)

## [1] 2598960

Example 20

You want to choose a dozen donuts from a donut shop. There are
eight different kinds of donuts. How many boxes of a dozen donuts
are possible?
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choose(12 + 8 - 1, 8 - 1)

## [1] 50388

For the next few examples, we will be using a standard8
52-card 8 The “standard” deck is the French

deck, the most common deck in the
English-speaking world. Other Euro-
pean countries have their own tradi-
tional decks.

deck of playing cards. In this deck, each card belongs to one of four
suits: spades (♠), hearts (♥), clubs (♣), and diamonds (♦). Each
card has a face value, which is either Ace (A), King (K), Queen (Q),
Jack (J), or a number between 2 and 10; there are 13 possible face
values. Hearts and diamonds are colored red, while spades and clubs
are colored black. The notation 8♦ means “eight of diamonds”, K♠
means “king of spades”, and so on.

Example 21

A poker hand is “four of a kind” if four cards have the same face
value. How many four-of-a-kind hands exist?

Example 22

A poker hand is “full house” of two cards have the same face value
and three different cards have another common face value. How
many “full house” hands exist?
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# Example 20

(a1 <- 13 * 48)

## [1] 624

# Example 21

(a2 <- 13 * choose(4, 3) * 12 * choose(4, 2))

## [1] 3744

Example 23

A “flush” is a poker hand where all cards belong to the same suit.
How many “flush” hands exist (including straight flush hands)?

Example 24

A “straight” is poker hand where the cards can be arranged in se-
quence: for example, 5♠6♣7♣8♥9♥ is a straight (suit does not
matter). A “straight flush” is both a straight and a flush, so it is a
flush with all cards belonging to the same suit (and the best possible
hand). How many straight flush hands exist? How many straight
hands exist (that are not straight flushes)?



chapter 2: probability 24

# Example 22

(a3 <- 4 * choose(13, 5))

## [1] 5148

# Example 23

(a4 <- 10 * 4^5 - 4 * 10)

## [1] 10200

For finite sample spaces, there is a natural probability measure,
defined below for a set A.

Example 25

Use the natural probability measure to compute the probability of
each poker hand mentioned in Examples 21 to 24.
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s <- choose(52, 5)

a1/s # Exc. 20

## [1] 0.000240096

a2/s # Exc. 21

## [1] 0.001440576

a3/s # Exc. 22

## [1] 0.001980792

a4/s # Exc. 23

## [1] 0.003924647

Section 4: Conditional Probability

Consider flipping a fair coin three times. What is the probability the
same face will appear three times?

Now suppose I told you that the first two flips were HH. What is
the probability of this event now?

This demonstrates the need for conditional probability, which is a
probability of an event given the fact that another event has occured.
The probability of A given B has occured, denoted P (A|B), is:

There is an illustration for making this definition intuitive:

Given a conditional probability we can also compute P (A ∩ B):
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Given P (A|B), what is P (A′|B)?

Example 26

Use the definition of conditional probability to compute the prob-
ability of the event that all three coins have the same face up when
flipped given the first two flips were heads.

Example 27

Suppose that you were dealt two cards of a five-card poker hand,
which are K♥8♥. Given this information, what is the probability
your complete hand will be a full house?
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# Hands with KH 8H

(den <- choose(50, 3))

## [1] 19600

# Full house hands with KH 8H

(num <- 2 * choose(3, 1) * choose(3, 2))

## [1] 18

num / den

## [1] 0.0009183673

(num/s) / (den/s)

## [1] 0.0009183673

Example 28

Suppose your five-card poker hand is a flush. What is the probability
it is a straight flush?

Example 29

Suppose your five-card poker hand is a straight. What is the proba-
bility it is a straight flush?
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Example 30

In a certain village 20% of individuals are considered “wealthy” and
35% are considered “black”. Among blacks, 60% are not considered
“wealthy”. If you chose a random individual from this village, what
is the probability this individual is “black” and “wealthy”?

A partition is a division of S into sets A1, ..., An such that for i 6= j,
Ai ∩ Aj = ∅, and

⋃n
i=1 Ai = S . Below is an illustration:

Theorem 1 (Law of Total Probability). Let A1, ..., An be a partition of S
and B be an event. Then:

P (B) =
n

∑
i=1
P (B|Ai)P (Ai)

We can then state Bayes’ Theorem9: 9 Bayes’ Theorem is also seen in the
simpler form where the partition is A
and A′, in which case the statement
becomes

P (A|B) = P (B|A)P (A)

P (B|A)P (A) +P (B|A′)P (A′)

Theorem 2 (Bayes’ Theorem). Let A1, ..., An be a partition of S and B be
an event. Then:

P (Ai|B) =
P (B|Ai)P (Ai)

∑n
j=1P

(
B
∣∣Aj
)
P
(

Aj
)
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Example 31

Roll a fair six-sided dice. Then, after observing the number of pips,
roll another dice until more than that number of pips appears. What
is the probability that the second die roll will show four pips?

Example 32

In a city Uber and Lyft transport passengers. 95% of drivers work
for Uber, and 5% work for Lyft. One day there is a hit-and-run acci-
dent and a witness claims that she noticed the driver worked for Lyft.
Lyft’s defense attorneys subject her to testing, and in testing deter-
mine that she correctly identifies a car as belonging to Lyft 90% of the
time but will claim a vehicle belongs to Lyft incorrectly 20% of the
time. Based on this evidence, how likely is it that the driver who hit
the pedestrian worked for Lyft?
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Section 5: Independence

Two events A and B are independent if P (A|B) = P (A). In some
sense, information about the event B gives no information about
whether A happened.

Use this to compute P (B|A).

Use this to compute P (A′|B).

A consequence of this defition of independence:10 10 In fact, this may be a more common
definition of independence.

Below is a graphical representation of independence:11 11 Notice that independence is not the
same as being disjoint. In fact, two
disjoint events are not independent
except in the most trivial cases. (That is,
S and ∅ are technically independent.)
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Example 33

Consider rolling a 6-sided dice. Show that the events A = {Number does not exceed 4}
and B = {Number is even} are independent.

Suppose we have events A1, ..., An. These events are mutually
independent if, for k ≤ n:

P
(

Ai1 ∩ Ai2 ∩ ...∩ Aik
)
= P

 k⋂
j=1

Aij

 =
k

∏
j=1
P

(
Aij

)
= P

(
Ai1
)
P
(

Ai2
)

...P
(

Aik
)

This definition cannot be simplified to P (A1 ∩ ...∩ An) = P (A1) ...P (An),
as demonstrated below.12 12 This example was written by George

[2004] and is available here: http://
www.engr.mun.ca/~ggeorge/MathGaz04.

pdf

Example 34

Using the diagram below for finding probabilities, compute P (A ∩ B ∩ C)
and P (A)P (B)P (C). Are A, B, and C mutually independent?

0 .10

.16

.34

A B

C

.04

.06

.10 .20

http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
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Example 35

We flip eight fair coins. What is the probability of H? TH? TTH?
TTTH? In general, what is the probability for a sequence of n flips to
have n− 1 T and a H at the end?

Example 36

Below is a system of components. A signal will be sent from one
end of the system, and will be successfully transmitted to the other
end if no intermediate components fail. Each component functions
independently of the others. What is the probability a transmission is
sent successfully?
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Example 36

Below is another system of components. A signal will be sent from
one end of the system, and will be successfully transmitted to the
other end if no intermediate components fail. Each component func-
tions independently of the others. What is the probability a transmis-
sion is sent successfully?
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