Math 6310, Assignment 4

Due Monday, October 29 in class.

1. Let F be a field. A discrete valuation on F is a map $\nu : F^\times \rightarrow \mathbb{Z}$ such that

 (a) $\nu(ab) = \nu(a) + \nu(b)$;
 (b) ν is surjective;
 (c) $\nu(x + y) \geq \min(\nu(x), \nu(y))$.

 The valuation ring of ν is defined to be $R = \{ x \in F^\times | \nu(x) \geq 0 \} \cup \{0\}$.

 (a) Prove that R is a subring of F that contains the identity.
 (b) Prove that for every nonzero element $x \in F$, either x or x^{-1} is in R.
 (c) Prove that an element x is a unit of R if and only if $\nu(x) = 0$.
 (d) Prove that R is a local ring (i.e., has a unique maximal ideal).

2. Let $F = \mathbb{Q}$ and fix a prime p. Define $\nu : \mathbb{Q}^\times \rightarrow \mathbb{Z}$ as follows. If $x = \frac{a}{b} \in \mathbb{Q}^\times$, write $x = p^\ell a' \frac{1}{b'}$, where p does not divide a' and b'. (In other words, you factor out all the powers of p and lump them in the p^ℓ factor.) Then define $\nu(x) = \ell$.

 (a) Describe the corresponding valuation ring R.
 (b) Compute the units in R in this example.

3. Let F be a field and consider formal Laurent power series over F:

 $$F((x)) := \left\{ \sum_{i \geq n} a_i x^i | a_i \in F \text{ and } n \in \mathbb{Z} \right\}.$$

 (a) Define natural operations of addition and multiplication on $F((x))$ and prove that $F((x))$ is a field.
 (b) Define $\nu : F((x))^\times \rightarrow \mathbb{Z}$ by defining ν of a formal Laurent series $a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \ldots$ (with $a_n \neq 0$) to be n. Prove that ν is a valuation in the sense of the previous problem.
 (c) Show that the valuation ring of ν is the subring of $F((x))$ of formal Laurent series in which no negative powers of x occur. (This subring is called the ring of formal power series in x, typically denoted $F[[x]]$.)
4. Let A be a ring and I an ideal with the property that
\[\cap_{\nu=1}^{\infty} I^\nu = \{0\}. \]
Then one can define notions of convergent and Cauchy sequences in the I-adic topology as follows. A sequence $\{a_n\} \subset A$ is called convergent to $a \in A$ if given ν there exists an integer N such that $a_n - a \in I^\nu$ for all $n \geq N$. Similarly, $\{a_n\}$ is Cauchy if given ν there exists N such that $a_n - a_m \in I^\nu$ for all $n, m \geq N$. The ring A is called complete if every Cauchy sequence converges.

(a) Let R be a discrete valuation local ring with maximal ideal m. Verify that m satisfies (1).

(b) Check if the two discrete valuation rings defined above are complete in their m-adic topologies.