Math 6310, Assignment 3. Due by Friday, October 5 (by email or my office).

1. Let H be a subgroup of a finite abelian group G. Show that G has a subgroup that is isomorphic to G/H. (Hint: use dual groups.)

2. Let G be a group and let $\text{Set}(G)$ be the category of sets with a G-action. Let $F : \text{Set}(G) \longrightarrow \text{Set}$ be the forgetful functor which assigns to each G-set the set itself. Show that $\text{Aut}(F)$ is naturally isomorphic to G.

3. Let N be a normal subgroup of a finite group G. Assume that the center of N is trivial and that any automorphism of N is inner.
 (a) Show that there exists a normal subgroup H of G such that $G \cong N \times H$.
 (b) Conclude that if S_n, $n \neq 6$ is a normal subgroup of a group G, then G is a direct product of S_n with some other group.
 (c) Can you give an example where the conclusion in (b) is false for S_6?

4. Prove that a presentation of the symmetric group S_n is given by
 $$\langle s_1, \ldots, s_{n-1} | s_i^2 = 1, (s_is_{i+1})^3 = 1, (s_is_j)^2 = 1, \text{ if } |i - j| > 1 \rangle.$$

5. Let p be a prime and $H(\mathbb{Z}/p\mathbb{Z})$ the Heisenberg group over $\mathbb{Z}/p\mathbb{Z}$ (see homework 1). Identify $H(\mathbb{Z}/p\mathbb{Z})$ as a semidirect product $(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/p\mathbb{Z}$.

6. In $\text{GL}(n, \mathbb{C})$, let B be the subgroup of upper triangular matrices and N the subgroup of B with 1’s on the diagonal. Prove that:
 (a) N is normal in B.
 (b) B is solvable and N is nilpotent.

7. Let R be a ring with 1. Define the nilradical of R to consist of all elements $x \in R$ such that $x^n = 0$ for some $n \in \mathbb{Z}$.
 (a) Suppose R is commutative. Prove that the nilradical is an ideal of R.
 (b) Is the nilradical an ideal even if R is noncommutative?

8. Let R be a commutative ring with 1. Let I be an ideal in R and let $M_n(I)$ denote the set of $n \times n$ matrices with entries in I.
 (a) Show that $M_n(I)$ is an ideal in $M_n(R)$.

(b) Prove that every ideal in $M_n(R)$ has the form $M_n(I)$ for some ideal I of R, and that the map $I \mapsto M_n(I)$ is a bijective map of the set of ideals of R onto the set of ideals of $M_n(R)$.