1. Prove that if m is an integer, then $\lfloor x \rfloor + \lfloor m-x \rfloor = m - 1$ if x is not an integer, and $\lfloor x \rfloor + \lfloor m-x \rfloor = m$, if x is an integer.

2. Let A, B, and C be sets. Show that $(A - B) - C = (A - C) - (B - C)$.

3. Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one, or onto.
 a) $f(n) = n - 1$;
 b) $f(n) = n^2 + 1$;
 c) $f(n) = n^3$;
 d) $f(n) = \lfloor \frac{n}{2} \rfloor$.

4. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and $g(x) = x + 2$ are functions from \mathbb{R} to \mathbb{R}.

5. Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that
 a) $f(S \cup T) = f(S) \cup f(T)$;
 b) $f(S \cap T) \subseteq f(S) \cap f(T)$.

6. Suppose A and B are two sets such that their power sets are equal, $P(A) = P(B)$. Does it follow that $A = B$?