
MATH 6750
Homework # 3

Due Date: Friday, December 15th 2017 at Noon in Aaron’s mailbox.

1. Power-law flow. Consider a film of polymer solution as it flows down an inclined plane making
an angle α with the vertical. Use the power-law fluid model, η = mγ̇n−1. Take the origin of
coordinates to be such that x = 0 at the film surface and x = δ at the plate. The film extends
along the plate from z = 0 to z = L. Show that the velocity is
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2. Rouse chain at equilibrium. Consider the Rouse chain, a freely jointed bead-spring chain
with Hookean springs. The equilibrium configuration for the Rouse chain is
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Show that the mean-square end-to-end distance is
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H
.

3. Hookean dummbells under steady-state shear flow. Consider the elastic dumbbell model
for Hookean dumbbells. Recall that the polymeric stress τ

p
satisfies

τ
p

+ λH
∇
τ
p

= −nkTλH γ̇

where γ̇ = ∇v + ∇vT and λH = ζ
4H . Recall further that the total stress is τ = −ηsγ̇ + τ

p
.

Consider steady-state shear flow vx = γ̇y, vy = 0, vz = 0.

(a) Show that the solution to the polymeric stress is

τp,xx = −2nkTλ2H γ̇
2 τp,xy = τp,yx = −nkTλH γ̇,

all the other τp,ij being zero.

(b) Show that the material functions are

η = ηs + nkTλH Ψ1 = 2nkTλ2H Ψ2 = 0.

η is the viscosity defined such that τyx = τxy = −ηγ̇, Ψ1 is the first normal stress coefficient
defined as τxx − τyy = −Ψ1γ̇

2 and Ψ2 is the second normal stress coefficient defined as
τyy − τzz = −Ψ2γ̇

2. In other words, all material functions are constant. Therefore, the
model is inadequate to describe the behavior of dilute polymer suspensions since the
viscosity decreases with increasing shear rate.

4. Numerical methods. When we considered numerical solution of the Navier-Stokes Equations

ρ(ut + u·∇u) = −∇p+ µ∆u + f , ∇·u = 0, (1)

we wrote down a semi-discrete system
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∇·un+1 = 0.



Here, An+1/2 is an explicit in time approximation to u·∇u at t = (n + 1/2)∆t and fn+1/2

denotes f evaluated at that t. The unknowns in these equations are un+1 and pn+1/2. But we
did not solve Eqs. ??. Instead, we introduced the idea of a projection method such as
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ρ
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)
= −∇pn+1/2 with ∇·un+1 = 0.

The intermediate field u∗ is not divergence free but un+1 is.

Now consider the momentum equations of a mixture model

ρ {(θfuf)t +∇· (θfufuf)} = −θf∇p+∇·(θfσf) + ξθfθn(un − uf), (4)

ρ {(θnun)t +∇· (θnunun)} = −θn∇p+∇·(θnσn) + ξθfθn(uf − un),

∇·(θfuf + θnun) = 0.

Here, σ
f

= 2µf
(
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T
)

+ λ(∇·uf)I and σ
n

= 2µn
(
∇un + (∇un

T
)

+ λ(∇·un)I are the
viscous stress tensors for the fluid and network respectively. Assume that the volume fractions
θf and θn are known and satisfy θf + θn = 1.

(a) Write down a semi-discrete scheme for Eqs. ?? analogous to scheme ?? for the unknowns
uf
n+1, un

n+1, and pn+1/2.

(b) Can you derive a projection method that allows one to avoid solving the equations in (a)
simultaneously? If so, give the method. If not, explain what gets in the way.
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