MATH 6750
Homework # 3
Due Date: Friday, December 15th 2017 at Noon in Aaron’s mailbox.

1. Power-law flow. Consider a film of polymer solution as it flows down an inclined plane making
an angle a with the vertical. Use the power-law fluid model, = m4"~!. Take the origin of
coordinates to be such that x = 0 at the film surface and z = § at the plate. The film extends

along the plate from z = 0 to z = L. Show that the velocity is
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2. Rouse chain at equilibrium. Consider the Rouse chain, a freely jointed bead-spring chain
with Hookean springs. The equilibrium configuration for the Rouse chain is
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Show that the mean-square end-to-end distance is
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3. Hookean dummbells under steady-state shear flow. Consider the elastic dumbbell model
for Hookean dumbbells. Recall that the polymeric stress 7, satisfies

\Y .
T+ )\ng = —nk:T)\Hl
where ¥ = Vv + Vvl and Ay = %. Recall further that the total stress is 7 = —nsy + T,
Consider steady-state shear flow v, = Jy, v, = 0,v, = 0. B

(a) Show that the solution to the polymeric stress is
Toaz = —2nKTAEY®  Tpay = Tpya = —nkTAn,

all the other 7, ;; being zero.

(b) Show that the material functions are
n=ns+nkTAg Vi =2nkTA}; Wy=0.

7 is the viscosity defined such that 7., = 7, = —n7, V1 is the first normal stress coefficient
defined as 745 — Ty = —W¥ 42 and Wy is the second normal stress coefficient defined as
Tyy — Tez = —Wy42. In other words, all material functions are constant. Therefore, the
model is inadequate to describe the behavior of dilute polymer suspensions since the
viscosity decreases with increasing shear rate.

4. Numerical methods. When we considered numerical solution of the Navier-Stokes Equations
p(us +u-Vu) = =Vp+ pAu+f, V-u=0, (1)

we wrote down a semi-discrete system
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Here, A""'/2 is an explicit in time approximation to u-Vu at t = (n + 1/2)At and £"/2
denotes f evaluated at that ¢. The unknowns in these equations are u*! and p"*+/2. But we
did not solve Egs. ?7?. Instead, we introduced the idea of a projection method such as

p <u - A”+1/2> =~V 24 D (Aut + a4 g2 (3)
n+1l _ %
p <w> = —vpti/2 with V.u™™ = 0.

The intermediate field u* is not divergence free but u”*! is.

Now consider the momentum equations of a mixture model

p{(Osus), + V- (brusus)} = —6:Vp+ V-(efgf) + &£0¢0, (uy, — uy), (4)
p{(0nun), + V- (Onunun)} = —0uVp+ V(0o )+ £0¢0n(us — un),
V-(Ogug + Opu,) = 0.

Here, o, = 2uy (Vug + (Vup)T) + A(V-up)I and g =2y (Vu, + (Vu,?) + A(V-uy)I are the
viscous stress tensors for the fluid and network respectively. Assume that the volume fractions
fr and 6, are known and satisfy 6y + 6, = 1.

(a) Write down a semi-discrete scheme for Eqs. 77 analogous to scheme ?? for the unknowns
ufn—&-l’ unn—‘rl’ and pn+1/2.

(b) Can you derive a projection method that allows one to avoid solving the equations in (a)
simultaneously? If so, give the method. If not, explain what gets in the way.
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