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Abstract. Complex fluids have long been characterized by two functions that summarize the
fluid’s elastic and viscous properties, respectively called the storage (G′(ω)) and loss (G′′(ω)) moduli.
A fundamental observation in this field, which is called passive microrheology is that information
about these bulk fluid properties can be inferred from the path statistics of immersed, fluctuating
microparticles. In this work, we perform a systematic study of the multi-step protocol that forms
the foundation of this field. Particle velocities are assumed to be well-described by the Generalized
Langevin Equation, a stochastic integro-differential equation uniquely characterized by a memory
kernel Gr(t), which is hypothesized to be inherited from the surrounding fluid. We establish rigorous
justification for a key relationship between a particle’s Mean Squared Displacement and its memory
kernel Gr(t), but simultaneously show that the justification used in the literature for the last fifty
years is not actually true. With this foundation in hand, by way of a tunable four-paramter family of
functions that can serve as particle memory functions, we analyze errors and uncertainties intrinsic
in passive microrheology techniques. We show that, despite the fact that certain parameters are
essentially unidentifiable on their own, the protocol is remarkably effective in reconstructing G′(ω)
and G′′(ω) in a range that corresponds to the experimentally observable regime.
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1. Introduction. Rheology is the study of the flow and deformation of soft mat-
ter, especially in response to applied forces. For materials ranging from polymer melts
to cake batter, the theory of rheology has provided insight and a common language
for describing both the fluid-like and solid-like properties of complex fluids [20]. Tra-
ditionally, the experiments that assess these properties require liters of material, but
this poses a serious problem when investigating biological materials. While there is
no problem producing liters to sample for many materials used in industry, this is
simply not possible for biological fluids like mucus and cytoplasm. The advent of
nano-scale single particle tracking opened the way for new modes of investigation. In
their seminal paper, Mason & Weitz [23] were able to relate the statistics of individual
particle paths with bulk fluid properties. Over the last twenty years, there have been
numerous modifications and extensions to the theory [24, 33, 34, 21, 13, 3], which
has become a vital tool for investigating characterizing healthy and unhealthy mucus,
blood, and various biofilms [35, 1, 25, 18, 19, 2].

While the theory has been validated in some special cases, it is important to note
that most inference protocols involve either (1) numerical computation of Laplace
transforms, or (2) fitting of power laws on log-log plots [24, 5]. Both of these methods
are notoriously noisy and should give us pause to wonder what degree of error they
induce. Moreover, while data is collected in the time domain, rheological properties
are expressed in frequency space. When experiments are constrained by a camera’s
frame rate, on the one hand, and the tendency to diffuse out of a field of view, on
the other, it is not immediately clear what the bound of accurate inference will be on
the frequency side. These concerns call for a rigorous investigation into the intrinsic
uncertainty that arises from the chain of assumptions that constitute a standard mi-
crorheological protocol. In this work, we provide such an investigation, demonstrating
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both strengths and weaknesses that exist in the current paradigm.

1.1. Bulk Fluid Properties. The linear response of a viscoelastic medium to
a shear force is summarized by its shear relaxation modulus Gr(t), which is used to
relate a fluid’s stress response σ(t) to an applied shear rate γ̇(t). A one-dimensional
version of such a constitutive equation is

(1) σ(t) =

∫ t

0

Gr(t− t′)γ̇(t′)dt′.

It has been experimentally observed that when an oscillatory shear, γ(t) = γ0 sin(ωt),
is applied to a complex fluid, the stress response will also be oscillatory, but possibly
out of phase:

(2)
σ(t) = σ0 sin(ωt+ φ(ω))

= σ0 cos(φ(ω)) sin(ωt) + σ0 sin(φ(ω)) cos(ωt).

A pure solid will respond in phase, φ(t) ≡ 0, while a viscous fluid will respond out
of phase with φ(t) ≡ π/2. In general, the phase of the stress response will be ω-
dependent. The coefficient of sin(ωt) is considered the ω-dependent magnitude of
the elastic response, while the coefficient of cos(ωt) is the magnitude of the viscous
response.

The stress can also be expressed in terms of the shear relaxation modulus Gr(t)
and the rate of strain γ̇(t) = γ0ω cos(ωt) through the constitutive equation (1):

σ(t) =

∫ t

0

Gr(t− t′)γ0ω cos(ωt′)dt′
(u=t−t′)

= γ0ω

∫ t

0

Gr(u) cos(ω(t− u))du

= γ0ω

∫ t

0

Gr(u) (sin(ωt) sin(ωu) + cos(ωt) cos(ωu)) du

= γ0ω
(∫ t

0

Gr(u) sin(ωu)du
)

sin(ωt) + γ0ω
(∫ t

0

Gr(u) cos(ωu)du
)

cos(ωt).(3)

Comparing the coefficients of sin(ωt) and cos(ωt) in Equations 2 and 3, we see that
the elastic and the viscous components of the response can be represented through the
Fourier sine and cosine transforms of Gr(t). These are respectively called the shear
storage modulus G′(ω) and the shear loss modulus G′′(ω)[20]:

(4)

Storage: G′(ω) := ω

∫ ∞
0

Gr(t) sin(ωt)dt

Loss: G′′(ω) := ω

∫ ∞
0

Gr(t) cos(ωt)dt

We note that the use of “primes” in the names G′ and G′′ is a notational idiom from
the rheology literature and does not imply that we are taking derivatives of a function
G.

For a purely viscous fluid, the response to shear is instantaneous, so Gr(t) is a
Dirac δ-function. In turn, the storage and loss moduli are G′(ω) = 0 and G′′(ω) =
ηsω. The relaxation modulus can take on many forms for viscoelastic fluids, but an
important class, which we refer to as generalized Maxwell fluids with intrinsic viscosity,
consists of a Dirac δ-function linearly superimposed with a collection of exponential
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decay functions called Maxwell elements:

(5) Viscoelastic Relaxation: Gr(t) = ηsδ(t) +

N∑
n=1

Gne
−t/τn 1{t≥0}.

The positive values {τn} are called relaxation times. The values {Gn} are also pos-
itive and have units of [pressure]. We use 1t≥0 to denote the unit step function.
Throughout this work, we will focus on a special structure, which has been called
the generalized Rouse relaxation spectrum. See Eq. (2.1) for the definition below.
The storage and loss moduli are in turn often summarized by the so-called complex
modulus G∗(ω), which is defined to be

(6) G∗(ω) := G′(ω) + iG′′(ω).

The complex modulus is related to what is called the complex viscosity through the
formula η∗(ω) := G∗(ω)/iω. By a formal calculation using the definitions of the
Fourier transform and of the Fourier sine and cosine transforms, it follows that η∗(ω) =

Ĝr(ω), where ·̂ denotes the Fourier transform. As a consequence of the definition (5),

we have that η̃(s) = G̃r(s), where ·̃ denote the (unilateral) Laplace transform.
Examples of the shear storage and shear loss moduli for the Generalized Rouse

Kernel considered in this work are provided in Figure 1 as a function of the number
of Maxwell elements and of the subdiffusive exponent. The asymptotic behavior near
zero is such that G′(ω) is quadratic (slope 2 on a log-log plot) and G′′(ω) is linear
(slope 1 on a log-log plot). For large ω, G′(ω) is constant, while G′′(ω) grows linearly.
The length of the transition region is a function of both the subdiffusive exponent
and the number of Maxwell elements.
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Fig. 1. Storage and Loss Moduli for Generalized Rouse Kernel as a function of the
number of Maxwell elements. The smallest relaxation time is τ0 = 10−3 s, the solvent viscosity is
ηs = 10−2g/(cm s) and the ratio ηp/τavg is the same independently of the number of kernels, here

ηp/τavg = 103g/(cm s2). The green curves corresponds to a subdiffusive exponent ν = 4, while the
blue curves are obtained with ν = 2.

1.2. Passive Microrheology. Let
(
X(t)

)
t≥0 denote the position of a particle

at time t and let
(
V (t)

)
t≥0 denote its velocity. The classical model for the velocity of

a particle in a viscous fluid is the Langevin Equation:

(7)
Langevin Equation

mdV (t) = −γV (t)dt+
√

2kBTγ dW (t),
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where m is the mass of the particle, kB is Boltzmann constant, T is the temperature
of the system, γ is the drag coefficient and W (t) is a standard Brownian motion. By
Stokes Law, if the particle is a sphere of radius a and the fluid has viscosity ηs, then
γ = 6πaηs.

Using standard Stochastic Calculus, one can show that

(8) lim
t→∞

1

t
E
(
|X(t)|2

)
=
dkBT

3πaηs
,

where d is the number of observed dimensions. This establishes the fundamental
Stokes-Einstein relationship between the viscosity of a fluid and the Mean Squared
Displacement (MSD), M(t) := E

(
|X(t)|2

)
of an immersed particle.

Intrinsic in the development of the Langevin Equation is the assumption that
the diffusing particle of interest is much larger than the particles in the fluid envi-
ronment that collide with it generating both drag and thermal excitation. For this
reason, the Generalized Langevin Equation (GLE) was introduced by H. Mori [27]
and R. Kubo [16, 15], and soon thereafter R. Zwanzig & M. Bixon [37] proposed that
the Stokes-Einstein relationship could be generalized for simple viscoelastic fluids. It
would be another 25 years though, before a fully realized connection between vis-
coelastic diffusion and the GLE was proposed. In their seminal work, T.G. Mason &
M.A. Weitz [23] hypothesized that the drag force experienced by a particle immersed
in a viscoelastic fluid is directly proportional to the shear relaxation modulus Gr(t):

Generalized Langevin Equation (Informal Definition)

mV̇ (t) = −6πa

∫ t

−∞
Gr(t− s)V (s)ds+ F (t)(9)

where F (t) is a mean-zero, stationary, Gaussian process with an autocovariance func-
tion defined so that the velocity process satisfies the equipartition theorem [32]

(10) mE
(
|V (0)|2

)
= dkBT.

If Gr(t) is purely viscous, i.e. Gr(t) = ηsδ(t), then we recover the Langevin Equation.
By way of a formal argument using Laplace Transforms, Mason & Weitz were the
first to establish a relationship between the Laplace Transform of a fluid’s relaxation
modulus G̃r(s) and that of an immersed particle’s MSD.

In practice, MSD is computed path-by-path. Assuming that the jth particle has
been observed for N steps uniformly separated by time intervals of length δ, we define

(11) Mj(nδ) :=
1

N − n+ 1

N−n∑
k=0

∣∣Xj

(
(n+ k)δ

)
−Xj

(
kδ
)∣∣2.

When there is no subscript denoting the particle index, we are referring to the en-
semble average of J distinct particle paths:

(12) M(t) :=
1

J

J∑
j=1

Mj(t), where t ∈ {0, δ, 2δ, . . . , Nδ}.

We assume linear interpolation for all other t.
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This completes the chain of connections that form the basis for passive microrhe-
ology, which we summarize as follows:

Passive Microrheology

M(t)←→M(t)
GLE←→ G̃r(s)←→ (G′(ω), G′′(ω)).(13)

There are multiple proposals for how to approximate and/or efficiently compute each
of the ←→ connections, each introducing another layer of uncertainty.

In what follows, we assume a particular form for the relaxation modulus that
depends on four parameters and allows for an incremental interpolation between the
viscous and viscoelastic regimes. In Section 2, we rigorously establish a sequence of
essential properties of the GLE. Theorem 2.4, in particular, is essential for reconstruc-
tion of fluid properties from path data. Interesting, the “proof” that has appeared in
the physics literature rests on an assumption that we can show is not true, Theorem
2.5. Nevertheless, the protocol in used in practice is theoretically sound and we pro-
ceed in Section 3 to characterize the degree of error that is introduced by each link
in the chain (13). We seek to characterize the degree of uncertainty that arises from

each step, first assuming perfect knowledge of G̃r(s) and then analyzing the impact
of limited observations. The theme that arises throughout the analysis is that, while
there is significant error in the estimation of individual parameters, the reconstruction
of G′(ω) and G′′(ω) is remarkably robust in the frequency range that corresponds to
the time domain observation window.

2. Generalized Langevin Equation. In this section, we lay out some basic
properties of the GLE. For simplicity we assume that X(t) refers to a particle’s x-
coordinate and so all processes below are one-dimensional.

Generalized Langevin Equation

mdV (t) =
(
− γV (t)− β(K+∗ V )(t) +

√
cβF (t)

)
dt+

√
2cγ dW (t)(14)

where K ∈ L1(R) is positive definite, K+(t) := K(t)1t≥0, ∗ denotes the convolution,
and defining ‖K+‖1 :=

∫
R |K

+(t)|dt,

(15) γ = 6πaηs, β =
6πaηp
‖K+‖1

, and c = kBT.

This is the velocity process associated with the shear relaxation modulus

(16) Gr(t) = ηsδ(t) +
ηp

‖K+‖1
K+(t).

Meanwhile F (t) is a stationary, mean-zero, Gaussian process satisfying

(17) E(F (t)F (s)) = K(t− s).

When K can be expressed as a sum of exponential functions, we say it is in the
Prony series class:

(18) KProny :=
{
K : K(t) =

N−1∑
n=0

Gne
−|t|/τn , where Gn, τn > 0 for all n

}
.

We will typically work with a subset of the Prony series class called the generalized
Rouse kernels.
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Definition 2.1. We say that K ∈ KRouse if for some N ∈ N, ν ≥ 1 and τ0 > 0,
we have

(19) K(t) =
1

N

N−1∑
n=0

e−|t|/τn , where τn = τ0

( N

N − n

)ν
.

We call {τn}N−1n=0 the generalized Rouse spectrum of relaxation times with shape
parameter ν.

Note that when K ∈ KRouse, ‖K+‖1 = 〈τn〉 :=
(∑

n τn
)
/N .

Theorem 2.2. Suppose that K ∈ KProny. Then there exists a Gaussian, mean-
zero, stationary process V (t) satisfying the GLE (14), and it has the spectral density

(20) ρ̂(ω) =
2cγ + kBTβK̂(ω)

|miω + γ + βK̂+(ω)|2
.

Moreover, the sample paths of V are continuous almost surely and E
(
V (0)2

)
=

kBT/m.

Proof. The construction of the solution and almost sure continuity are established
in [28]. If K is a sum of exponentials, then existence and regularity was established
in [7] and the proof that equipartition of energy (Equation 10) is satisfied is given in
[12] and [10].

Using $ to denote elements of the probability space (Ω,F ,P) on which V is
defined, let Ωc be the probability one event such that for all $ ∈ Ωc, (V (t;$))t∈R is
continuous. For t ≥ 0, define X(t) by

(21) X(t ; $) :=

{ ∫ t
0
V (t′ ; $)dt′, $ ∈ Ωc

0, otherwise.

The dynamics of a single-mode Maxwell model are described at length by Grimm
et al. [8]. While there is a nonlinear feature in the MSD of the position process for
such a process, it has been established that many modes are necessary to produce
persistent anomalous subdiffusive behavior [17, 14, 26]. However, if there are finitely
many modes, the MSD is always eventually linear so we call such behavior transient
anomalous diffusion. This can be rigorously stated as follows. (See [28] for proof).

Theorem 2.3 (Transient Anomalous Diffusion). Let M(t) := E
(
X2(t)

)
be

the MSD of (X(t))t≥0. Then for all K ∈ KProny, the associated particle process(
X(t), V (t)

)
has MSD M(t) := E

(
X2(t)

)
satisfying

(22) lim
t→∞

M(t)

t
= C ∈ (0,∞).

However, suppose that the sequence of particle processes {XN (t), VN (t)}N∈N have
memory kernels {KN}N∈N ⊂ KRouse respectively with N terms and common param-
eters τ0 > 0 and ν > 1. Then, denoting MN (t) = E

(
X2
N (t)

)
, there exists a function

f(t) satisfying

(23) lim
t→∞

f(t) t−
1
ν = C ′ ∈ (0,∞)

such that for all T > 0,

(24) lim
N→∞

sup
t∈[0,T ]

|MN (t)− f(t)| = 0.
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With this backdrop, we proceed to the primary mathematical contributions of this
manuscript. First, in Theorem 2.4, we validate the fundamental formula in passive
microrheology that relates the Laplace transform of a particle’s MSD to its shear
relaxation modulus. We then proceed in Theorem 2.5 to comment on a property that
has long been assumed to be true in the physics literature, but is not, in fact true.

Theorem 2.4 (The connection M(t) ←→ G̃r(s)). Let
(
(X(t), V (t))

)
t≥0 be a

particle process with shear relaxation modulus Gr(t) of the form (16) that has a mem-

ory kernel K ∈ KProny. Let M̃(s) to be the Laplace transform of the associated MSD.
Then

(25) 6πaG̃r(s) =
2c

s2M̃(s)
−ms.

Proof. In order to prove this theorem, we will adopt an alternative Markovian
form of the GLE that relies on introducing auxiliary variables. Such an approach was
pioneered by Mori [27] and Zwanzig [36] and was used more recently for the GLE
by Fricks et al [7] and McKinley et al [26]. The form presented here is derived from
Pavliotis [30]. Suppose that K is a sum of n exponentials. For clearer exposition,
define λn = τ−1n for each n ∈ {0, . . . , N − 1} and consider the system of SDEs:

(26)
mdV (t) = −γV (t)−

∑
n

√
βGnZndt+

√
2cγdW (t);

dZn(t) = −λnZn(t) +
√
βGnV (t)dt+

√
2cλndWn(t).

By the same argument presented in Pavliotis, Ch 8 [30], the V (t) defined here is
equivalent in distribution to the definition (14). Similar to the form presented by
Pavliotis, we claim that

(27) p(v, z) := C exp
(
− 1

2c

(
mv2 + |z|2

))
is the stationary distribution of the system (26). To prove this, note that the oper-
ator L associated with this system of SDEs acts on a function f(v, z) that is twice
continuously differentiable in all its variables as follows:

Lf(v, z) = −
( γ
m
v +

√
β

m

∑
n

√
Gnzn

)∂f
∂v

+
cγ

m2

∂2f

∂v2

+
∑
n

(
λnzn +

√
βGnv

) ∂f
∂zn

+ cλn
∂2f

∂z2n
.

Then, one can show that p(v,v) is the stationary distribution by checking that L∗p =
0, where L∗ is the adjoint of L, satisfying

(28)

L∗p(v, z) =
∂

∂v

(( γ
m
v +

∑
n

√
βGn
m

zn

)
p(v, z)

)
+
cγ

m2

∂2p(v, z)

∂v2

+
∑
n

∂

∂zn

((
λnzn +

√
βGnv

)
p(v, z)

)
+ cλn

∂2p(v, z)

∂z2n
.

If the initial condition (V (0),Z(0)) is drawn from the stationary distribution, note
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that the product structure of p(v, z) yields

(29)

E(V (0)Zn(0)) =

∫
Rn+1

vznp(v, z)dvdz

= C

∫
R
ve−

mv2

2c dv

∫
R
zne
− z

2
n

2c dzn
∏
m 6=n

(∫
R
e−

z2m
2c dzm

)
= 0.

Now, recalling the definition ρ(t) := E(V (t)V (0)) and introducing ρn(t) := E(Zn(t)V (0)),
we can multiply (26) through by V (0) and take expectations, resulting in the following
system of ODEs:

mρ̇(t) = −γρ(t)−
∑
n

√
βGnρn(t)(30)

ρ̇n(t) = −λnρn(t) +
√
βGnρ(t).(31)

Taking the Laplace transform of (31) yields the solution

ρ̃n(s) =
ρ̃(s) + ρn(0)

s+ λn

But from (29), we have that ρn(0) = 0. Moreover, from Theorem 2.2, ρ(0) = c/m.
Therefore, substituting what remains in (30), we find that

(32) ρ̃(s) =
mρ(0)

ms+ γ +
∑
n βGn

1
s+λn

=
c

ms+ 6πaG̃r(s)

To complete the proof we note that ρ(t) is related to the MSD by way of the
relation

(33) M(t) = 2

∫ t

0

(t− t′)ρ(t′)dt′.

This equation appears in Reif, Chapter 15 [32] for example. It follows that ρ̃(s) =

s2M̃(s)/2. Equation 25 follows immediately.

2.1. A comment on E(F (t)V (0)). In order to derive the relationship between
the shear relaxation modulus and the MSD (Theorem 2.4), arguments in the physics
literature typically rely on an assumption that turns out not to be true.

In Mason & Weitz [23], Mason [24], and Squires [33], we note that the GLE
is defined slightly differently than the informal version of the GLE we presented in
Equation 9. The lower limit of integration for the convolution term is zero in these
references, rather than negative infinity. The authors formally multiply through by
V (0) and take expectations. The claim is then that ρ(t) := E(V (t)V (0)) must satisfy
the integro-differential equation

Mason & Weitz [23]: mρ̇(t) = −6πa

∫ t

0

Gr(t− t′)ρ(t′)dt′ + E(F (t)V (0)) .

Applying the Laplace transform, the authors solve for ρ̃(s),

ρ̃(s) =
mρ(0)

ms+ 6πaG̃r(s)
+

L [E(F (t)V (0))](s)

ms+ 6πaG̃r(s)
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Then, it is generally assumed that E(F (t)V (0)) = 0 for all t so that the last term
vanishes. Indeed “E(F (t)V (0))” has appeared explicitly as an assumption in Reif’s
text [32], in Kubo’s paper on the Fluctuation-Dissipation Theorem [16], in Mason &
Weitz [23] and Mason [24], and in Squires review on microrheology [33]. We can use
a different Markovian framework from the one used in the proof of Theorem 2.4 to
show that, in fact, E(F (t)V (0)) 6= 0.

Theorem 2.5. Let
(
(X(t), V (t))

)
t≥0 be a particle process with shear relaxation

modulus Gr(t) of the form (16) that has a memory kernel K ∈ KProny. If V (t) is a
stationary solution to (14), then

(34) E(F (t)V (0)) =

N−1∑
n=0

Gn
√
βc

mτ−1n + 6πaG̃r(τ
−1
n )

e−t/τn .

Proof. Again, for cleaner exposition, let λn := τ−1n . For each n, define

(35) Zn(t) :=

∫ t

−∞
e−λn(t−t

′)V (t′)dt′.

Then the GLE can be rewritten as a system of SDEs (all sums in what follows range
over n ∈ {0, . . . , N − 1}):

(36)

mdV (t) =
(
− γV (t)− β

(∑
n

GnZn
)

+
√
cβ
(∑

n

√
GnFn

))
dt+

√
2cγdW (t);

dZn(t) = −λnZn(t) + V (t)dt;

dFn(t) = −λnFn(t) +
√

2λndWn(t),

where the {Wn(t)}t≥0 are iid standard Brownian motions.
The velocity process here is equal in distribution to that of Theorem 2.4, but

the Markov representation allows us to have an initial condition that is not in the
stationary distribution. For example, the version of the informal GLE (9) with initial
time 0 would correspond to taking Zn(0) = 0 for all n, while Fn(0) would be drawn
from the stationary distribution (Gaussian with mean zero and variance one).

We define the following time-dependent quantities:

(37) ρzn(t) := E(Zn(t)V (0)) , ρfn(t) := E(Fn(t)V (0)) ,

and

(38)

ϕvv(t) := E
(
V (t)2

)
;

ϕvzn(t) := E(V (t)Zn(t)) ; ϕvfn(t) := E(V (t)Fn(t)) ;

ϕznzk(t) := E(Zn(t)Zk(t)) ; ϕznfk(t) := E(Zn(t)Fk(t)) ;

ϕfnfk(t) := E(Fn(t)Fk(t)) .

If we multiply (36) through by V (0) and take expectations, we have the system of
ODEs

(39)

mρ̇(t) = −γρ(t)− β
(∑

n

Gnρzn(t)
)

+
√
cβ
(∑

n

√
Gnρfn(t)

)
ρ̇zn(t) = −λnρzn(t) + ρ(t)

ρ̇fn(t) = −λnρfn(t)
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Note that the Laplace transforms of the latter two equations can be written in the
form

(40) ρ̃zn(s) =
ρ̃(s) + ϕvzn(0)

s+ λn
and ρ̃fn(s) =

ϕvfn(0)

s+ λn
.

Recalling that K̃+(s) =
∑
nGn/(s+ λn), we find that

(41) ρ̃(s) =
mρ(0)

ms+ γ + βK̃+(s)
+
∑
n

−βGnϕvzn(0) +
√
cβGnϕvfn(0)(

ms+ γ + βK̃+(s)
)
(s+ λn)

.

From Equation 32 in the proof of Theorem 2.4, we know that the sum must be zero.
In fact, something stronger it true. Each summand is zero. To prove this, it suffices
to show that the stationary system satisfies the following claim,

(42) Auxiliary Balance Condition: βGnϕ̄vzn =
√
cβGnϕ̄vfn for all n,

where we have introduced the ϕ̄[··· ] := ϕ[··· ](0) when the system has initial condition
drawn from the stationary distribution.

In order to analyze the covariation of the auxiliary variables, suppose for a moment
that we do not start in the stationary distribution. Applying Itô’s formula to each
product in the system of equations (38) and taking expectations yields the following
system of ordinary differential equations,

m

2
ϕ̇vv = −γϕvv +

cγ

m
+
∑
n

(
− βGnϕvzn +

√
cβGn ϕvfn

)
;(43)

mϕ̇vzn = −
(
mλn + γ

)
ϕvzn +mϕvv +

∑
k

(
− βGkϕznzk +

√
cβGk ϕznfk

)
;(44)

mϕ̇vfn = −
(
mλn + γ

)
ϕvfn +

∑
k

(
− βGkϕzkfn +

√
cβGk ϕfnfk

)
;(45)

ϕ̇znzk = −
(
λn + λk

)
ϕznzk +

(
ϕvzn + ϕvzk

)
;(46)

ϕ̇znfk = −
(
λn + λk

)
ϕznfk + ϕvfk ;(47)

ϕ̇fnfk = −
(
λn + λk

)
ϕfnfk + 2λnδnk.(48)

where, in Equation 48, δnk is the Kronecker δ-function. For each pair, the stationary
covariance can be obtained by taking ϕ̄[··· ] = limt→∞ ϕ[··· ](t), or by setting all deriva-
tives on the left-hand side to zero and solving the resulting set of linear equations.
We take the latter approach.

Recall first that, by Theorem 2.2, mϕ̄vv = c. This cancels the first two terms
of the steady-state version of (43). What remains is exactly the Auxiliary Balance
Condition (42).

Next, we note that (48) is autonomous so

(49) ϕ̄fnfk = δnk.

From (47) and (46) we see that

(50) ϕ̄znfk =
1

λn + λk
ϕ̄vfk and ϕ̄znzk =

1

λn + λk

(
ϕ̄vzn + ϕ̄vzk

)
.
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Substituting the first relation from (50) and (49) into (45) we have

(mλn + γ)ϕ̄vfn =
∑
k

(
− βGk
λn + λk

ϕ̄vfn +
√
cβGkδnk

)
,

which simplifies to

(51)
(
mλn + γ + βK̃+(λn)

)
ϕ̄vfn =

√
cβGn.

It remains to solve for ϕ̄vzn and note that when compared to (51), the Auxiliary
Balance Condition holds. Indeed, substituting the second relation from (50) into (44)
and again using mϕ̄vv = c, we have

(
mλn + γ

)
ϕ̄vzn = c+

∑
k

(
− βGk(ϕ̄vzn + ϕ̄vzk)

λn + λk
+

√
cβGkϕ̄vfk
λn + λk

)
which, using the Auxiliary Balance Condition, simplifies to

(52)
(
mλn + γ + βK̃+(λn)

)
ϕ̄vzn = c

Therefore the Auxiliary Balance Condition is consistent and, to summarize, the co-
variances of the stationary distribution satisfy

(53)

ϕ̄vv = c/m; ϕ̄fnfk = δnk;

ϕ̄vzn = c/
(
mλn + γ + βK̃+(λn)

)
;

ϕ̄vfn =
√
cβGn/

(
mλn + γ + βK̃+(λn)

)
;

ϕ̄znzk = (ϕ̄vzn + ϕ̄vzk)/(λn + λk);

ϕ̄znfk = ϕ̄vfk/(λn + λk).

Finally, recalling from Equation 36 that F (t) =
∑
n

√
GnFn, and we find from

Equation 40 that

L {E(F (t)V (0))} (s) =
∑
n

√
Gn

ϕvfn
s+ λn

,

from which (34) follows.

3. Parameter Estimation and a Monte Carlo Visualization of Uncer-
tainty for Rheological Properties.

3.1. Parametric Inference Imposes Small- and Large-ω Asymptotics.
For the work we present in this section, we work within the KProny framework for
modeling viscoelastic diffusion. It is important to note that this imposes a structure
on the storage and loss moduli G′ and G′′.

Proposition 3.1. Let K ∈ KProny. Then the storage and loss moduli have the
following asymptotic properties:

lim
ω→0

G′(ω)

ω2
=
ηp〈τ2n〉
〈τn〉

; lim
ω→∞

G′(ω) =
ηp
〈τn〉

;(54)

lim
ω→0

G′′(ω)

ω
= ηs +

ηp
〈τn〉

; lim
ω→∞

G′′(ω)

ω
= ηs.(55)
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where we adopt the notation

(56) 〈τpn〉 :=

N−1∑
n=0

Gnτ
p
n

where p > 0.

Proof. If K ∈ KProny, then

(57) K̂+(ω) =
∑
n

Gnτn
1 + iωτn

.

From the definitions of the storage and loss moduli (4), and the definition of Gr (16),
we have

(58) G′(ω) =
ηp
〈τn〉

∑
n

Gnτ
2
nω

2

1 + τ2nω
2

and G′′(ω) = ηsω +
ηp
〈τn〉

∑
n

Gnτnω

1 + τ2nω
2
.

The asymptotic expressions follow immediately.

Once we impose the Generalized Rouse Spectrum for the memory kernel, we can
describe a feature in G′ and G′′ that arises from the particle’s transient anomalous
diffusion.

Proposition 3.2. Let ν > 1, τ0 > 0 and ηs > 0 be given. For each N ∈
N, let KN (t) ∈ KRouse be the associated generalized Rouse memory kernel with N
exponential terms. For every t > 0, define K(t) := limN→∞KN (t) and let G′ and
G′′ be the storage and loss moduli associated with the memory kernel K(t). Moreover,
suppose that ηp = ηp(N) in such a way that limN→∞ ηp(n)/〈τn(N)〉 = G0 ∈ (0,∞).
Then

lim
ω→0

G′(ω)

ω
1
ν

=
1

ν
G0τ

1
ν
0 C0(ν); lim

ω→∞
G′(ω) = G0;(59)

lim
ω→0

G′′(ω)

ω
1
ν

=
1

ν
G0τ

1
ν
0 C1(ν); lim

ω→∞

G′′(ω)

ω
= ηs.(60)

where Cr :=

∫ ∞
0

ur

u1−
1
ν

1

1 + u2
du.

Proof. For G′(ω) we can rewrite (58) with the generalized Rouse kernel as a
Riemann Approximation to an integral and take N →∞:

G′(ω) = lim
N→∞

ηp
〈τn〉

1

N

∑
n

τ2nω
2

1 + τ2nω
2

= G0 lim
N→∞

∑
n

τ20ω
2

τ20ω
2 + (n/N)2ν

1

N

= G0

∫ 1

0

τ20ω
2

τ20ω
2 + x2ν

dx(61)

After the substitution u = xν/τ0ω, we have

(62) G′(ω) =
G0(τ0ω)

1
ν

ν

∫ 1
τ0ω

0

1

u1−
1
ν

1

1 + u2
du.
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The same procedure yields

G′′(ω) = ηsω + lim
N→∞

ηp
〈τn〉

1

N

∑
n

τnω

1 + τ2nω
2

= ηsω +G0

∫ 1

0

τ0ωx
ν

τ20ω
2 + x2ν

dx

= ηsω +
G0(τ0ω)

1
ν

ν

∫ 1
τ0ω

0

u

u1−
1
ν

1

1 + u2
du.(63)

Since both integrands are integrable over u ∈ (0,∞) the ω → 0 limit follows immedi-
ately.

To assess the large-ω limit, we return to (61). As ω tends to infinity, the integrand
uniformly approaches the constant function one. Therefore G′(ω) → G0 as ω → ∞.
Similarly, we see that as ω → ∞, the integrand in (63) goes to zero uniformly over
x ∈ [0, 1], leaving only the term ηsω.

3.2. Current methods; reliance on power law fits. Because power laws
are so apparent in pathwise MSDs computed from live data, it is perhaps natural to
simply plot the averaged pathwise MSDs on a log-log scale and use linear regression
to find the power law with best fit. Then, assuming the mass is negligible, one would
estimate G̃r(s) through (25), setting m = 0. First, note that for α ∈ (0, 1), we have
L {tα} (s) = Γ(1 + α)s−(1+α). Then one would estimate that

(64) M(t) = Ctα implies G̃r(s) ≈
2kBT

6πaCΓ(1 + α)s1−α
.

Using the relations

(65) G′(ω) = −ω Im
[
G̃r(iω)

]
and G′′(ω) = ωRe

[
G̃r(iω)

]
.

we have that

(66) M(t) = Ctα implies

{
G′(ω) = C ′ cos

(
απ/2

)
ωα

G′′(ω) = C ′ sin
(
απ/2

)
ωα

where C ′ = kBT/(3πaCΓ(1 + α)).
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(a) Power Law MSD Fit [9]
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(c) Dasgupta et al, 2009 [5]

Fig. 2. Estimated Storage and Loss Moduli using existing methods. For a fixed parameter
set, we simulated 100 sets of 100 particle paths. For each set of paths, we calculated an ensemble
Pathwise MSD and then applied three existing methods for inferring G′ and G′′. See Sections 3.4-3.5
for further details. N = 100, τ0 = 10−3s, ηs = 10−2g/(cm s), ηp/τavg = 103g/(cm s2).

As noted in Theorem 2.3, for K ∈ KRouse, α = 1/ν. Therefore, the small-ω
regime seen in (66) is the same as identified in the N → ∞ limit for a generalized
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Rouse kernel. In the large-ω limit, however, the N → ∞ limit does not match the
pure power law forms for G′(ω) and G′′(ω). This is because the τ0 is unchanged in
the limit, and for all times smaller than this smallest relaxation time, the fluid is
essentially viscous.

In Figure 2a, we display the results of using a pure power law fit of the MSD
to infer the storage and loss moduli when the true Gr(t) has a memory kernel in
KRouse with 100 terms and ν = 2. We see that the Power Law MSD fit matches the
subdiffusive feature of G′(ω) and G′′(ω) that appears in the range ω ∈ (100, 102) s−1.
If N were taken to be larger, the subdiffusive feature would extend in the small-ω
range and presumably match the Power Law MSD fit.

In principle, a fully observed MSD will feature multiple power law regimes. For
times much smaller than τ0 the log-log slope should be one. Also, for times much
larger than the largest time scale (∼ τνN ) the log-log slope will be one again. The
intermediate regime of the logscale MSD will be sublinear. In their original paper
on passive microrheology, Mason & Weitz computed a numerical Laplace transform
of an ensemble average of Pathwise MSD curves, then used (25) to translate this to

G̃r(s). They then fit to a function of the form G̃r(s) = a0 + a1s +
∑J
j=2 ajs

νj with

(ν3, ν4, ν5) = (−0.55, 0.3, 0.5). Invoking analytic continuation, they defined Ĝr(ω) :=

G̃r(iω) and then apply the relations (65) to compute G′ and G′′. From what we have
seen in (66), this imposes a small-ω form that has leading order ω−0.55 and a large-ω
leading order ω1.

Concerned about the structure imposed by a parametric model for G̃r(s), Mason
introduced a less-restrictive method five years later [24]. Essentially, the method is
as follows. For each t, one computes a “local” power law fit which we denote α(t).

Then, this is translated to an estimate for G̃r(s) using a localized version of (64):

(67) Mason, 2000 [24]: G̃r(s) ≈
2kBT

6πasM(1/s)Γ(1 + α(1/s))
.

(Note that the quantity that Mason computes (G̃(s)) is related to G̃r(s) by G̃(s) =

G̃r(s).) The form of the approximation follows from the observation that if M(t) =
Ctα, then the quantity Cs1−α in the denominator of the right-hand side of (64) can
be rewritten as sM(1/s).

Much like the previous methods, Mason’s approximation imposes an assumption
on the small- and large-ω regimes. In this case, they are set by the local power law fit
and the two extremes of the observed MSD. But there is a more subtle assumption
that could affect inference. While Mason’s method should be sensitive to power law
transitions in the MSD form, it relies on the assumption that M̃(s) can be approxi-
mated by behavior of the MSD in the neighborhood of t = 1/s. However, note that

since M̃(s) =
∫∞
0
M(t)e−st, its value is informed by the values of M(t) in a neigh-

borhood of the maximum value of the integrand, t∗(s) = arg maxt>0{M(t)e−st}. In
particular, if M(t) = Ctα, then t∗(s) = α/s. In questions of interest, α is much
smaller than one, meaning that Mason’s approximation samples a region of M far
from the peak of the integrand’s contribution. For the same 100 sets of 100 paths, we
applied Mason’s method to estimate G′ and G′′. The results are displayed in Figure
2b. We only include values {ωk}TNk=1 that are of the form ωk = 1/tk where tk is a time
point for which path observations were made.

For observed MSD that is highly curved, Dasgupta et al. proposed a generaliza-
tion to the local power law fit to account for changes in the curvature [3]. Using a
polynomial of degree two to fit the logarithm of the MSD, the authors propose an
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empirical localized version of (64) to be

(68) Dasgupta [3]: G̃r(s) ≈
2kBT

6πasM(1/s)Γ(1 + α(1/s))(1 + β(1/s)/2)
.

Further modified versions of the loss and storage forms (66) are proposed based on

a degree two logarithmic fit of G̃r(s). However, for MSD that exhibits multiple time
scales but transitions smoothly between the different regimes, this method has the
same shortcoming as the local power law fit and does not provide any new information.
For illustrative purposes, the reconstruction is given in Figure 22c.

3.3. Generalized Rouse Spectrum Identifiability Issues: G̃r(s)←→ G∗(ω).
Uncertainty arises from multiple sources in standard practice for passive microrheol-
ogy. Some are experimental, like limitations on the camera frame rate (1/δ) and the
length of the particle paths (NT ). The conversion from the time domain to frequency
space also introduces potential for error that we explore in the next section. In this
section, we investigate parameter uncertainty that arises from the Rouse spectrum
model itself: namely, while there are no pairs of unidentifiable parameters, there is
a strong relationship between the parameters when an error is made. However, the
effect on the inferred storage and loss moduli is relatively limited.

80 100 120
N

160 170

p  [g/(cm s)]
1.8 2 2.21 2

0  [s] 10-3
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2
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10-3

Fig. 3. Parameter relationships for generalized Rouse spectrum model. For a fixed
parameter set, the corresponding function G̃r(s) was perturbed 100 times and estimated values for
N, τ0, ηp, ν were computed according to the procedure described in Eq. (70). Histograms of the values
are plotted on the diagonal subplots, while scatter plots of each two parameters combination are on
the off-diagonal. The scatter plots show that (τ0, ν) are highly correlated, while none of the other
parameters are. (N = 100, τ0 = 10−3s, ηs = 10−2g/(cm s), ηp/τavg = 103g/(cm s2).)

To assess the impact of what is sometimes called practical unidentifiability [31]
among the parameters of the Generalized Rouse Spectrum, we conducted a numerical
experiment in the spirit of the analysis carried out for cholera transmission pathways
by Eisenberg et al [4]. Centered around the true value of the relaxation modulus

G̃r(s), we generated 100 sets of randomly perturbed relaxation moduli. Following

the procedure described below, for each perturbed version of G̃r(s), we conducted
parameter estimation for N , ηp, τ0, and ν. In Figure 3, we plotted the histograms of
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the estimated parameters on the diagonal as well as the scatter plots of two sets of
estimated parameters on the off-diagonal subplot. When two parameters are highly
correlated, then their estimated values lie on a curve in the scatter plot. This was
the case for (τ0, ν) (first row second plot, second row, first plot), but for none of the
other groups. For each parameter quartet we plotted the coordinate pair (τ0, ν) as
a colored dot in Figure 4b and calculated the associated G′ and G′′ to be displayed
as gray curves in Figure 4c. To explain our approach to generating these figures, we
recall from (16), G̃r(s) = ηs +

ηp
‖K+‖1 K̃

+(s). When K ∈ KRouse, this takes the form

(69) G̃r(s) = ηs +
ηp
〈τn〉

1

N

N∑
n=1

1

sτ0Nν + nν
.

We generated 100 sets of TN target pairs (si, g̃i), i ∈ {1, 2, . . . , TN}. Each si is the
inverse of a data observation time point ti. We set the corresponding g̃i value to be
g̃i := G̃r(si) + (0.1G̃r(si))

1/2εi, where εi is a standard Normal random variable.
We then obtained a joint estimate for (ηp, N, τ0, ν) by computing a solution to

the least square fitting problem given by (69), assuming that ηs is known a priori. To
be precise, for each N in a reasonable range, we numerically computed the parameter
triplet (ηp, τ0, ν) that minimized the residual function

(70) RN ({g̃i} ; ηp, τ0, ν) :=
∑
i

(
g̃i − G̃r(si ; N, ηp, τ0, ν)

)2
g̃2i

.

In practice, this was accomplished using the least square nonlinear fit command in
Matlab. The optimization is constrained below by ηp, τ0 ≥ 0 and ν ≥ 1. For the
numerical experiment associated with Figure 4, we set the true parameters to be
N = 100, ηs = 10−2g/(cm s) corresponding to water, ηp/τavg = 103g/(cm s

2
) corre-

sponding to ηp ≈ 163.5g/(cm s), τ0 = 10−3s and ν = 2.
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(a) Profile Likelihood for N
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Fig. 4. Generalized Rouse Spectrum: uncertainty due to G̃r(s) ←→ G∗(ω). For a fixed

parameter set, the corresponding function G̃r(s) was perturbed 100 times and converted to G′(ω)
and G′′(ω) according to the procedure described in Section 3.3. In the left panel, a profile likelihood
is provided for N for one of the 100 perturbations. In the middle panel, for each (τ0, ν) pair, the

color corresponds to the minimum possible residual from the true G̃r(s) among all admissible values
for N and ηp. Each white dot corresponds to a parameter combination inferred for one perturbation

of the true G̃r(s). These collect in a “trough” of the residual map. In the right panel, we see G′

and G′′ computed for all 100 of the perturbations. (N = 100, τ0 = 10−3s, ηs = 10−2g/(cm s),
ηp/τavg = 103g/(cm s2).)

For notational efficiency, we will suppress dependence on the gi and write

(71) Rmin
N (ηp, τ0, ν) := min

(ηp,τ0,ν)
RN ({g̃i} ; ηp, τ0, ν).
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It is important to observe that an error in the estimate of one parameter can be
“compensated for” by a correlated error in the estimate of another parameter. One
way to demonstrate this is through a profile likelihood plot, as in Figure 4a. For one
instance of a perturbed set of target points {si, g̃i}, we plotted log10R

min
N (ηp, τ0, ν)

as a function of N ∈ {85, . . . , 115}. We observe that there is a minimum point at
N ≈ 107 indicating that N can be reasonably estimated. However, the log10-residues
vary only over a range of two units (from 209.4 to 210.6).

One way to visualize the relationship among the parameters is through a residual
heat map, as seen for τ0 and ηp in Figure 4b. For each (τ0, ηp) pair in the displayed
region, we found the combination of N and ν that minimized the residual function 70
and displayed the (τ0, ηp)-minimal residual value in terms of colors ranging from blue
(smallest residual) to yellow (relatively large residual). The presence of the blue-green
“residual trough” indicates a region of (τ0, ηp) that can provide similarly effective fits.
Each white dot corresponds to a (N, ηp, τ0, ν) combination that provided an optimal

fit to a randomly perturbed version of the true G̃r(s). The red dot is the parameter
combination corresponding to the minimal point in Figure 4a. We emphasize that the
trough does indeed tend to capture the manner in which an error in one parameter
will be compensated by a specific error in another parameter.

The essential observation in this numerical experiment is demonstrated in Figure
4c. Despite practical unidentifiability among the parameters, the inferred storage and
loss moduli are quite consistent for a certain range of frequency ω. In the panel, the
true G′(ω) and G′′(ω) in black and overlay in gray the 100 G′(ω) and G′′(ω) curves
each corresponding to one of the parameter combinations associated with the white
dots in Figure 4b. There is essentially no variation in the storage modulus G′ is near
the non-monotonic region that which appears in the range ω ∈ (102, 104) s−1. We note
that this non-monotonic his feature was studied in the single mode case by Marvin
and Oser [22, 29], but we do not know of any analysis that exists when there are more
Maxwell elements.

3.4. Converting time domain information the frequency domain. While
the work in the previous section demonstrates identifiability issues that are intrinsic
to the Generalized Rouse model for viscoelastic diffusion, a larger source of uncer-
tainty lies in the conversion of path data to a quantity on which one can find optimal
paramter sets, i.e. the connection M(t) ←→ G̃r(s). As we have described above,
Mason & Weitz were the first among many other who chose to compute a numerical
Laplace transform of the MSD and use (25) to create an approximation of G̃r(s) on
which to perform inference. In principle, one could perform the parameter optimiza-
tion directly on the MSD. In Lemma 3.3 we provide a formula for the MSD in terms
of ρ̂(ω). For each parameter combination, it is trivial to compute ρ̂(ω), however, we
found that in practice, the numerical computation of Equation 72 is subject to ex-
tremely large numerical error. Some discussion concerning the computation of such
an integral is provided in [12, 11, 10].

Lemma 3.3. Let {(X(t), V (t))}t≥0 be defined as in Theorem 2.4. Then

(72) M(t) =
4

π

∫ ∞
0

sin2

(
tω

2

)
ρ̂(ω)

ω2
dω.

Proof. Recalling that ρ(t) = E(V (t)V (0)) and using the definition of M(t), we

have M(t) =
∫ t
0

∫ t
0
ρ(s − s′)ds′ds. Next, expressing ρ(s − s′) in terms of its Fourier
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inverse transform gives

(73) M(t) =

∫ t

0

∫ t

0

1

2π

∫ ∞
−∞

e−i(s−s
′)ωρ̂(ω)dωds′ds.

The claim follows by switching the order of integration in (73), integrating, using the
Euler’s formula and the fact that ρ̂(ω).

Computing a numerical Laplace transform presents its own problems. The first,
and most prominent, is that because the MSD of a particle is an increasing function,
the tail of the integrand of the Laplace Transform is not trivial. As is also pointed out
in Evans et al [5], it is necessary to project behavior of the MSD for regions outside
of the values given by the data. We suppose the observations are taken over a time
interval t ∈ [t1, T ] which is divided into equally spaced subintervals with observations
at the times ti := i∆t, i = 1, . . . , NT . For each i, we write Mi := M(ti).

It is natural to split the Laplace transform into three regions:

(74)

M̃(s) = I1(s) + I2(s) + I3(s)

:=

∫ t1

0

e−stM(t)dt+

∫ T

t1

e−stM(t)dt+

∫ ∞
T

e−stM(t)dt.

To approximate I2(s) it is sufficient to use the trapezoidal rule:

(75)

∫ T

t1

e−stM(t)dt ≈ M̃trap(s) =
∆t

2

NT−1∑
j=1

(e−stj+1M(tj+1) + e−stjM(tj)).

On the intervals [0, t1] and [T,∞), we approximate M(t) by C0t
q0 and by C∞t

q∞

respectively, where the coefficients and exponents are obtained by linearly fitting a
small number of points on the beginning and on the tail of lnM(t) to ln t. In practice,
we assume that there are 2048 time points for which the particle position is observed.
The ensemble pathwise MSD is very noisy for large time, so it is standard practice
to only use the first 10% to 20% of the time points. We therefore set the number of
target points to be NT = 200 to find the coefficients.

Outside of the observed range, the approximations simplify to

(76)

∫ t1

0

e−stM(t)dt ≈ C0

sq0+1
γ(st1, q0 + 1) and∫ ∞

T

e−stM(t)dt ≈ C∞
sq∞+1

Γ(sT, q∞ + 1),

where γ(a, x) =
∫ x
0
ta−1e−tdt is the lower incomplete Gamma function and Γ(a, x) =∫∞

a
ta−1e−tdt is the upper incomplete Gamma function. Combining (74)-(76), we

have

(77) M̃(s) ≈ M̃app(s) =
C0

sq0+1
γ(st1, q0 + 1) + M̃trap(s) +

C∞
sq∞+1

Γ(sT, q∞ + 1).

In order to visualize the increased uncertainty that arises from (1) only being able
to observe the MSD at a small number of time points, and (2) needing to compute
a numerical Laplace transform, we generated a second residual heat map (Figure 5a.
For the given set of 200 time points {t1, t2, . . . , T} we generated an associated set of
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(a) Residual Surface Plot (b) Storage and Loss Moduli

Fig. 5. Monte Carlo visualization of the full method: M(t) ←→ M(t) ←→ G̃r(s) ←→
G∗(ω). For the same baseline parameter set used for Figure 4, we assess uncertainty that arises due
to computing an ensemble MSD from simulated data, converting this estimate for the true MSD to
an estimate for G̃r(s) and finding an optimal parameter fit. In the left panel, for each (τ0, ν) pair,

the color corresponds to the minimum possible residual from the true G̃r(s) among all admissible
values for N and ηp. One hundred (τ0, ν) pairs were chosen from the trough in the residual map and
the color corresponds to the value of N that gave the smallest residual value. In the right panel, we
see G′ and G′′ computed for all 100 (τ0, ν) pair displayed in the middle panel.

target points (si, g̃i). For each i ∈ {1, . . . , NT }, we set si = t−1i and then used (77) to

compute M̃app(si). Then corresponding estimate g̃i for G̃r(si) was computed by way
of Equation 25 in Theorem 2.4:

(78) g̃i :=
1

6πa

[
2c

s2i M̃app(si)
−msi

]
.

As with Figure 4b, the color coding reveals which combinations of τ0 and ν can
be combined with optimal values of N and ηp to yield a function G̃r(s ; N, ηp, τ0, ν)
that is close to the target values at the frequencies {si}. However, for Figure 5a (and
Figure 6a) we introduced a weighted residual function. The reason for the weights
is that every g̃i value has a contribution from each of I1(sj), I2(sj) and I3(sj) in
(74). Importantly, points nearer the boundary of the observation window have larger
contributions from I1 and I3 which contain the projected information. Moreover,
there reasonable disagreement concerning what is an appropriate projection into the
large-t region (t > T ). As demonstrated by Theorem 2.3, when there are finitely many
terms in the Prony series, the sublinear character of the MSD only exists over a finite
range. So, eventually the MSD will grow linearly. The question is whether the linear
regime will emerge shortly after the observable time range, whether the present power
law behavior near time t = T will persist. We have chosen to project the sublinear
behavior to all t > T , and this is the choice effectively made by the methods adopted
by Mason [24] and Dasgupta et al. [3]. However, Evans et al. [5] opted to project into
the large-t region with linear growth.

The residuals used in this section are therefore computed with the weights wi :=
I2(si)/M̃(si). In this way, wi is the fraction of the value g̃i that is given by non-
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projected data points. Then

(79) RN (ηp, τ0, ν;w) :=

NT∑
i=1

w2
i

(g̃i − G̃r(si))2

g̃2i
.

Note that, as a result of the relatively small number of observed time points and the
numerical computation of the Laplace transform, the blue trough of (τ0, ν) pairs that
can be part of “good-fitting quartets” (N, τ0, ν, ηp) is much larger. As we discuss in
the next section, this trough structure captures the shape of the best fit parameter
sets for simulated data.

3.5. Monte Carlo Visualization of Uncertainty in the Storage and Loss
Moduli. We use numerical simulation to portray our final assessment of uncertainty
the passive microrheology procedure. Using a covariance-based algorithm to generate
GLE paths (described in [10, 12, 11]), mimic experimental conditions, taking ∆t =
2−2s, NT = 2048 and NP = 75 (number of paths). To construct M(t), for each
path we computed a pathwise MSD, defined as in (11). Then our estimated for the
MSD, M(t) was the ensemble average of pathwise MSDs. For our observation times,
we chose ti = i∆t, for i ∈ {1, . . . , 200}. Given this collection of MSD estimates, we
computed the target points (si, g̃i as described in the previous section and found the
parameter set that minimized the weighted residual function 79.
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Fig. 6. Assessing the effect of a 100x faster frame rate. For the same baseline pa-
rameter set used in the previous figures, we repeat the procedure applied to create Figure 5, but
shifted the observation times down by a factor of 100. We see that the parameter τ0 can be much
better estimated; however there is greater uncertainty regarding ν and N . (Uncertainty for N , not
pictured.)

Each dot in Figure 5a corresponds to a (τ0, ν) pair that produced an optimal fit for
a given path. The color of each dot indicates the associated value of N in the optimal
quartet. From the figure, we see that the estimates for N and τ0 in particular are
quite noisy. However, despite this uncertainty in parameter estimation, the inference
for a certain range of the storage and loss moduli is very tight. Indeed, in Figure 5b
the gray curves represent the Storage (G′, solid) and Loss (G′′, loss) moduli associated
with each parameter quartet fit.

In Figure 6, we carried out the same procedure for the same parameter set, but
then supposed that the experimental camera frame rate is 100 times as fast (but we



FOUNDATIONS OF PASSIVE MICRORHEOLOGY 21

assume that the movies have the same number of total frames, so we lose observations
for larger t). In is interesting to see the change in shape of the blue residual trough.
The improved frame rate allows the parametrization to “rule out” the range of τ0
values [2 × 10−3s, 10−1s], which were plausible before. Because the range of τ0 is
narrowed, the range of N values is diminished as well. For the storage and loss
moduli, the range of ω-values that have good certainty have shifted right, as expected,
including the Oser & Marvin feature. In fact, because the estimate for ηp improved
considerably, the range of certainty extends well beyond the experimental time scale
in the high frequency range.

4. Discussion. Biological fluids, like mucus and the cytoplasm of cells, exhibit a
wide range of viscoelastic properties that are essentially impossible to study by tradi-
tional rheological techniques. Because fluid samples are intrinsically small and difficult
to collect, microrheological tools, which rely on studying the fluctuating behavior of
immersed microparticles, have become indispensible. The fundamental challenge for
these inference methods though, is that while the data is collected in the time do-
main, the standard characterizations of viscoelastic fluids are articulated in Fourier
frequency space. In this work, we have put the fundamental assumptions of what is
sometimes called the Mason & Weitz protocol on rigorous footing and attempted to
quantify the uncertainty that is introduced in each step of the procedure.

According to the Mason & Weitz hypothesis, the behavior of a particle immersed
in a complex fluid is well-described by the Generalized Langevin Equation that has a
memory kernel that matches the fluid’s shear relaxation modulus Gr(t). We accepted
this premise as true throughout this work and focused on the problem of inferring the
Laplace transform of Gr(t) from particle position data, which can then be related to
G′(ω) and G′′(ω) by analytic continuation. Mason & Weitz proposed a relationship
between a particle’s Mean-Squared Displacement and its memory kernel (Equation
25), but to our knowledge this formula had never been established rigorously before
now (Theorem 2.4). In fact, the justification for this formula is usually provided by
an assumption that turns out not to be true at all!

The issue is that the model that appears in the physics literature is not properly
stated. Although it suffices to specify the initial condition of the position process to
be X(0) = 0, because the velocity process satisfies a stochastic integro-differential
equation, one must specify the entire past {V (t)}t≤0. Either this, or through use of a
Mori-Zwanzig apparatus, one can define statistically equivalent dynamics by way of a
system of auxiliary variables (Zn(t)) (either by (26) or (36)). In this case, the history
of V is captured by the collection of initial values for the auxiliary terms. Taking the
definition in the physics literature literally is equivalent of assuming that Zn(0) = 0
in the system (36). In order to justify the Mason & Weitz relationship 25, for over
fifty years dating back to Kubo [16], authors have assumed that E(F (t)V (0)) = 0. We
have proved that this is not the case, Theorem 2.5. Remarkably, these observations
do not disrupt the veracity of the Mason & Weitz formula, Theorem 2.4.

Having established confidence in the Mason & Weitz formula, we proceeded to
analyze the inversion procedure itself: reconstructing G′(ω) and G′′(ω) from particle
path data. There have been attempts to do this with a non-parametric approach, but
as we argue in Section 3.4, and as has been observed elsewhere [5], any procedure
that involves numerically relating Mean-Squared Displacement (MSD) of the position
process to the Autocovariance Function (ACF) of the velocity process will require
projecting MSD values beyond the experimentally observed time range. By way of
the small- and large-ω asymptotics for G′(ω) and G′′(ω) that we studied in Section
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3.1, we can argue that the MSD projection will dominate both ω extremes. In other
words, the inferred G′(ω) and G′′(ω) for small- and large-ω will depend more on the
project technique than the actual process, which contradicts the point of using a non-
parametric method in the first place. We therefore adopted a form for Gr(t), (18),
that is well-established in polymer physics literature [6]. Moreover, we used a tunable
four-parameter family of functions (2.1) for which the GLE can mimic a wide array
of experimentally observed behavior [26]. We note that there are other methods
for parametrizing Prony series kernels to produce similar behavior, see [17, 14] for
example, but we reserve for future work an investigation of what happens when one
parametric family is used for inference on a GLE generated by another family.

As seen in Section 3.4, even when the correct parametric family is used for recon-
struction, there is considerable error introduced by (1) the constraint of finite time
series observations; and (2) the conversion time domain information to Fourier fre-
quency space. The error is not uniform in ω though. While we were reluctant to use
the precise language of confidence intervals and hypothesis testing (because there are
some ambiguities how such statistical tests should be set up), we introduced a Monte
Carlo visualization of the uncertainty intrinsic to passive microrheology. We have
showed that, while there can be significant uncertainty in the estimation of certain
parameters (in particular, the smallest relaxation time τ0 and the number of distinct
linear relaxation times N , Figures 4b, 5a and 6a) there is remarkable consistency in
the inferred values for G′(ω) and G′′(ω) over the range of frequencies that correspond
to experimentally observed times (Figures 4c, 5b, and 6b).

This observation is very much in the spirit of many Uncertainty Quantification
investigations that show that parameter estimation should not be an end in and of
itself. Often, parameters values are useful only to the extent that they help produce
some scientifically relevant prediction. When a methodology is sound, as the pro-
tocol used for passive microrheology seems to be, the prediction of interest (in our
case, characterization of the storage and loss moduli) is robust and stable despite the
potential for large error in parameter estimation.
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