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CONTINUUM MODELS OF PLATELET AGGREGATION: 

FORMULATION AND MECHANICAL PROPERTIES* 


AARON L. FOGELSON? 

Abstract. Platelet aggregation is an important component of the blood's clotting response, and 
is associated as well with many forms of cardiovascular disease. A new class of continuum models of 
platelet aggregation is presented. The models describe interactions among a viscous, incompressible 
fluid and populations of nonactivated (nonsticky) and activated (sticky) platelets suspended in this 
fluid. Cohesion between activated platelets can profoundly influence the motion of the suspending 
fluid. A platelet-activating chemical triggers a platelet's transition from nonactivated to  activated 
status, and induces the secretion of more of the same chemical. Investigation of the mechanical 
properties of the fluid-platelet system in the absence of new activation shows that platelet cohesion 
can generate extra pressure and extra viscous and elastic stresses. The last is sufficient to  maintain 
the integrity of an aggregate that is subject to  substantial external stress. 

Key words. platelet aggregation, continuum models, incompressible viscous flow, convection- 
diffusion-reaction equations, elasticity, computational fluid dynamics 

AMS(M0S) subject classifications. 92, 76, 65 

1. Introduction. This paper is concerned with the development of continuum 
models of the platelet aggregation process. Platelet aggregation, a major component 
of the blood-clotting response, involves the clumping together or aggregation of blood 
platelets along portions of a blood vessel wall in response to injury to the vessel. 
Platelet aggregates are also a major constituent of the thrombi (blood clots) associated 
with vascular disease and with the use of blood-contacting prosthetic devices such as 
vascular grafts and prosthetic cardiac valves. In these settings, undesired aggregate 
growth can cause severe medical problems. In particular, aggregate formation in the 
coronary arteries is strongly associated with cardiac ischemia, angina, and myocardial 
infarction [9], [lo]. This paper describes work toward the development of models 
appropriate for studying aggregation in vessels the size of the coronary arteries or 
larger. 

We begin with a brief sketch of the biology of platelet aggregation. Platelets are 
cells suspended in the blood. They are present in enormous numbers (250, 000/mm3) 
yet small volume concentrations (x0.3 percent). Platelets are neutrally buoyant with 
respect to the blood as a whole. A platelet normally circulates with the blood in a 
dormant or nonactivated state in which it is not adherent to other platelets or to the 
blood vessel wall. Stimulation of a nonactivated platelet by certain chemicals triggers 
the activation process in which (1)the platelet's surface membrane is altered so that 
the platelet becomes "sticky" and capable of cohering with other activated platelets; 
(2) the platelet secretes into the surrounding fluid chemicals, which can induce ac- 
tivation of other platelets; and (3) the platelet changes morphologically from rigid 
and discoidal to deformable and spherical, and it extends long thin appendages called 
pseudopodia. A common hypothesis is that in vivo aggregation is initiated when ad- 
hesive platelet-activating tissue embedded in the vessel wall is exposed to the blood 
because of injury to the vessel [3], [25], [27]. Platelets quickly adhere to this tissue, 
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and these platelets release activating chemicals into the blood plasma. Other platelets 
attach to these platelets and to one another and also release activating chemicals. In 
a short time, platelet aggregates develop at the injured site. While there is no con- 
clusive evidence that the released chemicals potentiate the aggregation in vivo, such 
a hypothesis is supported by a wide range of in vitro studies. If a sufficiently high 
concentration of the chemical adenosine diphosphate (ADP), which is one of the re- 
leased chemicals, is applied to a stirred suspension of platelets, aggregation as well as 
the secretion of additional ADP by the platelets [15], [27] is observed. Similarly, ag- 
gregation and chemical release are induced if the clotting enzyme thrombin is applied 
to such a suspension [5], [18]. The platelet response to ADP is threshold-like: low 
doses of exogenous ADP result in reversible aggregation, while doses of sufficiently 
high concentration lead to "irreversible" aggregation and platelet secretion of ADP. 
The relative importance of ADP, thrombin, and other activating chemicals to the ag- 
gregation process is not clear and is the subject of ongoing experimental investigation 
[I], [2], [6], [ll],[16]. In a qualitative sense, these chemicals act in much the same 
way. Each chemical serves to carry the activation signal from platelet to platelet by 
triggering platelet responses, including the secretion of more of the same chemical. 

The cohesion of two stimulated platelets is believed to occur through a process in 
which protein molecules present in the blood plasma bind to receptors on the platelets' 
surfaces to form intercellular molecular bridges. The leading candidate for the role 
of bridging molecule is the filamentous protein fibrinogen. There are approximately 
50,000 receptors for fibrinogen located on the surface of a platelet, and the activity of 
these receptors is expressed only when an agonist, such as ADP, acts on the platelet 
[7], [19]. Cohesion of two platelets also requires contact between them. The long 
thin pseudopodia extended by platelets upon activation may promote cohesion by 
increasing the probability of contact. The flexibility of activated platelets permits 
greater contact between their surface membranes and allows for the formation of 
tightly packed platelet aggregates [28]. 

The aggregation events occur in a moving fluid, the blood plasma, or at a fluid- 
solid interface, the vessel wall, so it is not surprising that a substantial amount of 
clinical and experimental evidence indicates an important role for the blood's fluid 
dynamics in controlling the location, rate, and extent of aggregation. Clinical ob- 
servations suggest that pathological aggregate growth occurs preferentially at sites of 
relative flow stasis and at sites at which a flow disturbance can be expected, such as 
near branches, bends, or constrictions of a vessel [lo], [12]. Some experimental results 
suggest that the preferential aggregation associated with the sites of changing vessel 
geometry may be due to entrapment of platelets and plasma-borne chemicals in eddies 
near these locations [17]. The rate and extent of platelet adhesion and aggregation on 
platelet-reactive surfaces in laboratory flow chambers show strong dependence on the 
flow's shear rate [13], [14], [22]-[24]. Aggregate growth may be limited by high fluid 
stresses when these stresses are strong enough to break the molecular bridges that 
attach a new platelet to an aggregate. Similarly, fluid stresses can dislodge portions of 
an existing aggregate (a process known as embolization) by breaking the connections 
between platelets within the aggregate [23]. These observations reflect the facts that 
the growth of aggregates depends in part on fluid-mediated transport of platelets and 
activating chemicals, and that aggregates grow in an environment in which fluid forces 
are important. On the other hand, the growth of aggregates projecting into the vessel 
lumen can markedly influence the flow to the extent that complete vessel occlusion 
can occur [9]. Thus there is a strong tweway coupling between aggregate growth and 
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FIG. 1. (A) In the discrete-platelet model, platelet-platelet cohesion is modelled by an elastic 
link that joins two platelets. ( B )  Forces generated by the link are spread to the fluid in which the 
linked platelets are located. ( C )  These fluid forces contribute to the determination of the fluid velocity 
near the coherent platelets. 

fluid dynamics. 
In [B] we present a microscopic scale model of aggregation. That model tracks 

the motion and behavior of discrete platelets suspended in and interacting with a 
fluid continuum that represents the nonplatelet portion of the blood. The model is 
appropriate for studying aggregation in the smallest arteries, which have a diameter of 
approximately 50pm, but it is not suitable for studying aggregation in vessels the size 
of the coronary arteries (diameter NN lmm) in which the number of platelets is enor- 
mous. This paper is concerned with the development of continuum models of aggre- 
gation appropriate for such situations. These models differ from the discrete-platelet 
model of [B] in many ways: most notably in the description of platelets by population 
density functions and in the inclusion of inertial terms in the equations that describe 
the fluid dynamics. The formulation of the continuum models was, however, strongly 
influenced by the modelling of platelet-platelet cohesion in the discrete-platelet model, 
and so we briefly describe this aspect of that model. 

Recall that cohesion between real platelets occurs through the formation of nu- 
merous interplatelet molecular bridges. In the discrete-platelet model, this process is 
modelled by the creation of an elastic link between two activated platelets that come 
into contact. The links generate forces that resist motions that would otherwise s e p  
arate the platelets. Recall also that real platelets are neutrally buoyant. We think it 
reasonable therefore to make the idealization that the mass of a platelet is attributed 
to the fluid in which the platelet sits and that the platelet itself is massless. As a con- 
sequence of the latter, the link forces do not act directly on the platelets, but instead 
are transmitted to the fluid in the neighborhood of the cohering platelets. These forces 
drive a fluid motion that keeps the platelets together. (This is illustrated in Fig. 1.) 
The influence of the platelets on the fluid motion is solely through the transmitted 
forces. The advantage of this modelling approach is that there is no need to keep 
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track of a moving interface between fluid and aggregates: The aggregates are treated 
as fluid, but fluid that is characterized by the presence of link-generated contiibu- 
tions to the fluid force density. We note also that, in the discrete-platelet model, an 
individual platelet that is not interacting directly with another platelet or the vessel 
wall exerts no force on the surrounding fluid. This is, of course, a simplification. The 
rationale for this approach is as follows: Platelets constitute only a very small frac- 
tion of the blood's volume, most of which (=45 percent) is comprised of red blood 
cells that are both larger and much more numerous than the platelets. Therefore 
we expect that the influence of a single platelet on the motion of this concentrated 
suspension is negligible and that only the cohesive action of aggregated platelets is 
significant. These ideas are extended to the continuum models that we describe in 
the next section. 

2. Derivation of t h e  models. The continuum models are based upon the in- 
teractions among a viscous, incompressible fluid; populations of nonactivated and 
activated platelets; a distribution of interplatelet links; and an interplatelet signalling 
chemical. For simplicity, we generally refer to this chemical as ADP. As indicated ear- 
lier, there are several activating chemicals that act in a qualitatively similar fashion, 
and, in the current qualitative models, it is unnecessary to distinguish between them. 
The current formulations of the model do not include interactions between platelets 
and a vessel wall. That is the subject of future work. 

As in the discrete platelet aggregation model described above, we treat the fluid 
and platelet mixture as a composite. We attribute the mass and volume of each 
(neutrally buoyant) platelet to the fluid in which it sits. The platelet moves at the 
local fluid velocity u(x, t ) ,  which therefore may also be interpreted as the velocity of 
the mixture. (Some platelets also have a random component to their motion as we 
explain below.) An activated platelet is distinguished from other fluid particles in 
that its cohesion with other activated platelets leads to the generation of cohesion 
forces that can strongly influence the fluid's motion. The treatment of cohesion and 
the nature of the forces it can generate are important components of the modelling 
and analysis we present below. 

In the macroscopic setting of the continuum models, the distance between the 
centers of cohering platelets is much smaller than the macroscopic length scale as 
measured, for example, by the vessel diameter. Thus a small parameter E appears in 
the models; it is the ratio of a typical link distance (roughly a platelet diameter) to the 
macroscopic length scale. We are interested in the situation where it is appropriate 
to let E -+ 0, and the model that is presented below consists of the zeroth-order terms 
in an expansion in powers of E. 

The unknown functions in the model are as follows: 

(a) u(x, t): the fluid velocity field, 
(b) p(x,t): the pressure, 
(c) f P 3 4 n  (x, t): the concentration of nonactivated platelets, 
(d) E-~$,(x, t): the concentration of activated platelets, 
(e) c(x,t): the concentration of signaling chemical ADP, and 
(f)  P(x ,  E-lr, t )  : the expected number of elastic links that join a given 

activated platelet at x to a given activated platelet at 
x + r. 

In these expressions, x is a spatial location and t denotes time. The scaling in defini- 
tions (c) and (d) is used because, in a fixed macroscopic volume of aggregate in which 
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platelets are spaced approximately a distance E from one another, the total number 
of platelets scales as E - ~ .  We expect the function P, defined in ( f ) ,  to be nearly zero 
for Ir 1 much larger than E .  

In the description that follows, it is often useful to make the change of variable 
v = €-'I-. Thus v is the scaled link vector, and P(x,  v,  t )  is the expected number of 
elastic links that join a given activated platelet at x to a given activated platelet at 
x + EV. 

The following are the equations of one form of the model: 

Equations (1) and (2) are the Navier-Stokes equations that describe the dynamics 
of a viscous incompressible fluid [4]. In these equations, p is the fluid's mass density, 
and p is its viscosity. Both of these are assumed to be constant. Equation (1)contains 
two force density terms, one of which, fg,  corresponds to a applied body force such 
as might drive a background flow (see the examples in §3.4), and the other of which, 
fP, corresponds to forces generated by the platelet-platelet links. We call fp  the 
cohesion-force density. 

Equation (3) expresses the assumption that nonactivated platelets are transported 
by convection with velocity u and diffusion with diffusion coefficient D,, and are 
converted to activated platelets at a rate R(c)$,, which depends on the concentration 
c of ADP. Equation (4) describes the transport of activated platelets by convection 
and their creation by the activation of nonactivated platelets. Diffusive transport 
of platelets is included in the model to reflect the experimental observation that, 
in flowing blood, platelets have a random component to their motion two orders of 
magnitude larger than that which would result from Brownian motion [20]. The 
enhanced diffusivity is correlated with the presence of the larger and more numerous 
red blood cells, which make up 45 percent of the volume of normal blood [12], [26].  
It is thought that shear-induced tumbling and colliding of the nonspherical red blood 
cells causes a local mixing of the blood, thus imparting to the platelets a diffusion- 
like motion [21], [26]. It is reasonable to expect that the influence of these local 
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disturbances on a particle's motion decreases as the size of the particle increases. We 
also expect that the influence of these disturbances is small for all particles in a region 
where the density of aggregates is high. Thus the diffusivity of individual nonactivated 
platelets should be greater than that of aggregated activated platelets, and both 
diffusivities should decrease with increasing aggregate density. For simplicity, we 
assume for now that nonactivated platelets have a positive constant diffusivity, while 
activated platelets have zero diffusivity. The influence of variable diffusion will be 
considered in later studies. 

Equation (5) states that the signaling chemical (ADP) is transported by convec- 
tion and diffusion and is created when nonactivated platelets are activated. The rate 
of creation is the amount A of ADP (assumed constant) that a single platelet secretes 
upon activation multiplied by the rate R(c)+, at which nonactivated platelets are 
activated. 

The origins of (6) and (7) require more detailed explanation. Equation (6) is 
derived from the integral conservation law 

In this equation, R,(t) and Ry(t) are arbitrary material volumes. The equation ex- 
presses our assumption that the total number of links between activated platelets in 
region R,(t) and activated platelets in region fly(t) increases at a rate equal to the rate 
of creation of new links less the rate of breaking of existing links. The link-formation 
rate function a(lv1) = a(lE-l(y - x)l) is assumed to have support in an interval of 
length 0(1),so that links may be formed only between activated platelets that are 
near one another. In this paper, we assume that the link-breaking rate function /3(lvl) 
is a constant Po. In (8) we ignore saturation in the link-creation term; that is, we 
ignore the fact that there is a limit to the number of links that a given platelet can 
form. Our rationale for this is that we expect the actual number of links formed by a 
platelet to be much less than the maximum possible number of links (n), as measured 
by the number of binding sites on an activated platelet for the intercellular bridging 
molecule. To account for possible saturation, the link-formation term would have to 
be specified to ensure that the constraint Jv P(x,  v ,  t)dv < n was satisfied. One way 
to do this would be to assume that links between platelets in R,(t) and Ry(t) form 
at a rate 

In using the term in (8), we assume that Jv P(x ,  v ,  t)dv << n, and set a(/e-'(y - x) / )= 
n2 &(l~-'(y - x)l). 

To derive (6) from (8), we make the change of variables y - x = EV, expand 
the resulting function +,(x + E V , ~ )in a Taylor series about x ,  evaluate the total 
time derivative on the left-hand side, and retain only the zeroth-order terms in E. 
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Details of the derivation are given in Appendix A. The unusual (v  .Vu) . V,(&P) 
term in (6) arises because of the difference between u at x and x + EV. This term 
describes convection of (&P)in v-space at LLvelocity" v .Vu. It is a consequence of 
the incompressibility of u that the divergence of v .Vu is zero. 

The force density expression given in (7) is derived from the more fundamental 
expression 

The integral here is over all r. The function F(E-'r) is the force associated with a 
single link whose link vector is r. Equation (9) is the statement that the force on a 
small region of fluid around the point x due to platelet-platelet cohesion is the sum 
of the individual link forces for links that join activated platelets within this small 
region to other activated platelets. We assume that the function F(E-'r) scales as E'; 
i.e., we assume that F ( E - ' ~ )  = ~~S(Ic-'rl)E-lr. The rationale for this assumption is 
that the number of links crossing a given macroscopic surface scales as E-', and so to 
preserve the material properties (e.g., stiffness) of the aggregates as E + 0, the force 
per link should scale as E'. This is also the only scaling that gives a finite expression 
for fP. Using this scaling for F in (9), making the change of variables r = EV as before, 
expanding the function $,(x + EV, t) in a Taylor series about x ,  and using the fact 
P (x ,  -v, t )  = P ( x  - cv, v ,  t ) ,  we obtain (7) as the leading (nonvanishing) term. (See 
Appendix B for details.) The relation P(x ,  -v, t) = P(x- EV, v ,  t )  holds because each 
of these expressions describes the expected number of links that join a platelet at x 
and one at x - EV. 

The cohesion-force density fp may also be expressed as the divergence of the 
cohesion-stress tensor e ( x ,  t) defined by the equation -

3. Mechanical properties of t h e  fluid-link system. In the remainder of this 
paper, we examine the properties of a major subsystem of the above model, namely, 
that comprised of the fluid, a population of activated platelets, and a population of 
interplatelet links. No new activation is permitted in this investigation, and activation 
chemistry is ignored. We are interested in the nature of the forces or stresses generated 
by the interplatelet links and, in particular, whether they are capable of maintaining 
the integrity of a platelet aggregate in the face of substantial external stresses. 

3.1. Cohesion-force density in steady s t a t e  with no  flow. We consider the 
model equations (1)-(7) in a steady-state situation in which there is no flow (u  = 0). 
For this situation, the link distribution is isotropic and is given by 

and the cohesion-force density (7) reduces to 

The expression in parentheses is a matrix. All the off-diagonal terms involve an 
integrand that is odd in some component of v ,  and so these terms vanish. The 
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diagonal terms are all equal, and so the integral is a constant multiple of the identity 
matrix. In this case, therefore, the cohesion-force density fp is a gradient, and so it 
is equivalent to an additional pressure term in the Navier-Stokes equations (1). The 
sign of the additional pressure depends on the link stiffness function S(lv1). If each 
link behaves like a linear spring with resting length 0, S(lv1) = KO, where KO > 0 
is constant and fp is the gradient of a positive function. Since the pressure term 
and the cohesion-force density term have opposite signs in (I) ,  the extra pressure 
term corresponds to a negative pressure. To see that this is reasonable, consider a 
radially symmetric distribution of activated platelets $,(x) = 40(lxl) with 40' < 0 for 
1x1 > 0. Then, V,($ , (X,~)~) ,  and therefore fp, everywhere point toward the origin. 
For each platelet along a circle 1x1 = r ,  there are more links to platelets inside the 
circle than to those outside. The result is "suction," which tries to draw the platelets 
(and fluid) on 1x1 = r toward the origin. Radially symmetric flow toward the origin 
is not possible for an incompressible fluid. The mechanism for preventing flow is a 
change in the fluid pressure to balance fp.  Also in the nonradially symmetric case, 
the fluid pressure balances fp,  and no flow occurs. 

3.2. Flow between parallel plates. In the presence of flow, the links do more 
than generate extra pressure. We consider the model's equations in the domain 
D = {x : 0 5 x2 < I) ,  and we make the assumption that no new activation 
occurs. Since we may ignore 4, and c, the relevant equations are as follows: 

Equation (16) is obtained from (6) by use of (15). The boundary condition imposed 
on u at 2 2  = 0 and 2 2  = 1 is the no-slip condition. No boundary conditions are 
necessary for 4, or P .  We seek a steady-state solution with u = (X2/70,  0,O) and 
with the other unknowns p, #,, and P, independent of x. Here 70 is a characteristic 
time for the flow between two flat plates; a stationary one at 2 2  = 0 and one moving 
with speed 7,' at 2 2  = 1. In the absence of the cohesion-force density, this linear flow 
would be the solution to (13) and (14). We assume that this flow is maintained in the 
presence of the links and ask what additional stresses, in particular, shear stresses, 
are generated by the links. 

With the assumptions we have made, we find that p = po (constant), 4, = 

4o (constant), and fP = 0. We also find that (16) reduces to 
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and that, from ( l o ) ,the cohesion stress tensor has constant elements 

We seek a function P ( v ) that satisfies (18)and that also satisfies the constraint 

This constraint is a special case, for the situation P independent of x and t ,  of the 
relation P ( x ,-v, t) = P ( x- E V ,  V ,t )discussed earlier. For v2 = 0, (18) has solution 

Since (18)is invariant under reflection of v through the origin, if P+(v)is a solution 
of this equation for v2 > 0 and for all vl and v3, then P+(-v) is a solution for v2 < 0. 
For v2 > 0, (18) may be integrated directly. Let y(lv1) = a(lvl)/po.Then 

We note that (22)is consistent with (21)as v2 -+ 0. We consider the special case in 
which links form only when the interplatelet separation is sufficiently small and then 
do so at a constant rate CYO 

We let yo = ao/$o and b = ro2- v22- v32.Then (22)yields 

if b > 0 and lull < A, 
if b > 0 and vl < -A,

( y o e - ( ~ ~ ~ ~ V 2 ) v ~2 sinh {(Wro/u2)A }  if b > 0 and vl > 6. 

The shear flow skews the distribution of interplatelet links as is illustrated in Fig. 2. 
Use of the formula for P given in (24),along with specification of the link stiffness 
function S(lvl) ,suffices to determine the cohesion-stress tensor from (19).We assume 
that S(lv1) = KO;that is, we assume that each link behaves as a linear spring with 
zero resting length. Then we find that 
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FIG. 2 .  Contour lines of the junction P(v l ,  v2,v3) in a steady-state shear flow. The figure 
depicts the plane v3 = 0. The distribution of links is skewed i n  the direction of the shear. 

In particular, we see from (25) that the total shear stress on the fluid is 

so that, in this steady-state situation, the interplatelet links augment the fluid vis- 
cosity p by an amount proportional to the product of the spring constant, the square 
of the concentration of activated platelets, and the ratio of link formation to link- 
breaking rates. 

3.3. Linear stability analysis of the fluid-link system. To see whether the 
fluid-link system has elastic properties and to explore the nature of these properties, 
we perform a linear stability analysis of the fluid dynamics equations coupled to those 
for transport of activated platelets and links. We assume that no new activation occurs 
and consider again (13)-(17). We again let y(lv1) = Then the equations cu(l~l)//3~. 
have a steady-state, x-independent solution u = uo = constant, p = po = constant, 
q5a = q5o = constant, P = Po = y(lvl), f p  = f: = 0. Without loss of generality, 
we may set uo = 0 since nonzero uo just results in uniform translation of the entire 
solution. We consider a perturbation of this special solution of the following form: 

(32) 4a = 40 + G&(x, t ) ,  
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From (13)-(17), we obtain the following linearized equations for u l ,  pl,  q51, and PI: 

(34) 
1 

pul,, = -vp1 + + S V .(,RVP~(X, V, t )+ ~ 0 7 ( ~ ~ ~ ) ~ 4 1 )S ( I V I ) V ~ V ,  

In deriving these equations, we use the equation Po(v) = ~ ( 1 ~ 1 )to write (v  . Vu) . 
VvPo = (7'(lvl)/lvl)(v. Vul)  . v. We also substitute the cohesion-force expression 
into the momentum equation (13). We now make a specific assumption about the 
form of the perturbation. Let 

Here k E IR3, and w E C. For each k, the quantities u and p are complex constants, and 
P is a complex-valued function of v .  We note that if we assume that $1 = Jei("t - k.x), 

then (36) requires that $ = 0 or w = 0. The latter is not interesting. By substituting 
expressions (38)-(41) into (34)-(37), we obtain the following system: 

If iw + Po = 0, then P is arbitrary, u = 0, and the perturbation decays with time 
constant Po. For the remainder of this section, we assume that iw  + Po # 0. We 
solve (44) for P in terms of h and substitute this into (42) to obtain an equation that 
involves u and p. We take the dot product of this equation with k and use (43) to 
obtain an expression for p in terms of u. Substituting this back into the equation for 
u and p, we obtain that 
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The right-hand side of (45) includes all of the influence of the interplatelet links in 
the linearized system. Without these links, (45) implies that w = i(,ulp)lk12, and so 
the fluid viscosity causes the perturbation to decay. As we will see, when the links 
are present, more interesting behavior is possible. Consider the integral 

which appears in (45). To simplify this integral, we introduce a Cartesian coordinate 
system with axes in the directions wo, wl ,  and w2, where wi, i = 0,1,2 is a unit 
vector and wo = k/lkl. We make the change of variables v = wow0 + wlwl + w2w2 
and use the fact that u . wo = 0 (see (43)) to obtain that 

where the important quantity M is defined by 

The integral has the same value for j = 1and j = 2. We substitute (47) into (45) to 
obtain that 

For a nontrivial solution u to exist, the dispersion relation 

112 $iMlkI2 = 0ipw + plk12 - PO+ iw  

must hold. We introduce the notation r = lkI2 and note that the solutions to (50) 
are 

where 

or, alternatively (by completing the square), 

Only if Q(T) > 0 for some r > 0 can the system have propagating plane wave solutions 
characteristic of an elastic material. We define 

The sign of B determines whether there exist r for which Q(r) is positive. The 
quantity M appears in each of (52)-(54), and so it is important to calculate it in some 
illuminating special cases. As we did earlier (see §3.2), we consider link formation that 
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occurs at a constant rate a 0  for Ivl < ro, and not at all for Ivl > ro. We also assume 
that each link has the stiffness function S(lv1) = KO (1 - Ivlld); i.e., the link acts as 
a linear spring with resting length d. Then M may be calculated from (48) to be 

We note that if d < ro, then M < 0. This is the case in which links may form both 
under compression and extension. If d > ro, then M > 0, but this corresponds to 
what we regard as the implausible situation of all links forming under compression. 
We note that if a(lv1) = aoe-Iv12/'i, then M has the same qualitative character 
as in (55). Returning to (53) and (54), we see that Q(r) 5 0 if B 5 0, and the 
latter occurs if and only if 0 5 M 5 2,Bop4o2. If M falls in this range, then w* are 
purely imaginary for all r ,  and Im(w*) 2 0, so that all wavenumbers are stable. If 
M > 2popq5i2, then B > 0, but, as we see from (52), Q(r) 5 0 for all r 2 0, and 
so again Re(w*) = 0 for all r .  In this case, however, Im(w-) < 0 for all r > 0, and 
so every wavenumber is unstable. The origin of this instability can be understood by 
reference to (29), which gives the total viscosity of the fluid-link system in a shear 
flow. Equation (29) was derived under the same assumption about link formation that 
we make here, and under the assumption that each link behaves as a linear spring 
with zero resting length. If we set d = 0 in the expression for M above, then the 
total viscosity can be expressed in terms of M as p - + M $ ~ / P ~ .The total viscosity 
is therefore negative if M > 2 p ~ ~ 4 ; ~ .  

For the physically more plausible case that M < 0, we see that B > 0 and 
that there is a range (r- ,r+) for which the quadratic function Q(r) is positive. The 
endpoints of this interval are given by 

Pop) f l4iM -P o ~ l[I -

Since (q5iM - > Pip2, r* have the same sign, and, since q5iM - Pop < 0, 
r* > 0. So Q(r) has the form shown in Fig. 3. For r- < r < r+ ,  Re(w*) # 0 
and Im(w*) = +(Po+ prlp) > 0, so these wavenumbers are stable. For 0 5 r 5 r-

and r+  5 r ,  Re(w*) = 0, Im(w*) = (1/2p) {(pPo +pr)  i [ - ~ ( r ) ] ' / ~ } ,and 0 5 
-Q(r) 5 (pPo +pr)2,SO a11 of these wavenumbers are stable as well. The point that 
we wish to emphasize is that, for M < 0, there is a range of wavenumbers for which 
propagating (and decaying) plane-wave solutions exist. Thus the fluid-link material 
has elastic as well as viscous characteristics. We also note that r- 4 0 and r+ + cc as 
M 4 -a,so that the range of wavenumbers for which elastic behavior occurs grows 
with increasing link stiffness (KO), link-formation to link-breaking rate ratio (ao/p0), 
and activated platelet concentration (40). The persistence of elastic behavior depends 
both on the fluid viscosity and the link-breaking rate. 

3.4. Computational studies. While the linear stability analysis indicates that 
the fluid-link system has elastic characteristics, it is still not clear whether, in the full 
nonlinear equations that describe this system, the links can generate enough force 
to hold an aggregate together. After all, the platelets in the aggregate are assumed 
to move at the local fluid velocity, and if this velocity is not brought to zero by the 
action of the link forces, the aggregate will disintegrate. To address this question, we 
performed two-dimensional computational studies, which we now describe. 
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FIG.  3. The discriminant Q ( r )  i n  the solutions w* of the dispersion relation (51) i n  the case 
where M < 0. For r E ( r - , r + ) ,  Re(w+) # 0. For the corresponding wavenumbers, there are 
propagating and decaying plane wave solutions to the linearized equations. The lower limit r -  GZ 0 
because the fluid viscosity p is small (see (53)) .  

Under special, but reasonable, assumptions, the model as presented above can 
be recast into a form more suitable for computation. For the form of the model 
discussed thusfar, we would solve a transport equation (6) for P that involves two 
sets of spatial variables x and v,  as well as time. Then, to evaluate the cohesion-force 
density fp,  we would have to perform an integration over v for each point x. These 
are very computation-intensive tasks. If we assume that each link behaves as a linear 
spring with zero resting length (S(lv1) = KO), and that the rate at which links break 
~ ( I v I )is a constant Do, then the model equations can be used to derive the following 
partial differential equation for the cohesion-stress tensor -g p  (see Appendix C for the 
derivation) : 

Here a2 is a constant proportional to the second moment of a(ivl)S(lvl). The tensor 
Vu-has elements (&)ij = duj/dxi.Note that all reference to the link vectors v 
disappears. Since g p  is a symmetric tensor, the above tensor equation amounts to 
solving three equations (in the two-dimensional case). Once we have g p ,- fp  is obtained 
by differentiation from the equation 

Solving (57) and then using (58) to obtain fp  is a much more efficient computational 
process than is determining P and then integrating to obtain fp. 

It is also useful to have a measure for the intensity of aggregation within a region. 
In the model, aggregation manifests itself solely through the force-generating action 
of the links; so a reasonable measure of aggregation is the concentration of links at 
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each point x. Thus the function 

is used to measure aggregation. A transport equation for the scalar z can also be 
derived from the model's equations 

Here ao is proportional to the mean of a(lv1). 
We solved the initial value problem for the equations 

(61) p(ut + us Vu) = -Vp + pAu + fg + fP, 

which describe the model in the case that there is no new platelet activation and no 
new formation or breaking of links. We note that in this case, (61)-(64) form a closed 
system, and we solve (65) and (66) just for visualization purposes. The equations are 
solved in a two-dimensional periodic domain. We determine the given force density 
fg,  so that, in the absence of links, it would drive a steady and spatially periodic 
version of a stagnation point flow (this flow is shown in the first picture of Fig. 4, 
Column A). We specify an initial distribution of activated platelets 4, with circular 
support centered at the stagnation point. Initial values of the link stress tensor were 
specified corresponding to this distribution of activated platelets and to an initially 
isotropic distribution of links P(lvj) = a(/v/)/Po. The function a(lv1) is assumed 
to be that defined in (23). We consider the limit a 0  -+ 0 and Po -f 0 with aO/PO 
fixed, so that there is an initial distribution of links but no link-formation or link- 
breaking terms in (63). The aggregation-intensity function z is initialized consistent 
with (59). In an experiment in which the link stiffness KO= 0 so that, in effect, the 
links are absent, the stagnation point flow stretches the initially circular distribution 
of platelets into a longer and longer ellipse. This is shown in Fig. 4. In this figure, the 
top row of pictures corresponds to the initial state and subsequent rows correspond to 
a succession of later times during the experiment. Column A depicts the velocity field, 
Column B shows contour lines of the aggregation-intensity function z, and Column 
C shows the locations of two sets of fluid marker points. The outermost aggregation- 
intensity contour is also shown in the pictures in Column A. For this experiment, the 
velocity field remains constant in time, and both the contours of z and the locations 
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FIG.  4. A sequence of snapshots from a wmputational ezperiment with the @id-link system 
(61)-(64). Column A depicts the fluid velocity field u, Column B shows contours of the aggregate- 
intensity function z ,  and Column C shows the locations of two sets of fluid marker points. The 
outennost wntour of z is also shown in  Column A. In  this experiment, the link s t i f iess  was zero, 
and the background stagnation-point flow induced progressive elongation of the initially circular 
aggregate and of the two sets of &id markers. 

of the fluid markers show the effect of the resulting elongation. In another experiment 
in which links are present, the flow stretches the aggregate somewhat until the link 
forces are sufficient to balance the background flow (driven by fg), at which time 
the aggregate stabilizes. This experiment is depicted in Fig. 5. The effect of the 
links is most vividly illustrated by the motion of the two sets of fluid markers (see 
Fig. 5, Column C), one just on the edge of central core of the aggregate and the 
other substantially outside of it. The former deforms into an ellipse and then remains 
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F I G .  5 .  A sequence of snapshots similar to those shown i n  Fig. 4, but now from a computa- 
tional experiment i n  which the link stiffness was nonzero. The  initial state was the same as i n  the 
ezperiment depicted i n  Fig. 4.  The  aggregate was stretched somewhat by the background flow, but 
soon stabilized because of the action of the cohesive forces. The velocity within the aggregate drapped 
to zero by the last frame of Column A. As  a consequence, the locations of the fluid markers within 
the aggregate also stabilized, while the the ring of fluid markers outside of the aggregate continued 
to deform. The material within the aggregate thus behaved as an  elastic solid, while the material 
outside the aggregate behaved as a fluid. 

stationary, while the latter, little affected by the link forces, continues to stretch into a 
longer and longer ellipse under the influence of the background flow. We can also see 
from the last velocity field picture (the last picture of Column A), that the flow within 
the aggregate is essentially zero. The links do indeed imbue the fluid-link system with 
enough elasticity to withstand a substantial driving flow! 
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4. Conclusions. We have formulated continuum models of platelet aggregation 
and have examined their mechanical properties in the absence of activation chem- 
istry. Cohesion between model platelets gives rise to extra pressure, and also to extra 
viscous and elastic stresses on the fluid in which the platelets are suspended. Suffi-
cient elastic stress can be developed in the fluid-aggregate material to maintain the 
integrity and shape of an aggregate that is subject to a substantial elongational stress. 
Thus the presence of sufficient concentrations of activated platelets and interplatelet 
links within a portion of the suspending fluid can alter the behavior of the composite 
material from that of a viscous fluid to that of an elastic solid. In the full aggregation 
models there is thus the interesting possibility of a chemically-induced fluid-to-solid 
phase transition. This is a subject for future study. 

Another subject for future study is the effect of allowing the link-breaking rate 
/3 to vary. Recall that, in this paper, we have assumed that P = Po is constant. It 
would be more interesting and probably more realistic for the breaking rate to be 
sensitive to the strain within an aggregate. This would be accomplished if, for exam- 
ple, we prescribed that P(Iv1) be near zero for Ivl small and that it increase rapidly 
with jvj when lvl crosses a threshold value. If this rule were incorporated into the 
full aggregation models, very interesting behavior might result. The central core of 
an aggregate in which the strain is not too large would behave as an elastic solid for 
long periods of time (O(P-l)). Greater shear stresses at the periphery of the aggre- 
gate would make the situation there more dynamic. Whether the aggregate would 
grow or shrink would be influenced by competition between new chemically-induced 
activation and link formation on the one hand, and shear-induced link breaking on 
the other hand. Furthermore, increased shear on the entire aggregate, due perhaps 
to temporal changes in the background flow, might strain even central regions of the 
aggregate sufficiently to induce rapid link breaking and the consequent shedding of 
portions of the aggregate. The special form of the model, which includes (57) and 
which was used in the computational studies reported in this paper, would not be 
applicable to studying this new situation. This is because (57) was derived under the 
assumption of constant breaking rate. It may be possible to derive a similar equation 
that is approximately true when P is variable. Alternatively, we may be able to de- 
velop efficient numerical schemes for solving the more basic form of the model, which 
involves the transport equation for P. Both of these possibilities are currently under 
investigation. 

Appendix A. Derivation of t h e  t ranspor t  equation (6) for (PC$:).Let 
N(t)  denote the total number of links between activated platelets in R,(t) and acti- 
vated platelets in Ry(t). The left side of (8) is the time derivative of N(t) ,  which we 
compute to obtain 

Here dldt denotes the total time derivative, u(y , t )  (u(x , t ) )  is the velocity of the 
point y(t) E dR,(t) (x(t) E dR,(t)), and n(y)  (n(x)) is the unit outward normal to 
dR,(t) (dQ,(t)). We apply the divergence theorem to each of the surface integrals in 
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(Al) and use the incompressibility of the flow field u to obtain 

Let v = e-'(y - x) and, for each x E Rx(t),let Cv(t) = {v : y - x + EV E Ry(t)). 
Note that V, = E-~V,and V, = -e-'V,. Substitute (A2) into (8) and make the 
change of variables from y - x to v to obtain 

Now expand $,(x + ev, t) and u(x + EV, t) about the point (x, t), insert these ex- 
pansions into (A3), and retain only the zeroth-order terms to obtain 

Lt)	-d 
{(ba(x, typ(x,  v, t)) + (V .VU). v v  {$a(x, tI2 P(X, V, t)))I dvdx 

L t  

We expand the total time derivative dldt as (816% + u . V) and note that the 
integrands in (A4) must match because the regions R,(t) and C,(t) are arbitrary. 
Equation (6) is the result. 

Appendix B. Derivation of equation (7) for the cohesion-force density. 
We start with (9), make the substitution F(E-'r) = and change ~~S(Ie- 'rl)~- 'r ,  
variables r = ev to obtain 

P I )  fp(x, t) = E-'$~(x, t) I P(x,V, ~)$J,(x$ EV, t)S(IvI)vdv 

We next expand $,(x + EV, t) about the point (x, t) to obtain 
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We note that P is subject to the constraint 

033) P (x ,  -v, t) = P ( x  - EV, V, t) 

because both of these quantities describe the expected number of links that join a 
platelet at  x and one at  x - EV. Expanding the right-hand side of (B3) about the 
point (x, t)  gives 

Define 

Make the change of variables v -+ -v in (B5) and use (B4) to conclude that 

Substitution of (B6) into the first term in (B2) yields (7) as the zeroth-order term. 

Appendix  C . Derivation of t h e  t r anspor t  equation for g p .- Recall that 

and that, for all x and t ,  P decays rapidly as Ivl grows, so that the validity of 
commuting differentiation with respect to x or t with integration with respect to v is 
not an issue. Let d/dt = d/dt  + u . V denote the material derivative. Then we have 
that 

Using (6) and assuming that P(lv1) = Po,we have that 

((33) -
d ( 4 2 ~ )= -(v . Vu) . v, ( 4 : ~ )  + 4 2  - Po ( 4 2 ~ ) .
dt 

Substituting (C3) into (C2) yields 

d 1 
(C4) g = - $2 / VU) . V ~ ( P ) S ( I V ) V V ~ ~ V  

+ a242l - DogP, 

where a2 = Sa(lvl)S((vl)lv12dv and -I is the identity matrix. Consider that the 
kith element of the integral in (C4) is 

which, upon integration by parts with respect to vi, becomes 
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The first term vanishes because V . u = 0, and the second term vanishes because we 
have assumed that S(lv1) = KO= constant. The third term can be rewr i t t en  a f t e r  a 
l i t t l e  algebra as 

which  is the k l t h  e lement  of 

Substitution of this expression into (C4) yields the desired transport equation for  

-ap. We note that, without the assumptions that P(lv1) = Po and S(lv1) = KO,the 
transport equation for  $'- would involve higher moments of P S ,  and the system would 
not close. 
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