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This paper considers the accuracy of projection method approximations to the
initial–boundary-value problem for the incompressibleNavier–Stokes equations.The
issue of how to correctly specify numerical boundary conditions for these methods
has been outstanding since the birth of the second-order methodology a decade and
a half ago. It has been observed that while the velocity can be reliably computed to
second-order accuracy in time and space, the pressure is typically only first-order
accurate in the L∞-norm. This paper identifies the source of this problem in the
interplay of the global pressure-update formula with the numerical boundary con-
ditions and presents an improved projection algorithm which is fully second-order
accurate, as demonstrated by a normal mode analysis and numerical experiments. In
addition, a numerical method based on a gauge variable formulation of the incom-
pressible Navier–Stokes equations, which provides another option for obtaining fully
second-order convergence in both velocity and pressure, is discussed. The connec-
tion between the boundary conditions for projection methods and the gauge method
is explained in detail. c⃝ 2001 Academic Press
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1. INTRODUCTION

This paper considers the accuracy of projection method approximations to the initial–
boundary-value problem for the incompressible Navier–Stokes equations. It is important
to understand the behavior of such schemes since they form the basis not only for approxi-
mations to the equations that describe zero-Mach-number flows, but also for the equations
describing low-Mach-number, possibly chemically reacting flows. In an n-dimensional
bounded domain !, we consider the incompressible Navier–Stokes equations, written as

ut + ∇ p = −(u · ∇)u+ ν∇2u (1)

∇ ·u = 0 (2)

with boundary conditions

u|∂! = ub, (3)

where u, the fluid velocity, and p, the pressure, are the “primitive variables,” and ν is the
kinematic viscosity of the fluid.
Nearly all numerical methods for solving these equations in terms of the primitive vari-

ables use a fractional step approach. Some approximation to the momentum equation (1) is
advanced to determine the velocity u or a provisional velocity, and then an elliptic equation
is solved that enforces the divergence constraint (2) and determines the pressure. In some
variations, the viscous term in Eq. (1) is advanced in a separate step from the advective
terms (e.g., [23]). Some methods solve directly for the pressure in the elliptic step (e.g.,
[19]); others solve for an auxiliary variable related to the pressure. Methods are often cate-
gorized as “pressure-Poisson” or “projection” methods based on which form of the elliptic
constraint equation is being used. A distinguishing feature of the original projection method
is that the velocity field is forced to satisfy a discrete divergence constraint at the end of each
time step, while with pressure-Poisson methods, the velocity typically satisfies a discrete
divergence constraint only to within the truncation error of the method. In recent years,
projection methods which exactly enforce a discrete divergence constraint, or “exact” pro-
jection methods, have often been replaced with “approximate” projection methods (e.g., [3,
4, 26, 28]), which are similar to pressure-Poisson methods in that the velocity satisfies a
discrete divergence constraint only to within the truncation error of the method. Approxi-
mate projection methods are used because of observed weak instabilities in exact methods
(e.g., [25]) and the desire to use more complicated or adaptive finite difference meshes on
which exact projections are difficult or mathematically impossible to implement [3, 28].
As a result, the mathematical differences between approximate projection and pressure-
Poisson methods have become less clear; the practical differences between the two involve
the number of fractional steps and the order in which they are taken. Additionally, as with
all fractional step methods, a crucial issue is how boundary conditions are determined for
some or all of the intermediate variables.
The determination of the fractional step equations and the intermediate boundary condi-

tions in such a way as to obtain second- or higher-order convergence rates has been a subject
of considerable discussion and interest over the past 20 years. This paper will focus on these
issues for a particular class of projection methods that includes those introduced by Bell
et al. [5, 6], Kim and Moin [24], and Van Kan [39]. These are of particular interest because
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to date no variations of these methods that demonstrate completely second-order-in-time
convergence in both the velocity and pressure variables for the viscous (ν > 0) case have
been published. Indeed, it has been observed both numerically and analytically that while
second-order convergence in velocity can readily be obtained, the computed pressure is
typically only first-order in time [16, 38]. There has even been speculation in the litera-
ture that these methods are inherently first-order in the pressure and cannot be improved
to higher-order in the time variable [32, 36]. In this paper, we will demonstrate through
normal mode analysis and numerical experiments that this class of projection methods can,
in fact, be made fully second-order in time. The source of the problem lies in the interplay
of the global pressure-update formula with the intermediate variable boundary conditions.
Projection methods pioneered by Chorin [9, 10] for numerically integrating (1,2,3) are

based on the observation that the left-hand side of Eq. (1) is a Hodge decomposition. Hence
an equivalent projection formulation is given by

ut = P[−(u · ∇)u+ ν∇2u], (4)

whereP is the operator which projects a vector field onto the space of divergence-free vector
fields with appropriate boundary conditions.
In the 1980s, several papers appeared in which second-order accurate versions of a

projection method were proposed. Those of Goda [18], Bell et al. [5], Kim and Moin [24],
and Van Kan [39] are motivated by the second-order, time-discrete semi-implicit forms of
Eqs. (1) and (2),

un+1 − un

$t
+ ∇ pn+1/2 = −[(u · ∇)u]n+1/2 + ν

2
∇2(un+1 + un) (5)

∇ · un+1 = 0, (6)

with boundary conditions

un+1|∂! = ubn+1, (7)

where [(u · ∇)u]n+1/2 represents a second-order approximation to the convective derivative
term at time level tn+1/2 which is usually computed explicitly. (The notation wn is used
to represent an approximation to w(tn), where tn = n$t .) This formulation is desirable
because, depending on the formof [(u · ∇)u]n+1/2, it can reduce or eliminate the dependence
of the stability of the method on the magnitude of viscosity [27].
Spatially discretized versions of the coupled Eqs. (5) and (6) are cumbersome to solve

directly. Therefore, a fractional step procedure can be used to approximate the solution of
the coupled system by first solving an analog to Eq. (5) (without regard to the divergence
constraint) for an intermediate quantity u∗, and then projecting this quantity onto the space
of divergence-free fields to yield un+1. In general this procedure is given by

Step 1: Solve for the intermediate field u∗

u∗ − un

$t
+ ∇q = −[(u · ∇)u]n+1/2 + ν

2
∇2(u∗ + un), (8)

B(u∗) = 0, (9)
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where q represents an approximation to pn+1/2 and B(u∗) a boundary condition for u∗

which must be specified as part of the method.
Step 2: Perform the projection

u∗ = un+1 + $t∇φn+1 (10)

∇ ·un+1 = 0, (11)

using boundary conditions consistent with B(u∗) = 0 and un+1|∂! = un+1b .
Step 3: Update the pressure

pn+1/2 = q + L(φn+1), (12)

where the function L represents the dependence of pn+1/2 on φn+1. Once the time step is
completed, the predicted velocity u∗ is discarded, not to be used again at that or later time
steps. We will refer to methods of this type generically as incremental-pressure projec-
tion methods since the projection step serves to compute an incremental-pressure gradient
correction.

There are three choices that need to be made in the design of such a method. They are
the pressure approximation q, the boundary condition B(u∗), and the function L(φn+1)

in the pressure-update equation. In this paper we explain the coupling among these three
functions that must be considered for the overall method to be second-order accurate. In
the process we show that several existing methods fall short of second-order accuracy up
to the boundary precisely because this coupling was not considered.
An important issue is that the boundary condition for u∗ must be consistent with Eq. (10),

although at the time the boundary conditions are applied the function φn+1 is not yet
known and hence must be approximated. The degree to which the gradient term must be
approximated depends on the choice of q. One may speculate that, in the first step of the
method, if q is a good approximation to pn+1/2, the field u∗ may not differ significantly
from the fluid velocity and thus a reasonable choice for the boundary condition B(u∗) = 0
may be (u∗ − ub)|∂! = 0. On the other hand, one may not be interested in computing the
pressure at every time step and would like to choose q = 0 and obviate the third step in
the method. In this case u∗ may differ significantly from the fluid velocity, requiring the
boundary condition B(u∗) to include a nontrivial approximation of ∇φn+1 in Eq. (10).
Later in the paper we make these statements precise and show the required degree of the
approximations involved.
Regarding the third step of the method, substituting Eq. (10) into Eq. (8), eliminating u∗,

and comparing with Eq. (5) yield a formula for the pressure-update

pn+1/2 = q + φn+1 − ν$t
2

∇2φn+1, (13)

which appeared (in gradient form) in [40]. The last term of this equation plays an important
role in computing the correct pressure gradient and allows the pressure to retain second-order
accuracy up to the boundary.Without this term, the pressure gradient may have zeroth-order
accuracy at the boundary even if the pressure itself is high-order accurate. The normal mode
analysis for the Stokes equations in Section 4 predicts second-order accuracy for both u and
p using Eq. (13). In particular, the analysis shows that spuriousmodes in the pressure, which
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are present in some methods, are eliminated by the use of this improved pressure-update
formula. Numerical experiments presented in Section 6 confirm these findings.
To fully understand how boundary conditions for projection methods should be chosen,

it is helpful to consider an alternative formulation of the incompressible Navier–Stokes
equations based on a variable first introduced by Oseledets [30]. This formulation is vari-
ously known as a “magnetization,” “impulse,” or “gauge” formulation. Numerical methods
based on various forms of these variables have been developed by Buttke [8], and more
recently by Cortez [12, 13], E and Liu [15, 17], Recchioni and Russo [34], and Summers
and Chorin [37]. The numerical method based on these variables in this paper is essentially
the same as the one proposed by E and Liu [15, 17]; hence we will refer to it as the gauge
method.
Two new variables, m and χ , are introduced that are related to the fluid velocity by

m = u+ ∇χ . (14)

The vector fieldm and the potential χ can be chosen to satisfy evolution equations in such
a way that the fluid velocity and pressure derived from them satisfy the Navier–Stokes
equations. Given m, one possibility, which is proposed in [17], is to let m satisfy in ! the
evolution equation

mt + (u · ∇)u = ν∇2m (15)

u|∂! = ub, (16)

where

u = P(m). (17)

Equations (14)–(17) constitute an equivalent formulation of the Navier–Stokes Eqs. (1)–
(3). In this formulation, the pressure has been eliminated from the equations; however, it
can be recovered from the potential χ by enforcing the equivalence of Eqs. (1) and (15),
giving

p = χt − ν∇2χ . (18)

Note that the boundary conditions are given in terms of u, which by Eq. (14), implies that
there is a coupling of the boundary conditions of m and ∇χ .
A time-discrete form of the Eqs. (15) and (17) is given by

mn+1 −mn

$t
= −[(u · ∇)u]n+1/2 + ν

2
∇2(mn+1 +mn) (19)

un+1 = mn+1 − ∇χn+1, (20)

where Eq. (20) is again the Hodge decomposition formulation of the projection. This is the
second-order version of the gauge method presented by E and Liu in [15] and used by those
authors in their numerical experiments. The pressure is not required in order to advance the
velocity, although for some problems an accurate representation of the pressure at every
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time step might be desired. If needed, the pressure can be computed from χ through the
second-order approximation to Eq. (18)

pn+1/2 = χn+1 − χn

$t
− ν

2
∇2(χn+1 + χn). (21)

Note that this method is very similar to the projection method of Kim and Moin described
in Section 2.2, except that the variable m is retained as a prognostic variable, rather than
discarded at the end of each time step. The similarity is not superficial, for if initiallym = u
(and hence ∇χ = 0), then the first time step of this method is identical to that of Kim and
Moin with u∗ taking the place of m, although of course the methods differ at later times.
The boundary conditions in Eq. (16) are written in terms of the velocity, but solving

Eq. (19) requires boundary conditions for mn+1, which must satisfy Eq. (20) as a compat-
ibility condition. There is some freedom in choosing these boundary conditions and the
analysis in Section 4 predicts second-order convergence for both u and p when the compat-
ibility condition is satisfied. Numerical experiments indicating second-order accuracy for
u appear in [15]. The results in Section 6 show second-order accuracy for u, p, and ∇ p as
well.
In Section 3, a detailed presentation will be provided of the boundary conditions required

in the momentum and projection equations of the projection and gauge methods described
before. The relationship between the boundary conditions for projection and gaugemethods
will become clear in the course of the presentation. In Section 4, a normal mode analysis of
the methods as applied to the Stokes equations is performed in order to draw conclusions
about the accuracy of the methods. In contrast to similar analyses performed previously, we
consider general choices of q, B(u∗), and L (outlined earlier) to deduce the necessary condi-
tions for second-order accuracy. In particular, the analysis shows that second-order accuracy
in both the velocity and the pressure are obtainable with the correct choice of boundary con-
ditions and pressure-update equations. It also shows that the formula traditionally used for
the pressure-update leads to a decrease in the pressure accuracy. Finally, careful numerical
studies of the methods when applied to the full incompressible Navier–Stokes equations
are presented to substantiate the analysis.

2. COMMENTS ON SOME EXISTING METHODS

In this section we make brief comments about some of the methods mentioned earlier
viewed in the context established in the Introduction. The purpose is not to review the
literature but to describe the extent to which these methods are consistent with Eqs. (8)–
(12) and the implications for their accuracy. We also comment on reported results that have
contributed to the debate on the topic.

2.1. Bell, Colella, and Glaz

A well-known projection method is that of Bell et al. [5, 6], which has been applied
in various settings and extended to more complicated physical problems such as reacting
flows [1, 4, 6, 25, 26, 28]. In the typical implementation of this method [6], the predicted
velocity u∗ is computed using Eqs. (8) and (9) with the choices q = pn−1/2 and B(u∗) =
(u∗ − un+1b )|∂! = 0. The advection term is computed using a Godunov procedure. The
projection step is performed by solving an elliptic problem for φn+1 with the boundary
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condition

n̂ · ∇φn+1|∂! = 0, (22)

which follows from the choice of B(u∗) and Eq. (10).We demonstrate later in this paper that
for this method, u∗ differs at most byO($t2) from the correct velocity un+1, justifying the
use of the velocity boundary condition for u∗. The method produces solutions that converge
in the maximum norm at a second-order rate for the velocity.
The pressure, however, converges at only a first-order rate. This is due to the pressure

gradient update, given by

∇ pn+1/2 = ∇ pn−1/2 + ∇φn+1, (23)

which differs from Eq. (13) since the last term of the latter is not included. This omission
results in lower accuracy for p and an inaccurate pressure gradient at the boundary. This
is evident by noting that Eq. (22) and the normal component of Eq. (23) imply that n̂ ·
∇ pn+1/2 = n̂ · ∇ pn−1/2, for all n, which cannot be correct in general.
This loss of accuracy in the pressure, which typically manifests itself as a boundary layer,

is well known and has been analyzed rigorously by Temam [38], E and Liu [16], Shen [35],
and others. It is also asserted in [32, 36] that pressure-increment projection methods are
inherently first-order in the pressure variable. This is true if the pressure-update in Eq. (23)
is used, but the simple modification to the pressure increment equation, given in Eq. (13),
recovers full second-order accuracy in the pressure.

2.2. Kim and Moin

The relationship between φ and p in Eq. (13) was recognized by Kim and Moin in [24],
although the method they propose does not use a pressure gradient update. Instead, a
fractional step discretization to Eq. (4) is used resulting in a method in which the pressure
does not appear at all (i.e., q = 0 in Eq. (8)).We refer tomethods of this type as pressure-free
projection methods.
The absence of the pressure gradient term in the momentum equation for u∗ has two

consequences. First, it could be considered appealing since it prohibits errors in the pressure
gradient, which could accumulate in time, from contributing to errors in the momentum
equation. Second, it implies that u∗ is no longer within O($t2) of un+1, and a nontrivial
approximation of the gradient term in Eq. (10) is required when specifying a boundary
condition for u∗. Kim and Moin recognized this fact and argued that applying u∗ = un+1 +
$t∇φn at the boundary (i.e. approximating the unknown function φn+1 with the previous
valueφn) is sufficient to obtain second-order accuracy in the velocities. Later, we showusing
normal mode analysis that this is also a necessary condition for second-order accuracy for
this method.
Although the pressure is not required in order to advance the velocity, the authors in [24]

mention the relation p = φ − (ν$t/2)∇2φ. This must be interpreted as the time-centered
pressure

pn+1/2 = φn+1 − ν$t
2

∇2φn+1 (24)
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to be consistent with the second-order Crank–Nicolson method. If both the pressure and
φ are evaluated at the same time level (i.e., if the right-hand side of Eq. (24) is set equal
to pn+1), the resulting pressure is only first-order accurate, as reported by Strikwerda and
Lee [36]. We demonstrate in Section 4 that pn+1/2 in Eq. (24) approximates the pressure at
tn+1/2 with second-order accuracy in time.

2.3. Botella, Perot, Hugues, and Randriamampianina

Although the following three methods are not analyzed in the normal mode analysis or
numerical results in this paper, they have similar characteristics to the projection methods
mentioned above. Botella [7] and Perot [32] both proposemethods that reduce the truncation
error associatedwith the computation of∇ p in themomentumequation by adding additional
correction terms to the basic method. The second-order method proposed by Perot uses
q = 0 and replaces the pressure-update formula (12) with

(
I + ν$t

2
∇2

)
pn+1/2 = φn+1. (25)

This method still only obtains first-order convergence in the pressure since n̂ · ∇ p = 0 is
the boundary condition used for the elliptic pressure equation.
Botella proposes using a third-order integration formula for the evaluation of the time

derivative in the momentum equation although this does not affect the truncation error
associated with the pressure term. In the present context, a second-order version of Botella’s
method would use

q = pn−1/2 + φn, (26)

which is in fact a time extrapolation of the pressure, while the projection-update (10) would
be

un+1 = u∗ − $t∇(φn+1 − φn), (27)

and the pressure-update equation

pn+1/2 = pn−1/2 + φn+1. (28)

Botella is able to demonstrate higher-order convergence for the velocity and the pressure
in an L2 norm, although it is apparent from the pressure-update formula (28) that with this
method, n̂ · ∇ p, must stay constant, and hence inaccurate, on the boundary if n̂ · ∇φ = 0
is used as a boundary condition for the projection step.
Hugues and Randriamampianina [22] recognized that using a pressure-update equation

such as Eq. (28) results in an inconsistent normal pressure gradient at boundaries. To avoid
this, they proposed a second-order method using an Adams–Bashforth/BDF semi-implicit
method in time in which a Poisson problem is first solved for the provisional pressure
gradient appearing in the momentum equation. The right side and boundary conditions for
the Poisson equation are extrapolated in time. Hence, in the present context, q would be
found by the solution of an additional Poisson problem. The provisional pressure is then
updated with an equation analogous to Eq. (28). We speculate that an additional term in
the pressure-update analogous to Eq. (13) would lead to a more accurate pressure for this
method.
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2.4. E and Liu

E and Liu [15] have used the method described in Eq. (19), in which the boundary
condition for mn+1 was given by Eq. (20) with the term χn+1 approximated by 2χn −
χn−1. This idea of extrapolating boundary values was used previously by Karniadakis
et al. [23] to approximate the pressure boundary condition in the context of a pressure-
Poisson method. E and Liu demonstrate that their method is second-order for u and φ. Here
we demonstrate second-order convergence in numerical tests for p and∇ p and demonstrate
that extrapolation in time is in fact necessary for this accuracy; i.e., using only a lagged value
χn leads to first-order accuracy. The projectionmethod results reported in [15]were obtained
using the traditional pressure update of Eq. (23), which should lead to a reduced order of
accuracy in p. A loss in accuracy in the velocities is also reported which is attributed to the
approximate projection employed. Here we demonstrate that full second-order accuracy in
all variables can be calculated using an approximate projection without any special spatial
differencing (at least in the simple geometry considered).

3. BOUNDARY CONDITIONS

The numerical methods presented in the last section require the solution of implicit
equations for which boundary conditions must be imposed. Besides the implicit momentum
Eqs. (8) and (19), the implementation of a projection also requires a boundary condition.
The choice of these boundary conditions will now be discussed. For ease of presentation,
the equations will be considered in two dimensions only. Extensions to three dimensions
are straightforward.
The most common way in which a projection P is specified is by the solution of a

Poisson equation. Specifically, let w = v+ ∇φ be the Hodge decomposition of w, where
v is divergence-free and required to satisfy v|∂! = vb (by the divergence theorem vb must
satisfy

∫
∂!
vb = 0). Then to find v from w we let

v = P(w) = w− ∇φ,

where

∇2φ = ∇ · w
(29)

n̂ · ∇φ|∂! = n̂ · (w|∂! − vb).

It is important to note that the projection P as defined implies that v automatically satisfies
the normal boundary condition n̂ · v|∂! = n̂ · vb, but the tangential condition τ̂ · v|∂! =
τ̂ · vb will only be satisfied if w is such that τ̂ · w|∂! = τ̂ · (vb + ∇φ|∂!). This is a critical
observation that impacts the choice of boundary conditions for Eqs. (8) and (19), since in
each case, the projection of the solution of this equation is expected to satisfy both normal
and tangential boundary conditions.
Consider first the gauge method in Eqs. (19) and (20). Suppose we arbitrarily set the

boundary conditions for the momentum equation in terms of m to be

mn+1|∂! = mn+1
b , (30)
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for somemn+1
b . We now consider choosing boundary conditions in the elliptic equation for

χn+1 in such a way that the updated velocity will satisfy un+1|∂! = ub. Unfortunately, this
is not possible since the elliptic problem accepts only one boundary condition; e.g.,

n̂ · ∇χn+1|∂! = n̂ ·
(
mn+1
b − un+1b

)
.

By the compatibility constraint un+1 = mn+1 − ∇χn+1, the normal component of the up-
dated velocity will be correct. The tangential component of un+1, on the other hand, will
satisfy

τ̂ · un+1|∂! = τ̂ ·
(
mn+1
b − ∇χn+1|∂!

)
,

which can only be correct if mn+1
b had been chosen originally to satisfy

τ̂ ·mn+1
b = τ̂ ·

(
un+1b + ∇χn+1∣∣

∂!

)
.

This equation involves χn+1, which is unknown at the time mn+1
b must be set, and hence

is the discrete manifestation of the coupling between the boundary conditions for m and
∇χ mentioned in the Introduction. Although unknown, ∇χn+1 can be approximated by
extrapolating the values from previous time steps as proposed by E and Liu [15]. In the
next section it is shown that this extrapolation is necessary for the resulting velocity and
pressure to be second-order accurate in the maximum norm.
Next consider the boundary conditions for the pressure-free projection method in Eq. (8)

with the choice q = 0. As mentioned before, one step of the pressure-free method is iden-
tical to the first time step of the gauge method if ∇χ is initially set to zero with u∗ taking
the place of m. Hence it becomes clear how one might treat the boundary conditions in
such a projection method. Specifically, in the boundary condition B(u∗), the normal piece
n̂ · u∗ appears to be arbitrary since the normal boundary condition on un+1 is implied by
the projection. A convenient choice is n̂ · u∗|∂! = n̂ · un+1b since by Eq. (29), it implies
homogeneous Neumann boundary conditions for φn+1 in the subsequent projection. How-
ever, since the necessity for a boundary condition for u∗ arises from the parabolic nature of
Eq. (8), one can imagine that the choice of boundary condition for u∗ will affect the nature
of the function u∗ near the boundary. Since, by Eq. (24), the pressure is determined from

pn+1/2 = φn+1 − ν

2
∇ · u∗, (31)

the behavior of the pressure near the boundary will also be affected by the choice of
this boundary condition. Indeed, as discussed in Section 6.4, we observe in numerical
experiments that unless the boundary condition for u∗ is chosen in such a way as to keep u∗

smooth up to the boundary, the pressure may not be recovered to O($t2) by this method.
The situation for the tangential boundary condition foru∗ is clearer. This boundary condition
must be chosen so that when u∗ is projected to yield un+1, the tangential boundary condition
on un+1 is satisfied.
In [24] a Taylor series argument is used to show that using a lagged value of φ in the

boundary condition τ̂ · u∗|∂! = τ̂ · (un+1b + $t∇φn|∂!) is enough to ensure second-order
accuracy. It is also possible to estimate ∇φn+1|∂! more accurately by extrapolation in time.
The continuity of ∇φ in time is implied by the fact that u∗ satisfies an elliptic equation with
continuous forcing and $t∇φ is simply (I− P)u∗.
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Finally, consider the momentum equation (8) with the choice q = pn−1/2. Again there is
some freedom in choosing the boundary value for n̂ · u∗ since the projection will ensure that
n̂ · un+1|∂! = n̂ · un+1b . Since in this case the goal is to have u∗ be a good approximation
to un+1, the correct choice is τ̂ · u∗|∂! = τ̂ · un+1b . As before, the tangential piece should
satisfy τ̂ · u∗|∂! = τ̂ · (un+1b + $t∇φn+1|∂!), but if u∗ is a good approximation to un+1,
then τ̂ · ∇φn+1|∂!may be negligibly small and τ̂ · u∗|∂! = τ̂ · un+1b should suffice.A simple
Taylor series argument along the lines of that in [24] can be used to show that un+1 is a
second-order accurate approximation to u∗ at the boundary [40]. Another possibility is to
use a lagged value of ∇φ as in the Kim and Moin scheme or to extrapolate in time. These
choices will be analyzed in detail in the following section.

4. NORMAL MODE ANALYSIS

The original Dirichlet problem as stated in Eqs. (1)–(3) requires only a condition on the
velocity u on the boundary. In two dimensions, this consists of two scalar conditions which
can be thought of as conditions on the normal and tangential components of the velocity.
As discussed in the previous section, for the fractional step methods considered in this
paper, three boundary conditions are required, two for the implicit momentum equation
and one for the projection. The purpose of this section is to establish the impact of various
boundary condition possibilities on the overall accuracy of semi-implicit methods for gauge
and projection formulations for the incompressible Navier–Stokes equations. In particular,
necessary conditions for second-order accuracy are developed.

4.1. Reference Solution

It is most convenient to analyze the accuracy of these methods by using normal mode
analysis (see, e.g., [14–16, 20, 21, 23, 29, 36]). Since the essential details we are concerned
with result from the interaction of the boundary conditions with the Crank–Nicolson time
stepping of the viscous terms, the advective derivative term can be neglected, and we can
therefore consider the simpler problem of the unsteady Stokes equations in the periodic
semiinfinite strip ! = [0, ∞) × [−π, π ], for t ≥ 0. This domain was considered in [36]
and makes the analysis easier than a channel with two boundaries. The unsteady Stokes
equations in primitive variables are given by

ut = −∇ p + ν∇2u
(32)

∇ · u = 0

and are considered with boundary conditions

u(0, y, t) = α, v(0, y, t) = β.

By taking the divergence of the Stokes equation, one derives an elliptic equation for the
pressure; the resulting system requires the additional condition that the velocity divergence
is zero on the boundary [9, 21, 29]:

ut = −∇ p + ν∇2u in !
(33)

∇2 p = 0 in !

u(0, y, t) = α, v(0, y, t) = β, ∇ ·u = 0 on ∂!. (34)
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Taking the Fourier transform in y and the Laplace transform in t leads to the equivalences
∂t → s and ∂y → ik. Denoting transformed variables with hats, the previous equations
become

ν
(
−∂2x + µ2

)
û = −∂x p̂

ν
(
−∂2x + µ2

)
v̂ = −ik p̂ (35)

(
−∂2x + k2

)
p̂ = 0,

where k is the wavenumber in the y-direction, s is the Laplace transform variable, and µ is
the root with positive real part of µ2 = k2 + s/ν. Bounded solutions of Eq. (34) take the
form

û = Ue−µx + |k|
s
Pe−|k|x

v̂ = Ve−µx − ik
s
Pe−|k|x (36)

p̂ = Pe−|k|x .

The undetermined constants U , V , and P are found by applying the boundary conditions
in Eq. (34), which leads to the system

⎛

⎜⎝
1 0 |k|/s
0 1 −ik/s

−µ ik 0

⎞

⎟⎠

⎛

⎝
U
V
P

⎞

⎠ =

⎛

⎜⎝
α̂

β̂

0

⎞

⎟⎠ , (37)

whose solution is given by

U = ν(µ + |k|)
s

(−|k|α̂ + ikβ̂)

V = −iν(µ + |k|)µ
s

(
− k

|k|
α̂ + i β̂

)
(38)

P = ν(µ + |k|)
|k|

(µα̂ − ikβ̂).

The functional form of the solution is then given by

û = ν(µ + |k|)
s

(−|k|α̂ + ikβ̂)e−µx + ν(µ + |k|)
s

(µα̂ − ikβ̂)e−|k|x

v̂ = ν(µ + |k|)
s

(
iµk
|k|

α̂ + µβ̂

)
e−µx − ν(µ + |k|)

s
k
|k|

(iµα̂ + kβ̂)e−|k|x (39)

p̂ = ν(µ + |k|)
|k|

(µα̂ − ikβ̂)e−|k|x .

This will be used as the reference or “true” solution in the discussion that follows.
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4.2. The Gauge Method

In [15], E and Liu present a normal mode analysis for their first-order version of the gauge
method. In this section, we consider the second-order-in-time formulation and include in
the analysis the extrapolation of the boundary values of χ . Letm = (m1,m2) and consider
a method of the form

mn+1 −mn

$t
= ν

2
∇2(mn+1 +mn)

∇2χn+1 = ∇ · mn+1 (40)

un+1 = mn+1 − ∇χn+1,

with boundary conditions at x = 0 given by

mn+1
1 = γ

mn+1
2 = β + ∂yχ̃ (41)

∂xχ
n+1 = γ − α,

where ∂yχ̃ is an approximation to ∂yχ
n+1. The first two boundary conditions are imposed on

the momentum equation, and the last boundary condition is used with the elliptic equation
for χ . If ∂yχn+1 were known before the elliptic problem was solved, then one would expect
to recover the correct solution.
As before, taking the Fourier and Laplace transforms and denoting κ = es$t leads to the

system

(
−∂2x + µ̄2

)
m̂1 = 0

(
−∂2x + µ̄2

)
m̂2 = 0 (42)

(
−∂2x + k2

)
χ̂ = −∂x m̂1 − ikm̂2,

where µ̄2 = k2 + ρ/ν, with ρ = 2(κ − 1)/$t(κ + 1) = s + O(s3$t2). Note also that
therefore µ̄ = µ + O(s2$t2). The solution has the form

m̂1 = Ae−µ̄x

m̂2 = Be−µ̄x (43)

χ̂ = 1
ρ

(
Pe−|k|x − µ̄νm̂1 + ikνm̂2

)
.

For the boundary condition involving χ̃ one could use a lagged value χ̃ = χn or the second-
order extrapolation formula χ̃ = 2χn − χn−1. In either case one arrives at the system

⎛

⎜⎝
µ̄2ν −ikµ̄ν −|k|
ikµ̄ν k2ν + Cρ −ik
1 0 0

⎞

⎟⎠

⎛

⎜⎝
A
B
P

⎞

⎟⎠ =

⎛

⎜⎝
ρ(γ̂ − α̂)

Cρβ̂

γ̂

⎞

⎟⎠ , (44)

where C = κ = 1+ O(s$t) when χ̃ = χn and C = κ2/(2κ − 1) = 1+ O(s2$t2) with
the extrapolation formula.
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Solving the system for A, B, and P and setting û = m̂1 − ∂x χ̂ and v̂ = m̂2 − ikχ̂ yields

û = ν(µ + |k|)
ρ

(−|k|α̂ + ikβ̂)e−µx + ν(µ + |k|)
ρ

(µα̂ − ikβ̂)e−|k|x + O(C − 1)

v̂ = ν(µ + |k|)
ρ

(
iµk
|k|

α̂ + µβ̂

)
e−µx − ν(µ + |k|)

ρ

k
|k|

(iµα̂ + kβ̂)e−|k|x + O(C − 1).

Observing that ρ = s + O(s3$t2), it follows that the reference solution is recovered to
O($t2) as long as the extrapolated boundary condition for χ is used. Using a lagged
boundary value χ̃ = χn would result in an O($t) approximation. Also note that using the
pressure Eq. (21) leads to

p̂ = ν(µ + |k|)
|k|

(µα̂ − ikβ̂)e−|k|x + O(C − 1).

Thus the gauge method with extrapolated boundary conditions is overall a second-order
accurate method.

4.3. Projection Methods

In order to obtain an accurate solution to the incompressible Navier–Stokes equations
using the projectionmethods described by Eqs. (8)–(12), one either must devise a procedure
for accurately approximating theboundary conditionsu∗ − $t∇φ = (α, β)T or reformulate
the problem in such a way that u∗ is a sufficiently accurate approximation to u. In the latter
case, the boundary conditions u∗ = (α, β)T will then be accurate approximations to the
original conditions u = (α, β)T , and one expects to obtain overall accuracy in the method.
In a general formulationof the projectionmethods describedbefore, themomentumequation
is given by

u∗ − un

$t
+ ∇q = ν

2
∇2(un + u∗), (45)

where ∇q is related to the pressure. The velocity satisfies ∇ · un+1 = 0 and is given by

un+1 = u∗ − $t∇φn+1 (46)

and the pressure is updated with

pn+1/2 = q + Lφn+1, (47)

where L is a linear differential operator.
Referring to Eqs. (8), (10), and (12), three combinations of q and L will be considered:

1. a projectionmethod similar to that of Bell, Colella, and Glaz, described by q = pn−1/2
and L = I . This combination will be referred to as projection method I (PmI),
2. a similar projection method that uses the improved pressure-update formula Eq. (13).

This combination corresponds to q = pn−1/2 and L = I − ν$t
2 ∇2 and will be referred to

as PmII,
3. a projection method similar to that of Kim and Moin’s, which corresponds to q = 0

and L = I − ν$t
2 ∇2. This method will be referred to as PmIII.
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For the normal mode analysis, we first eliminate the variable u∗ by substituting Eq. (46)
into Eq. (45) to get

un+1 − un

$t
+ ∇φn+1 + ∇q = ν

2
∇2(un+1 + un) + ν$t

2
∇2∇φn+1.

After taking Fourier and Laplace transforms, let κ = es$t and define φ̂ by

q̂ = κn+1Q(κ)φ̂, (48)

where Q(κ) depends on the choice of q in Eq. (45) and L in Eq. (47). This leads to

(
−∂2x + µ̄2

)
û = − κ$t

κ + 1
(
−∂2x + λ2

)
∇φ̂ − 2κQ(κ)

ν(κ + 1)
∇φ̂, (49)

where µ̄ and λ are defined by

µ̄2 = k2 + ρ/ν, ρ = 2(κ − 1)
$t(κ + 1)

, λ2 = k2 + 2
ν$t

. (50)

Taking the divergence of Eq. (49) leads to the equation for φ̂
[
−∂2x + λ2 + 2Q(κ)

ν$t

](
−∂2x + k2

)
φ̂ = 0

so that φ̂ can be written as φ̂ = φ̂1 + φ̂2 where

(
−∂2x + k2

)
φ̂1 = 0,

[
−∂2x + λ2 + 2Q(κ)

ν$t

]
φ̂2 = 0. (51)

We note that φ̂1 contains the piece of the solution that we expect to have; however, φ̂2
represents a spurious mode in the potential φ̂, which should not appear in the velocities or
the pressure. It is easy to show that û does not contain this spurious mode. This can be seen
by writing φ̂ on the right-hand side of Eq. (49) as the sum of φ̂1 and φ̂2 and noticing from
Eq. (51) that Q(κ)φ̂2 = − ν$t

2 (−∂2x + λ2)φ̂2. All terms with φ̂2 drop out, resulting in the
equation

(
−∂2x + µ̄2

)
û = −2κ(1+ Q(κ))

ν(κ + 1)
∇φ̂1,

from which we deduce the following form for the solutions:

φ̂ = A1e−|k|x + φ̂2 (52)

û = Ue−µ̄x + 2κ(1+ Q(κ))

ρ(κ + 1)
|k|A1e−|k|x (53)

v̂ = Ve−µ̄x − 2κ(1+ Q(κ))

ρ(κ + 1)
ik A1e−|k|x . (54)

From Eqs. (47) and (48) we find that the pressure is given by

p̂ = κ1/2(Q(κ) + L)φ̂. (55)
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The last equation and the choice of q determine the operator Q(κ) and φ̂2.
For example, in PmI, where q = pn−1/2 and L = I , we have that

κn+1Q(κ)φ̂ = q̂ = κn−1/2 p̂ = κn(Q(κ) + L)φ̂,

from which we find that Q(κ) = 1
κ−1 and φ̂2 = A2e−λ̃x , where λ̃

2 = k2 + 2κ
ν$t(κ−1) . In view

of Eq. (55) this implies that the pressure is given by

p̂ = κ3/2

κ − 1
φ̂,

which contains the spurious mode.
On the other hand, consider PmII, where q = pn−1/2, L = I − ν$t

2 ∇2, and hence
Lφ̂ = ν$t

2 (−∂2x + λ2) φ̂. Now we have that

Q(κ)φ̂ = Lφ̂

κ − 1
= ν$t
2(κ − 1)

(
−∂2x + λ2

)
φ̂,

which implies that φ̂2 = A2e−λx and

p̂ = κ3/2

κ − 1
Lφ̂ = κ3/2

κ − 1
A1e−|k|x ,

so that the pressure does not contain the spurious mode φ̂2.
PmIII uses q = 0 and L = I − ν$t

2 ∇2. In this case Q(κ) ≡ 0 so that φ̂2 = A2e−λx and
p̂ = κ1/2Lφ̂ = κ1/2 ν$t

2 (−∂2x + λ2) φ̂, which is again the operator that eliminates the spu-
rious mode.
Considering Eqs. (52)–(54), all of the methods discussed here lead to

φ̂ = A1e−|k|x + A2e−γ x (56)

û = Ue−µ̄x + R(κ)
|k|
ρ
A1e−|k|x (57)

v̂ = Ve−µ̄x − R(κ)
ik
ρ
A1e−|k|x , (58)

where the variables R(κ), γ , and F(κ), related by

R(κ) = 2κ(1+ Q(κ))

(1+ κ)
and γ 2 = k2 + 2

ν$t
F(κ),

depend on the method.

4.3.1. The boundary conditions. For the normal mode analysis of the projection meth-
ods, the following boundary conditions are applied,

u∗ = α, φx = 0, v∗ = β + $t φ̃y, and ux + vy = 0, (59)

where φ̃ is an approximation to φn+1. Three choices for φ̃ are considered:

φ̃ = 0 ⇔ zeroth order

φ̃ = φn ⇔ first order

φ̃ = 2φn − φn−1 ⇔ second order.
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After transformation, the boundary conditions in Eq. (59) become

û = α̂, φ̂x = 0, v̂ + ik$t B(κ)φ̂ = β̂, and ûx + ikv̂ = 0, (60)

where B(κ) equals 1, (κ − 1)/κ , or (κ − 1)2/κ2 depending on the choice of φ̃.

4.3.2. Solving for the coefficients. Since the boundary condition φ̂x = 0 simply implies
that γ A2 = −|k|A1, and ûx + ikv̂ = 0 implies ikV = µ̄U , we focus on determining the
coefficientsU and A1. Inserting the boundary conditions into Eqs. (56)–(58) and eliminating
V and A2 lead to the equations

µ̄U + k2
[
R(κ)

ρ
− 2F(κ)B(κ)

νγ (γ + |k|)

]
A1 = ikβ̂

U + R(κ)
|k|
ρ
A1 = α̂

from which we find that

A1 = ν(µ̄ + |k|)(µ̄α̂ − ikβ̂)

|k|R(κ)

[
1+ C

F(κ)B(κ)

R(κ)

]−1
(61)

U =
[
ν(µ̄ + |k|)(ikβ̂ − α̂|k|)

ρ
+ α̂C

F(κ)B(κ)

R(κ)

][
1+ C

F(κ)B(κ)

R(κ)

]−1
(62)

V = − iµ̄
k
U (63)

A2 = − |k|
γ
A1, (64)

where

C = 2|k|(µ̄ + |k|)
γ (γ + |k|)

.

The accuracy of this solution is considered next.

4.3.3. Results. Since ρ = s + O(s3$t2), it is clear that for the solution corresponding
to the coefficients in Eqs. (61)–(64) to be withinO($t2) of the reference solution (38), the
term

C
F(κ)B(κ)

R(κ)

must beO($t2). This represents the coupling between the pressure gradient approximation
in the momentum equation and the boundary conditions. The choice of q and the pressure-
update operator L determine F(κ) and R(κ), while the boundary conditions determine
B(κ).
One can use the fact that γ (γ + |k|) ≥ γ 2 = 2F(κ)+k2ν$t

ν$t to show that

C
F(κ)B(κ)

R(κ)
≤ 2|k|ν(µ̄ + |k|) $t B(κ)F(κ)

R(κ)[2F(κ) + k2ν$t]
.
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Therefore it is sufficient to show that

B(κ)F(κ)

R(κ)[2F(κ) + k2ν$t]
= O($t).

First consider the term R(κ) which also appears in the denominator of A1. For PmI and
PmII (when q = pn−1/2), one would expect φ to be at least as small as O($t). For PmIII,
where q = 0, one would expect φ to beO(1). (Notice that in Eq. (46), ∇φn+1 appears with
a factor $t .) This is confirmed by recalling that R(κ) = 2κ(1+ Q(κ))/(1+ κ), so that

q = pn−1/2 ⇔ R(κ) = 2κ2

κ − 1
∼ O($t−1)

q = 0 ⇔ R(κ) = 2κ
κ + 1

∼ O(1).

By examining the size of the remaining terms, the following results are evident:

• PmI uses q = pn−1/2 and L = I . This leads to F(κ) = κ
κ−1 and

B(κ)F(κ)

R(κ)[2F(κ) + k2ν$t]
∼ B(κ) O($t).

Therefore is is only necessary that B(κ) = O(1), which allows the use of the boundary
condition v∗ = β (corresponding to φ̃ = 0). However, as explained before, the pressure is
given by

p̂ = κ3/2

κ − 1
φ̂,

which includes the coefficient of the spurious mode κ3/2

κ−1 A2 ∼ O(ν$t). Thus, the expected
convergence rate for the velocities isO($t2), while the pressure is only expected to be first
order in time with this method.

• For PmII, which uses q = pn−1/2 and the improved pressure-update formula L =
I − ν$t

2 ∇2, we have that F(κ) = 1 and

B(κ)F(κ)

R(κ)[2F(κ) + k2ν$t]
∼ B(κ) O($t)

as before. Again, it is sufficient to use v∗ = β as a boundary condition. In this case the
pressure is given by

p = κ3/2

κ − 1
Lφ,

which removes the spurious mode. For this method, both the velocities u, v and the pressure
p are expected to converge to second order in time.

• For PmIII with q = 0 and L = I − ν$t
2 ∇2 again F = 1, but

B(κ)F(κ)

R(κ)[2F(κ) + k2ν$t]
∼ B(κ) O(1).
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It is therefore required that B(κ) = O($t) for second-order accuracy. Hence the boundary
condition v∗ = β + $t φ̃y must use at least the lagged value φ̃ = φn . This is true regardless
of the choice of the pressure-update operator L since the pressure is not needed to advance
the solution. The operator L only affects the pressure (if one were to compute it) since
p = κ1/2Lφ. So if L = I then p will contain the spurious mode γ = λ resulting inO(ν$t)
errors . If L = I − ν$t

2 ∇2 then pwill not contain the spuriousmode andwill be second-order
accurate in time, as will be the velocity components u and v.

5. THE NUMERICAL METHODS

This section describes the numerical methods that will be applied to the full Navier–
Stokes equations. Most of the motivation for the form of the numerical methods can be
inferred from the earlier sections of the paper; hence only the details are presented here.
In the following, all the spatial differential operators with a subscript h are assumed to be

centered second-order discrete approximations to the continuous counterparts. In all the nu-
merical methods, the time-centered advective derivative [(u · ∇h)u]n+1/2 is computed using
second-order centered differences in space and second-order extrapolation in time [24].

5.1. The Gauge Method

The following method is essentially the second-order gauge method proposed by E and
Liu in [15]. Equation (15) is discretized using the second-order, semiimplicit formula

mn+1 −mn

$t
= −[(u · ∇h)u]n+1/2 + ν

2
∇2

h(mn +mn+1). (65)

Theboundary conditions, consistentwith the compatibility condition (mn+1 − ∇χn+1)|∂! =
un+1b , are

n̂ ·mn+1|∂! = n · un+1b

τ̂ ·mn+1|∂! = τ̂ · un+1b + τ̂ · ∇h(2χn − χn−1)|∂!.

The velocity at the end of the time step is defined by

un+1 = mn+1 − ∇h χn+1, (66)

where χn+1 is the solution of

∇2
h χn+1 = ∇h ·mn+1 in! (67)

n̂ · ∇ χn+1 = 0 on ∂!. (68)

If needed, the pressure is computed with Eq. (21):

pn+1/2 = χn+1 − χn

$t
− ν

2
∇2
h (χ

n+1 + χn). (69)
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5.2. Projection Methods with a Lagged Pressure Term

The method first described in this section is referred to as PmI. It is similar to the method
developed by Bell et al. [5, 6], except in the treatment of the advective derivatives which
are computed as in [24] with a second-order Adams–Bashforth formula.
The first step of the projection method is found by solving

u∗ − un

$t
+ ∇ pn−1/2 = −[(u · ∇h)u]n+1/2 + ν

2
∇2
h (un + u∗) (70)

for the intermediate field u∗ with boundary conditions

u∗ = un+1b .

Next, un+1 is recovered from the projection of u∗ by solving

$t∇2
hφ

n+1 = ∇h · u∗ in! (71)

n̂ · ∇hφ
n+1 = 0 on ∂! (72)

and setting un+1 = u∗ − $t∇hφ
n+1.

The new pressure is computed as in [6, 39] by

∇h pn+1/2 = ∇h pn−1/2 + ∇hφ
n+1. (73)

As discussed before, this formula is not consistent with a second-order discretization of
the Navier–Stokes equations since, due to Eq. (72), the normal component of the pressure
gradient will remain constant in time at the boundary.
A second implementation of themethod just described can bemadebyutilizing the correct

pressure update given by Eq. (13). Specifically, Eqs. (70)–(72) are used in combination with

∇h pn+1/2 = ∇h pn−1/2 + ∇hφ
n+1 − ν$t

2
∇h∇2

hφ
n+1. (74)

This form of the projection method is projection method II (PmII).

5.3. A Projection Method without Pressure Gradient

The method presented in this section is referred to as PmIII. It is similar to the method
of Kim and Moin [24], but uses a different spatial discretization and a slightly different
treatment of the boundary conditions. The momentum equation is discretized by

u∗ − un

$t
= −[(u · ∇h)u]n+1/2 + ν

2
∇2
h (un + u∗) (75)

and we first consider boundary conditions

n̂ · u∗|∂! = n̂ · un+1b

τ̂ · u∗|∂! = τ̂ ·
(
un+1b + $t∇hφ

n)∣∣
∂!.

As before, un+1 = P(u∗); i.e., un+1 = u∗ − $t∇hφ
n+1, where φn+1 satisfies Eqs. (71)

and (72).
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The pressure-update equation is now

∇h pn+1/2 = ∇h φn+1 − ν$t
2

∇h ∇2
h φn+1, (76)

which is Eq. (74) without the term ∇ pn−1/2.

5.4. Additional Numerical Details

The numerical implementation of the projections used in the methods requires that a
Poisson problembe solved (see the beginning of Section 3). In these problems, the Laplacian
is approximated with a standard five-point stencil and the divergence and gradient with
second-order centered differences. This combination produces an approximate rather than
an exact projection operator in the sense that projected velocities only satisfy a discrete
divergence constraint to truncation error [4]. Approximate projection methods have become
increasingly popular in recent years, but the ramifications of using approximate projections
are not well understood, although some work has been done for the case of inviscid flow
without boundaries [2].
Since the test problems studied in the next section are all set in a periodic channel, the

inversion of the Laplacian in the projection is made efficient by first taking the discrete
Fourier transform of the equation in the x-direction. This results in N one-dimensional
linear systems which are solved with a direct method. The system corresponding to the
zeroth wave number is singular since the overall solution is determined only up to an
arbitrary constant. This system is augmented with an additional constraint on the sum of
unknowns (see [19] for details).
In the numerical methods presented above, extrapolation in time is used to compute the

time-centered advective derivatives as well as the tangential boundary conditions for the
implicit treatment of the momentum equation. Since these terms cannot be extrapolated at
the first time step, an iterative procedure is employed. For example, for the gauge method
the iteration can be written in two steps,

m1,k −m0

$t
= −[(u · ∇h)u]1/2,k + ν

2
∇2
h (m0 +m1,k)

n̂ ·m1,k = n̂ · u1b

and

τ̂ ·m1,k = τ̂ · ∇hχ
1,k−1 + τ̂ · u1b on ∂!

followed by

∇2
hχ

1,k = ∇h ·m1,k

n̂ · ∇hχ
1,k = 0 on ∂!.

To begin, χ1,0 = χ0. The advective derivative term is reset each iteration by taking the
average of the derivatives of u0 and u1,k . The iteration for the projection method is done
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in the analogous manner. The number of iterations is arbitrarily set to 5 for the first step
and 2 for the second. This iterative procedure could be used at every time step rather than
extrapolation, but at an additional computational cost.
For the projection method wherein the lagged pressure appears in the momentum equa-

tion, the initial pressure is used for this term in the first time step. It is calculated by solving
the Poisson problem which results from taking the divergence of the momentum equation.
When calculating finite differences near solid wall boundaries, standard stencils cannot

be used. When calculating ∇ · u∗ in the projection and the correction terms in the pressure-
update equations, values of the particular differenced quantity are calculated at boundary
points using quadratic extrapolation from the first three interior values. Since the explicit
advective and diffusive terms in the momentum equation only appear at interior points in
the right-hand side of the equation for u∗ or (mn+1), these terms are not needed at the
boundary.
A concern relating to the fact that the tangential component of the velocity boundary

condition is not satisfied exactly remains to be addressed. For example, in projectionmethod
I, τ̂ · ∇hφ

n+1 is not constrained at the boundary; hence

τ̂ · un+1|∂! = τ̂ ·
(
un+1b − $t∇hφ

n+1)∣∣
∂!

,

which is in error by$t τ̂ · ∇hφ
n+1. An analogous error occurs in each of the other methods.

One way to address this is to simply reset the tangential component of velocity to the correct
value at the end of each time step (see, e.g., Strikwerda and Lee [36]). Another choice is
to simply let the values at the boundary remain as computed. A potential problem with
using the first approach is that it could reduce the smoothness of u increasing the error
when explicit differences are taken at the points just inside the boundary (especially in the
diffusive terms). For this reason a combination of both strategies is used here. Whenever
derivatives which are normal to the boundary are calculated, the nonaltered form of the
velocity is used; however, the tangential velocity itself is reset at the boundary after each
time step. In the test problems presented, the alternative strategies produced similar results.
A related discussion can be found in [33].

6. NUMERICAL RESULTS

In this section numerical examples are presented which confirm the validity of the normal
mode analysis presented in Section 4 for the gauge and projection methods. Two problems
are considered, one which uses an analytical forcing to yield an exact solution and one
which is forced only by the motion of one boundary. The test problems are set in a channel
with periodic boundary conditions in the x-direction and no-flow boundaries at y = 0 and
y = 1. This geometry is the simplest setting in which to consider slip boundary conditions.
A no-slip condition is prescribed at y = 0, while a nontrivial slip condition is specified at
y = 1. Results from more complicated geometries will be reported in subsequent work.
In order for the temporal errors predicted in the normal mode analysis to be evident, the

numerical experiments must be designed with the following considerations in mind.
1. The temporal errors should not be dominated by spatial error, therefore the problems

considered use fine grids and smooth flows.
2. The pressure should have a nontrivial normal gradient at solid wall boundaries in the

test problems chosen (as normally is the case in applications). If the normal pressure gradient
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is compelled to remain zero by the application of a forcing term, then the inconsistency
in the pressure gradient in projection method I and those in [5, 7, 32] cannot be dist-
inguished.
3. Since the first-order temporal error terms for the pressure in the normal mode analysis

are scaled by the viscosity, it is important that the viscosity be large enough compared to
the grid size so that $x2 ≪ ν$t .
4. The analysis is applicable to unsteady flow. The problems chosen have nontrivial

spatial and temporal structure.

6.1. Forced Flow

In the first example, the Navier–Stokes equations are augmented with a forcing term in
order for the solution to be

u = cos(2π(x − ω(t)))(3y2 − 2y)

v = 2π sin(2π(x − ω(t)))y2(y − 1)

p = −ω′(t)
2π

sin(2π(x − ω(t)))(sin(2πy) − 2πy + π)

− ν cos(2π(x − ω(t)))(−2 sin(2πy) + 2πy − π)

with ω(t) = 1+ sin(2π t2). In terms of the gauge method variables, this solution corre-
sponds to

m1 = cos(2π(x − ω(t)))(3y2 − 2y) − 1
2π

sin(2π(x − ω(t)))(sin(2πy) − 2πy + π)

m2 = 2π sin(2π(x − ω(t))))y2(y − 1) + 1
2π

cos(2π(x − ω(t)))(cos(2πy) − 1)

φ = 1
4π2

cos(2π(x − ω(t)))(sin(2πy) − 2πy + π).

The viscosity is set to ν = 1, which corresponds to a Reynolds number of 1 since the
velocity is of unit magnitude. A uniform time step of $t = h/2 is used corresponding to
a CFL number of 1/2. Errors are calculated at time 0.5 in the both L1 and L∞ norms
for N × N grids with N equal to 192, 256, and 384. The errors for the u-component of
velocity are displayed in Table I which confirms that eachmethod is producing second-order
accurate solutions for u in both the L1 and L∞ norm. The results for v are similar and are not
shown.
Next, the accuracy of the pressure is investigated. The normal mode analysis predicts that

projection method I should display only first-order convergence in the pressure. The rest of
the methods should be second-order accurate. Table II shows this to be the case. Note that
the L∞ norm of the error for projection method I is much larger than the L1 norm. Figure 1
shows three profiles of the pressure error for projection method I from the 256× 256 and
384× 384 runs corresponding to values of x = 3/16, 6/16, and 9/16. These profiles shows
that the first-order error appears as boundary layer. The graphs show the error near the
bottom boundary where no flow and no slip conditions are specified. Another boundary
layer of similar shape and magnitude appears at the top of the domain.
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TABLE I
Errors in the u-Component of Velocity for the Forced Flow Test Problem

Errors in the u velocity

192× 192 256× 256 384× 384 Rate

Gauge L1 1.46e-4 8.25e-5 3.68e-5 1.99
L∞ 7.73e-4 4.44e-4 2.02e-4 1.94

PmI L1 7.53e-5 4.28e-5 1.91e-5 1.99
L∞ 3.63e-4 2.13e-4 9.83e-5 1.90

PmII L1 7.25e-5 4.15e-5 1.87e-5 1.97
L∞ 3.38e-4 2.01e-4 9.46e-5 1.86

PmIII L1 8.28e-5 4.67e-5 2.08e-5 1.99
L∞ 3.38e-4 2.01e-4 9.46e-5 1.86

Note. The rates were computed from the errors in the 256× 256 and 384× 384 grids.

6.2. Necessity for Accurate Boundary Conditions for τ̂ · u∗

One of the important results from the normalmode analysis is the required accuracy in the
approximation of the tangential boundary condition for u∗ (ormn+1 for the gauge method).
To illustrate this, the forced flow problem was recomputed using a different tangential
boundary condition for u∗ (ormn+1) for eachmethod. The specific choices for the boundary
conditions, aswell as a summary of the errorswhich appear inTables III and IV are contained
in the points below.

• For the impulse method, the normal mode analysis predicts that τ̂ · ∇n+1 must be ap-
proximated with extrapolation to yield second-order accuracy. For this test, the lagged value
τ̂ · ∇χn is used instead,which results in a loss of accuracy in both the velocities and pressure.

• For projection method I, the usual boundary condition is τ̂ · u∗ = 0. For this test, the
more accurate lagged value τ̂ · ∇φn is used. Although this choice decreases the size of the
errors somewhat, the order of the method is not changed. In particular, since the pressure
is still updated using the inconsistent Eq. (23), the pressure is only first-order accurate near
the boundary.

TABLE II
Errors the Pressure for the Forced Flow Test Problem

Errors in the pressure

192× 192 256× 256 384× 384 Rate

Gauge L1 2.57e-3 1.44e-3 6.40e-4 2.00
L∞ 1.50e-2 8.47e-3 3.78e-3 1.99

PmI L1 2.91e-3 1.70e-3 7.83e-4 1.91
L∞ 2.55e-2 1.73e-2 1.04e-2 1.26

PmII L1 1.55e-3 8.94e-4 4.07e-4 1.94
L∞ 9.65e-3 5.56e-3 2.53e-3 1.94

PmIII L1 1.58e-3 9.15e-4 4.16e-4 1.94
L∞ 1.09e-2 6.33e-3 2.94e-3 1.89

Note. The rates were computed from the errors in the 256× 256 and
384× 384 grids.
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FIG. 1. First-order boundary layer error for projection method I. The three graphs correspond to profiles at x
locations 3/16, 6/16, and 9/16. Each graph shows the error from the 256× 256 (∗) and 384× 384 (o) runs.

• The same lagged boundary condition as above can also be used for projection method
II. Again this choice decreases the size of the errors somewhat, but the order of the method
is not changed.

• For projection method III, the normal mode analysis indicates that using the lagged
value τ̂ · ∇n is necessary for second-order accuracy. For this test, the less accurate boundary
condition τ̂ · u∗ = 0 was used (as is done normally done for PmII) which results in a loss of
accuracy in both the velocities and the pressure. If the original boundary condition is made
more accurate by extrapolation (as in the gauge method), the result is a reduction in the size
but not the order of the errors, much the same as that observed for PmII above.

6.3. Unforced Flow

A second numerical experiment is now presented in which no forcing term is used. The
same periodic channel geometry is used with zero boundary conditions at the bottom wall,
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TABLE III
Errors in the u-Component of Velocity for the Forced Flow Test Problem When

Different Boundary Extrapolations Are Used

Errors in the u velocity

192× 192 256× 256 384× 384 Rate

Gauge L1 3.67e-4 2.58e-4 1.61e-4 1.16
L∞ 1.43e-3 9.76e-4 5.92e-4 1.23

PmI L1 4.84e-5 2.70e-5 1.19e-5 2.02
L∞ 1.61e-4 9.09e-5 4.05e-5 1.99

PmII L1 4.70e-5 2.63e-5 1.16e-5 2.01
L∞ 1.59e-4 8.97e-5 3.99e-5 2.00

PmIII L1 2.43e-3 1.87e-3 1.29e-3 0.92
L∞ 2.26e-2 1.76e-2 1.22e-2 0.90

Note. The rates were computed from the errors in the 256× 256 and 384× 384 grids.

while no-flow and the slip condition τ̂ · ub = e10t2 − 1 is imposed on the topwall. The initial
conditions for the flow are given by

u = sin(2πy) sin2(πx)

v = −sin(2πx) sin2(πy).

For the gauge method, the initial condition m = u is used and the boundary condition
m · n̂ = 0 is specified at both top and bottom boundaries throughout the computation.
Since no exact solution is known, a reference solution was computed on a 1152× 1152

grid, and errors are estimated by the difference from this solution. To assure that the refer-
ence solution being used is valid, both the impulse method and PmII were used to compute
the solution; it was observed that the maximum difference between the two solutions was
1.31× 10−6 in the velocity, 2.23× 10−6 in the pressure, and 8.73× 10−5 in py . Since this is

TABLE IV
Errors in the Pressure for the Forced Flow Test Problem When

Different Boundary Extrapolations Are Used

Errors in the pressure

192× 192 256× 256 384× 384 Rate

Gauge L1 1.80e-3 1.88e-3 1.63e-3 0.35
L∞ 1.18e-2 1.14e-2 9.44e-3 0.47

PmI L1 1.96e-3 1.13e-3 5.21e-4 1.91
L∞ 2.09e-2 1.46e-2 9.11e-3 1.16

PmII L1 6.43e-4 3.47e-4 1.48e-4 2.10
L∞ 4.92e-3 2.69e-3 1.17e-3 2.05

PmIII L1 5.69e-2 4.33e-2 2.92e-2 0.97
L∞ 3.01e-1 2.30e-1 1.56e-1 0.96

Note. The rates were computed from the errors in the 256× 256 and 384× 384
grids.
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TABLE V
Errors in the u-Component of Velocity for the Unforced

Flow Test Problem

Errors in the u velocity

96× 96 128× 128 192× 192 Rate

Gauge L1 1.06e-4 5.96e-5 2.64e-5 2.02
L∞ 3.67e-4 2.06e-4 9.05e-5 2.03

PmI L1 6.91e-5 3.88e-5 1.71e-5 2.03
L∞ 3.38e-4 1.90e-4 8.31e-5 2.04

PmII L1 6.90e-5 3.88e-5 1.70e-5 2.03
L∞ 3.34e-4 1.87e-4 8.19e-5 2.04

PmIII L1 9.33e-5 5.48e-5 2.56e-5 1.88
L∞ 3.59e-4 2.08e-4 9.53e-5 1.93

significantly smaller than the estimated errors used to compute the convergence rates, using
the reference solution is justified. It should be noted that the standard Richardson extrap-
olation techniques commonly employed to estimate convergence rates can be misleading
in this context. In particular, the pressure gradient computed with projection method I will
appear to converge quite nicely at the boundary if only a Richardson procedure is used. In
this case, the pressure gradient is converging to the solution of a different equation.
For each method, a solution is computed on 96× 96, 128× 128, and 192× 192 grids,

and convergence rates are again computed in the L1 and L∞ norms using the 96× 96 and
192× 192 grids. The viscosity is set to ν = 1/16. Since the flow is not forced except by the
motion of the top wall, the magnitude of the v-component of the velocity decays rapidly
while that of the u-component increases throughout the run at the top wall. The errors
are estimated at time 0.25 in the u-component of the velocity and the pressure when the
maximum value of u is about 0.86, while the maximum of v has dropped to about 0.39. The
time step used is $t = 0.5h.
TableV shows the estimated error and convergence rates for the u-velocity in this problem

while the values for the pressure appear in Table VI.

• The gauge method displays fully second-order accuracy in both the velocity and the
pressure as in the first example.

TABLE VI
Errors in the Pressure for the Unforced Flow Test Problem

Errors in the pressure

96× 96 128× 128 192× 192 Rate

Gauge L1 6.89e-5 3.87e-5 1.72e-5 2.02
L∞ 3.37e-4 1.82e-4 7.77e-5 2.13

PmI L1 3.82e-5 2.17e-5 9.65e-6 2.00
L∞ 1.91e-4 1.53e-4 1.16e-4 0.73

PmII L1 3.92e-5 2.18e-5 9.47e-6 2.07
L∞ 1.83e-4 1.01e-4 4.34e-5 2.09

PmIII L1 7.43e-5 4.35e-5 2.03e-5 1.88
L∞ 1.55e-3 1.10e-3 6.67e-4 1.23
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• Projection method I displays second-order accuracy in the velocity but only first-order
accuracy in the pressure. As in the first example, the error in the pressure is in the form of
a boundary layer.

• Projection method II displays fully second-order accuracy in both the velocity and the
pressure as in the first example.

• Unlike the first example, projection method III shows a decrease in the convergence
rate for the pressure when measured in the L∞ norm. The cause of this is investigated in
the following section.

6.4. A Different Boundary Condition for Projection Method III

It is somewhat surprising that projection method III does not obtain full second-order
accuracy for the unforced problem. Some understanding of the cause of the lack of accuracy
can be gained by considering the discrete divergence of the computed velocity. Since an
approximate projection is being used, the discrete divergence of un will not be zero for
any of the methods. The L1 and L∞ norm of the discrete divergence of un computed with
centered differences at time 0.25 is shown for each method in Table VII. Two pertinent
points can be made based on the data. First, projection method II has substantially less error
in the divergence of un than the other methods, and this error appears to be converging to
zero at a higher rate than the other methods. On the other hand, projection method III has
a first-order error in the divergence of un .
The cause of this problemcan be traced to the normal boundary condition foru∗. Although

the normal mode analysis indicates that this boundary condition can be chosen arbitrarily
subject to the constraint (10), the choice of boundary condition will certainly affect the
character of u∗ near the boundary. Given the evolution equation for u∗ in PmIII, u∗ is not
a close approximation to un+1, so choosing n̂ · u∗ = n̂ · un+1b = 0 for this problem causes
∇ ·u∗ to be large near the boundary. A surface plot of ∇ ·u∗ from the 96× 96 run at time
0.125 is displayed in Fig. 2 and clearly shows a pronounced boundary layer.
Recall the relationship between φ and p given in Eq. (76). Using the definition of φ from

Eqs. (71) and (72), this can be written as

∇h pn+1/2 = ∇hφ
n+1

$t
− ν

2
∇h ∇h · u∗. (77)

TABLE VII
Errors in the Divergence of un for the Unforced Flow Test Problem

Divergence errors

96× 96 128× 128 192× 192 Rate

Gauge L1 1.11e-3 6.22e-4 2.75e-4 2.01
L∞ 3.64e-3 2.05e-3 9.12e-4 2.00

PmI L1 2.30e-5 1.26e-5 5.52e-6 2.05
L∞ 7.99e-4 5.96e-4 3.95e-4 1.01

PmII L1 9.38e-6 4.30e-6 1.42e-6 2.72
L∞ 2.25e-4 1.33e-4 6.10e-5 1.88

PmIII L1 5.20e-4 3.20e-4 1.58e-4 1.71
L∞ 1.19e-2 9.28e-3 5.30e-3 1.16
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FIG. 2. Surface plot of ∇ · u∗ for projection method III at time 0.125. Note the pronounced boundary layer.

Hence, the accuracy of the pressure depends on the behavior of ∇h · u∗. For this problem,
the sharp boundary layer in ∇h · u∗ directly affects the accuracy of the pressure.
Following this reasoning, it should be the case that a boundary condition for n̂ · u∗ which

eliminates the boundary layer in ∇h · u∗ should also eliminate the error in the pressure.
To test this hypothesis, the unforced problem was run again using a different boundary
condition. Instead of restricting u∗ at the boundary with a Dirichlet condition, values at the
boundaries are required to satisfy an extrapolation condition. Specifically, the value at the
lower wall, v∗

i,0, must satisfy the “free” boundary condition

v∗
i,0 − 3v∗

i,1 + 3v∗
i,2 − v∗

i,3 = 0,

with the obvious counterpart at the top wall. This condition can also be interpreted as an
approximation to ∂3

∂y3 v
∗ = 0.

Figure 3 displays ∇ · u∗ at time 0.125 using the free boundary condition. The size of
the boundary layer has decreased an order of magnitude to the size of that in the interior.
Convergence results using this new boundary condition are shown in Table VIII. It is
clear from the results that the divergence of un has also been reduced dramatically and is
converging to zero at a rate higher than expected (as in PmII for this problem). Also, the
first-order error in the pressure has been improved to second-order as expected.
The above boundary condition would certainly be more complicated to implement in the

presence of complex geometries and hence may be less desirable in practice. The point to
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FIG. 3. Surface plot of ∇ · u∗ for projection method III with the free boundary condition. The boundary layer
has been dramatically reduced.

be made is that although the normal boundary condition for u∗ is mathematically arbitrary,
the choice can affect the accuracy of the numerical solution.

6.5. Smoothness of the Pressure Error

Despite the fact that projection methods II and III display optimal convergence rates in
the pressure, the pressure error is not a completely smooth function near the solid wall
boundaries. Figure 4 displays profiles of the pressure error near the top boundary. Despite

TABLE VIII
Errors in the Unforced Flow Test Problem for Projection Method III

Using the Free Boundary Condition

Errors for PmIII with modified boundary value

96× 96 128× 128 192× 192 Rate

u L1 6.96e-5 3.91e-5 1.72e-5 2.03
L∞ 3.21e-4 1.81e-4 8.01e-5 2.02

p L1 3.75e-5 2.12e-5 9.37e-6 2.02
L∞ 1.58e-4 9.17e-5 4.22e-5 1.92

div L1 9.31e-5 4.32e-5 1.46e-5 2.67
L∞ 1.80e-3 1.08e-3 5.10e-4 1.82
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FIG. 4. Error in the pressure for the projection method II on the unforced problem. The three graphs
correspond to profiles at x locations 3/16, 6/16, and 9/16. Each graph shows the error from the 96× 96 (o)
and 192× 192 (∗) runs.

the slightly irregular shape of the error, the overall size is still converging to zero at a
second-order rate.
The lack of smoothness in the pressure can be better observed by examining the error

in py , the component of the pressure gradient normal to the boundary at y = 1. Figure 5
displays profiles of the error in py near the top boundary. The slight irregularities in the
pressure error create noticeable irregularities in the error of py .
Table IX displays the errors and convergence rates for py for the unforced flow problem.

Several comments can be made based on the data.
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FIG. 5. Error in the py for the projection method II on the unforced problem. The three graphs correspond
to profiles at x locations 3/16, 6/16, and 9/16. Each graph shows the error from the 96× 96 (o) and 192× 192
(∗) runs.

• The gauge method displays fully second-order convergence in py .
• Projection method I displays zeroth-order convergence of py in the L∞ norm since py

at the boundaries is not allowed to change by the pressure-update equation.
• Both projection methods II and III show fully second-order accuracy for the pressure

gradient measured in the L1 norm. (Note that PmIII was computed using the modified
boundary condition for n̂ · u∗.)

• Both projection methods II and III show a decrease in the observed convergence rate
for the pressure gradient measured in the L∞ norm.
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TABLE IX
Errors in py for the Unforced Flow Test Problem

Errors in py

96× 96 128× 128 192× 192 Rate

Gauge L1 7.06e-4 3.86e-4 1.66e-4 2.10
L∞ 8.79e-3 4.86e-3 2.12e-3 2.07

PmI L1 9.76e-4 7.32e-4 4.85e-4 1.02
L∞ 4.37e-2 4.65e-2 4.90e-2 −0.17

PmII L1 3.43e-4 1.87e-4 8.06e-5 2.10
L∞ 2.01e-3 1.29e-3 6.90e-4 1.55

PmIII L1 4.47e-4 2.44e-4 1.05e-4 2.10
L∞ 5.52e-3 3.83e-3 2.26e-3 1.30

The cause of the slightly lower convergence rates for the py can again be traced to the
lack of smoothness of the Laplacian term in the pressure-update Eq. (74). The fact that
the pressure itself is converging at the optimal rate indicates that the drop in convergence
rates for the gradient is caused by spatial rather than temporal error. Depending on the
implementation, the error in the pressure gradient due to a lack of smoothness in the pressure
correction terms could potentially be exacerbated by the presence of complex geometries.

7. CONCLUSIONS

The class of incremental pressure projection methods discussed in this paper is charac-
terized by the choice of three ingredients: the approximation to the pressure gradient term
in the momentum equation, the formula used for the global pressure update during the time
step, and the boundary conditions. We have shown how the three ingredients are coupled
and how they can be combined to yield a fully second-order numerical method.
The boundary conditions one chooses for the intermediate field u∗ must result in a

second-order approximation to un+1|∂! = un+1b . If the conditions for u∗ are separated into
normal and tangential components, there is apparently some freedom in choosing the normal
component since the required boundary condition for the potential φ in the projection step
can be adjusted to ensure that n̂ · un+1|∂! = n̂ · un+1b . However, as demonstrated by the
numerical experiments with PmIII, the choice of the normal boundary condition can affect
the smoothness of u∗ near the boundary and therefore can also play a role in the accuracy
with which the pressure is recovered. On the other hand, the tangential component of u∗

at the boundary cannot be set to an arbitrary value. Instead, it must be chosen in a manner
which ensures that τ̂ · (u∗ − ∇φn+1)|∂! = τ̂ · un+1b is approximately satisfied. This can be
accomplished by approximating ∇φn+1, and the accuracy necessary in this approximation
differs from method to method.
The methods of Bell, Colella, and Glaz and PmI approximate the pressure gradient

in the momentum equation with a lagged value from the previous time step and use a
pressure-update formula which is clearly not consistent with a high-order discretization
of the Navier–Stokes equations. Despite this inconsistency, the time-discrete normal mode
analysis of the unsteady Stokes equations shows these methods are second-order accurate
in the velocities even if the approximation to ∇φn+1 in the tangential boundary condition
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for u∗ is neglected. However, the inconsistency in the pressure-update formula results in a
first-order error in the pressure which appears as a boundary layer in the numerical results
presented.
The analysis demonstrates that a simple modification to the pressure-update formula,

given by Eq. (13), yields a method which is second-order accurate in both the velocities and
the pressure (PmII). This becomes critically important in applications in which stresses or
other pressure-dependent quantities must be computed at solid walls. In addition, the tables
displaying numerical results for the velocities and the pressure indicated that the errors for
PmII are smaller than the errors of the other methods.
Methods similar to PmIII and that of Kim and Moin completely eliminate the pressure

gradient term from the momentum equation. As a result, u∗ is only a first-order approxima-
tion to the velocity at the end of the time step. Consequently∇φn+1 isO($t), which cannot
be neglected in the tangential boundary condition for u∗. The normal mode analysis shows
that using a lagged value of φ, i.e., τ̂ · (u∗ − ∇φn)|∂! = τ̂ · un+1b , is sufficient to achieve
second-order accuracy. Despite the apparent freedom in choosing the normal boundary con-
dition for u∗, the numerical results performed on the full Navier–Stokes equations reveal
that PmIII suffers from a decrease in accuracy of the pressure near the boundary when
n̂ · u∗ = n̂ · un+1b is used as a boundary condition. Because the computation of the pressure
in this method depends indirectly on ∇ ·u∗, the choice of boundary condition for u∗ is
important in obtaining an accurate approximation for p. Numerical tests suggest that the
boundary condition for u∗ should be chosen to keep ∇ ·u∗ from developing large gradi-
ents near the boundary. One such boundary condition is suggested and shown to restore
second-order accuracy in the pressure.
A gauge method that also eliminates the pressure gradient term from the momentum

equation was analyzed as well. The gauge method variable m (equivalent to u∗ during
the first time step) is not discarded but used throughout the computation. This usually
implies that the difference between mn and the fluid velocity un becomes O(1), requiring
extrapolation in time of φ in the tangential boundary condition formn+1 in order to achieve
second-order accuracy. All numerical tests confirm this result. One can think of the gauge
method as a generalization of the projection method. If the variable m is kept throughout
the computation, the result is the gauge method. However, if m is reset to u at the end of
each time step, the result is a projection method. More generally, one could reset m to u
after a number of time steps. It is still an open and interesting question whether there are
any significant advantages in using gauge method variables in finite difference methods for
incompressible flow.
Several comments should be made concerning the accuracy of the pressure in numerical

computations. Quite often, semi-implicit projection methods are applied to problems in
which the viscosity is small. Since the predicted first-order errors in the pressure are scaled
by ν, it is not clear whether the improved pressure-update formula is beneficial in such
situations. Also, the numerical examples presented here were set in a simple computational
domain, and it is possible that there are additional issues to be addressed in cases where
solid wall boundaries contain corners or other features. Finally, in some applications of
projection methods, second-order accuracy in the pressure may not be relevant or in some
cases even possible due to the treatment of other terms in the equations (e.g., [11, 31]).
The major contributions of this paper are a better understanding of the order of conver-

gence of certain projectionmethods, simplemodifications to existingmethods that eliminate
first-order errors in the computed pressure near solid boundaries, and an explanation of the
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relationship between boundary conditions for intermediate quantities and the accuracy in
the pressure. In applications where an accurate representation of the pressure near solid
wall boundaries is required, the results in this paper provide an important improvement in
accuracy for a popular class of projection methods.
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