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Many biological fluids, like mucus and cytoplasm, have prominent viscoelastic properties. 
As a consequence, immersed particles exhibit subdiffusive behavior, which is to say, the 
variance of the particle displacement grows sublinearly with time. In this work, we 
propose a viscoelastic generalization of the Landau–Lifschitz Navier–Stokes fluid model and 
investigate the properties of particles that are passively advected by such a medium. We 
exploit certain exact formulations that arise from the Gaussian nature of the fluid model 
and introduce analysis of memory in the fluid statistics, marking an important step toward 
capturing fluctuating hydrodynamics among subdiffusive particles. The proposed method 
is spectral, meshless and is based on the numerical evaluation of the covariance matrix 
associated with individual fluid modes. With this method, we probe a central hypothesis of 
passive microrheology, a field premised on the idea that the statistics of particle trajectories 
can reveal fundamental information about their surrounding fluid environment.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many fundamental biological processes concern the movement of microparticles in complex fluids – that is, liquids that 
contain suspended polymers, microbes, or other microstructures. For example, mucus is a suspension of oligomeric mucin 
proteins in a water-like fluid and whole blood is a suspension of red blood cells in plasma. Complex fluids are noted for 
the wide variety of mechanical responses they exhibit as a function of applied strain/stress. In response to certain stimuli, 
a complex fluid will act like a solid, but in response to other stimuli, the same fluid will act like a liquid. These viscoelastic 
rheological properties are often caused by interactions between suspended microstructures and a viscous background fluid 
[1–4].

Particles diffusing in viscous fluids act like classical Brownian motion, but particles moving in viscoelastic fluids tend to 
be statistically distinct, exhibiting the effects of memory and long-range particle–particle correlation. Indeed the motion of 
foreign microparticles in complex fluids is very rarely well-described by classical Brownian motion. The primary statistical 
tool used in particle tracking analysis is mean-squared displacement (MSD), the empirical second moment of change in 
particle position. For particles moving in a purely viscous fluid, the MSD grows linearly with time; while, in viscoelastic 
media, the MSD scales nonlinearly. Recent interest in material properties of biological fluids has led to the cataloguing of 
numerous natural examples of this so-called anomalous diffusion. For a few examples, see [5–9].
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The widespread observation of anomalous diffusion in complex fluids has led to the development of several mathematical 
models that have been variously successful in describing the paths of individual particles. For example, it was recently 
demonstrated that the motion of 500 nm radius latex beads in human mucus is well-described by fractional Brownian 
motion (FBM) [10]. Subsequently it was shown that a force-balance approach to modeling, called the generalized Langevin 
equation (GLE), can provide an even more faithful model for the data [11].

However the extension of single-particle theory to that of multiple interacting particles remains elusive. FBM and GLE are 
characterized by anti-persistent memory effects (meaning that movement in one direction during one time step is positively 
correlated with movement in the opposite direction in the next) that result from the storage of energy and response by the 
surrounding viscoelastic medium. There is no doubt that the medium also communicates disturbances nonlocally across 
distances as well, and it stands to reason that two proximate particles should have nontrivial interactions with each other. 
While there exist mathematical frameworks that might have the potential to do so (see complex fluid models like [12]
and [13] for example), we know of no work that shows immersed particles behaving as FBM or GLE when alone, but 
when nearby each other, interacting through fluctuating hydrodynamics. In this article, we take a step in this direction by 
developing a modeling and simulation framework for particles that are passively advected by a linear viscoelastic fluid.

Because our fluid–particle model will require the interaction of forces, we adopt a GLE approach. The GLE is a stochastic 
integro-differential equation that was introduced by Kubo [14] and then revived for the purpose of modeling viscoelastic 
diffusion by Mason and Weitz [15]. Here we adopt the following definition for the GLE, which describes the velocity V (t)
of a particle:

mdV (t) =
(
− γs V (t) − γp

τ

t∫
−∞

K (t − s)V (s)ds +
√

kB Tγp

τ
F (t)

)
dt +√

2kB Tγs dW (t). (1)

When referring to the particle position, X(t) = ∫ t
0 V (s)ds, we say that X satisfies the integrated GLE (iGLE). The GLE (1)

is a balance of forces equation relating the particle’s acceleration to its velocity history and to thermal fluctuations in the 
fluid environment. Here, m is the particle’s mass, kB is Boltzmann constant and T is the temperature. The force of friction 
is decomposed into two components: the drag due to solvent viscosity γs and drag due to the polymeric component of 
the fluid environment, comprised of a memory kernel K (t), a leading drag coefficient γp , and a normalizing constant τ =∫∞

0 K (s)ds that has units of [time]. The memory kernel K summarizes the fluid environment’s capacity to store energy and 
act back on a particle after a given increment of time. For discussion on the inclusion of instantaneous viscous response term 
see [16]. The force due to thermal fluctuations is also decomposed into solvent and polymeric component contributions. The 
term W (t) is a standard Brownian motion, while F (t) is a stationary Gaussian process with mean 0 and autocovariance given 
by

E [F (t)F (s)] = K (t − s). (2)

This form for the noise is posited in accordance with the fluctuation–dissipation relationship [14]. In Section 2, we establish 
some basic facts about the GLE, including a discussion of our choice for the memory kernel K and our method of simulation.

Initial efforts to model the interaction of multiple particles used a system of GLEs with an interaction term meant to 
summarize the hydrodynamic influence of one particle on the other [17–20]. However, when implementing the noise terms, 
these methods tended to ignore correlations that exist with past position and velocity. In particular, there is disagreement 
about how to enforce the fluctuation–dissipation relationship among multiple beads and through the background fluid 
without directly modeling the fluid velocity field as well. For this reason it is appealing to note recent developments in 
numerical fluid–particle coupling methods [12,21–23]. When considering neutrally buoyant particles in an incompressible 
fluid, the stochastic Immersed Boundary Method has been particularly successful in capturing statistical properties of par-
ticle trajectories in viscous fluids [24–28]. In this work, we present an important step toward implementing the stochastic 
IBM for viscoelastic fluids: generalizing the fluctuating Landau–Lifschitz Navier–Stokes equations for viscoelastic fluids and 
simulating trajectories of passively advected immersed particles.

In Section 3 we develop our model for the fluid velocity field u and explore the challenges that exist in generating 
efficient and accurate simulations. The main difficulty arises from two key issues. The first is that, unlike the stochastic IBM 
for viscous fluids, which can employ step-by-step simulation techniques exploiting the Markov property, the primary tool 
available for our model is the theory of stationary Gaussian processes. While conceptually straightforward, the implemen-
tation presents many practical problems, mostly stemming from our second challenge: that the physical regime of interest 
corresponds to a situation where the memory kernel has a very slow (power law) decay. As explained in the next section, 
we use a memory kernel whose form is a sum of exponential functions. The “more viscoelastic” a fluid is, the more terms 
are necessary in the sum, in turn complicating calculations involving the temporal Fourier transform.

For a neutrally buoyant particle, we consider the equation of motion to be given by averaging over a small region of the 
fluid velocity field u(x, t) centered at the particle location:

dX(t) =
∫

δa(x − X(t))u(x, t)dx. (3)

dt
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Here, δa is an approximate delta-function with characteristic length scale a chosen following standard IBM techniques. In 
Section 4, we provide the details of the semi-Euler method we use to generate particle paths.

In Sections 5 we explore the behavior of the model through a combination of mathematical and numerical results. We 
start by recording some basic mathematical results and demonstrate numerical convergence of our simulation method. After 
introducing physically appropriate parameter choices we analyze the fluid–particle relationship in detail.

One major motivation for this work is to investigate the assumptions underlying an important subfield of particle tracking 
research called passive microrheology. The premise of the field is that the statistics of particle trajectories can be used to 
recover defining properties of the surrounding viscoelastic fluid [29–31]. We therefore explicitly analyze the output of our 
model in terms of the two major summary statistics used in the experimental particle tracking literature: the particle MSD 
and the auto-correlation function (ACF) of the increments of the particle position process (see Section 5.4). For the system 
we present here, where particles are passively advected by the fluid environment, we find validation for these assumptions, 
and in Section 5.6 we document the critical features of the model that seem to make it possible.

2. Mathematical background: the generalized Langevin equation

In the modeling of viscoelastic diffusion, we encounter the GLE in two distinct contexts: first (as defined in the previous 
section) as a description of an individual particle’s velocity process, and then second as a building block for our model of 
a viscoelastic fluid. Removing the physical meaning of the constants, we consider mean-zero stationary solutions to a GLE 
that has the following form: for a ≥ 0, b > 0 and c > 0,

dY (t) =
[
−aY (t) − b(K + ∗ Y )(t) + c

√
bF (t)

]
dt + c

√
2adW (t) (4)

where W (t) is a standard Brownian motion and F (t) is a mean-zero stationary Gaussian process with covariance function

E [F (t)F (s)] = K (t − s). (5)

In the above, we assume that K ∈ L1(R) is an even function; K +(t) := 1{t≥0}(t)K (t), where 1 is the indicator function; and 
∗ denotes convolution in time. Associated with (4) is the integrated process Z(t) which is defined by pathwise integration. 
That is, the memory kernel K will be defined in such a way that, the process {Y (t; ω)}t∈R is continuous almost surely, and 
for each such ω,

Z(t;ω) :=
t∫

0

Y (s;ω)ds. (6)

We say that a mean-zero, stationary, Gaussian process {Y (t)}t∈R is a solution to the GLE if the Fourier transform of its 
covariance function ρY (t) = E [Y (t)Y (0)] has the form

ρ̂Y (ξ) = c2(2a + bK̂ (ξ))

|iξ + a + bK̂ +(ξ)|2 . (7)

Here we take the following definition of the Fourier transform pair:

f̂ (ξ) =
∫
R

f (t)e−iξtdt, f (t) = 1

2π

∫
R

f̂ (ξ)eiξt dξ.

See [32] for an example derivation of Eq. (7).
Following modeling choices made in [11,33,34], we consider memory kernels K of the form,

K (t) =
N−1∑
n=0

cne−|t|/τn , (8)

where τ0 < τ1 < . . . < τN−1 are called relaxation times. The use of a superposition of linear responses at discrete time scales 
echoes results from polymer kinetic theory, especially of the Rouse polymer model [35]. Indeed, when τn = τ0(N/(N − n))α

for some α > 1 and the coefficients cn ≡ 1/N , we say that K (t) is a generalized Rouse kernel, and the case α = 2 exhibits the 
same large-time MSD behavior as a single monomer in a Rouse chain [34]. As the number of terms in the exponential series 
increases, the large-t tail of K (t) approximates the power law t−1/α and the associated iGLE exhibits anomalous diffusive 
characteristics. Such a large N limit has also been computed, for example, in the derivation of the GLE from heat bath 
models [36,37]. There are a few advantages to writing the memory kernel as a sum of exponentials. First, the parameter 
N provides a way to interpolate seamlessly between essentially viscous dynamics (N = 1) and fully viscoelastic dynamics 
(N large). Second, in terms of regularity of solutions, it has previously been shown [33] that, by introducing auxiliary 
equations, the GLE with a sum-of-exponentials kernel can be rewritten as a linear high-dimensional system of SDEs driven 
by additive noise. It immediately follows that solutions exist and are almost surely continuous.
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According to standard statistical mechanics, the coefficients of the one-dimensional GLE must be chosen so that the so-
lution Y (t) to (1) satisfies the kinetic energy constraint E 

[
Y 2(0)

]= kB T /m for all t ∈R [14]. In terms of the autocorrelation 
function (7), this is equivalent to requiring that

1

2π

∫
R

ρ̂Y (ξ)dξ = kB T

m
. (9)

To compute the integral on the left-hand side, we introduce the following proposition.

Proposition 2.1. Let Y (t) be a Gaussian stationary solution to (4) with memory kernel K (t) defined by (8). Then

E

[
Y 2(0)

]
= c2. (10)

The novelty of the result is that this holds regardless of the relaxation spectrum {τn} as long as cn ≡ 1/N .

Proof. In what follows, we use the usual notation for a complex number z, denoting by Re(z) its real part, by Im(z)
its imaginary part and by z̄ its complex conjugate. Furthermore, Res(
, ω) is the residue of 
(ξ) evaluated at ω. By 
construction,

E

[
Y 2(0)

]
= ρY (0) = 1

2π

∫
R

ρ̂Y (ξ)dξ = 1

π

∞∫
0

ρ̂Y (ξ)dξ.

The proof is based on the results of [38], where we showed that for a = 0

∞∫
0


(ξ)dξ = π

where ρ̂Y (ξ) = c2
(ξ). If a �= 0, the steps are very similar and we sketch them here. First, we define the auxiliary function 

(ξ) in the following way:


(ξ) = 2a + 2bRe(�(iξ))

|iξ + a + b�(iξ)|2 , where �(x) = 1

N

N−1∑
n=0

1

x + λn
,

and where λn = τ−1
n , n = 0, . . . , N − 1. The partial fraction decomposition of 
(ξ) is


(ξ) = 1

iξ + a + b�(iξ)
+ 1

−iξ + a + b�(−iξ)
= p(iξ)

q(iξ)
+ p(−iξ)

q(−iξ)
.

In the above, the polynomials p(x), q(x) are p(x) = ∏N−1
n=0 (x + λn) and q(x) = (x + a)p(x) + b

N p′(x), where ′ denotes the 
derivative with respect to x. In [38] we showed that, if a = 0, then 
(ξ) is even and −zn , n = 0, . . . , N the roots of q(x) are 
such that zn > 0 for n = 0, . . . , N − 2 and zN = zN−1 with Re(zN−1) > 0. The reasoning and the conclusions reached in [38]
are the same if 0 < a < λN and they can be extended for all a.

Therefore, if we let ωn = izn , n = 0, . . . , N , then the ωn ’s are the roots of q(iω) and they are located in the upper-half 
plane, more precisely ω1, . . . , ωN−2 ∈ iR+ and Im(ωN−1,N ) > 0. The roots of q(−iξ) are the complex conjugates of the roots 
of q(iξ) and we have ωn = −ωn , n = 0, . . . , N − 1 and ωN−1,N = −ωN,N−1. Using Vieta’s formula and the series expansion 
of p(iξ), q(iξ), p(−iξ), q(−iξ), one can show that the degree of the numerator of 
(ξ) is 2N while the degree of the 
denominator is 2N + 2. Thus 
(ξ) has proper decay at infinity to apply the residue theorem on a circular contour, which 
gives

∞∫
0


(ξ)dξ = π i

2

N∑
n=0

[Res(
,ωn) − Res(
,ωn)] .

Since Res(
, ωn) = −Res(
, ωn) for n = 0, . . . , N − 2 and Res(
, ωN−1,N ) = −Res(
, ωN,N−1), the above reduces to 
π i 

∑N
n=0 Res(
, ωn). Using the series expansion of 
(ξ), we showed in [38] that the sum of the residues is 1/i yielding the 

desired equalities

∞∫
0


(ξ)dξ = π and

∞∫
0

ρ̂Y (ξ)dξ = c2π. �
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2.1. Simulation of the iGLE

We will actually be simulating the integral Z(t) of solutions to the GLE Y (t) as defined by (4). We summarize our 
algorithm here. From the preceding discussion, we know that Y (t) is a Gaussian, stationary process with known covariance 
ρY (t − s) and that Z(t) is a Gaussian, non-stationary process with covariance

ρZ (t, s) =
t∫

0

s∫
0

ρY (t′ − s′)dt′ds′

for t > s. Changing variables and reversing the order of integration, we rewrite ρZ (t, s) in terms of moments of ρY . Namely 
we have

ρZ (t, s) = t I1(t) − (t − s)I1(t − s) + sI1(s) − [I2(t) − I2(t − s) + I2(s)],
where I1(t) =

∫ t
0 ρY (u)du and I2(t) =

∫ t
0 uρY (u)du. Since, in general, we know ρY through its Fourier transform, ρ̂Y , we use 

the inverse Fourier transform and the fact that ρZ (t, s) is real to express the integrals in a more manageable form. We find

ρZ (t, s) = J (t) + J (s) − J (t − s)where (11)

J (t) = 2

π

∞∫
0

ρ̂Y (ξ)

ξ2
sin2

(
ξt

2

)
dξ. (12)

We note that since the integrand can be analytically continued at ξ = 0 and ρ̂Y is integrable, the integral J (t) is well 
defined.

The last step of the simulation is a covariance based algorithm to obtain realizations of the iGLE Z(t). We define Zi to 
be one realization of the path Z(ti) =

∫ ti
0 Y (s)ds with ti = i
t and i = 1, · · · , NT and Z0 = 0. Further, we define the discrete 

covariance matrix R as Rij = ρZ (ti, t j) for 1 ≤ i, j ≤ NT . Following [39], the random variable Z = (Z1, . . . , Z NT )T given as

Z = CW W ∼ N (0,1)N , (13)

where W is a vector of mean one normal variables and C is the lower triangular Cholesky factorization of R, in other words 
R = CCT , has the correct statistical structure. Since R is a covariance matrix, it is symmetric, positive semi-definite and its 
Cholesky decomposition exists. Since the memory kernels K (t) that we use are nonzero for all t , all entries of R are nonzero 
as well.

In summary, the algorithm to realize one path of the iGLE is

1. Build the discrete symmetric covariance matrix Rij = ρZ (ti, t j) for 1 ≤ i, j ≤ NT using (11);
2. Find the lower triangular Cholesky decomposition C of R;
3. Find a realization of the path Z with Z0 = 0 using (13);
4. Calculate the increment 
Zi = Zi+1 − Zi for i = 1, . . . , NT .

Further discussions of the accuracy of the integral calculation as it pertains to the iGLE stemming from the fluid model are 
discussed in Section 5.

3. Particle–fluid model

3.1. Viscoelastic fluid model in real space

A common method to derive tractable models of the effect of complex fluids on immersed particles is to coarse-grain 
molecular deterministic equations over an appropriate length scale. Here, we extend the work of [26,27,40] for a viscous 
fluid with thermal fluctuations to include viscoelastic stresses by first considering the incompressible Navier–Stokes equation 
for a fluid velocity field u without external forces

ρ(∂tu + u · ∇u) = ∇ · �, ∇ · u = 0, (14)

where ρ is the fluid density and � is the total stress. We assume periodic boundary conditions with period of length 
2π L. The total stress tensor is comprised of two components: a deterministic viscoelastic stress �det and a stochastic stress 
�stoch.

Following Larson [41], the deterministic stress tensor can be decomposed into a solvent contribution �det,s and a poly-
meric contribution �det,p. The solvent stress is the Newtonian stress tensor

�det,s = −pI + 2ηsE, (15)
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where p is the pressure, I is the identity matrix, E = (∇u + ∇uT )/2 is the rate-of-strain tensor, and ηs is the solvent 
dynamic viscosity. As in [31,41–43], we consider the small strain limit for the polymeric stress tensor resulting in a linear 
viscoelastic model. In this setting, the constitutive equation for �det,p is known as the Lodge equation and it has the form

�det,p = GavgI + 2

t∫
−∞

G(r)(t − t′)E(t′)dt′, (16)

where Gavg is the mean stress and G(r)(t) is the relaxation modulus (units of [stress]). The response is causal in the sense 
that G(r)(t) = 0 for t < 0. Combining (15) and (16), we have

�det = −(p − Gavg)I + 2ηsE + 2

t∫
−∞

G(r)(t − t′)E(t′)dt′. (17)

The zero shear-rate viscosity η0 is related to G(r)(t) by η0 = ηs + ∫∞
0 G(r)(t′)dt′ .

If G(r)(t) is a single mode Maxwell model, G(r) = ηp
τ e−t/τ , where τ is the relaxation time and ηp is the polymeric 

dynamic viscosity related to Gavg by ηp = Gavgτ [41], then σ set = �det + (p − Gavg)I satisfies the Oldroyd-B equation

τ
�
σ det + σ det = 2η0

(
E + τηs

η0

�
E
)

,

where η0 = ηs +ηp , and 
�· is the upper convected time derivative defined as 

�
S = dS

dt −∇uT S − S∇u. If the solvent viscosity 
is negligible, ηs = 0, then σ det satisfies the Upper Convected Maxwell equation

τ
�

σ det + σ det = 2ηpE.

In this paper, we use a generalized form of G(r)(t) known as the N-Maxwell model, a sum of N exponential terms

G(r)(t) = 1

N

N−1∑
n=0

Gne−t/τn for t ≥ 0, (18)

where τn are the relaxation times of the polymeric fluid component. By construction, the polymeric viscosity and mean 
stress are

ηp = 1

N

N−1∑
n=0

Gnτn and Gavg = 1

N

N−1∑
n=0

Gn.

We pick equal size for all Gn , which we represent by G0. In this case, ηp = G0τavg and Gavg = G0. To simplify notation later, 
we define a dimensionless relaxation kernel K (t) so Eq. (18) becomes

G(r)(t) =
{

ηp
τavg

K (t), t ≥ 0

0, t < 0
with K (t) = 1

N

N−1∑
n=0

e−|t|/τn for all t. (19)

Altogether, substituting Eq. (19) into Eq. (17), we have

�det = −
(

p − ηp

τavg

)
I + 2ηsE + 2

ηp

τavg

t∫
−∞

K (t − t′)E(t′)dt′. (20)

There are random fluctuations in the stress tensor due to thermal energy. As with the deterministic contribution to 
the stress tensor, we separate �stoch into two terms: �stoch,s and �stoch,p. Following Pitaevskii & Lifschitz [40], the solvent 
fluctuation term has the form

�stoch,s =√
2kB TηsẆ (21)

where Ẇ is a space–time white noise tensor, formally satisfying

E
[
Ẇ ij(x, t)Ẇmn(y, s)

]= (δimδ jn + δinδ jm)δ(x − y)δ(t − s). (22)

The first term in parenthesis on the right of (22) has the form
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δimδ jn + δinδ jm =

⎧⎪⎨⎪⎩
1 if m �= n & [(i = m & j = n)||(i = n & j = m)]
2 if i = j = m = n

0 otherwise

.

This encodes the properties that distinct noise components are independent and the resulting stress tensor is isotropic, 
symmetric and traceless. The leading coefficient of (21) follows from a computation of the kinetic energy discussed in 
Section 3.5.

The polymer fluctuation stress term has the form

�stoch,p =
√

kB Tηp/τavgF, (23)

where F is a stationary, mean zero Gaussian noise process that is white in space, but not in time. In accordance with the 
fluctuation–dissipation relationship [40], the memory structure of the thermal fluctuations matches that of the deterministic 
part in the following way:

E
[

Fij(x, t)Fmn(y, s)
]= (δimδ jn + δinδ jm)δ(x − y)K (t − s) (24)

where K is the memory kernel introduced in Eq. (19). We note the presence of a two in (21) but not in (23). This is again 
a consequence of equipartition of energy discussed in Section 3.5.

After collecting the deterministic and stochastic stress terms of (20), (21), and (23) and recalling that 2∇ · E = 
u, our 
thermally fluctuating viscoelastic fluid model is described by the stochastic partial-integro-differential equation

ρ(∂tu + u · ∇u) = −∇
(

p − ηp

τavg

)
+ ηs
u + ηp

τavg
(K + ∗ 
u) (25)

+√
2kB Tηs∇ · Ẇ +

√
kB Tηp/τavg∇ · F

with the incompressibility condition ∇ · u = 0. In the above, K +(t) = 1{t≥0}(t)K (t) (with 1 being the indicator function), 
∗ denotes convolution in time and the functions K , Ẇ and F are defined by Eqs. (19), (22) and (24), respectively. For 
simplicity of notation, in the reminder of this paper, we rescale the pressure to just p instead of p − ηp/τavg.

3.2. Definition of the noise

Throughout this work, we assume periodic boundary conditions for the fluid, for the moment defining the domain to be 
O = [0, 2π L]d , where d is the number of dimensions. We define the associated Fourier transform pair of a periodic function 
f (x) as

f (x) =
∑

k∈Zd

fkeik·x/L fk = 1

(2π L)d

∫
O

f (x)e−ik·x/Ldx.

Our definition for the stationary Gaussian noise F is then

F(x, t) := 1

(2π L)d/2

∑
k∈Zd

Fk(t)eik·x/L,

where Fk(t) is a collection of mean zero complex valued stationary processes satisfying

E

[
F k

i j(t)F l
mn(s)

]
= (δimδ jn + δinδ jm)δkl K (t − s). (26)

With the above definition, we have

E
[

Fij(x, t)Fmn(y, s)
]= 1

(2π L)d

∑
k,l

E

[
F k

i j(t)F l
mn(s)

]
eik·x/Le−il·y/L

= (δimδ jn + δinδ jm)
1

(2π L)d

∑
k

eik·(x−y)/L K (t − s)

= (δimδ jn + δinδ jm)δ(x − y)K (t − s),

which agrees with Eq. (24). In the above, we used

δ(x − y) = 1

(2π L)d

∑
k

eik·(x−y)/L .

A similar definition and decomposition hold for Ẇ with K (t − s) being replaced by δ(t − s).
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3.3. Non-dimensionalization

Dividing (25) by ρ and letting νs = ηs/ρ and νp = ηp/ρ be the kinematic viscosities, we have

∂tu + u · ∇u = − 1

ρ
∇p + νs
u + νp

τavg
(K + ∗ 
u) +

√
2kB Tνs

ρ
∇ · Ẇ +

√
kB Tνp

ρτavg
∇ · F. (27)

In order to non-dimensionalize this system, it is worth first recalling the method used for models of individual particle 
motion with velocity processes that are given by the Langevin Equation and the GLE. For the first case, consider the SDE

dY (t) = −aY (t)dt + c
√

2adW (t), Y (0) = y, (28)

where the initial value y is drawn from the stationary distribution, y ∼ N(0, c2). In physical terms, a = γs/m (units of 
[time−1]) and c =√

kB T /m (units of [length/time]). Formally, it is customary to consider the noise dW (t) to have units 
of [time−1/2], but it is perhaps more transparent to understand how the units work out by looking at the second moment 
of Y (t).

By Itô’s Formula,

dY 2(t) = −2aY 2(t) + c2adt + 2aY (t)dW (t).

Taking expectation on both sides and solving this resulting ODE yields [44]

E

[
Y 2(t)

]
= c2 +

(
E

[
y2
]
− c2

)
e−2at .

Under the assumption that y ∼ N(0, c2) we see that E 
[
Y 2(t)

]= c2, meaning that c must have the same units as Y .
Moving on to the nondimensionalization, the coefficient a sets the time scale of the system, so we define the non-

dimensional time to be t̃ = at . Meanwhile, we use the standard deviation of the stationary distribution to rescale Y (t). As 
such, we define cỸ (t̃) := Y (t). Then, using the integral form of (28), we have

Ỹ (t̃) − Ỹ (0) = 1

c
(Y (t) − y) = 1

c

(
−

t∫
0

aY (s)ds + c
√

2aW (t)
)
.

For the integral, we adopt the substitution u = as and for the Brownian motion term, we observe the rescaling law, √
aW (t) ∼ W (at). Then

Ỹ (t̃) − Ỹ (0) = −1

c

at∫
0

Y
(u

a

)
du + √

2 W (at) = −
t̃∫

0

Ỹ (u)du + √
2 W (t̃),

which is to say that Ỹ satisfies the integral form of the Langevin Equation with a stationary distribution that has mean zero 
and variance one.

We now extend this to the GLE (4), which has the integral form

Y (t) − y = −a

t∫
0

Y (s)ds − b

t∫
0

t′∫
−∞

K (t′ − s′)Y (s′)ds′dt′ + c
√

2aW (t) + c
√

bF (t). (29)

As before, we use the time-scale t̃ = at , and then define K̃ (t̃) := K (t) and F̃ (t̃) := F (t). In this way,

E

[
F̃ (t̃) F̃ (s̃)

]
= E [F (t)F (s)] = K (t − s) = K̃ (t̃ − s̃).

Again let cỸ (t̃) := Y (t). Multiplying the right-hand side of (29) by 1/c and adopting the substitutions t̃′ = at′ and s̃′ = as′ , 
we have for the double integral term

b

c

t∫
0

t′∫
−∞

K (t′ − s′)Y (s′)dt′ds′ = b

a2

t̃∫
0

t̃′∫
−∞

K̃ (t̃′ − s̃′)Ỹ (s̃′)ds̃′dt̃′.

Together with the other terms, the non-dimensional (differential) version of the GLE is given by

dỸ (t̃) =
(
− Ỹ (t̃) − β

t̃∫
−∞

K̃ (t̃ − s̃)Ỹ (s̃)ds̃ +√
β F̃ (t̃)

)
dt + √

2 dW (t̃), (30)

where β = b/a2.
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To generalize these observations to the stochastic Navier–Stokes equations, we set the following nondimensional quanti-
ties:

u = U ũ x = Lx̃ t = θ t̃.

Noting that the kinematic viscosity has units of [length2/time], it is natural to use the dissipative time scale θ = L2/νs . 
This definition is consistent with our treatment of the time scale a−1 = m/γs in the GLE, recalling that 1/νs = ρ/ηs and that 
γs = 6πaηs . The appearance of the L2 is due to the two spatial derivatives in the Laplacian. For U , we have the definition 
U =√

kB T /ρLd . The term kB T /m from the GLE is replaced by kB T /ρ and the choice for the power of L becomes clear after 
we appropriately rescale the noise terms. To this end, we introduce (with appropriately redefined tildes)

F̃(x̃, t̃) := 1

(2π)d/2

∑
k

F̃k(t̃)eik·x̃ = Ld/2

(2π L)d/2

∑
k

Fk(t)eik·x/L = Ld/2F(x, t), (31)

where for each k, F̃k(t̃) = Fk(t). Meanwhile,

W̃(x̃, t̃) := 1

(2π)d/2

∑
k

Wk(t̃)eik·x̃

= Ld/2

(2π L)d/2

∑
k

1√
θ

Wk(t)eik·x/L = Ld/2

√
θ

W(x, t).

(32)

Throughout this paper, we will consider finite dimensional truncations for the sum over k. It follows from (31) and (32)
that both F and W are smooth in x, so there is no issue in discussing the divergence of these random fields. We then see 
that

∇̃ · F̃(x̃, t̃) = L(d+2)/2 ∇ · F(x, t); and,

∇̃ · W̃(x̃, t̃) = θ− 1
2 L(d+2)/2 ∇ · W(x, t).

As is common in flow in which viscous force dominates, we set p = P p̃ with P = ρLU/θ for the non-dimensional 
pressure. Substituting these definitions in Eq. (27), we find

∂t̃ ũ + Re ũ · ∇̃ũ = −∇̃ p̃ + 
̃ũ + β(K̃ + ∗ 
̃ũ) + √
2∇̃ · Ẇ +√

β∇̃ · F̃,

where Re = U L/νs is the Reynolds number and

β := νp L2

ν2
s τavg

= G0ρL2

η2
s

is a new dimensionless group. For low Reynolds number, we neglect the nonlinear term, and dropping the tildes, the above 
equation reduces to

∂tu = −∇p + 
u + β(K + ∗ 
u) + √
2∇ · Ẇ +√

β∇ · F, (33)

which is a natural form, given the non-dimensional GLE (30).

3.4. Transformation to Fourier space

Henceforth we consider the two-dimensional version of (33), periodic with domain O = [0, 2π ]2. We now proceed as 
in the non-fluctuating case and transform (33) together with ∇ · u = 0 into Fourier space. To do so, we express u(x, t) and 
p(x, t) through their Fourier series:

u(x, t) =
∑
k∈K

uk(t)eik·x p(x, t) =
∑
k∈K

pk(t)eik·x

where K = Z
2 \ 0. Because our system is assumed to have mean zero velocity, u0(t) = 0 for all t . Also note that the Fourier 

transformed version of the incompressibility condition is that kT uk = 0 for all k.
Before eliminating the pressure, we remark that the divergence of a tensor in Fourier space can be written as

∇ · F = ∂m Fmje j = 1

2π

∑
k∈Z2

∂meik·x F k
mj(t)e j = i

2π

∑
k∈Z2

km F k
mj(t)e je

ik·x

F sym= i

2π

∑
2

F k
jm(t)kme je

ik·x = i

2π

∑
2

eik·xFk(t)k.
k∈Z k∈Z
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In the above, F sym= denotes the use of the symmetry relation F k
mj(t) = F k

jm(t). A similar formulation holds for the divergence 
of W.

Defining k̂ = 1
k k, where k = |k|, taking the dot product of the Fourier transform of (33) with k̂, and using kT uk = 0, we 

find

pk = 1

2π

(√
2k̂T Ẇkk̂ +√

βk̂T Fkk̂
)

. (34)

Plugging (34) back into the Fourier transform of (33), we obtain

∂tuk = −k2uk − βk2(K + ∗ uk) + i
√

2

2π
PkẆkk + i

√
β

2π
PkFkk. (35)

Here P is the projection matrix onto the space of incompressible solutions given as Pk = I − k̂k̂T .
Because the initial condition is real, u is real and thus u−k = uk . Therefore, we will work with the corresponding real 

and imaginary parts of the complex equation (35). Let vk = Re(uk) and wk = Im(uk) be the real and imaginary parts of uk

respectively. Since Fk is a complex stochastic process, it can be written as Freal,k + iFim,k , so that E 
[

F real,k
i j (t)F real,l

mn (s)
]

=
E 
[

F im,k
i j (t)F im,l

mn (s)
]

= 1
2E 

[
F k

i j(t)F l
mn(s)

]
, and similarly for Ẇk . Taking the complex conjugate of (35) adding it to itself, and 

dividing by 2, we have

∂tvk = −k2vk − βk2(K + ∗ vk) +
√

2k

2π
PkẆim,kk̂ +

√
βk

2π
PkFim,kk̂ (36)

and similarly for wk with noise Freal,k and Ẇreal,k .
Equation (36) is a vector equation, which we can decompose in terms of its components. To do so, we let vk = Pkζ kk̂, 

where ζ is a 2 × 2 matrix, and plug into (36). We obtain for the components of ζ

∂tζ
k
i j = −k2ζ k

i j − βk2(K + ∗ ζ k
i j ) +

√
2k

2π
Ẇ im,k

i j +
√

βk

2π
F im,k

i j (37)

E

[
F im,k

i j (t)F im,l
mn (s)

]
= K (t − s)

1

2

(
δimδ jn + δinδ jm

)
E

[
Ẇ im,k

i j (t)Ẇ im,l
mn (s)

]
= δ(t − s)

1

2

(
δimδ jn + δinδ jm

)
for all k, l and i, j, m, n = 1, 2. Equation (37) is a GLE for each Fourier mode k. Similarly, letting wk = Pkξkk̂, shows that wk
is driven by a GLE for each Fourier mode.

3.5. Equipartition of energy

We now show that the fluctuating fluid system described by its Fourier modes in Section 3.4 satisfies equipartition of 
energy. By way of Parseval’s Lemma, for all t ∈R,

1

4π2

∫
O

|u(x, t)|2dx =
∑
k∈K

|uk(t)|2. (38)

Assuming that u(x, t) is a stationary solution to (33), we can express the mean kinetic energy of the system in terms of the 
Fourier modes as follows:

E = ρ

2
E

⎡⎣∫
O

|u(x,0)|2dx

⎤⎦= 2π2ρ
∑
k∈K

E

[
|uk(0)|2

]
= 2π2ρ

∑
k∈K

(E
[
|vk|2

]
+E

[
|wk|2

]
)

= 4π2ρ
∑
k∈K

E

[
|vk|2

]
ζ sym= 4π2ρ

∑
k∈K

k̂T
E

[
ζ kPkζ k

]
k̂,

(39)

where we dropped the dependence on the time t = 0 after the first line. From the δimδ jn + δinδ jm term in the covariance 
structure of ζ in Eq. (37), we know that the only non-zero terms in E 

[
ζ kPkζ k

]
are

E

[
(ζ k

11)
2
]
,E

[
(ζ k

12)
2
]

= 1
E

[
(ζ k

11)
2
]
,E

[
(ζ k

22)
2
]

= E

[
(ζ k

11)
2
]
.

2
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From the discussion about the generic GLE in Section 2 with a = k2, b = βk2, c = 1
2π and in particular Proposition 2.1, we 

have

E

[
(ζ k

11)
2
]

= c2 = 1

4π2
.

Using the above results and carrying out the matrix multiplications, we find

E

[
ζ kPζ k

]
= E

[
(ζ11)

2
]

2

(
k̂⊥k̂⊥T + I

)
= 1

8π2

(
k̂⊥k̂⊥T + I

)
,

where k̂⊥ = (−k2 k1)
T is the unit vector perpendicular to k̂ = (k1 k2)

T . Therefore, plugging back into (39), we find

E = ρ

2

∑
k∈K

k̂T
(

k̂⊥k̂⊥T + I
)

k̂ = ρ

2
|K|. (40)

Thus each uk contributes the same amount to the kinetic energy. This result agrees with the equipartition theorem, which 
states, that because the fluid velocity can be written as a linear superposition of the Fourier modes {uk}, each mode should 
give an equal contribution to the kinetic energy [26].

3.6. Particle advection

We denote by X(t) the position of a particle and define the velocity of the particle as a distributional weighted average 
of the local fluid velocities

dX(t)

dt
= V(t) =

∫
Rd

δa(x − X(t))u(x, t)dx. (41)

Here δa(x − X(t)) is a smoothed delta function with length scale a, which is a proxy for particle radius. While there are 
many choices for δa [26], here we choose a Gaussian density function δa(y) = (2πa2)−d/2 exp(−|y|2/(2a2)). Note that this 
function satisfies the scaling relation

Ldδa(Lx) = δ a
L
(x).

While u is assumed to be periodic, X is not. Equation (41) is dimensional, so we non-dimensionalize it with the same 
scales as the fluid equations and introduce ã = a/L. We find

dX̃

dt̃
= θU

L

∫
Rd

δã(x̃ − X̃(t̃))ũ(x̃, t̃)dx̃.

Taking the specific case d = 2, we let κ̃ be the dimensionless pre-factor and drop the tilde notation to obtain

dX(t)

dt
= V(t) = κ

∫
R2

δa(x − X(t))u(x, t)dx, κ =
√

kB Tρ

ηs
. (42)

The right-hand side of Eq. (42) is a convolution and can be expressed as a Fourier series

V(t) = κ
∑
k∈K

eik·X(t)e− k2a2
2 uk(t),

where we used the convolution theorem ( f ∗ g)k(k) = 4π2 fk gk and the Fourier series of a Gaussian

φa,k = a2

2π
e− k2a2

2 .

Since u is real and thus uk = u−k , we express the sum over K as twice the sum over K+ , where K+ is the subset of K
with k > 0 in the product order. Decomposing into real and imaginary parts, we find

dX

dt
= V(t) = 2κ

∑
k∈K+

[cos(k · X(t))vk(t) − sin(k · X(t))wk(t)] e− k2a2
2 . (43)
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4. Fluid–particle numerical methods

Because we are interested in particle updates, we discretize the particle position equation (44), but we never explicitly 
solve for the stochastic velocity fields vk, wk . The exact solution to the vector ODE (43) on an interval [t, t + 
t] is

X(t + 
t) − X(t) = 2κ
∑

k∈K+

t+
t∫
t

[
cos(k · X(s))vk(s) − sin(k · X(s))wk(s)

]
ds e− k2a2

2 . (44)

We discretize (44) with a semi-implicit Euler method. Using an explicit method like forward Euler would result in the 
wrong statistics at the end of the time interval as discussed in [26,45]. We denote by Xi the numerical approximation of 
X(ti) where ti = i
t and we consider NT time steps, i = 1, . . . , NT , starting with X0 = (0.5 0.5)T . Using the decomposition of 
both vk and wk in terms of stochastic processes ζ k and ξk as derived in Section 3.4 and (44), the semi-implicit discretized 
particle update is then

Xi+1,l = Xi,l + 2κ
∑

k∈K+
P k

lm

[
cos(k · Xi)

ti+1∫
ti

ζ k
mn(s)ds − sin(k · Xi)

ti+1∫
ti

ξk
mn(s)ds

]
kn

k
e− k2a2

2 . (45)

Here we adopted the Euler summation convention of repeated indices being summed over {1, 2}. For simplicity of exposure, 
we introduce the following notations

ti∫
0

ζ k
mn(s)ds = Zk

i,mn,

ti∫
0

ξk
mn(s)ds = �k

i,mn


Zk
i,mn = Zk

i+1,mn − Zk
i,mn, 
�k

i,mn = �k
i+1,mn − �k

i,mn

and let K+
M be the truncated set of the first M positive wave vectors. With these notations and (45), the numerical approx-

imation of the particle update becomes

Xi+1,l = Xi,l + 2κ
∑

k∈K+
M

P k
lm

[
cos(k · Xi)
Zk

i,mn − sin(k · Xi)
�k
i,mn

] kn

k
e− k2a2

2 , (46)

for i = 0, . . . , NT − 1 with X0 = (0.5 0.5)T and l = 1, 2. To update the particle position with (46) we only need realizations 
of the integral increments 
Zk

i and 
�k
i for i = 0, . . . , NT − 1 where the underlying processes ζ k and ξk satisfy the GLEs 

(37) with appropriate covariance structure. The simulation of these increments was described in Section 2.1 for a generic 
GLE.

4.1. Numerical approximation of the integral J (t)

Before moving on, we note a difficulty that arises in the numerical integration of J (t) given by Eq. (12) in the context of 
simulating the fluid Fourier modes. In the notation of Section 2, we have for the diagonal component of ζi j from (37) that 
a = k2, b = βk2, c = 1

2π with k = |k| and ρ̂Y (ξ) given by Eq. (7).

Since the tail of 
(ξ) decays like ξ−2 and since 
(0) and sin2(ξt/2)

ξ2 are well-defined at 0, the improper integral J (t) =
2c2

πk2

∫∞
0


(ξ)

ξ2 sin
(

ξt
2

)
dξ exists. However, as illustrated in Fig. 1, the number of oscillations grows sharply as t increases. The 

number of oscillations renders the use of an adaptive scheme like Gauss–Kronod useless, as the number of sub-intervals 
needed to guarantee accuracy becomes unmanageable. Based on the proof of Proposition 2.1 and the subsequent residue 
formulas developed in [38], a residue method, where the pole of the numerators are known, would guarantee an exact 
evaluation of the integral. However, as N increases, the degree of the numerator of 
(ξ) increases and computing the 
zeroes with any accuracy becomes impossible. Finally, if the Fourier inverse of ρ̂Y were known, then an FFT based method 
could be developed to evaluate J (t). Such a method fails for N large due to the increasing length of the plateau and 
the slow onset of the decay of 
(ξ) as seen in Fig. 4(b). Based on the above considerations, we numerically evaluate 
J (t) using a trapezoidal rule on a non-equally spaced grid. Because sin2(ξt/2)/ξ2 is close to a sinc function, we use the
sincfun package [46], which is a modification of the chebfun package [47] to properly handle integral of sinc type on 
a semi-infinite interval. Therefore, we let sincfun pick the location of the node to represent sin2(ξt/2)/ξ2 using sinc 
functions and use a trapezoidal rule with 
(ξ) evaluated at the corresponding nodes. We note that the sinc objects can be 
pre-computed for every value of t and that only 
(ξ) depends on k.

Any numerical errors in the evaluation of J (t) will propagate into the positive semi-definite discrete covariance matrix R
and might result in some of the smallest eigenvalues being negative. In order to still be able to compute the lower Cholesky 
decomposition of R we replace any small negative eigenvalues by a small positive tolerance. In practice, we observe that as 
t increases, the largest negative values range from 1 × 10−4 to 1 × 10−7.
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Fig. 1. Plot of 
(ξ) sin2(ξt/2)/ξ2, the integrand of J (t), for N = 1, k = 1 at t = 10 ms, 100 ms and 500 ms. The envelope (cyan) is given by 
(ξ)/ξ2.

4.2. Computational costs

The computational cost of the two-step algorithm presented above is dominated by building the covariance matrix for 
each Fourier pair k and reading these matrices when updating the position of a particle. Once the physical parameters are 
fixed (including NT ), the covariance matrix for each of the Fourier mode GLE can be precomputed and stored. Since the 
GLE only depends on |k| only about M/2 matrices need to be saved. Using sincfun, most of the computational time in 
evaluating J (t) is spent on building the sinc interpolant as opposed to evaluating the integral. We finally note that as NT
increases so does the computational cost of performing the Cholesky decomposition of each NT × NT matrix. The time to 
generate all the covariance matrices on a desktop for M = 256 and Tfinal = 1024 ms is about ten minutes. In comparison, 
the time to generate one corresponding particle path following Eq. (46) is about 1.6 s.

5. Behavior of the model and numerical results

5.1. Existence and uniqueness of the particle process

In the interest of clarity of exposition we will perform our mathematical analysis on a simplified system. Let fk : R →R, 
k ∈ K, be a collection of bounded, Lipschitz continuous functions. We define the position process {X(t)}t≥0 to be the path-
wise solution to the following ODE:

Ẋ(t) =
∑
k∈K

fk(X(t))Vk(t), (47)

where K ⊂ Z is a finite collection of integers and {Vk(t)}t∈R with k ∈ K is a collection of independent, almost surely 
continuous, stationary solutions to the GLE (4) with k-dependent coefficients ak , bk and ck . Denote their respective ACFs by 
ρk(t) := E [Vk(t)Vk(0)].

Theorem 5.1. Let T > 0 be given and {Vk}k∈K be defined as above. Then there exists a unique solution to (47) on the interval [0, T ]
almost surely.

Proof. Define �c to be the probability one event that all velocity modes are continuous. That is to say, let

�c = {ω ∈ � : Vk ∈ C(R) for all k ∈ K}. (48)

For a given ω ∈ �c we can define the function

F (x, t;ω) =
∑
k∈K

fk(x)Vk(t;ω). (49)

Both F and ∂ F
∂x are Lipschitz continuous in x and continuous in t for all x, t ∈ R. By the Picard–Lindelöf Theorem, there 

exists a unique solution to the ODE

X(t;ω) = F (X(t;ω), t) (50)

up to the time T (ω) ∈ (0, ∞] that the solution might blow up to positive or negative infinity.
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To show that this does not happen in finite time, consider the following estimate which shows that for all deterministic 
T > 0, E 

[
X2(T )

]
< ∞, implying that P {|X(T )| = ∞} = 0. Indeed,

E

[
X2(T )

]
= E

⎡⎣ T∫
0

∑
k

fk(X(t))Vk(t)dt

T∫
0

∑
j

f j(X(s))V j(s)ds

⎤⎦
=
∑

k

∑
j

T∫
0

T∫
0

E
[

fk(X(t)) f j(X(s))Vk(t)V j(s)
]

dsdt

≤
∑

k

∑
j

T∫
0

T∫
0

C2
f E

[|Vk(t)V j(s)|]dsdt

≤
∑

k

∑
j

C2
f

T∫
0

T∫
0

E

[
Vk(t)

2
] 1

2
E

[
V j(s)2

] 1
2

dsdt,

where C f is a constant satisfying C f ≥ fk(x) for all k ∈ K and x ∈ R, and we have used the finiteness of the number of 
terms in the sum and Cauchy–Schwarz.

By stationarity of the Vk ’s, the two factors in the integrand equal 
√

ρk(0) and 
√

ρ j(0) respectively. It follows that

E

[
X2(T )

]
≤
(

C f T
K∑

k=1

√
ρk(0)

)2
. �

5.2. Convergence of the numerical method

Let T > 0 be fixed and let N ∈ N. Let K1 ≤ K2 ≤ . . . ≤ K N ≤ . . . ≤ K be an increasing sequence of integers that converge 
to K . For each positive integer k ≤ K and N ∈ N, we define the integrated increments of the noise process {un

k,N }n∈Z to be 
jointly distributed as

un
k,N ∼

tn+1∫
tn

Vk(t)dt

where tn = n/N . We define an associated continuous time process

Vk,N(t) = un
k,N

tn+1 − tn
, for t ∈ [tn, tn+1).

The numerical approximation analogous to (45) for the position process is then defined by x0
N = 0, and

xn+1
N = xn

N +
K N∑

k=1

fk(xn
N)un

k,N . (51)

We define a continuous-time version of the numerical approximation to be

XN(t) := xn
N + (t − tn)

tn+1 − tn

K N∑
k=1

fk(xn
N)un

k,N when t ∈ [tn, tn+1) . (52)

We will demonstrate convergence of the numerical method in the following sense.

Theorem 5.2. Let T > 0, and let {X(t)}t∈[0,T ] be a solution to (47) with noises {Vk}k∈K as defined in Theorem 5.1. Then XN (T ) → X(T )

in distribution.

Proof. We first define an intermediary process that can immediately be shown to converge to X in distribution and then 
use Slutsky’s Theorem to complete the proof. To this end, for each ω such that the collection of Vk are continuous, define 
X̃N(·, ω) to be the solution of the ODE
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d

dt
X̃N(t;ω) =

∑
k∈K

fk( X̃N(t;ω))Vk,N (t;ω). (53)

We claim X̃N converges to X in distribution. To see this, let � : C([0, T ]; RK ) → C([0, T ]; R) be the map defined by the 
ODE (47). That is to say, for an RK -valued function V (t) = (V 1(t), V 2(t), . . . , V K (t)), X = �(V ) if X satisfies (47). Similarly, 
by (53), X̃N = �(V N(t)) where V N(t) = (V 1,N(t), V 2,N(t), . . . , V K ,N (t)). Since the functions fk are locally Lipschitz, the map 
� is continuous in the sup-norm. Since V N → V in distribution, the continuous mapping theorem implies that X̃N → X in 
distribution.

Now, define Ỹ N (t) = XN(t) − X̃N (t). It remains to show that Ỹ N(T ) → 0 in probability. If we define xN (t) := xn
N for 

t ∈ [tn, tn+1), then we can write XN (t) as an integral equation,

XN(T ) =
T∫

0

K N∑
k=1

fk(xN (t))Vk,N(t)dt (54)

It follows that

| X̃N(T ) − XN(T )| ≤
T∫

0

K N∑
k=1

| fk( X̃N (t)) − fk(xN(t))||Vk,N(t)|dt +
T∫

0

K∑
k=K N

| fk( X̃N(t))||Vk,N(t)|dt

≤
T∫

0

K N∑
k=1

Ck
(| X̃N(t) − XN(t)| + |XN(t) − xN(t)|)|Vk,N(t)|dt +

t∫
0

K∑
k=K N

| fk( X̃N (t))||Vk,N(t)|dt′

Here we have used the Lipschitz property of the fk , | fk(x) − fk(y)| ≤ Ck|x − y|. If we take N sufficiently large, then because 
K is finite, we can take the last term to be zero. Defining CLip = maxk Ck , with

VN(t) := CLip

K N∑
k=1

|Vk,N(t)| and IN(t) :=
t∫

0

|XN(t′) − xN(t′)|VN(t)dt

we observe that for each ω ∈ �c := {ω : X(t; ω) is continuous for t ∈ [0, T ]} we have

| X̃N(T ;ω) − Xn(T ;ω)| ≤ IN(T ;ω) +
T∫

0

| X̃N(t;ω) − XN(t;ω)|VN (t;ω)dt.

It follows from the integral form of Gronwall’s Inequality that

| X̃N(T ;ω) − XN(T ;ω)| ≤ IN(T ;ω) +
T∫

0

IN(t;ω)Vn(t;ω) e
∫ T

t VN (s;ω)dsdt

Therefore, applying Cauchy–Schwarz to the second term,

E

[
| X̃N(T ) − XN(T )|

]
≤ E [IN(T )] +E

⎡⎣ T∫
0

I2
N(t)dt

⎤⎦
1
2

E

⎡⎣ T∫
0

V2
N(t) e2

∫ T
t VN (s)dsdt

⎤⎦
1
2

. (55)

For t ∈ [tn, tn+1), VN(t) = ∑K
k=1

∑n
i=1 |ui

k,N/N|. Noting that each of the summands is a Gaussian random variable, VN (t)
will have finite exponential moments, implying that the last factor in (55) is finite. Moreover, since V N,k(t) approaches the 
stationary process V N(t), the sequence of moments of VN (t) is bounded in N .

It remains to show that E 
[∫ T

0 I2
N (t)dt

]
→ 0 as N → ∞. Note first, by (52) we have for t ∈ [tn, tn+1) that

|XN(t) − xN(t)| ≤ (t − tn)

K N∑
k=1

| fk(xN (t))||Vk,N(t)| ≤ M

N
VN(t)

where M is a constant such that | fk(x)| ≤ M for all k ∈ K and x ∈ R and we note that t − tn ≤ 1/N when t ∈ [tn, tn+1). 
Therefore

I2
N(t) ≤ 1

N

T∫
0

MV2
N(t)dt �
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Table 1
List of fixed parameters and dimensionless groups. The solvent is taken to be water and G0 is chosen so that the 
polymer dynamic viscosity ηp is a hundred times that of water for a single Rouse kernel (N = 1).

Parameter Symbol Values Units

Boltzmann cst x temp. kB T 4.1 × 10−9 μm2 mg ms−2

Solvent density ρ 1 × 10−9 mg μm−3

Solvent dyn. viscosity ηs 1 × 10−6 MPa ms

Solvent kin. viscosity νs = ηs/ρ 1 × 103 μm2 ms−1

Polymer mean stress G0 1 × 10−4 mg ms−2

Smallest relaxation time τ0 1 ms

Length L 10 μm

Number of paths N p 1 × 103

Characteristic time θ = L2/νs 0.1 ms

Characteristic velocity U =√
kB T /ρ/L3 6.32 × 10−2 μm ms−1

Reynolds number Re = U L/νs 6.32 × 10−4

Beta parameter β = G0ρL2/η2
s 10

Kappa parameter κ =√
kB Tρ/ηs 2 × 10−3

Table 2
Polymer parameters for different numbers of kernels and α = 2.

Number of kernels, N N = 1 N = 5 N = 50 N = 100

Avg. rel. time τavg,N ms 1 7.32 8.13 × 101 1.64 × 102

Pol. dyn. viscosity ηp = G0τavg,N MPa ms 1 × 10−4 7.32 × 10−4 8.13 × 10−3 1.64 × 10−2

Pol. kin. viscosity νs = ηp/ρ μm2 ms−1 1 × 105 7.32 × 105 8.13 × 106 1.64 × 107

5.3. Parameter choices

We choose the following set of fundamental units: [time] = ms, [length] = μm, [mass] = mg. The corresponding 
units for force and pressure are: [force] = μN and [pressure] = MPa. The complete set of physical parameters are given 
in Table 1. We note that the Reynolds number is indeed small and we were justified in neglecting the nonlinear terms.

It has been recently demonstrated [11] that the iGLE with generalized Rouse kernel fits live data much better when the 
memory kernel has a high number of terms (N ≈ 200) than for a low number of terms (N ≈ 5). In order to span a range 
of dynamics, in our simulations we use the collection of values N = 1, 5, 50 and 100. It is important to note though that, 
as the number of terms in the generalized Rouse kernel changes, so does the average of the relaxation times. When it is 
important to emphasize this dependence, we introduce the notation τavg,N and observe that

τavg,N = 1

N

N∑
n=0

τ0

( N

N − n

)α = Nα−1τ0

N∑
k=1

1

kα
. (56)

We see that limN→∞ τavg,N/Nα−1 = τ0ζ(α), where ζ(α) is the Riemann zeta function. As a consequence, we are faced with 
a modeling decision in whether to hold the polymer viscosity ηp constant across the various values of N , or to hold the 
polymer mean stress G0 = ηp/τavg,N constant. We chose to keep G0 constant, which corresponds to keeping the coefficient 
of the memory-related terms in (25) constant. As a consequence, the only dimensionless group in the fluid equations is also 
constant: β = G0ρL2/η2

s = 10.
Regarding the shape parameter for the memory kernel, unless stated otherwise, we take α = 2. For this case, the relax-

ation times and polymer parameters are summarized in Table 2.

5.4. Model validation

In order to compare to experimental data, we express the output of our model in terms of the empirical measures for 
two statistics:

Ensemble MSD: M(t) = Var
(|X(t) − X(0))|)

Ensemble Increment ACF: (57)

A(n) = 1

M(t1)2
Cov

((
X(tn+1) − X(tn)

)
,
(
X(t1) − X(0)

))
.

In the above, the lag times between tn+1 and tn and t1 and 0 are the same. As expected, particles advected by our model 
for a viscoelastic fluid exhibit some fundamental properties observed in live data [10,11]: sublinear behavior of the MSD 



704 C. Hohenegger, S.A. McKinley / Journal of Computational Physics 340 (2017) 688–711
Fig. 2. Time convergence: (a) Dimensionless particle’s MSD on a log–log scale as a function of dimensionless time and (b) dimensionless Increment ACF 
convergence of the particle’s horizontal component as a function of dimensionless lag time for 
t = 8 ms, 4 ms, 2 ms, 1 ms and 0.5 ms for N = 1 (circles) 
and N = 100 (crosses). The parameters are M = 256, Tfinal = 64 ms, and a = 1 μm. All other parameters are given in Tables 1–2. We use the convention []
to denote a dimensionless variable in the labels.

Fig. 3. Fourier convergence: (a) Dimensionless particle’s MSD on a log–log scale as a function of dimensionless time and (b) dimensionless Increment 
ACF convergence of the horizontal component as a function of dimensionless lag time for M = 4, 8, 16, 64, 256 and 1024 for N = 1 (circles) and N = 100
(crosses). The parameters are 
t = 1 ms, Tfinal = 64 ms and a = 1 μm. All other parameters are given in Tables 1–2.

and first lag anti-correlation in the Increment ACF. Now we establish convergence of the numerical method and show that 
taking a non-dimensional time step 
t/θ = 10 and M = 256 Fourier modes are sufficient to capture dynamics observed on 
experimental time scales.

Indeed, Fig. 2 shows the convergence in dimensionless time step for one kernel (circles) and one hundred kernels 
(crosses) with physical parameters given in Tables 1–2. In each case, we plot both M(t) (a) and A(n) of the horizontal 
component (b). We set M = 256, Tfinal/θ = 640 (corresponding to 64 ms) and a/L = 0.1 (corresponding to 1 μm). The di-
mensionless time steps are 80, 40, 20, 10 and 5 corresponding to 8 ms, 4 ms, 2 ms, 1 ms and 0.5 ms. Taking the paths 
with 
t/θ = 5 as the true solution, the absolute errors in the MSD at Tfinal are about 5 × 10−7 for N = 1 and 2 × 10−8

for N = 100, while the relative errors 4% and 2% respectively. From Fig. 2, we conclude that the method converges in time. 
Therefore, we pick 
t/θ = 10 for the rest of this paper.

For the convergence of the simulation as a function of M , we again demonstrate it for one kernel (circles) and one 
hundred kernels (crosses) with the physical parameters given in Tables 1–2. In Fig. 3, we set Tfinal/θ = 640 (corresponding 
to 64 ms), a/L = 0.1 (corresponding to 1 μm), and 
t/θ = 10 (corresponding to 1 ms). We consider M = 4, 16, 64, 256 and 
1024. Again, we plot both M(t) (a) and A(n) of the horizontal component (b). Taking the MSD with M = 1024 as the exact 
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Table 3
Absolute and relative error in the MSD at the final time (64 ms) for N = 1 and N = 100 corresponding to data plotted in Fig. 3.

Number of Fourier modes M = 4 M = 16 M = 64 M = 256

Absolute error for N = 1 8 × 10−6 4 × 10−6 9 × 10−7 6 × 10−7

Absolute error for N = 100 7 × 10−7 3 × 10−7 8 × 10−8 2 × 10−8

Relative error for N = 1 54% 25% 6% 4%

Relative error for N = 100 52% 25% 6% 2%

Fig. 4. Log–log plot of 
(ξ) for (a) N = 1,5,50 and 100 and (b) k = 1,5,10,20 and 30.

solution, the absolute and relative errors at the final time for N = 1 and N = 100 are summarized in Table 3. We see that 
convergence in M is very rapid. Thus, we set M = 256 for the remainder of the simulations.

5.5. Behavior of the individual GLE modes of the fluid

As we will see in the next section, particle directly inherits certain properties of the fluid modes. In this section, we in-
vestigate the Fourier transform of the ACF of the fluid velocity modes, noting in particular the dependence on the associated 
wavevector k.

Recall that for the GLEs that drive the fluid modes we have Eq. (4) with a = k2, b = βk2, and c = 1
2π where k = |k|. First, 

we rewrite the Fourier transform ρ̂Y of the autocovariance function in a form similar to the one discussed in the proof of 
Proposition 2.1, letting ρ̂Y (ξ) = c2
(ξ) and �(x) = 1

N

∑N−1
n=0

1
x+λn

where λn = τ−1
n , n = 0, . . . , N − 1. Then we have


(ξ) = 2a + 2bRe(�(iξ))

|iξ + a + b�(iξ)|2 = 2

k2

1 + βRe(�(iξ))

|i ξ
k + 1 + β�(iξ)|2 .

We note that the real and imaginary parts of �(iξ) can be easily calculated, so that 
(ξ) becomes


(ξ) = 2

k2

1 + β�real(ξ)

(1 + β�real(ξ))2 +
(

ξ
k + β�imag(ξ)

)2

�real(ξ) = Re(�(iξ)) = 1

N

N−1∑
n=0

λn

ξ2 + λ2
n

�imag(ξ) = Im(�(iξ)) = 1

N

N−1∑
n=0

−ξ

ξ2 + λ2
n
.

With these formulas in hand, we can directly analyze the behavior of the velocity autocovariance for small and large ξ . In 
particular, we note how its asymptotic behavior depends (or not) on k and N . For a visual guide, in Fig. 4, we plot 
(ξ) on 
a log–log scale for (a) N = 1, 5, 50 and 100 and k = 1 and (b) k = 1, 5, 10, 20 and 30 and N = 50.

For the near zero behavior, utilizing the notation τavg,N introduced in Eq. (56), we have
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Fig. 5. Individual fluid GLEs: (a) Log–log plot of the MSD and (b) Increment ACF for individual fluid modes with k2 = 1 and 450 and N = 1 and 100 
compared with the particle’s MSD and Increment ACF. The MSD depends on k, while the ACF does not.


(0;k, N) = 2

k2

1

1 + βτavg,N
.

As seen in Fig. 4(b), limk→∞ 
(0; k, N) = 0. On the other hand, by (56) we have that τavg ∼ N1−α , so for fixed k, the value 
of 
(0; k, N) decreases as N increases. This latter property has a direct consequence for the MSD of the associated iGLE. As 
pointed out in [48],

lim
t→∞

E
[

Z 2(t)
]

t
= lim

ξ→0
ρ̂Y (ξ) = 2c2

k2

1

1 + βτavg,N
.

This behavior is displayed in Fig. 5(a) for N = 1 and N = 100. Note though, the Increment ACF does not depend on k, as is 
shown in Fig. 5(b). We comment more on this in the following section.

For large ξ , a direct computation shows that

lim
ξ→∞

ξ2
(ξ)

2c2k2
= 1,

in other words, the tail of 
(ξ) is independent of N and behaves as ξ−2 for large ξ . From Fig. 4(a), we remark that the 
location of the peak of 
(ξ) is independent of N if k = 1. However, from Fig. 4(b) we see that, as k increases, the peak 
widens to a plateau.

5.6. Relating particle behavior to that of the fluid modes

As we have seen, the behavior of an immersed particle can be expressed in terms of a linear combination of the fluid 
modes (with coefficients that depend on the current position) as in Eq. (43). However, the nonlinear dependence on X(t)
prevents a explicit mathematical analysis of the MSD and ACF of immersed particles. To circumvent this issue in the viscous 
fluid case, Atzberger, Kramer and Peskin [26] introduced the following approximation for correlations in the fluid velocity 
field:

E [u(X(t), t)u(X(0),0)]
AK P≈ κ2

E [u(0, t)u(0,0)] . (58)

Proceeding formally from (42) we can approximate the particle velocity ACF,

E [V(t)V(0)] ≈ κ2
E [u(X(t), t)u(X(0),0)]

AK P≈ κ2
E [u(0, t)u(0,0)] .

Expressed in terms of Eq. (43), this takes the form

E [V(t)V(0)]
AK P≈ 4κ2

∑
k∈K+

E [vk(t)vk(0)] e−k2a2
,

which can, in turn, be used to give an expression for the Increment ACF.
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Let {tn}n≥0 be the times that we observe the position of a particle and assume that these time points are equally spaced. 
We introduce the following shorthand:


X(n) := X(tn+1) − X(tn), and 
Uk(n) := Uk(tn+1) − Uk(tn)

where Uk(t) := ∫ t
0 vk(s)ds.

Then, recalling the notation introduced in Eq. (57), under the assumption that the velocity process is stationary, we have

A(n) = Corr
(

X(n),
X(0)

)= Cov
(

X(n),
X(0)

)
Var

(

X(0)

) .

Now,

Cov
(

X(n),
X(0)

)= E

⎡⎣ tn+1∫
tn

V(t)dt

t∫
0

V(s)ds

⎤⎦
=

tn+1∫
tn

t∫
0

E [V(t)V(s)] dsdt

AK P≈
tn+1∫
tn

t∫
0

4κ2
∑

k∈K+
E [vk(t)vk(s)] e−k2a2

dsdt

= 4κ2
∑

k∈K+
Cov

(

Uk(n),
Uk(0)

)
e−k2a2

.

Numerically, we have observed that the autocorrelation functions for the fluid modes appear to be independent of k:

Ak(n) := Corr
(

Uk(n),
Uk(0)

)≈ an ∈ [−1,1].
It follows from this and the preceding calculation that

Cov
(

X(n),
X(0)

) AK P≈ 4κ2
∑

k∈K+
anVar

(

Uk(0)

)
e−k2a2 ≈ anVar

(

X(0)

)
where, in the last line, we have used the fact that a0 = 1. Dividing both sides by Var

(

X(0)

)
, we have A(n) ≈ an . That is 

to say, adopting the AKP approximation (58) and utilizing the numerical observation that Ak(n) ≈ an is sufficient to explain 
the observation that the Increment ACF of the particle process matches that of the fluid modes.

5.7. A note on the length parameter a of the approximate δ function

It has been noted in multiple places that the length parameter that appears in δa (see Section 3.6) does not directly 
correspond to particle radius [49]. In fact, some authors have taken to calling the advected object a “blob” or “parcel” of 
fluid [23]. In this section, we show that there are two senses in which changes to a do not result in physically correct 
changes in particle tracking statistics. The first case has already been documented [50,51], namely that two dimensional 
stochastic fluid–particle simulations do not produce the Stokes–Einstein relationship between the diffusivity of a particle 
(which is proportional to the leading coefficient of the MSD) and the particle radius. Instead, for a purely viscous fluid, 
Donev and co-authors, [50,51], propose a logarithmic scaling of the diffusivity as a function of the radius of the form 
c1 ln(L/(c2a)), where c1 = kB T /(4πηs) is a physical constant and c2 is a simulation dependent constant. In Fig. 6(a), we 
plot the particle’s MSD for N = 1 (circles) and N = 100 (crosses) and a = 0.5 μm, 1 μm, 1.75 μm and 2 μm and clearly 
observe the dependence of the MSD on a in both cases. We then fit the logarithm of the MSD to the logarithm of the time 
by a linear polynomial and extract the diffusivity. Finally, we fit the obtained diffusivity to the logarithm of the inverse 
radius. Fig. 6(b) shows the diffusivity as a function of 1/a on a semi-log plot together with the linear fit. We observe that 
both the diffusivities and the resulting fits depend on N . This results is not surprising, since the polymeric viscosity (and 
thus the zero shear rate) viscosity changes between N = 1 and N = 100. We find for the constants c1,N=1 = 6 × 10−6, 
c1,N=100 = 5 × 10−6, c2,N=1 = 0.16, and c2,N=100 = 0.65. In Fig. 6, we set Tfinal = 128 ms, M = 256 and 
t = 1 μm and the 
other parameters as in Tables 1–2.

It has been proposed that one should introduce an empirical mapping between a and an effective particle radius [49]. 
However, such an approach will not work for our viscoelastic setting due to a second issue, which involves the relationship 
between particle radius and the magnitude of the anti-correlation in the first lag of the increment process. For particles 
diffusing in human mucus, Hill et al. [10] found that larger particles have a larger first step anti-correlation. However, we 
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Fig. 6. Influence of a: (a) Particle’s MSD on a log–log scale as a function of time and (b) diffusivity on a semi-log scale as a function of inverse radius for 
a = 2 μm, 1.5 μm, 1 μm and 0.75 μm and for N = 1 (circles) and N = 100 (crosses). The parameters are M = 256, Tfinal = 128 ms, and 
t = 1 ms. All other 
parameters are given in Tables 1–2.

Fig. 7. Nondimensional sample path starting in the middle of the window for N = 1, 5, 50 and 100. The physical parameters are as in Tables 1 and 2. The 
simulation parameters are 
t = 1 ms, Tfinal = 1024 ms, and M = 256.

did not observe such a relationship in our simulations. In fact, changes in the parameter a seemed to have no effect on the 
Increment ACF at all. But in light of the preceding section, this should not be surprising. There, we showed that the particle 
Increment ACF looks exactly like the Increment ACF of the fluid modes, but these do not change with a because it does not 
even appear in their definition (see Section 3.4).

6. Discussion

We have introduced and analyzed a model for the movement of a thermally fluctuating particle in a linear viscoelastic 
fluid by generalizing the Landau–Lifschitz Navier–Stokes equations. Mimicking the procedure for generalizing the single-
particle Langevin equation, we generalize the stress term of the fluid equation by way of integration against a memory 
kernel. Through non-dimensionalization and analysis of the relevant parameter regime, we show that the coefficient of the 
non-linear term is very small. We model a particle advected by the fluid by local averaging in the fluid velocity field and 
we numerically investigate simulations of particle trajectories.

Consistent with recent work, we use the generalized Rouse form for the memory function (see Eq. (8)). This is a three 
parameter family of functions that captures a cascade of linear response functions that act on N distinct time scales. When 
N = 1 this is called a Maxwell model, but recent statistical work has shown that much higher values of N are necessary to 
exhibit prominent viscoelastic effects [11]. For illustrative purposes, we plot in Fig. 7 a sample path for N = 1, 5, 50 and 100 
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Fig. 8. Number of kernels and shape parameters: (a) Dimensionless MSD on a log–log scale as a function of dimensionless time, (b) dimensionless Increment 
ACF of the particle’s horizontal component as a function of dimensionless lag time for N = 1, 5, 50 and 100, and similarly in (c)–(d) for memory kernel 
shape parameter α = 2 and 4 for N = 1, 5, 50 and 100. The parameters are M = 256, 
t = 1 ms, a = 1 μm and Tfinal = 1024 ms. All other parameters are 
given in Tables 1–2.

starting in the middle of the window of width L = 10 μm. The physical parameters are as described in Tables 1–2, while 
the other parameters are 
t = 1 μs, Tfinal = 1024 ms, M = 256 (where M is the number of Fourier modes used to simulate 
the fluid) and a = 1 μm.

We analyze particle trajectories in terms of two statistics that are commonly used in particle tracking experiments: the 
mean-squared displacement of the particle position (MSD) and the auto-correlation function of increments of the position 
process (Increment ACF) (see definitions in Section 5.4). In Fig. 8, we plot both the particle MSD and the Increment ACF 
for N = 1, 5, 50 and 100 (a)–(b) and for α = 2 and 4 (c)–(d). We set Tfinal = 1024 ms, 
t = 1 μm, a = 1 μm and M = 256. 
As expected, the statistics of the particle trajectories qualitatively match what is observed in the live data. Similar to the 
behavior of a single particle GLE, the behavior of particles advected by a viscoelastic fluid are mostly diffusive in character 
when N is small and subdiffusive when N is larger: in Fig. 8(a) we see that a line of slope one fits the log–log plot of the 
particle MSD for N = 1 and N = 5 quite well, but the particle MSD for N = 100 is better fit by slope 1/2. Furthermore, 
as predicted by the more recent work [11], when the generalized Rouse kernel has shape parameter α, the corresponding 
particle MSD has exponent 1/α (see Fig. 8(c). We note that this prediction is different from the one recorded in [52] because 
earlier versions of the model did not assume stationarity of the velocity process.

As discussed in the introduction, we investigated whether a central premise in the field of passive microrheology holds. 
Indeed, we find a strong connection between a particle’s Increment ACF and that of the fluid modes, which indicates that 
recovery of the fluid’s memory kernel from immersed particle dynamics should be possible in this model. It was not clear 
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from the outset of this project that this result would hold. It was known that the particle dynamics could be expressed as 
a sum over stationary fluid modes, but because definition of stochastic integro-differential equations that govern the modes 
depend on their “wave numbers” k, it appeared that the particle dynamics would be an average over a range of behaviors in 
the fluid modes. To our surprise, we found (Section 5.6) that the Increment ACF for the fluid modes are essentially identical. 
From this observation, along with an approximation (Eq. (58)) introduced by Atzberger, Kramer and Peskin [26], we can 
explain why memory effects in particle trajectories are so similar to that of the surrounding fluid (Section 5.6).

Though these results hold when particles are passively advected by the fluid, it is not yet clear how much the effect of 
particle inertia acting back on the fluid will change this. Consider, for example, that simulations using the stochastic IBM 
model for viscous fluids found positive correlation in the particle velocity ACF over small time intervals [26]. In generalizing 
to a fully coupled viscoelastic fluid–particle system, it is not at all clear how this feature will interact with the negative 
correlation we have observed at small times for passive advection. Any significant departure from the presently observed 
behavior could imperil our ability to recover fluid properties from particle statistics.

Implementing a fully coupled fluid–particle system remains a serious challenge though. Our method here relies on being 
able to exactly calculate the spectral density of the stationary processes from which our fluid is built. When particles are 
allowed to exert a force back on the fluid, then (1) the nonlinearity of the interaction prevents the derivation of an exact 
solution for the covariance function; and (2) Gaussianity itself is lost, meaning that more than two moments need to be 
considered. Overcoming these obstacles is left for future work.

In the mean time, the passive advection model features a number of interesting and important dynamics that still require 
satisfactory explanation. Most of these revolve around understanding the first step auto-correlation in the increment process. 
We have already discussed the surprise that the fluid mode Increment ACFs do not appear to depend on k. A further mystery 
appears in the Increment ACF plots (Fig. 8(d)). While, the model reliably matched expected behavior for the log–log slope 
of the MSD, the first step of the particle Increment ACF appears to be same for α = 2 and α = 4. This is different from what 
is observed in live data, for which anti-correlation in the first step increases as the subdiffusive exponent (1/α) decreases. 
Moreover, as we detail in Section 5.7, the first step of the particle Increment ACF does not depend on the parameter a
in a way that is consistent with the interpretation of a as a particle radius. In live data, as particle radius increases, the 
first step anti-correlation becomes larger and the subdiffusive exponent decreases. It remains to be seen how or if these 
properties change when particle inertia is allowed to act back on the fluid, but issues with the scaling of a have long been 
documented in the implementation of the stochastic IBM for viscous fluids. Developing a model that can faithfully handle 
multiple particle sizes in the same fluid might ultimately require a change in coarse-graining philosophy.
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