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Microbead rheology maps the fluctuations of beads immersed in soft matter to viscoelastic properties of the
surrounding medium. In this paper, we present modeling extensions of the seminal results of Mason and Weitz
�Phys. Rev. Lett. 74, 1250 �1995�� for a single bead and of Crocker et al. �Phys. Rev. Lett. 85, 888 �2000�� and
Levine and Lubensky �Phys. Rev. Lett. 85, 1774 �2000�� for two beads. We formulate the linear response
analysis for two beads so that the model equations retain the local diffusive properties of each bead �through
the memory kernel of the shell or depletion zone surrounding each bead� and the nonlocal dynamic moduli of
the medium separating the beads �through the memory kernel that transmits fluctuations of one bead to the
other�. We then derive a 3�3 invertible system of equations relating: an isolated bead’s autocorrelations, the
autocorrelations and cross-correlations of two coupled beads; and the shell radius surrounding each bead, the
memory kernels of the shell, and of the medium between the two beads.

DOI: 10.1103/PhysRevE.78.031501 PACS number�s�: 83.10.Mj, 83.10.Rs, 83.60.Bc, 83.80.Lz

I. INTRODUCTION

In passive microrheology, fluctuations of beads are ex-
perimentally recorded. In the one-bead protocol, fluctuations
from neighboring beads are ignored, assuming the beads are
sufficiently far away from one another, and an inference is
made using the Mason and Weitz modeling formalism about
the viscoelastic properties of the surrounding medium �see
Ref. �1��. The generalized Langevin equation �GLE� model
for the fluctuations assumes a memory drag law, with a ker-
nel that physically represents some unknown combination of
the bulk viscoelastic modulus of the fluid and the bead-fluid
surface chemical potential. Following Levine and Lubensky
�2–4�, we call this kernel the inner modulus Gi. The one-
bead protocol from Mason and Weitz �1� offers a way to
recover, in frequency space, the inner modulus through mean
square displacement data. For sufficiently long time scales, a
Brownian sphere in a viscoelastic fluid approaches viscous
diffusion with a Stokes drag coefficient. This limiting behav-
ior is determined by an effective viscosity which takes into
account the depletion zone surrounding the bead as derived
by Fan et al. �5�. Another approach taken by Santamaria-
Holek and Rubi �6� is to analyze the Fokker-Planck equation
for the probability distribution associated with the GLE.
They obtain short-time power law behavior in the mean-
squared displacement of a bead, depending on the finite size
of the Brownian particle relative to the polymer network and
the high frequency behavior of the loss modulus.

The inability to screen or explicitly account for the effects
of bead-fluid interactions through surface chemistry led to
the development of two-bead microrheology. By careful
spacing of the beads, two-bead microrheology as presented
by Crocker et al. �7�, Levine and Lubensky �2�, and Valen-
tine et al. �8� allows for the determination of the bulk vis-

coelastic modulus of the medium between the two beads. We
call this modulus the outer shear modulus Go. In Refs. �7,8�,
the bead-bead correlations are dominated by Go at leading
order in the ratio of the shell thickness to the bead radius.

Our primary aim in this paper is to extend previous one-
bead and two-bead models so that local diffusive �the inner
modulus� and nonlocal bulk �the outer modulus� properties
are coupled in such a way that they can both be inferred from
experimental data. This aim is achieved by carrying the
analysis of Levine and Lubensky �3� and Chen et al. �9� to
linear order in the asymptotics of the shell radius surround-
ing each bead. By doing so, we derive an invertible 3�3
system of equations relating single-bead and two-bead fluc-
tuation measurements to the inner �diffusive� modulus Gi,
outer �shear� modulus Go, and �, the ratio of the shell thick-
ness to the bead radius.

The motivation for this work arises from the Virtual Lung
Project at UNC, which aims to model hydrodynamics of pul-
monary liquids and transport of diverse Brownian particles
within them. These challenges require fundamental under-
standing of both the diffusion of pathogens and particulates
in biological complex liquids such as mucus and their flow
transport properties on scales small relative to typical rheo-
metric probes of dynamic moduli. Another anticipated appli-
cation of this work is to passage time of foreign particles
through biological barriers �see Hansen and McDonald �10��.

Following Levine et al. �3� we describe, in Sec. II, a gen-
eralization of an elastic problem to include both inner and
outer moduli and the shell thickness in the case where the
second sphere is considered a passive point source of force.
In Sec. III, we present inverse characterization tools inherent
to the two-bead coupled GLEs with application for the de-
termination of the local �Gi� and nonlocal �Go� kernels, as
well as the thickness of the chemically modified layer �or
shell �4� or depletion zone �5��. We formulate and analyze
the particular limit where the bead separation distance is ap-
proximately 5 to 10 bead radii as in Ref. �3�, retaining the
terms that are linear in the ratio of shell thickness to the bead*choheneg@cims.nyu.edu
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radius. These results, coupled with the single bead results of
Mason and Weitz, yield the aforementioned 3�3 invertible
system relating one-bead and two-bead experimental data
with local and nonlocal kernels and the shell radius.

II. TWO-BEAD GENERALIZED LANGEVIN EQUATIONS

We consider two spherical beads separated by a radial
distance R and we use spherical coordinates �r ,� ,�� with
origin centered at bead 1. Let vr

1 ,vr
2 denote the velocity of

beads 1,2, respectively, in the radial direction, v�
1 ,v�

2 the ve-
locities in the polar direction and let �11,�22,�12,�21 denote
the components of the memory kernel tensor. �12 describes
the response of bead 2 to the displacement of bead 1 and has
been discussed by Levine and Lubensky �4�. The inclusion of
the displacement of the second bead as a force on the first
bead leads to the following coupled Langevin system �see
Starrs and Bartlett �11�� for i=r ,�:

m
dvi

1�t�
dt

= − �11�t��vi
1�t� − �12,i�t��vi

2�t� + f i
1�t� , �1�

m
dvi

2�t�
dt

= − �22�t��vi
2�t� − �21,i�t��vi

1�t� + f i
2�t� , �2�

where the covariance matrix of the random forces is

�f i
j�t�f i

j��t���=kBT� j j�,i�t− t��, with kB the Boltzmann constant
and T temperature in accordance with the fluctuation dissi-
pation theorem �see Bonet Avalos et al. �12�� and � denotes
convolution. We will follow standard practice and assume
�11=�22 and �12,i=�21,i, although these conditions could be
relaxed for applications to heterogeneous materials and/or
differently coated beads.

The memory kernel tensor reflects medium viscoelasticity
and local bead surface chemistry. If the system were purely
viscous and the bead chemically neutral, then �11=�22
=6��a and �12=−9��a /�, where a is the radius of the
bead, �= R

a , R is the bead separation distance, and � is the
viscosity of the fluid. �12 for a viscous fluid corresponds to
the lower order term in the mutual friction coefficient de-
rived by Batchelor �13�. The diagonal memory kernels reflect
that the bead modifies its local environment leading to a
local modulus Gi, while the viscoelastic properties on the
separation length scale R are given by Go, as first discussed
by Levine and Lubensky �2,4�. We assume that each bead is
surrounded by a sphere of radius b which includes the bead
and a shell of radius s, and that the viscoelastic properties
inside this shell are characterized by Gi. Since viscoelastic
relations can be obtained by generalizing either viscous or
elastic relations, we study the equivalent elastic problem as
in Ref. �3� �see Fig. 1�.

A. Response functions for a two-fluid elastic fluid

We consider the problem of two spheres of radius a em-
bedded in a shell of radius b in a two-medium elastic fluid:
the Lame constants are 	i ,�i in the inner shell and 	o ,�o in
the outer shell �Fig. 1�. We remark that the Lame constants
	 ,� allow for the general compressible case. In the incom-

pressible limit, we have 	→
 and �= 1
2 , where � is the Pois-

son ratio. We define s so that b=a+s and therefore �= a
b

= 1
1+s/a =1−�+�2+O��3�, with �= s

a . Solving the elastic
Navier-Stokes equation in the inner and outer shells with an
azimuthal symmetric solution vanishing at infinity, initial
displacement in the ẑ direction �given as displacement or
force on the sphere�, continuity boundary condition and
keeping only linear terms in ẑ, the inner and outer displace-
ment fields are given by �see also Ref. �4��

ui�r,�� =
aC1,i

r
���1,i + 1�cos �r̂ − sin ��̂�

+
a3C2,i

r3 �2 cos �r̂ + sin ��̂� + C3,i�cos �r̂ − sin ��̂�

+
C4,ir

2

a2 ���2,i − 1�cos �r̂ + sin ��̂� , �3�

uo�r,�� =
bC1,o

r
���1,o + 1�cos �r̂ − sin ��̂�

+
b3C2,o

r3 �2 cos �r̂ + sin ��̂� . �4�

Here �1,o/i=
1

3−4�o/i
, �2,o/i=

2�2−3�o/i�
1−2�o/i

, and r̂ , �̂ are the unit vec-
tors in spherical coordinates. In the incompressible limit
�1,o/i=1 and �2,o/i=

1
2 . The initial condition is ui�a ,��=ẑ.

The force in the ẑ direction is found by integrating the stress
�i,rz=�i,rr cos �−�i,r� sin � over the surface of a sphere of
radius r �see Appendix A�. In the incompressible case, we
have Fi,z=8�aC1,i�i and Fo,z=8�bC1,o�o. This means that
the lower order coefficient of the approximation �i.e., the 1 /r
term� only depends on the applied force in the ẑ direction, a
result that is extensively used by Crocker et al. �7�. We set
�=

�o

�i
. In Appendix B, we give the formulas for the coeffi-

cients Cj,i, j=1, . . . ,4 and Cj,o, j=1,2 as rational functions
in � and �. We define

p1��,�� = 2��5 − 2�5 − 3 − 2�

and

a
b

s
R

λo μo

μλ ii

FIG. 1. Two elastic spheres model with shells following Levine
and Lubensky �3�.
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p2��,�� = − 10�3� + 3�� + 6� + 4�6 − 8�6� + 4�6�2

− 9��2 + 10�3�2 − 9�5�2 + 9��5 + 4�2 + 6� .

Then, since �C1,o=�C1,i, we find that the force exerted by
the bead on the medium at both interfaces is Fz

=
12��oap1��,��

p2��,�� �see also Levine and Lubensky �2��.
The response of a bead to a force applied by the medium

is assumed to be linear in the displacement of the form �u�

=F� , where F� is the applied force, u� is the resulting displace-
ment, and � is the compliance/resistance tensor. Since Fz is
the force exerted by the medium when the initial displace-
ment of the first bead is  in the Cartesian ẑ direction, we find
that the self-resistance tensor in the incompressible limit is
�1,1=−

12�a�op1��,��
p2��,�� , where the index 1,1 indicates that the

displacement of the first bead is related to the force on the
first bead. Developing � as a Taylor series in � and using
b=a�1+�� we find

�1,1 = 6�a�o�1 + �1 − ��� − 3�1 − ���2 + O��3�� .

In the one-medium limit �=1 ��o=�i=��, the compliance
tensor reduces to the Stokes coefficient �1,1=6�a�. Simi-
larly, if ��1, �1,1=6�a�o.

In order to find �1,2, the compliance tensor of the second
bead due to the displacement of bead one, we compute as a
first approximation the displacement at the center of the sec-
ond bead, reducing the second bead to a point source without
a shell. As shown by Levine and Lubensky �3�, correction
terms induced by the point source approximation are of
higher order in R−1. Prescribing the displacement or the force
on the first bead is totally equivalent, so that we might as-
sume that a constant force Fzẑ is applied on the first bead
resulting in an initial displacement  in the ẑ direction. Since
Fo,z=8�bC1,o�o and Fi,z=8�aC1,i�i, the coefficients in Eqs.
�3� and �4� and the added unknown  can be fully determined
in terms of Fz. The resulting displacement in spherical coor-
dinates is then linearly proportional to the force Fz in each

spherical direction r̂ and �̂. Therefore we obtain the compli-
ance tensor in spherical coordinates in the incompressible
limit

1

�rr
1,2 =

1

4��oR
−

1

12

b2�− 5��2 − 3 + 3� − 2�5 + 2��4�
��op1��,��R3 ,

1

���
1,2 =

1

8��oR
+

1

24

b2�− 5��2 − 3 + 3� − 2�5 + 2��5�
��op1��,��R3 ,

which is implicitly available in Ref. �3�. Since for an incom-
pressible fluid the Poisson ratio is 1 /2, it follows that ���

1,2

=���
1,2 and �ij

1,2=0 if i� j. We remark that the lower order
term only depends on the separation distance R between the
bead and on the outer viscosity between the beads.

Since the constant force Fz is related to the displacement
field of the first bead by �1,1, we substitute Fz=�1,1 into the
solution �4� evaluated at the separation distance R, again as-
suming the second bead to be a point source. Developing �
as a Taylor series in �, setting b=a�1+��, and defining �
= R

a we find that the radial and polar components of the dis-
placement field of the second passive bead are

ur
2 = � 3

2�
−

1

2�3 +
3

2
�� − 1��−

1

�
+

1

�3	� + �−
3

2�3 −
9�

2�

+
9�2

2�
+

6�

�3 −
9�2

2�3	�2 + O��3�
ur
1, �5�

u�
2 = � 3

4�
+

1

4�3 −
3

4
�� − 1��1

�
+

1

�3	� + � 3

4�3 −
9�

4�
+

9�2

4�

−
3�

�3 +
9�2

4�3	�2 + O��3�
u�
1, �6�

where we used =ur
1=u�

1. Thus u�2=ur
2 cos �r̂−u�

2 sin ��̂ can

be expressed in terms of u�1=ur
1 cos �r̂−u�

1 sin ��̂. We remark
that Levine and Lubensky �2� and Crocker et al. �7� only use
the first order term in 1

� and zeroth order term in � in the
previous approximation, which suffices for their goals.

In this paper, we consider the limit in which O�R−3� and
O��3� terms are neglected in �5� and �6�. This limit arises in
experiments, where the beads are far enough away from each
other to neglect terms higher order in R−1 and the thickness
of the shell created by the effect of the chemical coating is
small, but not negligibly so, relative to the bead radius.
Moreover, we assume �as in Levine and Lubensky �2�,
Crocker et al. �7�� that R is constant �fluctuations are small
compared to the separation distance�. We find

ur
2 = �1 + �1 − ����

3

2�
ur

1, u�
2 = �1 + �1 − ����

3

4�
u�

1. �7�

Equation �7� will be used to derive a modeling protocol for
the determination of both viscosities �o and �i and the shell
thickness �.

B. Generalization to a viscoelastic liquid

To generalize the results obtained in the elastic case we
replace the elastic shear modulus �o/i by G

o/i
* ��� the complex

shear modulus, as in Ref. �4�. We define G*���= i��*���
=G����+ i�G����, where �* is the complex viscosity, G�
the loss modulus, and G� the storage modulus. For simplicity
of notation we consider only the equations in radial direction
r and we drop the corresponding subscript. Similar results
hold for the angular coordinates. Let û1��� and û2��� be the
Fourier transform of the radial coordinates of the displace-
ment of each bead.

The viscoelastic generalization of Eq. �7� is

û2��� = �1 + �1 − �*���
3

2�
û1��� �8�

with �*=
Go*���

Gi*���
. In the limit considered here, the self-

compliance coefficient �1,1 is 6�aG
o
*����1+ �1−�*���, so

that the generalized Stokes-Einstein relation can be written

as F̂1,1���=�1,1���û1���. The drag force on the second bead

due to the force on the first bead is F̂2,1���=−�1,1���û2���.
With Eq. �8� we find
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F̂2,1��� =
− 9�aG

o
*���

�
�1 + �1 − �*���2û1��� .

Let v̂1 and v̂2 be the corresponding velocities. In frequency
space, we have v̂ j���= i�ûj���, so that the force can be ex-
pressed with the complex viscosity and the Fourier transform
of the velocities. We define the kernels in frequency space in
the following way, keeping only linear terms in �:

�̂11��� = 6�a�
o
*����1 + �1 −

�
o
*���

�
i
*���	�
 , �9�

�̂21��� =
− 9�a�

o
*���

�
�1 + 2�1 −

�
o
*���

�
i
*���	�
 . �10�

Finally, since multiplication in Fourier space corresponds to
convolution in real space, we obtain

F1,1�t� = �11�t��v1�t�, F2,1�t� = �21�t��v2�t� , �11�

as in the force equations �1� and �2�. We note that there is an
intrinsic separation of time scales, since �= R

a is constant
while determining the relaxation kernel.

C. “Decoupling” of the Langevin system

We now transform to “normal coordinates” where the
coupled generalized Langevin equations �GLEs� �1� and �2�
are almost diagonalized. We define normal coordinates: V1

=v1+v2 and V2=v1−v2. Then the GLEs �1� and �2� decouple
as

m
dVj�t�

dt
= − � j�t��Vj�t� + Gj�t�, j = 1,2, �12�

where � j =�11+ �2� j1−1��21, and Gj = f1+ �2� j1−1�f2.
Since �f j�t�f j��t���=kBT� j j��t− t��, and with the previous

definitions of �1 ,�2, the covariance matrix becomes

�G1�t�G1�t��� = 2kBT�1�t − t�� ,

�G2�t�G2�t��� = 2kBT�2�t − t�� ,

�G1�t�G2�t��� = 0.

This decoupling of the random contributions is only valid in
the usual approximation that R is constant.

III. INVERSE CHARACTERIZATION

Based on the Langevin description of a single bead in a
viscoelastic fluid, Mason and Weitz �1� developed a one-bead
microrheology protocol whose idea is summarized in Appen-
dix C. Neglecting inertia, the Mason and Weitz one-bead
protocol �see Eq. �C2�� in one coordinate direction is

���ûj����2� =
kBT

3�ai�G
i
*���

. �13�

In other words, measurements of the mean square displace-
ment allow for the determination of the transform of the

inner kernel Gi. Equation �13� is a transform equation and
thus does not directly give access to the physical parameters
characterizing the memory kernel in the time domain. Fricks
et al. �14� present a maximum likelihood method applied to
single bead time series data aimed at the reconstruction of
kernel parameters of the time-dependent representation Gi�t�.

In the GLEs �1� and �2�, the displacement of one bead
influences the displacement of the other bead as in the for-
mula �5� and �6�. The goal is to find a formula analogous to
Eq. �13� using the average of the cross-correlated displace-
ments ��û1�û2�. Crocker et al. �7� ignore higher order terms
and assume that R is constant to conclude that
��û2����û1����=

kBT

2�a�i�Go*���
.

We derive instead a formula based on the “decoupled”

Langevin equations �12�. We write the kernels as �̂ j���
=6��

o
*���pj�� ,�* ,��, where pj are polynomials in three

variables pj��−1 ,�* ,��=1+ �1−�*��+ �1−2� j1� 3
2� �1+2

�1−�*���. Transforming Eqs. �12� into Fourier space, multi-
plying by Vj�0�, and taking the ensemble average we find

mi��V̂j���Vj�0�� + 6�a�pj��,�*,��V̂j���Vj�0���
o
*���

= m�Vj�0�Vj�0�� + �Gj���Vj�0�� .

In the limit defined above, we assume that R is constant, so
that pj is a constant in the ensemble average

mi��V̂j���Vj�0�� + 6�a�
o
*���pj��,�*,���V̂j���Vj�0��

= 2mkBT .

Here we remark that equipartition of energy reads
m�Vj�t�Vj�0��=2kBT, because of the two-dimensional dis-
placement �r ,��. We set �Uj�t�=Uj�t�−Uj�0�. It is straight-

forward to show that 2�V̂j���Vj�0��=−�2���Ûj����2�. Then
we obtain for j=1,2

���Ûj����2� =
4kBT

− mi�3 − �26�a�
o
*���pj��,�*,��

.

By definition we have

���Uj�2� = ���u1�2� + 2�2� j1 − 1���u1�u2� + ���u2�2�

so that, neglecting inertia and using the definition of the
complex viscosity we find

���û1����2� =
kBT

3�ai�G
o
*���

1 + �1 − �*��
p1��,�*,��p2��,�*,��

,

��û1����û2���� =
kBT

2�ai�G
o
*����

1 + 2�1 − �*��
p1��,�*,��p2��,�*,��

.

Expanding the above equations in a series in � and �−1 gives
the general formula for the two-point autocorrelation up to
error terms O��2� and O��−2�

���ûr
1����2� =

kBT

3�ai�G
o
*����1 + �1 −

G
o
*���

G
i
*���	�
 ,

�14�
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��ûr
1����ûr

2���� =
kBT

2��i�G
o
*���

. �15�

Combining Eqs. �13�–�15�, we arrive at a 3�3 system of
equations to determine the local �inner� complex modulus
G

i
*, the outer shear modulus G

o
*, and the normalized thick-

ness s of the shell surrounding the bead, given the standard
autocorrelation and cross-correlation data from independent
one-bead and two-bead experiments. �We note that the
Mason-Weitz formula �13� is recovered by removing the dis-
tinction between the inner and outer kernels, G

i
*=G

o
*.�

We summarize the consequences of these results. We pro-
pose a two-step experiment, first with an isolated bead and
then with coupled beads. Tracking one bead which does not
interact with any neighbor, we extract G

i
*��� from Eq. �13�.

Since the displacement of one bead is constrained to a plane
of coordinates �r ,��, Eq. �13� has to be multiplied by 2, to
reflect the proper equipartition of energy formula. Tracking
two beads interacting with each other in a range where their
separation distance R remains constant and O�R−2� is negli-
gible, we find G

o
*��� from Eq. �15�. Finally with the same

two-bead data set, �= s
a is given from Eq. �14�. This protocol

assumes that each bead modifies its local environment in the
same way so that one-bead data can be combined with
two-bead data.

The protocol derived by Chen et al. �9� for determining
the bulk modulus and the thickness of the shell is similar,
although based on a different logic and use of experimental
data. They determine an implicit formula for the ratio of G

i
*

and G
o
* containing high order terms in �= b

a as derived by
Levine and Lubensky �3�. They then perform a series of
three experiments with different bead radii, followed by nu-
merical regression from their formula to determine the shell
radius and the outer modulus. The inner modulus for their
particular experimental system was purely viscous and
known a priori. Our asymptotic ordering of the same under-
lying linear response equations achieves simplicity in the
relations between experimental and model information: an
explicit and one-to-one correspondence between �one-bead
mean square displacement data, two-bead autocorrelation
data, two-bead cross-correlation data� and �the inner modu-
lus, the outer modulus, and the shell thickness�. The implied
protocol requires experimental data to be collected for one–
and two-bead experiments and beads with identical size and
surface chemistry.
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APPENDIX A: DETERMINATION OF THE STRESS
TENSOR

The quasisteady state compressible Navier-Stokes is

0 = ��2u� + �� + 	��� ��� · u�� .

We make the ansatz of an azimuthally symmetric and linear
in ẑ solution. In spherical coordinates the general quasi-
steady state solution is

u��x�� = − B−2r2��2 cos �r̂ − ẑ� + B0ẑ +
B1

r
��1 cos �r̂ + ẑ�

−
B3

r3 �3 cos �r̂ − ẑ� .

In the outer shell the solution vanishes at infinity, so that
B0=B−2=0.

Since u� is the displacement field, we define the strain
tensor as E in the usual way. The stress is assumed to be
linear and given by Hooke’s law �=2�E+	 tr�E�I. In
spherical coordinates the stress tensor has the form

� = ��rr �r� 0

�r� ��� 0

0 0 ���

� .

The force acting in ẑ through a sphere of radius r is the
opposite of the force exerted by the medium obtained by
integrating −�ẑ over the surface of the sphere �ẑ

=�rr cos �r̂+�r��cos �−sin ���̂−��� sin ��̂. The normal vec-
tor to the surface is r� so that �ẑ · r̂=�rr cos �−�r� sin �=�rz
and the force in ẑ through the sphere of radius r becomes

Fz = − 2�r2
0

�

��rr cos � sin � − �r� sin2 ��d� .

For the inner and outer shell solution it turns out that the
force in the z direction is independent of the radius of the
sphere, a�r�b or r�b, but only depends on the elastic
properties of the medium; in other words,

Fz,i =
16�aC1,i�i��i − 1�

− 3 + 4�i
, Fz,o =

16�bC1,o�o��o − 1�
− 3 + 4�o

,

where aC1,i=B1 and bC1,i=B1, respectively, for a�r�b and
b�r.

APPENDIX B: DETERMINATION OF THE COEFFICIENTS
Cj,o, j=1,2 AND Cj,i, j=1, . . . ,4

In the incompressible limit the constants in the inner and
outer displacements are

C1,o = −
3

2

�p1��,��
p2��,��

, C1,i = −
3

2

�p1��,��
p2��,��

,

C2,o =
1

2

��− 2�5 + 2��5 − 3 + 3� − 5��2�
p2��,��

,

C2,i =
1

2

��− 2�3 − 3 + 2�3� − 2��
p2��,��

,
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C3,i =
− �„− 5��2�1 − �� + 3� + 6 + 4�5�1 − ��2 − 9�2

…

p2��,��
,

C4,i =
6�3��1 − � + ��2 − �2�

p2��,��
,

where p1�� ,��=2��5−2�5−3−2� and p2�� ,��=−10�3�
+3��+6�+4�6−8�6�+4�6�2−9��2+10�3�2−9�5�2

+9��5+4�2+6�. These formulas are mentioned, but not ex-
plicitly given, by Levine et al. �3�.

APPENDIX C: ONE-POINT MICRORHEOLOGY

The Langevin equation for a single bead is

m
dvi�t�

dt
= − ��t��vi�t� + f i�t�, i = r,� . �C1�

The memory kernel � is defined for t�0, but can be ex-
tended as ��t�=0 if t�0. This implies that the convolution
term can be changed from �0, t� to �0,
� and the Langevin
equation �C1� transformed into Fourier space retaining the
initial conditions for the velocity. Multiplying by vi�0� and
ensemble averaging we obtain

mi��v̂i���vi�0�� + �̂����v̂i���vi�0��

= m�vi�0�vi�0�� + � f̂ i���vi�0�� .

If we consider each displacement coordinate i=r ,� indepen-
dently, then the equipartition of energy says that
m�vi�0�vi�0��=kBT. Moreover, we have �f i�t�vi�0��=0 �see
Duffy �15��, so that we can write

�v̂i�s�vi�0�� =
kBT

mi� + �̂�s�
.

We set �ui�t�=ui�t�−ui�0� and with 2�v̂i���vi�0��
=−�2���ûi����2� we find

���ûi����2� =
2kBT

− mi�3 − �2�̂���
.

Since �̂���=6�a�
o
*=6�a

G0*���
i� �see Sec. II B Eq. �9� with

�=1�, the previous Eq. becomes

���ûi����2� =
2kBT

− mi�3 + 6�ai�G0
*���
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