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Sloshing refers to the free surface motion of a fluid in a 
container. We study the linearized sloshing problem of 
an incompressible, inviscid, irrotational fluid in a 
container, where we focus on the regime where the 
effect of surface tension dominates the effect of gravity. 
This is especially important in the microgravity 
environment, where scientists and engineers have 
worked to improve our understanding of the behavior of 
a liquid propellant within a rocket. We are interested in 
studying the properties of sloshing frequencies and the 
corresponding modes.

F

1. Isoperimetric problem: for a fixed volume, determine the 
shape of axisymmetric container that maximizes the 
fundamental sloshing frequency.

2. Isochronous problem: find containers such that the 
fundamental sloshing frequency is independent of the level 
to which the container is filled.

3. High spots: determine the location of the maximum 
elevation of the free surface.
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Introduction

Surface Tension

Linearized Sloshing Problem

CLBC and Contact Angle

1. Contact line freely slips.
2. Contact angle remains unchanged.
3. Contact angle equals      .

✓
The contact-line boundary condition captures the 
contact line behavior and the change in contact angle   . 

Assumptions:  

n̂wall · n̂free surface = cos ✓.

Geometric equation for
the contact angle

✓

n̂wall
n̂free surface
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Free-end
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Pinned-end
(Dirichlet)

Intermediate
(Robin)

⌘t = 0@n̂⌘ = 0 ⌘t = �@n̂⌘
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Variational Formulation

Define the function space:

The fundamental sloshing frequency has the following 
variational characterization: 

• Rayleigh-Ritz generalization for higher sloshing frequency.
• In the limit as                 , we recover the variational 

principle for the linearized sloshing problem neglecting 
surface tension.

Domain Monotonicity
For two containers having identical free surface and container 
walls which are both vertical at the free surface, the larger 
container has a higher fundamental sloshing frequency. 
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Dirichlet energy:

Free surface energy:
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DeD

Relatively simple coupled systems, but requires 
the following assumptions:

•       contact angle.
• Vertical wall near the free surface.
• Contact angle does not change.

1. Are there better ways to handle a curved free 
surface? Perhaps use curvilinear coordinates?

2. If we have a curved wall at the boundary of a 
free surface, how to linearize the system 
correctly? 

3. Consider the case where the contact angle 
changes over time, is it possible to determine 
the correct contact-line boundary condition?
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Numerical Results
Bowl
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gravitational force

surface tension force

Fluid Model

Study the linearized sloshing model including surface tension e↵ect.

Time-harmonic solutions - reduces to a coupled eigenvalue problem.

� - velocity potential, ⌘ - free surface height.
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Eigenvalue ! appears in

the boundary condition!
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Eigenvalues on BCs
Generalized Steklov problem!

Assume that the free surface is a graph                     . 
Surface tension introduces a pressure jump across the 
free surface:

H has terms involving             , thus it requires additional 
boundary conditions, commonly referred to as the 
contact-line boundary condition (CLBC).
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Mean curvature
Surface tensionT =

H =

Velocity 
potential

Free 
surface 

height with 
varying Bo

Look for time harmonic solutions.

w1(D̃) = 2.28 > 2.19 = w1(D)

w1 = 2.32 w1 = 2.21 w1 = 2.28


