Optimization Method 2016

HW 7

Due November 3

1. Solve

$$
\begin{equation*}
\min _{x \in R^{2}}\left(x_{1}^{2}+x_{2}^{2}+2 a x_{1} x_{2}\right) \text { subject to: }\left|x_{1}\right|+\left|x_{2}\right| \leq 1 \tag{1}
\end{equation*}
$$

where a is a parameter, $-\infty<a<\infty$
2. Find

$$
\begin{equation*}
\min _{x \in R^{n}}\left(x^{T} A x\right) \text { subject to: } x^{T} x=1 \tag{2}
\end{equation*}
$$

where A is a symmetric positively defined $n \times n$ matrix.
3. a. Solve

$$
\begin{equation*}
\min _{x \in R^{3}} \sum_{i=1}^{3}\left(x_{i}^{2}+x_{i}\right) \tag{3}
\end{equation*}
$$

subject to

$$
\begin{gather*}
x_{1}-x_{2}+2 x_{3}=1, \tag{4}\\
2 x_{1}+x_{2}-3 x_{3} \leq a \tag{5}
\end{gather*}
$$

where a is a parameter, $-\infty<a<\infty$
b. Formulate and solve a dual problem.

