HW2

M 5750-2. Fall 2010. Optimization methods

1. Implement Trust region method (Algorithm 4.1, page 69) for a one-dimensional problem. Use any method (analytic of numeric) for finding minimum of f_{i} inside the trust region

$$
\begin{array}{r}
f_{1}(x)=-.2 x^{4}+x^{2}-x, \quad x \in[-1 ; 1], \quad x_{0}=-1 . \\
f_{2}(x)=1-\exp \left(-x^{2}\right), \quad x \in[-3 ; 3], \quad x_{0}=-2.5 \\
f_{3}(x)=\sqrt{x^{2}+.3}, \quad x \in[-3 ; 3], \quad x_{0}=-2 . \\
f_{4}(x)=\max \{\sqrt{2-x}, \sqrt{2+x}\}, \quad x \in[-2 ; 2], \quad x_{0}=-1.5 . \tag{4}
\end{array}
$$

2. Problem 4.7
3. Use steepest descent method (any variant of it) to find minimum of the function

$$
F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+1.5 x_{1} x_{2}+5 x_{3}^{4}+.3 \sin ^{2}\left(x_{1}+x_{2}^{2}-x_{3}^{3}\right)
$$

Starting point is $x^{(0)}=(1,1,1)$
4. By the same steepest descent algorithm, solve the equation $A x=b$ where

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & 3 & 2 & 0 \\
0 & 3 & 2 & -1 \\
0 & 0 & -1 & 5
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

Compare numerical solution with the exact solution. Plot the errors after each step.
5. Problem 5.11

