HW1

M 5750-2. Fall 2011. Optimization methods
 Due September 5, 2011

Approximate the minimum of unimodal function $f(x)$ where x is a real number $x \in[a, b]$, approximate or locate $x_{*}=\operatorname{argmin} f(x)$, using
(a) Fibnacci search method (5 steps),
(b) Golden ratio search method (5 steps),
(c) Newton method with modifications (compute 4 steps). If Newton method fails, explain why and suggest an improvement.

Use the following unimodal test functions $f(x)$

$$
\begin{array}{r}
f_{1}(x)=-.2 x^{4}+x^{2}-x, \quad x \in[-1 ; 1], \quad x_{0}=-1 . \\
f_{2}(x)=1-\exp \left(-x^{2}\right), \quad x \in[-3 ; 3], \quad x_{0}=-2.5 \\
f_{3}(x)=\sqrt{x^{2}+.3}, \quad x \in[-3 ; 3], \quad x_{0}=-2 \\
f_{4}(x)=\max \{\sqrt{2-x}, \sqrt{2+x}\}, \quad x \in[-2 ; 2], \quad x_{0}=-1.5 \tag{4}
\end{array}
$$

Plot the functions, list the points of evaluation.

