Final exam for MATH 5710/MATH 6880 Optimization Fall 2011

You may use any academic sources.
Return at Monday, December 12, before 2:00 pm by email to cherk@math.utah.edu

1. Apply the conjugate gradient method for minimization of a quadratic function

$$
\min _{x_{1}, x_{2}, x_{3}} F\left(x_{1}, x_{2}, x_{3}\right), \quad F=x_{1}^{2}+4 x_{2}^{2}+2 x_{3}^{2}+\left(x_{1}+x_{3}\right) x_{2}-x_{1} x_{3}-x_{1}
$$

Initial point is $x_{1}=2, x_{2}=0, x_{3}=0$. Show that a solution is achieved in a finite number of iterations. Justify the number of iterations.
2. Apply the quasi-Newton method (any modification) to the same problem. Perform one step.
3. Show that a trust region method can be used for minimization of a bellshape function

$$
f\left(x_{1}, x_{2}\right)=1-\frac{1}{1+x_{1}^{2}+4 x_{2}^{2}+x_{1} x_{2}}
$$

starting from the point $x_{1}=3, x_{2}=2$. Compute the first iteration.
Is a conjugate gradient method applicable to this problem?
What minimization methods can be used, if the starting point is $x_{1}=$ $0.1, x_{2}=0.1$? Explain.
4. Consider a two-players zero sum game with the payoff matrix

$$
P=\left(\begin{array}{lll}
0 & 4 & 3 \\
4 & 1 & 3
\end{array}\right)
$$

Find optimal mixed strategies for both players, applying simplex method for the corresponding linear program.
5. Find duals for the following optimization problems
a) Linear programming:

$$
\min _{x_{1}, x_{2}, x_{3}}\left(x_{1}-2 x_{2}+x_{3}\right)
$$

subject to

$$
x_{1}+x_{2}=1, \quad 2 x_{3}+x_{1} \geq 2, \quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
$$

b) Quadratic programming:

$$
\min _{x_{1}, x_{2}, x_{3}}\left(3 x_{1}^{2}+x_{2}^{2}+x_{1} x_{3}+x_{3}^{2}-x_{1} x_{2}-x_{2}\right)
$$

subject to

$$
x_{1}-x_{2} \geq 1, \quad x_{3}+x_{1}=2, \quad x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0
$$

6. (i) For both problems in No 5, find KKT optimality conditions. Suggest an algorithm for the solutions. Solve.
(ii) Apply an interior points method to the problems in No 5: Modify the KKT conditions, derive and explain an algorithm.
7. Consider the problem

$$
\min _{x_{1}, x_{2}}\left(x_{1}^{4}+x_{2}^{2}+x_{1} x_{2}-x_{2}\right)
$$

subject to constraint $x_{1}=x_{2}^{2}-1$. Applying the augmented Lagrangian method, write an algorithm for iterative solution and updating the Lagrange multiplier.
8. Plot the 3 d graph of a multimodal function

$$
f=3 \sqrt{x_{1}^{2}+x_{2}^{2}}+\log \left(1+x^{4}+4 y^{4}\right)\left(1.25+\cos \left(4 x_{1}^{2}+x_{2}^{3}\right)\right), \quad\left|x_{1}\right| \leq 5,\left|x_{2}\right| \leq 5
$$

What methods can be used for finding its minimum? Suggest an algorithm and discuss.

