Introduction to Optimization
 Math 5770-001, Math 6640-001, ME EN 6025-001
 Midterm exam
 Search Methods for Unconstrained Optimization

Your name and class number \qquad
Due Day: Thursday, October 17.

Test the following methods

1. Conjugate gradient (5.1) or, for nonquadratic functions, (5.2)
2. Quasi-Newton BFGS (6.1)
3. Quasi-Newton BFGS (6.2)
4. Nedler-Mead (9.5)

Write the programs using the discussed algorithms. For non-quadratic functions, use any line search method (see Chapter 4), explain. Find minima of the following functions
I. Quadratic A

$$
Q_{1}(x)=x^{T} A x-b^{T} x, \quad A=\left(\begin{array}{rrrr}
4 & 2 & 2 & 4 \tag{1}\\
2 & 6 & 10 & -1 \\
2 & 10 & 40 & 3 \\
4 & -1 & 3 & 10
\end{array}\right), \quad b=\left(\begin{array}{r}
1 \\
0 \\
-2 \\
3
\end{array}\right)
$$

Starting point $x_{0}=(0,0,-1,3)$ Compute minimum of Q_{1} by Maple or Matlab and plot distance from the minimum to the approximations at five iterations. Discuss.

Quadratic B

$$
\begin{equation*}
Q_{2}(x)=\sum_{i=1}^{6} \sum_{j=1}^{6} x_{i} x_{j}+\sum_{i=1}^{6} x_{i}^{2}-\sum_{i=1}^{6}\left(\frac{x_{i}}{i}\right) \tag{2}
\end{equation*}
$$

Starting point $x_{0}=0$ Compute minimum of Q_{2} by Maple or Matlab and plot distance from the minimum to the approximations at seven iterations. Discuss.
II. Rosenblock function (see problem 2.1)

$$
\begin{equation*}
F_{R}(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{3}
\end{equation*}
$$

Starting point $x_{0}=(0,0)$. Plot 20 iterations in the x_{1}, x_{2} plane. Discuss.

III. Exotic functions:

a. Flat surface:

$$
\begin{equation*}
F_{a}(x)=\exp \left(-x_{1}^{2}-x_{2}^{2}\right) \tag{4}
\end{equation*}
$$

Two starting points $x_{0}=(1,1)$ and $x_{0}=(-1,1)$. Plot 30 iterations in the x_{1}, x_{2} plane. Discuss.
b. Small Hessian

$$
\begin{equation*}
F_{b}(x)=\sqrt{0.2+x_{1}^{2}+2 x_{2}^{2}} \tag{5}
\end{equation*}
$$

Starting point $x_{0}=(2,2)$. Plot 20 iterations in the x_{1}, x_{2} plane. Discuss.

Note: At Tuesday, October 15, the class is cancelled due to the SES Annual Technical Meeting.

