## HW 5

1. Find conjugate $f^{*}\left(x^{*}\right)$ to the function

$$
f(x)=\frac{1}{2} a x^{2}+b x+\frac{1}{2} c
$$

Compare $\min f(x)$ and $\max f^{*}\left(x^{*}\right)$.
Compute $x x^{*}$
2. Find conjugate $f^{*}\left(x^{*}\right)$ to the function

$$
f(x)=\max \left\{\frac{(x-1)^{2}}{2}, \frac{(x-1)^{2}}{2}\right\}
$$

Using this result, compute conjugate $g^{*}\left(x^{*}\right)$ to the function

$$
g(x)=\min \left\{\frac{(x-1)^{2}}{2}, \frac{(x-1)^{2}}{2}\right\}
$$

Compute the convex envelope of $g(x)$.
3. Using Ritz method, approximate solution to the problem

$$
I=\min _{u(x)} \int_{0}^{1}\left(x\left(u^{\prime}\right)^{2}+\left(1-x^{2}\right) u^{2}\right) d x, \quad u(0)=1, u(1)=0
$$

Represent the solution as a sum of polynoms and trigonometric functions and account for boundary conditions:

$$
u(x)=(1-x)+x(1-x)\left(\sum_{k=0}^{N}\left(a_{2 k} \cos (\pi k x)+a_{2 k+1} \sin (\pi k x),,\right)\right)
$$

find optimal valuers of parameters, graph the solution. How the graph varies when $N$ increases?
4. Using Galerkin method, approximate the solution to the ODE

$$
\left.u^{\prime \prime \prime}-x u^{\prime \prime}+1-x\right)^{2} u^{\prime}-x(1-x) u+x^{5}=0, \quad u(0)=1, u(1)=u^{\prime}(1)=0
$$

Use polynomials up to degree $N$ with unknown coefficients to approximate the solution and to account for boundary conditions, use polynomials as the trial functions $\psi$. Graph the approximates of the solution for different values $N$.
Refs:

1. http://fischerp.cs.illinois.edu/tam470/refs/galerkin2.pdf
2. http://www.sd.ruhr-uni-bochum.de/downloads/Galerkin_method.pdf
3. https://en.wikipedia.org/wiki/Galerkin_method
