5500-18 HW 2

1. "Inverse brachistochrone": Assume that the fastest trajectory is a part of a circle

$$
y(x)=\sqrt{A^{2}-x^{2}}
$$

Find the speed dependence $v(y)$.
2. The astronauts arrives at planet EasterEgg with a viscous atmosphere and find that the speed of travel depends on the distance r from the center as $v(r)$. They need to find out the brachistochrone trajectory to travel form point $\left(r_{1}, \theta_{1}\right)$ to point $\left(r_{2}, \theta_{2}\right)$.
Derive the equation of brachistochrone in polar coordinates.
Find the trajectory, if $v(r)=r$.
3. Find the boundary conditions for the point in which the brachistochrone that started from the point $(0,0)$ meets the circle $x^{2}+y^{2}=$ R^{2}.
4. The thermal equilibrium in a bar $0 \leq x \leq 1$ is described by the boundary value problem for the temperature $T(x)$
$T^{\prime \prime}=\gamma(x) \in(0 \leq x \leq 1), \quad T^{\prime}+\alpha\left(T-T_{0}\right)^{4}=0$ at $x=1, \quad T^{\prime}=0$ at $x=1$.
where γ is the density of heat sources, α is the radiation constant, T_{0} is a constant outside temperature.
Write the variational problem which minimizer describes the equilibrium.

