Final Exam
 M 5500, Spring 2018

Solve any six problems
Return at Monday, April 30, before 5 pm

1. Find Euler equation and natural boundary condition, check Legendre condition for the isoperimetric problem

$$
I(u)=\min _{u(x)} \int_{0}^{1}\left(\left(u^{\prime}\right)^{2}-3 u u^{\prime}+3 \sin (x) u^{2}\right) d x \quad \text { if } \quad \int_{0}^{1}(u) d x=1
$$

2. Two equal gravitating masses $m=1$ with coordinates $r_{1}(t)$ and $r_{2}(t)$ move in a plane,

$$
r_{i}(t)=\left(x_{i}(t), y_{i}(t)\right)
$$

Gravitational force is:

$$
F=\gamma \frac{r_{1}-r_{2}}{\left|r_{1}-r_{2}\right|^{3}}
$$

Derive kinetic and potential energy, formulate a variational problem. Find Lagrangian, Hamiltonian, and equations of motion of the masses. Find invariants to the movement.
Hint: Express coordinates through the center of masses $r_{0}=\frac{1}{2}\left(r_{1}+r_{2}\right)$ and deviation from the center.
3. Consider the problem

$$
I=\min _{u(x)} \int_{0}^{1}\left[a\left(u^{\prime}\right)^{2}-c u(u-1)\right] d x, \quad u(0)=0
$$

a. Write Hamiltonian and dual Lagrangian.
b. Derive Euler equations and boundary conditions for the primary and the dual problems, derive system of first-order equation and boundary conditions.
4. A process is described by a differential equation

$$
-a u^{\prime \prime}+c u^{3}+1=0, \quad \text { in }(0,1) \quad u(0)=0, u(1)+u^{\prime}(1)=3
$$

Write a variational problem (Lagrangian and the boundary term) for which this equation is the Euler equation.
5. Find an approximate solution to the problem

$$
I(u)=\min _{u(x)} \int_{0}^{1}\left(x\left(u^{\prime}-1\right)^{2}+3 x^{2} u^{2}\right) d x u(0)=u(1)=0
$$

assuming a representation $u(x)=x(1-x)\left(A_{0}+A_{1} x+A_{2} x^{2}\right)$. Find the constants A_{0}, A_{1}, A_{2}. You may use Maple or similar software.
6. Show that the Euler equation of the problem

$$
\left.\inf _{u(x)} \int_{0}^{1}\left((u-x)^{2}+\min \left\{\left(u^{\prime}-1\right)^{2},\left(u^{\prime}+1\right)^{2}\right\}\right\}\right) d x, \quad u(0)=0
$$

does not satisfy the Weierstass test. Describe a minimizing sequence. Find the relaxed formulation of the problem.
7. Find Euler-Lagrange equation and natural boundary conditions for the problem

$$
I(n)=\min _{u(x)}\left[\int_{\Omega}\left((\nabla u)^{2}-q u\right) d x+\oint_{\Gamma}\left(\left(c u+d u^{2}\right) d s\right], \int_{\Omega} u^{2} d x=1\right.
$$

where $x=\left(x_{1}, x_{2}\right), \Omega$ is a bounded domain in R_{2} with the smooth boundary $\Gamma, u(x)$ is a scalar minimizer, q, c, d are parameters.

Extra-Credit Problem

Show that the Euler equation of the problem

$$
\left.\inf _{u(x)} \int_{0}^{1}\left((u-\alpha x)^{2}+\min \left\{\left(u^{\prime}-1\right)^{2},\left(u^{\prime}+1\right)^{2}\right\}\right\}\right) d x, \quad u(0)=0
$$

does not satisfy the Weierstass test for certain values of α. Find these values. Describe a minimizing sequence. Find the relaxed formulation of the problem.

