HW 4. Numerical solutions

1. Approximation methods

Approximate solution and the cost of the problems:

$$
I_{1}=\min _{u(x 0, u(0)=0, u(\pi)=0} \int_{0}^{\pi} \sin (\pi x)\left(u^{\prime}\right)^{2}+(u)^{2} d x \text { if } \int_{0}^{\pi} u \dot{d} x=1
$$

and

$$
I_{2}=\min _{u(x 0, u(0)=0, u(\pi)=0} \frac{\int_{0}^{\pi} x\left(u^{\prime}\right)^{2} d x}{\int_{0}^{\pi}(1-x)(u)^{2} d x}
$$

representing $u(x)$ as a polynomial or trigonometric polynomial of the second order and finding the coefficients.

To check, apply same procedure to the problem

$$
\min _{u(x 0, u(0)=0, u(\pi)=0} \frac{\int_{0}^{\pi}\left(u^{\prime}\right)^{2} d x}{\int_{0}^{\pi}(u)^{2} d x}
$$

with the known answer.

2. Gradient method

Let $u(x)$ be the solution of brachistochrome problem

$$
\min u(x) \int_{0}^{1} F\left(u, u^{\prime}\right) d x, \quad F=\frac{\sqrt{1+u^{\prime 2}}}{\sqrt{2 g u}}
$$

and $u(0)=a$ and $u(1)=b$.
Compute the first iteration $u_{1}(x)$ of $\mathrm{U}(\mathrm{x})$ using representation

$$
u_{0}(x)=(b-a) x+a, \quad u_{1}(x)=u_{0}(x)-\epsilon x(1-x) S\left(u_{0}\right)
$$

where $S(u)$ is the functional derivative:

$$
S(u)=\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}
$$

Notice that multipliers $x(1-x)$ fix the boundary conditions. Compare with the known solution choosing a and b. Try different values of ϵ.

Compute the next iteration.

