# Final Exam <br> M 5500, Spring 2017 

Solve any four problems

1. Find Euler equation and natural boundary condition, check Legendre condition

$$
I(u)=\min _{u(x)} \int_{0}^{1}\left(\left(u^{\prime}\right)^{2}+3 \sin (x) u^{2}\right) d x \quad \text { if } \int_{0}^{1}(u) d x=1
$$

2. Two equal masses $m=1$ with coordinates $r_{1}(t)$ and $r_{2}(t)$ move in a plane, $\left(r_{i}(t)=\left(x_{i}(t), y_{i}(t)\right)\right.$ minimizing the difference of kinetic and potential energy

$$
V=\frac{\gamma}{\left|r_{1}-r_{2}\right|}
$$

The initial conditions of the masses are given.
Find Lagrangian and Hamiltonian, equations of motion of the masses. Find invariants to the motion. Hint: Express coordinates through the center of masses $r_{0}=\frac{r_{1}+r_{2}}{2}$.
3. Find an approximate solution to the problem

$$
I(u)=\min _{u(x)} \int_{0}^{1}\left(x\left(u^{\prime}-1\right)^{2}+3 x^{2} u^{2}\right) d x u(0)=u(1)=0
$$

assuming a representation $u(x)=(1-x)\left(A_{0}+A_{1} x+A_{2} x^{2}\right)$. Find the constants $A_{0}, A_{1}, A_{2}$.
4. Find Euler-Lagrange equation for the problem

$$
I(n)=\min _{u(x)}\left[\int_{\Omega}\left((\nabla u)^{2}-q(x) u\right) d x+\oint_{\partial \Omega}\left(c(x) u+d(x) u^{2}\right) d s\right],
$$

where $x=\left(x_{1}, x_{2}\right), u(x)$ is a scalar minimizer, $q(x), c(x), d(x)$ are given functions.
5. Minimize the length of the boundary between two domains of given areas $A_{1}$ and $A_{2}$. Sketch the optimal shapes.

