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Chapter 1

Convexity and Geometric
methods

1.1 Convexity

The best source for the theory of convexity is probably the book [?].

1.1.1 Definitions and inequalities

We start with definition of convexity.

Definition 1.1.1 The set Ω in Rn is convex, if the following property holds. If
any two points x1 and x2 belong to the set Ω, all points xh with coordinates
xh = λx1 + (1− λ)x2 belong to Ω

Ellipsoid, cube, or paraboloid is a convex set, crescent is not convex. Convex
sets are simply connected (do not have holes). The whole space Rn is a convex
set, any hyperplane is also a convex set. The intersection of two convex sets is
also a convex set, but the union of two convex sets may be not convex.

The boundary of a convex set has the following property: for each point of
the boundary there is a plane that passes through this point but does not pass
through any other interior point. Such plane is called supporting plane. One
can define a convex body as a domain bounded by all supporting planes. This
description is called the dual form of the definition of a convex body.

Next, we can define a convex function.

Definition 1.1.2 Consider a scalar function f : Ω → R1 Ω ⊂ Rn of vector
argument. Function F is called convex if it possesses the property

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ∀x1, x2 ∈ Rn, ∀λ ∈ [0, 1] (1.1)

Geometrically, the property (1.1) states that the graph of a convex function lies
below any chord.

5



6 CHAPTER 1. CONVEXITY AND GEOMETRIC METHODS

Figure 1.1: Basic property of convex function: The chord lies above the graph

Example 1.1.1 Function f(x) = x2 is convex. Indeed, f(λx1 + (1 − λ)x2) can
be represented as follows

(λx1 + (1− λ)x2)2 = λ(x1)2 + (1− λ)(x2)2 − C

where C = λ(1 − λ)(x1 − x2)2 ≥ 0 is nonnegative. Therefore, (1.1) is true and
f(x) is convex.

Properties of convex functions One can easily show (try!) that the func-
tion is convex if and only if

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
∀x1, x2 ∈ Rn.

Example 1.1.2 (minimum of an even function) If a function of a vector ar-
gument x is convex and even, f(−x) = f(x), then it reaches the minimum at x = 0,

f(0) ≤ f(x) ∀x ∈ Rn

The convex function F (x) of a vector argument x = (x1, . . . , xn) is differen-
tiable almost everywhere.

Definition 1.1.3 (Weierstrass function) If the first derivatives exist at a point
x ∈ Rn, the following inequality holds

WF (x, z) = F (z)− F (x)− (z − x)T
∂F

∂x
≥ 0 ∀z ∈ X (1.2)

where gradient ∂F
∂x is the vector with components ∂F

∂x1
, . . . , ∂F∂xn . The function

W (x, z) is called Weierstrass function. Function F (x) is convex at a point x if
(1.2) holds.

The inequality (??) compares the value F (z) with the value of the hyperplane
P (z) = F (x)− (z − x)T ∂F∂x that is tangent to the graph of F at the point x.

If the function is not differentiable at a point x, the inequality (1.2) must be
modified. Instead of the tangent plane, we require that a plane exist that coin-
cides with the graph of F at the point x and lies below this graph everywhere.

Definition 1.1.4 Function F (x) is convex at a point x if

∃A = (a1, . . . an) : F (z)− F (x)− (z − x)TA ≥ 0 ∀z ∈ X

Here, A does not need to be a tangent plane, but only a supporting plane.
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Example 1.1.3 Proof of the convexity of the Euclidian norm

F (x1, . . . , xn) =
√
x1

1 + . . .+ x2
n

First, assume that x 6= 0. Then the gradient exists and is equal to

∂F

∂x
=

1
F (x)

x;

the left-hand side of (??) becomes

F (z)− F (x)− (z − x)T
∂F

∂x
=

1
F (x)

(
F (z)F (x)− zTx

)
Recall that F (x) is the Euclidean norm, therefore

zTx = F (x)F (z) cos(ẑ, x) ≤ F (z)F (x).

Therefore, the left-hand side of (1.2) is nonnegative and F is convex everywhere.
At the point x = 0 the function is also convex, according to the Definition 1.1.4.

It is enough to choose A = 0 and check that

F (z)− F (x)− (z − x)TA = F (z) ≥ 0 ∀z ∈ Rn

Definition 1.1.5 (Convexity of a smooth function) If the second deriva-
tives of a convex function exist at every point, the Hessian He(f, x) is nonnegative
everywhere

He(f, x) =

 ∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn

. . . . . . . . .
∂2f

∂x1∂xn
. . . ∂2f

∂xn∂xn

 ≥ 0.

Particularly, the convex function of one variable has the nonnegative second
derivative:

f ′′(x) ≥ 0 ∀x ∈ R1. (1.3)

Example 1.1.4 What are values of α for which

Fα(x, y) = xαy2, x ≥ 0

is convex with respect to x and y?
Compute the Hessian

H =
(
α(α− 1)xα−2y2 2αxα−1y

2αxα−1y 2xα

)
and its determinant detH = −2x2α−2y2α(α+ 1). The determinant is nonnegative
and therefore function Fα(x, y) is convex if α ∈ [−1, 0]. Notice, that if Fα(x, y) is
convex for some x, y it is convex for all x, y.
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Figure 1.2: Graph of nonconvex function f(x) = exp(−|x|)

The nonnegativity of Hessian He(F ) everywhere at the domain of defini-
tion guarantees the convexity of F at that domain. However, nonnegativity of
Hessian at a point is only a necessary condition for the convexity at this point,
but not sufficient. Even if Hessian is positive at a point, the function can be
nonconvex there as it is illustrated by the next example

Example 1.1.5 Function f(x) = x4−6x2 is convex if x 6∈ [−3, 3]. (see the graph
in Figure ??). Indeed, the condition (1.2) of convexity reads

Wf (x, z) = f(z)− f(x)− (z − x)f ′(x) = (3x2 − 6 + 2zx+ z2)(x− z)2 > 0 ∀z

It is satisfied, when the first multiplier does not have roots, or if x 6∈ [−
√

3,
√

3],
because

Wf (x, z) =
(
2(x2 − 3) + (x+ z)2

)
(x− z)2 > 0 ∀z

This condition should ne compared with inequality f ′′(x) ≥ 0 that holds in a smaller
interval x 6∈ [−1, 1]. At the intervals x ∈ [−

√
3,−1] and x ∈ [1,

√
3] the second

derivative of F is positive, but F is not convex.

Convexity is a global property. If the inequality (1.1) is violated at one
point, the function may be nonconvex everywhere.

Example 1.1.6 Consider, for example, f(x) = exp(−|x|). Its second derivative
is positive everywhere, f ′′ = exp(−|x|) except x = 0 where it does not exist. This
function is not convex, because

f(0) = 1 >
1
2

(f(x) + f(−x)) = exp(−|x|) ∀x ∈ R.

1.1.2 Jensen’s inequality

The definition (1.1) is equivalent to the so-called Jensen’s inequality

f(x) ≤ 1
N

N∑
i=1

f(x+ ζi) ∀ζi :
N∑
i=1

ζi = 0 (1.4)

for any x ∈ Ω. (Show the equivalence!)
Jensen’s inequality enables us to define convexity in a point: The function

f is convex at the point x if (1.4) holds.
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Integral form of Jensen inequality Increasing the number N of vectors ζi
in (1.4), we find the integral form of Jensen inequality:

Function F (z) is convex if and only if the inequality holds

F (z) ≤ 1
b− a

∫ b

a

F (z + θ(x))dx (1.5)

where ∫ b

a

θ(x)dx = 0 (1.6)

and all integrals exist.

Remark 1.1.1 (Stability to perturbations) The integral form of the Jensen’s
inequality can be interpreted as follows: The minimum of an integral of a convex
function corresponds to a constant minimizer. No perturbation with zero mean
value can increase the functional.

Another interpretation is: The average of a convex function is larger then the
function of an averaged argument.

Example 1.1.7 Assume that F (u) = u2. We have

0 ≤ 1
b− a

∫ b

a

(z + θ(x))2dx = z2 +
2z
b− a

∫ b

a

θ(x)dx+
1

b− a

∫ b

a

θ(x)2dx

The second integral in the right-hand side is zero because of (1.6), the third integral
is nonnegative. The required inequality

z2 ≤ 1
b− a

∫ b

a

(z + θ(x))2dx

(see (1.5) follows.

Next, we illustrate the use of convexity for solution of optimization problems.
Being global property, convexity allow for establishing the most general between
the optimal trajectory and any other trajectory.

1.1.3 Minimal distance at a plane, cone, and sphere

Let us start with the simplest problem with an intuitively expected solution:
Find the minimal distance between the points (a, α) and (b, β) on a plane.

Consider any piece-wise differentiable path x(t), y(t), t ∈ [0.1] between these
points. We set

x(0) = a, x(1) = b, y(0) = α, y(1) = β

The length of the path is

L(x, y) =
∫ 1

0

√
(x′)2 + (y′)2dx
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(We need the piece-wise differentiability of x(t) and y(t) to be able define the
length of the pass) We have in mind to compare the path with the straight line
(which we might expect to be a solution); therefore, we assume the representa-
tion

x(t) = a+ t(b− a) +
∫ t

0

ψ1(t)dt, y(t) = α+ t(β − α) +
∫ t

o

ψ2(t)dt

the terms dependent on φ and ψ define the deviation from the straight path.
The deviation in the beginning and in the end of the trajectory is zero, therefore
we require ∫ 1

0

ψ1(t)dt = 0
∫ 1

0

ψ2(t)dt = 0; (1.7)

We prove that the deviation are identically zero at the optimal trajectory.
First, we rewrite the functional L in the introduced notations

L(ψ1, ψ2) =
∫ 1

0

√
((b− a) + ψ1(t))2 + ((β − α) + ψ2(t))2dx

where the Lagrangian W ((ψ1, ψ2) is

W ((ψ1, ψ2) =
√

((b− a) + ψ1(t))2 + ((β − α) + ψ2(t))2

and we use expressions for the derivatives x′, y′:

x′ = (b− a) + ψ1(t), y′ = (β − α) + ψ2(t).

The Lagrangian W ((ψ1, ψ2) is a convex function of its arguments ψ1, ψ2. Indeed,
it is twice differentiable with respect to them and the Hessian He is

He(W ) =
(
y2(x2 + y2)−

3
2 xy(x2 + y2)−

3
2

xy(x2 + y2)−
3
2 x2(x2 + y2)−

3
2

)
where x = (b−a)+ψ1(t) and y = (β−α)+ψ2(t). The eigenvalues of the Hessian
are equal to 0 and (x2 + y2)−

1
2 respectively, and therefore it is nonnegative

defined (as the reader can easily check, the graph of W ((ψ1, ψ2) is a cone).
Due to Jensen’s inequality in integral form, the convexity of the Lagrangian

and the boundary conditions (1.7) lead to the relation

L(ψ1, ψ2) ≥ L(0, 0) =
∫ 1

0

√
(b− a)2 + (β − α)2dx

and to the minimizer ψ1 = 0, ψ2 = 0.
Thus we prove that the straight line corresponds to the shortest distance

between two points. Notice that (1) we compare all differentiable trajectories
no matter how far away from the straight line are they, and (2) we used our
correct guess of the minimizer (the straight line) to compose the Lagrangian.
These features are typical for the global optimization.
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Geodesic on a cone Consider the problem of shortest path between two
points of a cone, assuming that the path should lie on the conical surface. This
problem is a simplest example of geodesics, the problem of the shortest path on
a surface discussed below in Section ??.

Because of simplicity of the cone’s shape, the problem can be solved by pure
geometrical means. Firstly, we show that it exists a ray on a cone that does not
intersect with the geodesics between any two point if none of then coincide with
the vertex. If this is not the case, than a geodesics makes a whole spiral around
the cone. This cannot be because one can shorten the line replacing spiral part
of a geodesics by an interval if a ray.

Now, let us cut the cone along this ray and straighten the surface: It becomes
a wedge of a plane with the geodesics lying entirely inside the wedge. Obviously,
the straighten does not change the length of a path. The coordinates of any
point of the wedge can be characterized by a pair r, θ where r > 0 is the distance
from the vertex and θ, 0 ≤ θ ≤ Θ is the angle counted from the cut. Parameter
Θ characterizes the cone itself.

The problem is reduced to a problem of a shortest path between two points
that lies within a wedge. Its solution depends on the angle Θ of the wedge. If
this angle is smaller that π, Θ < π, the optimal path is a straight line

r = A tan θ +B sec θ (1.8)

One can observe that the r(θ) is a monotonic function that passes through two
positive values, therefore r(θ) > 0 – the path never goes through the origin.
This is a remarkable geometric result: no geodesics passes through the vertex on
a cone if Θ < π!: There always is a shorter path around the vertex.

At the other hand, if Θ > π, then a family of the geodesics will path through
the vertex and consist of two straight intervals. This happens if θ > π. Notice
that in this case the original cone, when cut, becomes a wedge with the angle
larger than 2π and consist of at least two overtopping sheets.

Distance on a sphere: Columbus problem Consider the problem of
geodesics on a sphere. Let us prove that a geodesics is a part of the great
circle.

Suppose that geodesics is a different curve, or that it exists an arc that is
a part of the geodesics but does not coincide with the arc of the great circle.
This arc can be replaced with its mirror image – the reflection in the plane that
passes through the ends of the arc and the center of the sphere. The reflected
curve has the same length of the path and it lies on the sphere, therefore the
new path remains a geodesics.

At the other hand, the new path is broken in two points, and therefore cannot
be the shortest path. Indeed, consider a part of the path in an infinitesimal circle
around the point of breakage and fix the points A and B where the path crosses
that circle. This path can be shorten by a arc of a great circle that passes
through the points A and B. To illustrate this part, it is enough to imagine a
human-size scale on Earth: The infinitesimal part of the round surface becomes
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flat and obviously the shortest path correspond to a straight line and not to a
zigzag line with an angle.

The same consideration shows that the length of geodesics is no larger than π
times the radius of the sphere or it is shorter than the great semicircle. Indeed,
if the length of geodesics is larger than the great semicircle one can fix two
opposite points – the poles of the sphere – on the path and turn around the axis
the part of geodesics that passes through these points. The new path lies of
the sphere, has the same length as the original one, and is broken at the poles,
thereby its length is not minimal.

To summarize geodesics on a sphere is a part of the great circle that joins
the starting and end points and which length is less that a half of the equator.

Remark 1.1.2 This geometric consideration, when algebraically developed and
generalized to larger class of extremal problems, yields to the so-called Jacobi test,
see below Section ??. The Jacobi test is violated if the length of geodesics is larger
than π times the radius of the sphere.

The argument that the solution to the problem of shortest distance on a
sphere bifurcates when its length exceeds a half of the great circle was in fact
famously used by Columbus who argued that the shortest way to India passes
through the Western route. As we know, Columbus wasn’t be able to prove or
disprove the conjecture because he bumped into American continent discovering
New World for better and for worst.

1.1.4 Minimal surface

A three-dimensional generalization of the geodesics is the problem of the min-
imal surface that is the surface of minimal area stretched on a given contour.
If the contour is plane, the solution is obvious: the minimal surface is a plane.
The proof is quite similar to the above proof of the minimal distance on the
plane.

In general, the contour can be any closed curve in three-dimensional space;
the corresponding surface can be very complicated, and nonunique. It may
contain several smooth branches with nontrivial topology (see the pictures).
The example of such surface is provided by a soap film stretched on a contour
made from a wire: the surface forces naturally minimize the area of the film.
Theory of minimal surfaces is actively developing area, see the books [?, ?].

In contrast with the complexity of a minimal surface in the large scale, caused
by the complexity of the supporting contour, the local feature of any minimal
surface is simple; we show that any smooth segment of the minimal surface has
zero mean curvature.

We prove the result using an infinitesimal (variational) approach. Let S be
an optimal surface, and s0 be a regular point of it. Assume that S is a smooth
surface in the neighborhood of so and introduce a local Cartesian coordinate
system ξ1, ξ2, Z so oriented that the normal to the surface at a point s0 coincides
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with the axes Z. The equation of the optimal surface can locally be represented
as

Z = D +Aξ2
1 + 2Cξ1ξ2 +Bξ2

2 + o(ξ2
1 , ξ

2
2) = 0

Here, the linear with respect to ξ1 and ξ2 terms vanish because of orientation
of Z-axis. In cylindrical coordinates r, θ, Z, the equation of the surface F (r, θ)
becomes

0 ≤ r ≤ ε, π ≤ θ ≤ π,

and
F (r, θ) = D + a r2 + b r2 cos(2θ + θ0) + o(r2) (1.9)

Consider now a cylindrical ε-neighborhood of s0 – a part r ≤ ε of the surface
inside an infinite cylinder with the cental axes Z. The equation of the contour
Γ– the intersection of S with the cylinder r = ε – is

Γ(θ) = F (r, θ)|r=ε = D + ε2a+ ε2b cos(2θ + θ0) + o(ε2) (1.10)

If the area of the whole surface is minimal, its area inside contour Γ is
minimal among all surfaces that passes through the same contour. Otherwise,
the surface could be locally changed without violation of continuity so that its
area would be smaller.

In other words, the coefficients D, a, b, θ0 of the equation (1.9) for an ad-
missible surface should be chosen to minimize its area, subject to restrictions
following from (1.10): The parameters b, θ0 and D + ε2a are fixed. This leaves
only one degree of freedom – parameter a – in an admissible smooth surface.
Let us show that the optimal surface corresponds to a = 0.

We observe, as in the previous problem, that the surface area

A =
∫ 2π

0

∫ ε

0

√1 +
(
∂F

∂r

)2

+
(

1
r

∂F

∂θ

)2
 r drdθ

is a strictly convex and even function of a (which can be checked by substitution
of (1.10) into the formula and direct calculation of the second derivative). This
implies that the minimum is unique and correspond to a = 0.

Another way is to use the approximation based on smallness of ε. The
calculation of the integral must be performed up to ε3, and we have

A = πε2 +
1
2

∫ 2π

0

∫ ε

0

((
∂F

∂r

)2

+
(

1
r

∂F

∂θ

)2
)
r drdθ + o(ε3).

After substitution of the expression for F from (1.9) into this formula and
calculation, we find that

A = πε2 +
8
3
πε3(a2 + b2) + 0(ε3)
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The minimum of A corresponds to a = 0 as stated. Geometrically, the result
means that the mean curvature of a minimal surface is zero in any regular point.
The minimal surface area

Amin = πε2 +
8
3
πε3b2 + 0(ε3)

depends only on the total variation 2b = (max Γ−min Γ) of Γ as expected.
In addition, notice that the minimal area between all surfaces enclosed in a

cylinder that do not need to pass through a fixed contour is equal to the area
πε2 of a circle and corresponds to a flat contour b = 0, as expected.

Proof by symmetry Another proof does not involve direct calculation of the
surface. We only states that the minimal surface S locally is entirely determined
by the infinitesimal contour Γ. Therefore, a transform of the coordinate system
that keeps the contour unchanged cannot change the minimal surface inside it.
Observe, that the infinitesimal contour (1.10) is invariant to transform

Z ′ = −Z + 2(D + ε2a), r′ = r, θ′ = θ + 90◦. (1.11)

that consists of reverse of the direction of Z axes, shift along Z, and rotation
on 90◦ across this axes. The minimal surface (1.9) must be invariant to this
transform as well, which again gives a = 0.

Remark 1.1.3 This proof assumes uniqueness of the minimal surface.

Thin film model The equation of the minimal surface can be deduced from
the model of a thin film as well. Assume that the surface of the film shrinks
by the inner tangent forces inside each infinitesimal element of it, and there are
no bending forces generated that is forces normal to the surface. The tangent
forces at a point depend only on local curvatures at this point.

Separate again the cylindrical neighborhood and replace the influence of the
rest of the surface by the tangential forces applied to the surface at each point
of the contour. Consider conditions or equilibrium of these forces and the inner
tangent forces in the film. First, we argue that the average force applied to
the contour is zero. This force must be directed along the z-axes, because the
contour is invariant to rotation on 180◦ degree around this axes. If the average
force (that depends only on the geometry) had a perpendicular to z component,
this component would change its sign. The z-component of the average force
applied to the contour is zero too, by the virtue of invariance of the transform
(1.11). By the equilibrium condition, the average z-component of the tangent
force inside the surface element must be zero as well.

Look of the representation (1.9) of the surface: The average over the area
force F depends on a and b: F = F (a, b). This average force is independent of θ0

because of symmetry. The dependence on b is even, because the change of sign
of b corresponds to 90◦ rotation of the contour that leaves the force unchanged.
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The dependence on a is odd, because the change of the direction of the force
correspond to change of the sign of a.

F = constant(θ0), F (a, b) = F (a,−b) = −F (−a, b) ∀θ0, a, b.

Therefore, zero average force corresponds to a = 0, as stated.
The direction of average along the contour and over the surface forces cannot

depend on b because the 180◦ degree rotation of the contour leaves is invariant,
therefore the force remains invariant, too.

1.2 Convex envelope

1.2.1 Shortest path around an obstacle: Convex envelope

A helpful tool in the theory of extremal problem is the convex envelope. Here,
we introduce the convex envelope of a finite set in a plane as the solution of a
variational problem about the minimal path around an obstacle. The problem is
to find the shortest closed contour that contains finite not necessarily connected
domain Ω inside. This path is called the convex envelope of the set Ω.

Definition 1.2.1 (Convex envelope of a set) The convex envelope CΩ of a
finite closed set Ω is the minimal of the sets that (i) contain Ω inside, CΩ ⊃ Ω and
(ii) is convex.

We argue that the minimal path Γ is convex, that is every straight line
intersects its boundary not more than twice. Indeed, if a component is not
convex, we may replace a part of it with a straight interval that lies outside
of Γ thus finding another path Γ′ that encircles a larger set but has a smaller
perimeter. Perimeter of a convex set is decreased only when the encircled set Γ
is lessen.

Also, the strictly convex (not straight) part of the path coincides with the
boundary of Ω. Otherwise, the length of this boundary can be decreased by
replacing an arc of it with the chord that lies completely outside of Ω.

We demonstrated that a convex envelope consists of at most two types of
lines: the boundary of Ω and straight lines (shortcuts). The convex envelope of
a convex set coincide with it, and the convex envelope of the of the set of finite
number of points is a convex polygon that is supported by some of the points
and contains the rest of them inside.

Properties of the convex envelope The following properties are geomet-
rically obvious and the formal proofs of then are left to the interested reader.

1. Envelope cannot be further expanded.

C(C(Ω)) = C(Ω)
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2. Conjunction property:

C(Ω1 ∪ Ω2) ⊇ C(Ω1) ∪ C(Ω2)

3. Absorbtion property: If Ω1 ⊂ Ω2 then

C(Ω1 ∪ Ω2) = C(Ω2)

4. Monotonicity: If Ω1 ⊂ Ω2 then

C(Ω2) ⊆ C(Ω1)

Shortest trajectory in a plane with an obstacle
Find the shortest path p(A,B,Ω) between two points A and B on a plane if a

bounded connected region (an obstacle) Ω in a plane between them cannot be
crossed.

• First, split a plane into two semiplanes by a straight line that passes
through the connecting points A and B.

• If the interval between A and B does not connect inner points of Ω, this
interval is the shortest pass. In this case, the constraint (the presence of
the obstacle) is inactive, p(A,B,Ω) = ‖A−B‖ independently of Ω.

• If the interval between A and B connects inner points of Ω, the constraint
becomes active. In this case, obstacle Ω is divided into two parts Ω+ and
Ω− that lie in the upper and the lower semiplanes, respectively, and have
the common boundary – an interval ∂0 – along the divide; ∂0 lies inside
the original obstacle Ω.

Because of the connectedness of the obstacle, the shortest path lies entirely
either in the upper or lower semiplane, but not in both; otherwise, the
path would intersect ∂0. We separately determine the shortest path in the
upper and lower semiplanes and choose the shortest of them.

• Consider the upper semiplane. Notice that points A and B lie on the
boundary of the convex envelope C(Ω+, A,B) of the set Ω and the con-
necting points A and B.

The shortest path in the upper semiplane p+(A,B,Ω) coincides with the
upper component of the boundary of C(Ω+, A,B), the component that
does not contains ∂0. It consists of two straight lines that pass through the
initial and final points of the trajectory and are tangents to the obstacle,
and a part that passes along the boundary of the convex envelope CΩ of
the obstacle itself.

• The path in the lower semiplane is considered similarly. Points A and
B lie on the boundary of the convex envelope C(Ω−, A,B). Similarly to
the shortest path in the upper semiplane, the shortest path in the lower
semiplane p−(A,B,Ω) coincides with the lower boundary of C(Ω−, A,B).
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• The optimal trajectory is the one of the two pathes p+(A,B,Ω) and
p−(A,B,Ω); the one with smaller length.

Analytical methods cannot tell which of these two trajectories is shorter,
because this would require comparing of non-close-by trajectories; a straight
calculation is needed.

If there is more than one obstacle, the number of the competing trajectories
quickly raises.

Convex envelope supported at a curve Consider a slightly different prob-
lem: Find the shortest way between two points around the obstacle assuming
that the these points lie on a curve that passes through the obstacle on the
opposite sides of it. The points are free to move along the curve it this would
decrease the length of the path. Comparing with the previous problem, we ask-
ing in addition where the points A and B are located. The position of the points
depends on the shape of the obstacle and the curve, but it is easy to establish
the conditions that must be satisfied at optimal location.

Problem: Show that an optimal location of the point A is either on the point
of intersection of the line and an obstacle, or the optimal trajectory p−(A,B,Ω)
has a straight component near the point A and this component is perpendicular
to the line at the point A.

Lost tourists

Finally, we consider a variation of the theme of convex envelope, the problem
of the lost tourists. Crossing a plain, tourists have lost their way in a mist.
Suddenly, they find a pole with a message that reads: ”A straight road is a mile
away from that pole.” The tourists need to find the road; they are shortsighted
in the mist: They can see the road only when they step on it. What is the
shortest way to the road even if the road is most inauspiciously located?

The initial guess would suggest to go straight for a mile in a direction, then
turn 90◦, and go around along the one-mile-radius circumference. This route
meets any straight line that is located at the one mile distance from the central
point. The length of this route is 1 + 2π ≈ 7.283185 miles.

However, a detailed consideration shows that this strategy is not optimal.
Indeed, there is no need to intersect each straight line (the road) at the point of
the circle but at any point and the route does not need to be closed. Any route
that starts and ends at two points A and B at a tangent to a circle and goes
around the circle intersects all other tangents to that circle. In other words, the
convex envelope of the route includes a unit circle. The problem becomes: Find
the curve that begins and ends at a tangent AB to the unit circle, such that
(i) its convex envelope contains a circle and (ii) its length plus the distance 0A
from the middle of this circle to one end of the curve is minimal.

The optimal trajectory consists of an straight interval OA that joints the
central point O with a point A outside of the circle C and the convex envelope
(ACB) stretched on the two points A and B and circle C.
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The boundary of the convex envelope is either straight or coincide with the
circle. More exactly, it consists of two straight intervals AA1 supported by the
point A and a point A1 at the circumference and AA1 supported by the end
point B and a point B1 of circumference. These intervals are tangent to the
circumference at the points A1 and B1, respectively. Finally, line AB touches
the circumference a point V .

Calculation The length L of the trajectory is

L = L(OA) + L(AA1) + L(A1B1) + L(B1B)

where L is the length of the corresponding component. These components are
but straight lines and an circle’s arch; the problem is thus parameterized. To
compute the trajectory, we introduce two angles α and −β from the point V
there the line AB touches the circle. Because of symmetry, the points A1 and
B1 correspond to the angles 2α and −2β, respectively, and we compute

L(OA) =
1

cosα
, L(AA1) = tanα

L(A1B1) = 2π − 2α− 2β, L(B1B) = − tanβ,

plug these expressions into the expression for L, solve the conditions dL
dα = 0

and dL
dβ = 0, and find optimal angles:

α =
π

6
, β = −π

4
,

The minimal length L equal to L = 7
6π +

√
3 + 1 = 6.397242.

Solution without calculation One could find solution to the problem with-
out any trigonometry but with a bit of geometric imagination. Consider the
mirror image Cm of the circle C assuming that the mirror is located at the
tangent AB. Assume that the optimal route goes around that image instead
of original circle; this assumption evidently does not change the length of the
route. This new route consists of three pieces instead of four: The straight line
OA′m that passes through the point O and is tangent to the circumference Cm,
the part A′mB

′
m of this circumference, and the straight line B′mB that passes

through a point B on the line and is tangent to the circumference Cm.
The right triangle OmA′mO has the hypothenuse O′O equal to two and the

side OmA′m equal to one; the length of remaining side OA′ equals to
√

3 and
the angle OmOA′m is π

3 . The line B′mB is perpendicular to AB, therefore its
length equals one. Finally, the angle of the arch A′mB

′
m equals to 7

6π. Summing
up, we again obtain L = 7

6π +
√

3 + 1.

Generalization The generalization of the concept of convex envelope to the
three-dimensional (or multidimensional) sets is apparent. The problem asks for
set of minimal surface area that contains a given closed finite set. The solution
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is again given by the convex envelope, definition (2.1.1) is applicable for the
similar reasons.

Consider the three-dimensional analog of the problem 1.2.1 assuming in ad-
dition that the obstacle Ω is convex. Repeating the arguments for the plane
problem, we conclude that the optimal trajectory belongs to the convex en-
velope C(Ω, A,B). The envelope is itself a convex surface and therefore the
problem is reduced to geodesics on the convex set – the envelope C(Ω, A,B).
The variational analysis of this problem allows to disqualify as optimal all (or
almost all) trajectories on the convex envelope one by comparing near-by tra-
jectories that touch the obstacle in close-by points.

If the additional assumption of convexity of obstacle is lifted, the problem
becomes much more complex because the passes through ”tunnels” and in folds
in the surface of Ω should be accounted for. If at least one of the points A or B
lies inside the convex envelope of a nonconvex obstacle, the minimal path partly
goes inside the convex envelope CΩ as well. We leave this for the interested
reader.

1.3 Symmetrization

An interesting geometric method, symmetrization, is based on convexity in-
equality; it allows for solution of several isoperimetric problem. The detailed
discussion can be found in the books by Blaschke [], Pólya and Szegö [?]

The idea of symmetrization Consider a plane finite domain Ω and a straight
line A. The transformation of Ω is called a symmetrization with respect to A if
it moves each interval that crosses Ω and is orthogonal to A parallel to itself so
that the middle of the interval belongs to A.

One can easily see that the symmetrization of a polygon is a polygon with
equal or larger number of angles than the original one.

1.3.1 Symmetrization of a triangle and quadrangle

Let us prove that unilateral triangle has minimal perimeter among all triangles
with given area.

Consider an arbitrary nonunilateral triangle ABC and apply symmetrization
to it. Generally, the symmetrization transforms a triangle into a quadrangle; the
triangle remains a triangle only if the axis of symmetrization is orthogonal to
one of the side. In this case, an arbitrary triangle becomes an isosceles triangle,
the base a and the hight h remain unchanged. This implies that symmetrization
leaves the area A of the triangle unchanged.

Let us show that symmetrization decreases the perimeter. Let the coordi-
nates of the vertexes be

A = (a, 0), B = (−a, 0), C = (c, h)
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and let the axes of symmetrization be the Y axes. After symmetrization, the
coordinates A and B remain the same, and the vertex C moves to C ′ = (0, h).

The sum of the two sides’ lengths equal to

L =
√
h2 + (a− c)2 +

√
h2 + (a+ c)2

becomes
LS = 2

√
h2 + a2.

We prove that
LS ≤ L (1.12)

and the equality sign corresponds to the only case c = 0.
Consider the length of a side as a function of c:

L(c) =
√
h2 + (a+ c)2

the function f is strictly convex since

L′′(c) =
h2

(h2 + (a+ c)2)
3
2
> 0

and is even. The inequality of convexity (??) implies that

L(c) + L(−c) ≥ 2f(0)

that is, the inequality (1.12)
If the obtained rectangle is not unilateral, the symmetrization procedure can

be repeated, using one of the equal legs as the base. The new triangle has the
same area and smaller perimeter.

Consider now a sequence of symmetrizations applied to an arbitrary triangle.
On each step, symmetrization preserves one side, makes two other sides equal
to each other, and decreases their total length. The area of the triangle is
preserved, its perimeter decreases and is obviously bounded from below, say
by zero. Therefore the sequence of symmetrizations is a monotone bounded
sequence and it must have a unique stable point: A triangle that is stable
against symmetrization. This is of course a unilateral triangle. We have proved
the theorem:

Theorem 1.3.1 Among all triangles with equal area, the unilateral triangle has
the smallest perimeter.

Symmetrization of a quadrangle Let is apply symmetrization to an arbi-
trary quadrangle, requiring that the quadrangle remains quadrangle after the
symmetrization.

At the first step, we have to perform symmetrization orthogonal to one of two
diagonals. The resulting quadrangle has two pairs of neighboring sides of equal
lengths. At the second step, we symmetrize orthogonally to the other diagonal,
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the resulting figure is a rhombus of equal area but of smaller perimeter than the
original quadrangle.

Now we may start a two-steps sequence of symmetrizations. Firstly, we
transform the rhombus into a rectangle using the side as an axis of symmetriza-
tion. Secondly, we transform the rectangle back to rhombus, using the diagonal
as the axis of symmetrization. The obtained rhombus has smaller ratio of the
larger diagonal to the smaller one (compute the change of this ratio!) and the
smaller perimeter, but its area stays unchanged. This monotonic sequence has
a stable point. The stable point is the square, which enables us to formulate
the next theorem.

Theorem 1.3.2 Among all quadrangles with equal area, the square has the small-
est perimeter.

1.3.2 Circle: A stable manifold

Symmetrization can be applied to an arbitrary finite bounded domain F (x, y) ≥
0 with the boundary F (x, y) = 0. For definiteness let assume that the y-axis is
the axis of symmetrization.

Dissect the plane by a family {yk} of equidistant parallel lines

y0, y1 = y0 + ∆, y2 = y0 + 2∆, . . . , yN = y0 +N∆.

Assume that this division covers the figure F (x, y) = 0 and that the number N
is arbitrary large so that the distance between two neighboring parallel lines is
infinitesimal.

An infinitesimal part of the domain F (x, y) = 0 located between two close-
by parallel lines can be approximated by a trapezoid. Symmetrization replaces
this trapezoid by a equilateral trapezoid of equal area, parallel sides of equal
length, but with smaller total length of the non-parallel sides (show this!). We
can formulate

Theorem 1.3.3 The total area of the symmetrized domain remains constant, but
its perimeter (equal to the sum of the lengths of the sides of the trapezoids) de-
creases.

Now consider the sequence of symmetrization with variable axis. The se-
quence of the transformed figures tends to a circle: The only figure that is
stable against any symmetrization. Indeed, this sequence tends to its unique
stable point, and the circle is that point.

We came to the theorem

Theorem 1.3.4 Among all plane domains with equal finite area, the circle has
the smallest perimeter.
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Geometric proof of the theorem An independent geometric proof of the
theorem is elegant and does not require any infinitesimal operation. However,
we need to assume the existence of an optimal shape which we do not need to
do in the previous consideration.

The proof requires the following steps:
1. We show that the optimal domain is convex. If it is not convex, we pass

to the convex envelope increasing the area and decreasing the perimeter at the
same time.

2. We cut the optimal domain by a straight line so that both parts have
the same area. This is always possible by moving a line across the domain and
keeping it parallel to itself. The two cut parts must have the same perimeter
too, otherwise the perimeter could be decreased replacing the part with larger
perimeter with the mirror image of the part with smaller perimeter. The re-
placement of one of the domain with the mirror image of the second one changes
neither the area nor the perimeter.

3. Consider the half of the optimal shape with the straight base. Choose
an arbitrary point C on it surface and connect it with the ends of the base by
two straight intervals. The domain is thus divided into two outer shapes and a
triangle.

4. We may change the length of the base without changing the perimeter.
This change keeps the areas of two outer domains constant but varies the angle
and by the area of the triangle. The maximal area of the triangle corresponds
to the angle C opposite the base being equal 90◦. Indeed, by the geometric
theorem the area A equals to

A =
1
2
a b sinC

where the lengths a and b of the intervals are constant to the motion and the
angle arbitrary varies. The maximal area corresponds to C = 90◦.

5. Because the point C was arbitrarily chosen, the angle between any point
of the surface and the base is equal 90◦. The figure must be a circle: the set of
points from which an interval (diameter) is visible on a right angle.

1.3.3 Dido problem

Probably the first extremal problem known from the antic time is the Dido
problem. The problem is based on a passage from Virgil’s Aeneid (cited from
[]):

”The Kingdom you see is Carthage, the Tyrians, the town of Agenor;

”But the country around is Libya, no folk to meet in war.

Dido, who left the city of Tyre to escape her brother,

Rules here – a long a labyrinthine tale of wrong

Is hers, but I will touch on its salient points in order

...

Dido, in great disquiet, organized her friends for escape.
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They met together, all those who harshly hated the tyrant

Or keenly feared him: they seized some ships which chanced to be ready

...

They came to this spot, where to-day you can behold the mighty

Battlements and the rising citadel of New Carthage,

And purchased a site, which was named ‘Bull’s Hide’ after the bargain

By which they should get as much land as they could enclose with a bull’s

hide.”

According to the legend, the Trojans arrived in the North African shore of
Mediterranean Sea after the defeat by Greeks. Here, their leader, wise queen
Dido, purchased from the local tribe a piece land on the shore “that can be
covered by the bull’s hide.” Sophisticated Trojans had a much more advanced
technology than the locals; in particular, they knew how to use sharp knifes to
cut hides into thin strips (and they knew some math, too!). So, they made a
long leather rope out of the hide and encircled by it enough land to build the
city of Carthage who later become a mighty rival of Rome.

Dido brilliantly solved the following extremal problem: Given a curve of
a given length (the rope) and a straight line (the sea shore), encircle the do-
main of maximal area (place for future Carthage). This problem, known as
Dido problem, inspirited many generations by its cleverness; it influenced the
development of theory of extremal problems, demonstrated usefulness of math-
ematics, and accustomed people to respect political leaders able to use brains
instead of brutal force.

Dido problem can be solved by symmetrization together with the following
trick: Assume that the seashore is a mirror and consider the domain Ω of the
enclosed land and its mirror image; obviously, the perimeter and area of Ω is
twice larger than the perimeter and area of the enclosed domain, respectively.
The symmetrization tells that Ω is a circle; thereby, the answer to Dido problem
is a semicircle with the shore as a diameter and the rope as a semi-circumference.

The reference of how to use Maple to work on Dido problem:
http://www.mapleapps.com/powertools/engineeringmath/html/Section

1.3.4 Formalism of symmetrization

The considered symmetrization of a plane domain can be formalized as following:
Assume for simplicity that the boundary of the set F is y-simple: The set
F (x, y) ≥ 0 described as

f−(x) ≤ y ≤ f+(x), a ≤ x ≤ b

The area A of the domain is equal to

A =
∫ b

a

(f+ − f−)dx (1.13)
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and the perimeter P is

P =
∫ b

a

(√
1 + (f ′+)2 +

√
1 + (f ′−)2

)
dx

The symmetrized domain is described as

−1
2

(f+(x)− f−(x)) ≤ y ≤ 1
2

(f+(x)− f−(x)) , a ≤ x ≤ b

Its area AS of the symmetrized domain is obviously given by the formula (1.13)
and its perimeter PS is

PS = 2
∫ b

a

√
1 +

1
4

(f ′+ − f ′−)2 dx

If remains to prove that P ≥ PS or∫ b

a

(√
1 + (f ′+)2 +

√
1 + (f ′−)2 − 2

√
1 +

1
4

(f ′+ − f ′−)2

)
dx ≥ 0

We show that the integrant is nonnegative in each point. Starting with the
inequality √

1 + (f ′+)2 +
√

1 + (f ′−)2 ≥ 2

√
1 +

1
4

(f ′+ − f ′−)2

we square its left- and right-hand sides, cancel equal terms, and obtain an
equivalent inequality√(

1 + (f ′+)2
) (

1 + (f ′−)2
)
≥ 1− f ′+ f ′−

If the right-hand side is negative, the inequality is true, otherwise square it one
more time and obtain the true equivalent inequality

(f ′+ + f ′−)2 ≥ 0

The result is proved.

Remark 1.3.1 If the contour is not y-simple, the result remain the same.

3D symmetrization

Consider a bounded body
F (x, y, z) ≥ 0

in three-dimensional space with the boundary

F (x, y, z) = 0.
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Dissect it by a family of equidistant parallel planes

z = z0, z = z0 + ∆, z = z0 + 2∆, . . . , z = z0 +N∆.

Replace a part of the body located between two planes by a conical surface,
replacing each closed contour F (x, y, z0 + k∆) = 0 by the circle of equal area,
all centered at the z-axis

x2 + y2 = r2
k, where πr2

k = Area of F (x, y, z0 + k∆)

Doing this, we obtain a body of revolution defined by the curve r(z) that revolves
around the z-axis.

We can show (do it yourself or look into [?]) that this transformation called
Schwartz symmetrization (i) conserves the volume of the body and (ii) decreases
its surface area.

Particularly, consider the domain bounded by the plane z = 0 and a non-
negative surface z = u(x, y) ≥ 0 such that u(x, y) = 0 if (x, y) ∈ Γ = ∂Ω. The
symmetrization

1. Replaces the base Ω with a circle of equal area:

ΩS = A circle: |Ω| = |ΩS |

2. Conserves the volume:∫
Ω

u dx dy is stable to symmetrization

3. Decreases the surface area:∫
Ω

√
1 + (∇u)2 dx dy decreases by symmetrization (1.14)

Using symmetrization, we may deduct some inequalities for the functionals
different from the volume or the area. For example, assuming that u(x, y)� 1,
we notice that (1.14) implies the decrease of the Dirichlet integral:∫

Ω

(∇u)2 dx dy decreases by symmetrization

Here u(x, y) is a differentiable function such that u = 0 on the contour ∂Ω.

Extremal property of the sphere As in two-dimensional case, one applies
the series of symmetrization around all axes, look into the resulting stable point
and arrive at the theorem:

Theorem 1.3.5 Among all three-dimensional bodies with equal finite volume, the
sphere has the smallest surface area.
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Limits of the method

The method of symmetrization operates with special type of functionals (area,
perimeter, volume).

It cannot handle any additional constraints besides the fixed area, such the
requirement that a part of the boundary stays unchanged. In particular, it does
not preserve the number of edges in polygons of more than fourth order.

1.3.5 Summary

The sufficient conditions are the most elegant statements in the theory ex-
tremal problems. In these methods, the guessed optimal solution is directly
compared with all admissible solutions; thus the global optimum of the func-
tional is proven. By its nature, a sufficient conditions technique is irregular and
the area of its applicability is limited.

Symmetrization shows that is many problem a symmetric solution is better
than a nonsymmetric one. This principle is reflected in an intuitive preference
to symmetric designs which are often considered to be more elegant or beautiful
that nonsymmetric ones.

1.4 Problems

1. Use Jensen inequality to prove the relation between arithmetic and har-
monic means:

a1 + . . .+ aN
N

≥ (a1 · . . . · aN )
1
N ∀a1 ≥ 0, . . . aN ≥ 0

2. Describe the area of a symmetrized ellipse.
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Nonconvex Lagrangians

2.1 Irregular solutions

The classical approach to variational problems assumes that the optimal trajec-
tory is a differentiable curve – a solution to the Euler equation that, in addition,
satisfies the Weierstrass and Jacobi tests. In this chapter, we consider the varia-
tional problems which solutions do not satisfy necessary conditions of optimality.
Either the Euler equation does not have solution, or Jacobi or Weierstrass tests
are not satisfied at any stationary solution; in any case, the extremal cannot be
found from stationarity conditions. We have seen such solution in the problem
of minimal surface (Goldschmidt solution, Section ??).

A minimization problem always can be solved by a direct method that is by
constructing a corresponding minimizing sequence, the functions us(t) with the
property I(us) ≥ I(us+1). The functionals I(us) form a monotonic sequence
of real number that converges to a real or improper limit. In this sense, every
variational problem can be solved, but the limiting solution lims→∞ us may
be irregular; in other terms, it may not exist in an assumed set of functions.
Especially, derivation of Euler equation uses an assumption that the minimum
is a differentiable function. This assumption leads to complications because the
set of differentiable functions is open and the limits of sequences of differentiable
functions are not necessary differentiable functions themselves.

We recall several types of sequences that one meets in variational problems

Example 2.1.1 (Various limits of functional sequences)

• The limit δ(x) of the sequence of infinitely differentiable function

φn(x) =
n

2π
exp

(
−x

2

2n

)
is not a function but a distribution - the δ function.

27
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• The limit H(x) of the sequence of antiderivatives of these infinitely differen-
tiable functions is a discontinuous Heaviside function,

H(x) =
∫ x

−∞
φn(t)dt =

{
0 if x < 0
1 if x > 1

• The limit of the sequence of oscillating functions

lim
n→∞

sin(nx)

does not exist for any x 6= 0.

• The sequence {φn(x)}, where φn(x) = 1√
n

sin(nx) converges to zero point-

wise, but the sequence of the derivatives φn(x)′ =
√
n cos(nx) does not

converges and is unbounded everywhere.

These or similar sequences can represent minimizing sequences in variational
problems. Here we give a brief introduction to the methods to deal with such
”exotic” solutions.

As always, we try to find an analogy of irregular solutions in finite-dimensional
minimization problems. Consider such a problem minx∈Rn F (x). The minimum
may either correspond to the regular stationary point where ∇F (x) = 0, or to
an irregular point where ∇F (x) is not defined or its norm is unbounded, or
to improper x. It is natural to expect, that in variational problems where the
minimizing functions u(x) belong to more complex than Rn sets and and are
bounded by additional requirements of differentiability, the number of irregular
cases growths and causes for these cases are more diverse.

How to deal with irregular problems The possible nonexistence of mini-
mizer poses several challenging questions. Some criteria are needed to establish
which problems have a classical solution and which do not. These criteria ana-
lyze the type of Lagrangians and result in existence theorems.

There are two alternative ideas in handling problems with nondifferentiable
minimizers. The admissible class of minimizers can be enlarged and closed
in such a way that the ”exotic” limits of minimizers would be included in the
admissible set. This relaxation procedure, underlined in the Hilbert’s quotation,
motivated the introduction of distributions and the corresponding functional
spaces, as well as development of relaxation methods. Below, we consider several
ill-posed problems that require rethinking of the concept of a solution.

Alternatively, the minimization problem can be constrained so that the ”ex-
otic” behavior of the solutions is penalized and the minimizer will avoid it; this
approach called regularization, forces the problem to select a classical solution
at the expense of increasing the value of the objective functional. When the pe-
nalization decreases, the solution tends to the solution of the original problem,
remaining conventional. An example of this approach is the viscosity solution
developed for dealing with the shock waves.
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Existence of a differentiable minimizer We formulate here a list of con-
ditions guarantying the smooth classical solution to a variational problem.

1. The Lagrangian grows superlinearly with respect to u′:

lim
|u′|→∞

F (x, u, u′)
|u′|

=∞ ∀x, u(x) (2.1)

This condition forbids any finite jumps of the optimal trajectory u(x); any
such jump leads to an infinite penalty in the problem’s cost.

2. The cost of the problem increases when |u| → ∞. This condition forbids
a blow-up of the solution.

3. The Lagrangian is convex with respect to u′:

F (x, u, u′) is a convex function of u′ ∀x, u(x)

at the optimal trajectory u. This condition forbids infinite oscillations
because they would increase the cost of the problem.

Let us outline the idea of the proof:

1. First two conditions guarantee that the limit of any minimizing sequence
is bounded and has a bounded derivative. The cost of the problem unlim-
itedly grows when either the function or its derivative tend to infinity at
a set of nonzero measure.

2. It is possible to extract a weakly convergent subsequence uS ⇁ u0 from
a weakly bounded minimizing sequence. Roughly, this means that the
subsequence uε(x) in a sense approximates a limiting function u0, but
may wiggle around it infinitely often.

3. Next, we need the property of lower weakly semicontinuity of the objective
functional I(u). The lower weakly semicontinuity states that

lim
uS⇁u0

I(us) ≥ I(u0)

We illustrate this property on the following examples.

Example 2.1.2 The weak limit of the sequence us = sin(s x) is zero.

sin(s x) ⇁ 0 s→∞

Compute the limit of the functional

I1(us) =
∫ 1

0

(us)2dx
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We have

lim
s→∞

∫ 1

0

sin2(s x)dx =
1
2

lim
s→∞

∫ 1

0

(1− cos(2s x)dx =
1
2

and we observe that

lim
uS⇁u0

I1(us) > I(u0) = 0

The limit of the functional

I2(us) =
∫ 1

0

(
(us)4 − (us)2

)
dx

is smaller than I2(0). Indeed,

lim
s→∞

∫ 1

0

(
sin4(s x)− sin2(s x)

)
dx = −1

4

or

lim
uS⇁u0

I2(us) < I(u0) = 0

The wiggling minimizing sequence us increases the value of the first functional
and decrease the value of the second. The fist functional corresponds to
convex integrand and is weakly lower semicontinuous.

The convexity of Lagrangian eliminates the possibility of wiggling, because
the cost of the problem with convex Lagrangian is smaller for a smooth
function than on any close-by wiggling function by virtue of Jensen in-
equality. The functional of a convex Lagrangian is lower weakly semicon-
tinuous.

2.1.1 Formalism of convex envelopes

In dealing with nonconvex variational problems, the central idea is to relax
them replacing the nonconvex Lagrangian with its convex envelope. We already
introduced the convex envelope of sets in Rn. Here we transform the notion of
convex envelope from sets to functions.

A graph of any function y = f(x) divides the space into two sets, and the
convex envelope of a function is the convex envelope of the set y > f(x). It the
function is not defined for all x ∈ Rn (like log x is defined only for x ≥ 0), we
extend the definition of a function assigning the improper value +∞ to function
of in all undefined values arguments.

There are two dual description of the convex envelope. One can either define
it as a unity of all planes that lie below the graph of the function, or as a unity
of all intervals that join two points on that graph

They are formalized as follows.
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Figure 2.1: Left: Convex envelope as a unity of lines, Right: Convex envelope
as a unity of intervals

Definition 2.1.1 (Convex envelope of a function) The convex envelope Cf(xv)
of a function f : Rn → R1 is the maximal of the set of affine function g(v) = aT v+b
that do not surpass f(v) everywhere [?]:.

CF (v) = max
a,b

φ(v) : φ(v) ≤ F (v) ∀v and φ(v) is convex. (2.2)

Remark 2.1.1 In the above definition, one can replace the set of affine functions
with convex functions.

The Jensen’s inequality produces the following definition of the convex en-
velope:

Definition 2.1.2 The convex envelope CF (v) is a solution to the following mini-
mal problem:

CF (v) = inf
ξ

1
l

∫ l

0

F (v + ξ)dx ∀ ξ :
∫ l

0

ξdx = 0. (2.3)

This definition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen’s
inequality (??).

To compute the convex envelope CF one can use the Carathéodory theorem
(see [?, ?]). It states that the argument ξ(x) = [ξ1(x), . . . , ξn(x)] that mini-
mizes the right-hand side of (2.3) takes no more than n + 1 different values.
This theorem refers to the obvious geometrical fact that the convex envelope
consists of the supporting hyperplanes to the graph F (ξ1, . . . , ξn). Each of these
hyperplanes is supported by no more than (n + 1) points. For example, a line
(x ∈ R1) is supported by two points, a plane (x ∈ R2) – by three points. These
points are called supporting points.

The Carathéodory theorem allows us to replace the integral in the right-hand
side of (2.3) in the definition of CF by the sum of n + 1 terms; the definition
(2.3) becomes:

CF (v) = min
mi∈M

min
ξi∈Ξ

{
n+1∑
i=1

miF (v + ξi)

}
, (2.4)

where

M =

{
mi : mi ≥ 0,

n+1∑
i=1

mi = 1

}
(2.5)

and

Ξ =

{
ξi :

n+1∑
i=1

miξi = 0

}
. (2.6)
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The convex envelope CF (v) of a function F (v) at a point v coincides with
either the function F (v) or the hyperplane that touches the graph of the function
F . The hyperplane remains below the graph of F except at the tangent points
where they coincide.

The position of the supporting hyperplane generally varies with the point
v. A convex envelope of F can be supported by fewer than n + 1 points; in
this case several of the parameters mi are zero. Generally, the are only n
parameters that vary, some them are coordinates of of the supporting points,
other are coordinates of the points

Example 2.1.3 Obviously, the convex envelope of a convex function coincides
with the function itself, so all mi but m1 are zero in (2.26) and m1 = 1; the
parameter ξ1 is zero because of the restriction (2.6).

The convex envelope of a “two-well” function,

Φ(v) = min {F1(v), F2(v)} , (2.7)

where F1, F2 are convex functions of v, either coincides with one of the functions
F1, F2 or is supported by no more than two points for every v; supporting points
belong to different wells. In this case, formulas (2.26)–(2.6) for the convex
envelope are reduced to

CΦ(v) = min
m,ξ
{mF1(v − (1−m)ξ) + (1−m)F2(v +mξ)} . (2.8)

Indeed, the convex envelope touches the graphs of the convex functions F1

and F2 in no more than one point. Call the coordinates of the touching points
v + ξ1 and v + ξ2, respectively. The restrictions (2.6) become m1ξ1 +m2ξ2 =
0, m1 +m2 = 1. It implies the representations ξ1 = −(1−m)ξ and ξ2 = mξ.

Example 2.1.4 Consider the special case of the two-well function,

F (v1, v2) =
{

0 if v2
1 + v2

2 = 0,
1 + v2

1 + v2
2 if v2

1 + v2
2 6= 0. (2.9)

The convex envelope of F is equal to

CF (v1, v2) =
{

2
√
v2

1 + v2
2 if v2

1 + v2
2 ≤ 1,

1 + v2
1 + v2

2 if v2
1 + v2

2 > 1.
(2.10)

Here the envelope is a cone if it does not coincide with F and a paraboloid if it
coincides with F .

Indeed, the graph of the function F (v1, v2) is rotationally symmetric in the
plane v1, v2; therefore, the convex envelope is symmetric as well: CF (v1, v2) =
f(
√
v2

1 + v2
2). The convex envelope CF (v) is supported by the point v−(1−m)ξ =

0 and by a point v +mξ = v0 on the paraboloid φ(v) = 1 + v2
1 + v2

2 . We have

v0 =
1

1−m
v
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and

CF (v) = min
m

{
(1−m)φ

(
1

1−m
v

)}
. (2.11)

The calculation of the minimum gives (2.10).

Example 2.1.5 Consider the nonconvex function F (v) used in Example ??:

F (v) = min{(v − 1)2, (v + 1)2}.

It is easy to see that the convex envelope CF is

CF (v) =

 (v + 1)2 if v ≤ −1,
0 if v ∈ (−1, 1),
(v − 1)2 if v ≥ 1.

Example 2.1.6 Compute convex envelope for a more general two-well function:

F (v) = min{(av)2, (bv + 1)2}.

The envelope CFn(v) coincides with either the graph of the original function or the
linear function l(v) = Av+B that touches the original graph in two points (as it is
predicted by the Carathéodory theorem; in this example n = 1). This function can
be found as the common tangent l(v) to both convex branches (wells) of F (v):{

l(v) = av2
1 + 2av1(v − v1),

l(v) = (bv2
2 + 1) + 2bv2(v − v2), (2.12)

where v1 and v2 belong to the corresponding branches of Fp:{
l(v1) = av2

1 ,
l(v2) = bv2

2 + 1. (2.13)

Solving this system for v, v1, v2 we find the coordinates of the supporting points

v1 =

√
b

a(a− b)
, v2 =

√
a

b(a− b)
, (2.14)

and we calculate the convex envelope:

CF (v) =


av2 if |v| < v1,

2v
√

ab
a−b −

b
a−b if v ∈ [v1, v2],

1 + bv2 if |v| < v2

(2.15)

that linearly depends on v in the region of nonconvexity of F .
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Hessian of Convex Envelope We mention here an algebraic property of
the convex envelope that we will use later. If the convex envelope CF (v) does
not coincide with F (v) for some v = vn, then the graph of CF (vn) is convex,
but not strongly convex. At these points the Hessian He(F ) = ∂2

∂vi∂vj
F (v) is

semi-positive; it satisfies the relations

He(CF (v)) ≥ 0, detH(CF (v)) = 0 if CF < F, (2.16)

which say that He(CF ) is a nonnegative degenerate matrix. These relations can
be used to compute CF (v). For example, compute the Hessian of the convex
envelope CF (v1, v2) =

√
v2

1 + v2
2 obtained in Example 2.1.4. The Hessian is

He

(√
v2

1 + v2
2

)
=

1
(v2

1 + v2
2)

3
2

(
v2

1 v1v2

v1v2 v2
2

)
and its determinant is clearly zero.

Comparing the minimization problems

I = min
x∈Rn

F (x) and Ic = min
x∈Rn

F(x)

we observe that (i) I = Ic – the minimum of a function coincides with the
minimum of its convex envelope, and (ii) the convex envelope of a function does
not have local minima but only not global one.

Remark 2.1.2 (Convex envelope as second conjugate) We may as well com-
pute convex envelope in more regular way as a second conjugate of the original
function as described later in Section ??.

Convex envelope are used below in the next Section to address ill-posed varia-
tional problems.

2.2 Infinitely oscillatory solutions: Relaxation

2.2.1 Nonconvex Variational Problems.

Consider the variational problem

inf
u

J(u), J(u) = inf
u

∫ 1

0

F (x, u, u′)dx, u(0) = a0, u(1) = a1 (2.17)

with Lagrangian F (x,y, z) and assume that the Lagrangian is nonconvex with
respect to z, for some values of z, z ∈ Zf.

Definition 2.2.1 We call the forbidden region Zf the set of z for which F (x,y, z)
is not convex with respect to z.
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The Weierstrass test requires that the derivative u′ of an extremal never
assume values in the set Zf,

u′ 6∈ Zf. (2.18)

On the other hand, a stationary trajectory u may be required by Euler equations
to pass through this set. Such trajectories fail the Weierstrass test and must
be rejected. We conclude that the true minimizer (the limit of a minimizing
sequence) is not a classical differentiable curve, otherwise it would satisfy both
the Euler equation and the Weierstrass test.

We will demonstrate that a minimizing sequence tends to a “generalized
curve.” It consists of infinitely many infinitesimal zigzags. The derivative of the
minimizer ”jumps over” the forbidden set, and does it infinitely often. Because
of these jumps, the derivative of a minimizer stays outside of the forbidden
interval but its average can take any value within or outside the forbidden region.
The limiting curve – the minimizer – has a dense set of points of discontinuity
of the derivative.

Example of a nonconvex problem Consider a simple variational problem
that yields to an irregular solution [?]:

inf
u

I(u) = inf
u

∫ 1

0

G(u, u′)dx, u(0) = u(1) = 0 (2.19)

where

G(u, v) = u2 +

 (v − 1)2, if v ≥ 1
2 Regime 1

1
2 − v

2 if − 1
2 ≤ v ≤

1
2 Regime 2

(v + 1)2 if v ≤ − 1
2 Regime 3

. (2.20)

The graph of the function G(., v) is presented in ??B; it is a nonconvex differ-
entiable function of v of superlinear growth.

The Lagrangian G penalizes the trajectory u for having the speed |u′| differ-
ent from ±1 and penalizes the deflection of the trajectory u from zero. These
contradictory requirements cannot be resolved in the class of classical trajecto-
ries.

Indeed, a differentiable minimizer satisfies the Euler equation (??) that takes
the form

u′′ − u = 0 if |u′| ≥ 1
2

u′′ + u = 0 if |u′| ≤ 1
2 .

(2.21)

The Weierstrass test additionally requires convexity of G(u, v) with respect
to v; the Lagrangian G(u, v) is nonconvex in the interval v ∈ (−1, 1) (see ??).
The Weierstrass test requires the extremal (2.21) to be supplemented by the
constraint (recall that v = u′)

u′ 6∈ (−1, 1) at the optimal trajectory. (2.22)

The second regime in (2.21) is never optimal because it is realized inside of the
forbidden interval. It is not clear how to satisfy both the Euler equations and
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Weierstrass test because the Euler equation does not have a freedom to change
the trajectory to avoid the forbidden interval.

We can check that the stationary trajectory can be broken at any point.
The Weierstrass-Erdman condition (??) (continuity of ∂L

∂u′ ) must be satisfied
at a point of the breakage. This condition permits switching between the first
(u′ > 1/2) and third (u′ < −1/2) regimes in (2.20) when[

∂L

∂u′

]+

−
= 2

(
u′(1) − 1

)
− 2

(
u′(3) + 1

)
= 0

or when
u′(1) = 1, u′(3) = −1

which means the switching from one end of the forbidden interval (−1, 1) to
another.

Remark 2.2.1 Observe, that the easier verifiable Legendre condition ∂2F
∂(u′)2 ≥ 0

gives a twice smaller forbidden region |u′| ≤ 1
2 and is not in the agreement with

Weierstrass-Erdman condition. One should always use stronger conditions!

Minimizing sequence The minimizing sequence for problem (2.19) can be
immediately constructed. Indeed, the infimum of (2.19) obviously is nonnega-
tive, infu I(u) ≥ 0. Therefore, any sequence us with the property

lim
s→∞

I(us) = 0 (2.23)

is a minimizing sequence.
Consider a set of functions ũs(x) with the derivatives equal to ±1 at each

point,
ũ′(x) = ±1 ∀x.

These functions belong to the boundary of the forbidden interval of the noncon-
vexity of G(., v); they make the second term in the Lagrangian (2.20) vanish,
G(ũ, ũ′) = u2, and the problem becomes

I(ũs, (ũs)′) = min
ũ

∫ 1

0

(ũs)2dx. (2.24)

The sequence ũs oscillates near zero if the derivative (ũs)′ changes its sign on
intervals of equal length. The cost I(ũs) depends on the density of switching
points and tends to zero when the number of these points increases (see ??).
Therefore, the minimizing sequence consists of the saw-tooth functions ũs; the
heights of the teeth tend to zero and their number tends to infinity as s→∞.

Note that the minimizing sequence {ũs} does not converge to any classical
function. This minimizer ũs(x) satisfies the contradictory requirements, namely,
the derivative must keep the absolute value equal to one, but the function itself
must be arbitrarily close to zero:

|(ũs)′| = 1 ∀x ∈ [0, 1], max
x∈[0,1]

ũs → 0 as s→∞. (2.25)
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The limiting curve u0 has zero norm in C0[0, 1] but a finite norm in C1[0, 1].

Remark 2.2.2 Below, we consider this problem with arbitrary boundary values;
the solution corresponds partly to the classical extremal (2.21), (2.22), and partly
to the saw-tooth curve; in the last case u′ belongs to the boundary of the forbidden
interval |u′| = 1.

Regularization and relaxation We may apply regularization to discourage
the solution to oscillate infinitely often. For example, we may penalize for the
discontinuity of the u′ adding the stabilizing term ε(u′′)2 to the Lagrangian.
Doing this, we pass to the problem

min
u

∫ 1

0

(ε2(u′′)2 +G(u, u′))dx

that corresponds to Euler equation:

ε2uIV − u′′ + u = 0 if |u′| ≥ 1
2

ε2uIV + u′′ + u = 0 if |u′| ≤ 1
2 .

(2.26)

The Weierstrass condition this time requires the convexity of the Lagrangian
with respect to u′′; this condition is satisfied.

One can see that the solution of equation (2.26) is oscillatory; the period of
oscillations is of the order of ε� 1: The solution still tends to an infinitely often
oscillating distribution. When ε is positive but small, the solution has finite but
large number of wiggles. The computation of such solutions is difficult and often
unnecessary: It strongly depends on an artificial parameter ε, which is difficult
to justify physically. Although formally the solution of regularized problem
exists, the questions remain. The problem is still computationally difficult and
the difficulty grows when ε → 0 because the finite frequency of the oscillation
of the solution tends to infinity.

Below we describe the relaxation of a nonconvex variational problem. The
idea of relaxation is in a sense opposite to regularization. Instead of penalization
for fast oscillations, we admit oscillating functions as legitime minimizers en-
larging set of minimizers. The main problem is to find an adequate description
of infinitely often switching controls in terms of smooth functions. It turns out
that the limits of oscillating minimizers allows for a parametrization and can
be effectively described by a several smooth functions: the values of alternating
limits for u′ and the average time that minimizer spends on each limit. The
relaxed problem has the following two basic properties:

• The relaxed problem has a classical solution.

• The infimum of the functional (the cost of the problem) in the initial
problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation based on necessary
and sufficient conditions. Each of them yields to the same construction but
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uses different arguments to achieve it. In the next chapters we will see similar
procedures applied to variational problems with multiple integrals; sometimes
they also yield the same construction, but generally they result in different
relaxations.

2.2.2 Minimal Extension

We introduce the idea of relaxation of a variational problem. Consider the
class of Lagrangians NF (x, y, z) that are smaller than F (x, y, z) and satisfy the
Weierstrass test W(NF (x, y, z)) ≥ 0:{

NF (x, y, z)− F (x, y, z) ≤ 0,
W(NF (x, y, z)) ≥ 0 ∀ x, y, z. (2.27)

Let us take the maximum on NF (x, y, z) and call it SF . Clearly, SF corre-
sponds to turning one of these inequalities into an equality:

SF (x, y, z) = F (x, y, z), W(SF (x, y, z)) ≥ 0 if z 6∈ Zf,
SF (x, y, z) ≤ F (x, y, z), W(SF (x, y, z)) = 0 if z ∈ Zf.

(2.28)

This variational inequality describes the extension of the Lagrangian of an un-
stable variational problem. Notice that

1. The first equality holds in the region of convexity of F and the extension
coincides with F in that region.

2. In the region where F is not convex, the Weierstrass test of the extended
Lagrangian is satisfied as an equality; this equality serves to determine
the extension.

These conditions imply that SF is convex everywhere. Also, SF is the maximum
over all convex functions that do not exceed F . Again, SF is equal to the convex
envelope of F :

SF (x, y, z) = CzF (x, y, z). (2.29)

The cost of the problem remains the same because the convex envelope corre-
sponds to a minimizing sequence of the original problem.

Remark 2.2.3 Note that the geometrical property of convexity never explicitly
appears here. We simply satisfy the Weierstrass necessary condition everywhere.
Hence, this relaxation procedure can be extended to more complicated multidimen-
sional problems for which the Weierstrass condition and convexity do not coincide.

Recall that the derivative of the minimizer never takes values in the region
Zf of nonconvexity of F . Therefore, a solution to a nonconvex problem stays
the same if its Lagrangian F (x,y, z) is replaced by any Lagrangian NF (x,y, z)
that satisfies the restrictions

NF (x,y, z) = F (x,y, z) ∀ z 6∈ Zf,
NF (x,y, z) > CF (x,y, z) ∀ z ∈ Zf.

(2.30)
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Indeed, the two Lagrangians F (x,y, z) and NF (x,y, z) coincide in the region of
convexity of F . Therefore, the solutions to the variational problem also coincide
in this region. Neither Lagrangian satisfies the Weierstrass test in the forbidden
region of nonconvexity. Therefore, no minimizer can distinguish between these
two problems: It never takes values in Zf. The behavior of the Lagrangian in
the forbidden region is simply of no importance. In this interval, the Lagrangian
cannot be computed back from the minimizer.

Minimizing Sequences Let us prove that the considered extension preserves
the value of the objective functional. Consider the extremal problem (2.17) of
superlinear growth and the corresponding stationary solution u(x) that may not
satisfy the Weierstrass test. Let us perturb the trajectory u by a differentiable
function ω(x) with the properties:

max
x
|ω(x)| ≤ ε, ω(xk) = 0 k = 1 . . . N (2.31)

where the points xk uniformly cover the interval (a, b). The perturbed trajectory
wiggles around the stationary one, crossing it at N uniformly distributed points
xk; the derivative of the perturbation is not bounded.

The integral J(u, ω)

J(u, ω) =
∫ 1

0

F (x, u+ ω, u′ + ω′)dx

on the perturbed trajectory is estimated as

J(u, ω) =
∫ 1

0

F (x, u, u′ + ω′)dx+ o(ε).

because of the smallness of ω (see (2.31)). The derivative ω′(x) = v(x) is a new
minimizer constrained by N conditions (see (2.31))∫ k+1

N

k
N

v(x)dx = 0, k = 0, . . . N − 1; (2.32)

correspondingly, the variational problem can be rewritten as

J(u, ω) =
N−1∑
k=1

∫ k+1
N

k
N

F (x, u, u′ + ω′)dx+ o

(
1
N

)
.

Perform minimization of a term of the above sum with respect of v, treating u
as a fixed variable:

Ik(u) = min
v(x)

∫ k+1
N

k
N

F (x, u, u′ + v)dx subject to
∫ k+1

N

k
N

v(x)dx = 0

This is exactly the problem (1.1) of the convex envelope with respect to v.
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By referring to the Carathéodory theorem (2.5) we conclude that the mini-
mizer v(x) is a piece-wise constant function in ( kN ,

k+1
N ) that takes at most n+1

values v1, . . . vn+1 at each interval. These values are subject to the constraints
(see (2.32))

mi(x) ≥ 0,
n∑
i=1

mi = 1,
p∑
i=1

mivi = 0. (2.33)

This minimum coincides with the convex envelope of the original Lagrangian
with respect to its last argument (see (2.5)):

Ik = min
mi,vi∈(2.33)

1
N

(
p∑
i=1

miF (x,u, u′ + vi)

)
(2.34)

Summing Ik and passing to the limit N →∞, we obtain the relaxed variational
problem:

I = min
u

∫ 1

0

Cu′F (x,u(x),u′(x)) dx. (2.35)

Note that n + 1 constraints (2.33) leave the freedom to choose 2n + 2 inner
parameters mi and vi to minimize the function

∑p
i=1miF (u,vi) and thus to

minimize the cost of the variational problem (see (2.34)). If the Lagrangian is
convex, vi = 0 and the problem keeps its form: The wiggle trajectories do not
minimize convex problems.

The cost of the reformulated (relaxed) problem (2.35) corresponds to the
cost of the problem (2.17) on the minimizing sequence (??). Therefore, the
cost of the relaxed problem is equal to the cost of the original problem (2.17).
The extension of the Lagrangian that preserves the cost of the problem is called
the minimal extension. The minimal extension enlarges the set of classical
minimizers by including generalized curves in it.

2.2.3 Examples

Relaxation of nonconvex problem in Example ?? We revisit Example
??. Let us solve this problem by building the convex envelope of the Lagrangian
G(u, v):

CvG(u, v) = min
m1,m2

min
v1,v2

{
u2 +m1(v1 − 1)2 +m2(v2 + 1)2

}
,

v = m1v1 +m2v2, m1 +m2 = 1, mi ≥ 0. (2.36)

The form of the minimum depends on the value of v = u′. The convex envelope
CG(u, v) coincides with either G(u, v) if v 6∈ [0, 1] or CG(u, v) = u2 if v ∈ [0, 1];
see Example 2.1.5. Optimal values v0

1 , v
0
2 , m

0
1 m

0
2 of the minimizers and the

convex envelope CG are shown in Table 2.1. The relaxed form of the problem
with zero boundary conditions

min
u

∫ 1

0

CG(u, u′)dx, u(0) = u(1) = 0, (2.37)
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Average
derivative

Pointwise deriva-
tives

Optimal concen-
trations

Convex enve-
lope CG(u, v)

v < −1 v0
1 = v0

2 = v m0
1 = 1, m0

2 = 0 u2 + (v − 1)2

|v| < 1 v0
1 = 1, v0

2 = −1 m0
1 = m0

2 = 1
2

u2

v > 1 v0
1 = v0

2 = v m0
1 = 0, m0

2 = 1 u2 + (v + 1)2

Table 2.1: Characteristics of an optimal solution in Example ??.

has an obvious solution,
u(x) = u′(x) = 0, (2.38)

that yields the minimal (zero) value of the functional. It corresponds to the
constant optimal value mopt of m(x):

mopt(x) =
1
2
∀x ∈ [0, 1]

.
The relaxed Lagrangian is minimized over four functions u,m1, v1, v2 bounded

by one equality, u′ = m1v1 + (1−m1)v2 and the inequalities 0 ≤ m ≤ 1, while
the original Lagrangian is minimized over one function u. In contrast to the
initial problem, the relaxed one has a differentiable solution in terms of these
four controls.

Inhomogeneous boundary conditions Let us slightly modify this example.
Assume that boundary conditions are

u(0) = V (0 < V < 1), u(1) = 0

In this case, an optimal trajectory of the relaxed problem consists of two parts,

u′ < −1 if x ∈ [0, x0), u = u′ = 0 if x ∈ [x0, 1]

At the first part of the trajectory, the Euler equation u′′ − u = 0 holds; the
extremal is

u =
{
Aex +Be−x if x ∈ [0, x0)
0 if x ∈ [x0, 1]

Since the contribution of the second part of the trajectory is zero, the problem
becomes

I = min
u,x0

∫ x0

O

CvG(u, u′)dx

To find unknown parameters A,B and x0 we use the conditions

u(0) = V, u(x0) = 0, u′ = −1

The last condition expresses the optimality of x0, it is obtained from the con-
dition (see (??))

CvG(u, u′)|x=x0 = 0.
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We compute

A+B = V, Aex0 +Be−x0 = 0, Aex −Be−x = 1

which leads to

u(x) =
{

sinh(x− x0) if x < x0,
0 if x > x0,

x0 = sinh−1(V )

The optimal trajectory of the relaxed problem decreases from V to zero and
then stays equal zero. The optimal trajectory of the actual problem decays to
zero and then become infinite oscillatory with zero average.

Relaxation of a two-wells Lagrangian We turn to a more general example
of the relaxation of an ill-posed nonconvex variational problem. This example
highlights more properties of relaxation. Consider the minimization problem

min
u(x)

∫ z

0

Fp(x, u, u′)dx, u(0) = 0, u′(z) = 0 (2.39)

with a Lagrangian
Fp = (u− αx2)2 + Fn(u′), (2.40)

where
Fn(v) = min{a v2, b v2 + 1}, 0 < a < b, α > 0.

Note that the second term Fn of the Lagrangian Fp is a nonconvex function of
u′.

The first term (u − αx2)2 of the Lagrangian forces the minimizer u and
its derivative u′ to increase with x, until u′ at some point reaches the interval
of nonconvexity of Fn(u′), after which it starts oscillating by alternation of the
values of the ends of this interval, because u′ must vary outside of this forbidden
interval at every instance. (see ??)

To find the convex envelope CF we must transform Fn(u′) (in this example,
the first term of Fp (see (2.40)) is independent of u′ and it does not change after
the convexification). The convex envelope CFp is equal to

CFp = (u− αx2)2 + CFn(u′). (2.41)

The convex envelope CFn(u′) is computed in Example 2.1.6 (where we use the
notation v = u′). The relaxed problem has the form

min
u

∫
CFp(x, u, u′)dx, (2.42)

where

CFp(x, u, u′) =


(u− αx2)2 + a(u′)2 if |u′| ≤ v1,

(u− αx2)2 + 2u′
√

ab
a−b −

b
a−b if v1 ≤ |u′| ≤ v2,

(u− αx2)2 + b(u′)2 + 1 if |u′| ≥ v2.
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Note that the variables u, v in the relaxed problem are the averages of the
original variables; they coincide with those variables everywhere when CF = F .
The Euler equation of the relaxed problem is

au′′ − (u− αx2) = 0 if |u′| ≤ v1,
(u− αx2) = 0 if v1 ≤ |u′| ≤ v2,

bu′′ − (u− αx2) = 0 if |u′| ≥ v2.
(2.43)

The Euler equation is integrated with the boundary conditions shown in (2.39).
Notice that the Euler equation degenerates into an algebraic equation in the
interval of convexification. The solution u and the variable ∂

∂u′ CF of the relaxed
problem are both continuous everywhere.

Integrating the Euler equations, we sequentially meet the three regimes when
both the minimizer and its derivative monotonically increase with x (see ??).
If the length z of the interval of integration is chosen sufficiently large, one
can be sure that the optimal solution contains all three regimes; otherwise, the
solution may degenerate into a two-zone solution if u′(x) ≤ v2 ∀x or into a
one-zone solution if u′(x) ≤ v1 ∀x (in the last case the relaxation is not needed;
the solution is a classical one).

Let us describe minimizing sequences that form the solution to the relaxed
problem. Recall that the actual optimal solution is a generalized curve in the
region of nonconvexity; this curve consists of infinitely often alternating parts
with the derivatives v1 and v2 and the relative fractions m(x) and (1−m(x)):

v = 〈u′(x)〉 = m(x)v1 + (1−m(x))v2, u′ ∈ [v1, v2], (2.44)

where 〈 〉 denotes the average, u is the solution to the original problem, and 〈u〉
is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic one
〈u〉 = αx2 because of the linear dependence of the Lagrangian on 〈u〉′ in this
region. The first term of the Euler equation,

d

dx

∂F

∂ 〈u〉′
≡ 0 if v1 ≤ | 〈u〉′ | ≤ v2, (2.45)

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime.

This variable can be found by differentiation of the optimal solution:

(〈u〉 − αx2)′ = 0 =⇒ 〈u〉′ = 2αx. (2.46)

This equality, together with (2.44), implies that

m =


0 if |u′| ≤ v1,

2α
v1−v2x−

v2
v1−v2 if v1 ≤ |u′| ≤ v2,

1 if |u′| ≥ v2.
(2.47)

Variable m linearly increases within the second region (see ??). Note that the
derivative u′ of the minimizing generalized curve at each point x lies on the
boundaries v1 or v2 of the forbidden interval of nonconvexity of F ; the average
derivative varies only due to varying of the fraction m(x) (see ??).
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Chapter 3

Localization and
Discontinuous minimizers

3.1 Solutions with unbounded derivative. Reg-
ularization

3.1.1 Lagrangians of linear growth

A minimizing sequence may tend to a discontinuous function if the Lagrangian
growth slowly with the increase of u′. Here we investigate discontinuous solu-
tions of Lagrangians of linear growth. Assume that the Lagrangian F satisfies
the limiting equality

lim
|u′|→∞

F (x, u, u′)
|u′|

≤ βu (3.1)

where β is a nonnegative constant.
Considering the scalar case (u is a scalar function), we assume that the min-

imizing sequence tends to a finite discontinuity (jump) and calculate the impact
of it for the objective functional. Let a miniming sequence uε of differentiable
functions tend to a discontinuous at the point x0 function, as follows

uε(x) = φ(x) + ψε(x)
ψε(x) ⇁ αH(x− x0), β 6= 0

where φ is a differentiable function with the bounded everywhere derivative,
and H is the Heaviside function.

Assume that functions ψε that approximate the jump at the point x0 are
piece-wise linear,

ψε(x) =

 0 if x < x0 − ε
α
ε (x− x0 + ε) if x0 − ε ≤ x ≤ x0

α if x > x0.

45
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The derivative (ψε)′ is zero outside of the interval [x0 − ε, x0] where it is equal
to a constant,

ψ′ =
{

0 if x /∈ [x0 − ε, x0]
α
ε if x ∈ [x0 − ε, x0]

The Lagrangian is computed as

F (x, u, u′) =
{
F (x, φ, φ′) if x /∈ [x0 − ε, x0]
F
(
x, φ+ ψε, φ′ + α

ε

)
= αβ

ε + o
(

1
ε

)
if x ∈ [x0 − ε, x0]

Here, we use the condition (3.1) of linear growth of F .
The variation of the objective functional is∫ b

a

F (x, u, u′)dx ≤
∫ b

a

F (x, φ, φ′)dx+ αβ.

We observe that the contribution αβ due to the discontinuity of the minimizer
is finite when the magnitude |α| of the jump is finite. Therefore, discontinuous
solutions are tolerated in the problems with Lagrangian of linear growth: They
do not lead to infinitely large values of the objective functionals. To the contrary,
the problems with Lagrangians of superlinear growth β = ∞ do not allow for
discontinuous solution because the penalty is infinitely large.

Remark 3.1.1 The problems of Geometric optics and minimal surface are or linear
growth because the length

√
1 + u′2 linearly depends on the derivative u′. To the

contrary, problems of Lagrange mechanics are of quadratic (superlinear) growth
because kinetic energy depends of the speed q̇ quadratically.

3.1.2 Examples of discontinuous solutions

Example 3.1.1 (Discontinuities in problems of geometrical optics) We
have already seen in Section ?? that the minimal surface problem

I0 = min
u(x)

I(u), I(u) =
∫ L

o

u
√

1 + (u′)2dx, u(−1) = 1, u(1) = 1, (3.2)

can lead to a discontinuous solution (Goldschmidt solution)

u = −H(x+ 1) +H(x− 1)

if L is larger than a threshold.
Particularly, the Goldschmidt solution corresponds to zero smooth component

u(x) = 0, x = (a, b) and two jumps M1 and M2 of the magnitudes u(a) and u(b),
respectively. The smooth component gives zero contribution, and the contributions
of the jumps are

I =
1
2
(
u2(a) + u2(b)

)
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The next example (Gelfand & Fomin) shows that the solution may exhibit
discontinuity if the superlinear growth condition is violated even at a single
point.

Example 3.1.2 (Discontinuous extremal and viscosity-type regularization)
Consider the minimization problem

I0 = min
u(x)

I(u), I(u) =
∫ 1

−1

x2u′2dx, u(−1) = −1, u(1) = 1, (3.3)

We observe that I(u) ≥ 0 ∀u, and therefore I0 ≥ 0. The Lagrangian is convex
function of u′, and the third condition is satisfied. However, the second condition
is violated in x = 0:

lim
|u′|→∞

x2u′2

|u′|

∣∣∣∣
x=0

= lim
|u′|→∞

x2|u′|
∣∣∣∣
x=0

= 0

The functional is of sublinear growth at only one point x = 0.
Let us show that the solution is discontinuous. Assume the contrary, that the

solution satisfies the Euler equation (x2u′)′ = 0 everywhere. The equation admits
the integral

∂L

∂u′
= 2x2u′ = C.

If C 6= 0, the value of I(u) is infinity, because then u′ = C
2x2 , the Lagrangian

becomes

x2u′2 =
C2

x2
if C 6= 0.

and the integral of Lagrangian diverges. A finite value of the objective corresponds
to C = 0 which implies that u′0(x) = 0 if x 6= 0. Accounting for the boundary
conditions, we find

u0(x) =
{
−1 if x < 0

1 if x > 0

and u0(0) is not defined.
We arrived at the unexpected result that violates the assumptions used when

the Euler equation is derived: u0(x) is discontinuous at x = 0 and u′0 exists only in
the sense of distributions:

u0(x) = −1 + 2H(x), u′0(x) = 2δ(x)

This solution delivers absolute minimum (I0 = 0) to the functional, is not differen-
tiable and satisfies the Euler equation in the sense of distributions,∫ 1

−1

d

dx

∂L

∂u′

∣∣∣∣
u=u0(x)

φ(x)dx = 0 ∀φ ∈ L∞[−1, 1]
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Regularization A slightly perturb the problem (regularization) yields to the
problem that has a classical solution and this solution is close to the discontinuous
solution of the original problem. This time, regularization is performed by adding to
the Lagrangian a stabilizer, a strictly convex function ερ(u′) of superlinear growth.

Consider the perturbed problem for the Example 3.3:

Iε = min
u(x)

Iε(u), Iε(u) =
∫ 1

−1

(
x2u′2 + ε2u′2

)
dx, u(−1) = −1, u(1) = 1,

(3.4)
Here, the perturbation ε2u′ is added to the original Lagrangian ε2u′; the perturbed
Lagrangian is of superlinear growth everywhere.

The first integral of the Euler equation for the perturbed problem becomes

(x2 + ε2)u′ = C, or du = C
dx

x2 + ε2

Integrating and accounting for the boundary conditions, we obtain

uε(x) =
(

arctan
1
ε

)−1

arctan
x

ε
.

When ε → 0, the solution uε(x) converges to u0(x) although the convergence is
not uniform at x = 0.

Unbounded solutions in constrained problems The discontinuous solu-
tion often occurs in the problem where the derivative satisfies additional in-
equalities u′ ≥ c, but is unbounded. In such problems, the stationary condition
must be satisfied everywhere where derivative is not at the constrain, u′ > c.
The next example shows, that the measure of such interval can be infinitesimal.

Example 3.1.3 (Euler equation is meaningless) Consider the variational prob-
lem with an inequality constraint

max
u(x)

∫ π

0

u′ sin(x)dx, u(0) = 0, u(π) = 1, u′(x) ≥ 0 ∀x.

The minimizer should either corresponds to the limiting value u′ = 0 of the deriva-
tive or satisfy the stationary conditions, if u′ > 0. Let [αi, βi] be a sequence of
subintervals where u′ = 0. The stationary conditions must be satisfied in the com-
plementary set of intervals (βi, αi+1]) located between the intervals of constancy.
The derivative cannot be zero everywhere, because this would correspond to a con-
stant solution u(x) and would violate the boundary conditions.

However, the minimizer cannot correspond to the solution of Euler equation at
any interval. Indeed, the Lagrangian L depends only on x and u′. The first integral
∂L
∂u′ = C of the Euler equation yields to an absurd result

sin(x) = constant ∀x ∈ [βi, αi+1]
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The Euler equation does not produce the minimizer. Something is wrong!
The objective can be immediately bounded by the inequality∫ π

0

f(x)g(x)dx ≤
(

max
x∈[0,π]

g(x)
)∫ π

0

|f(x)|dx.

that is valid for all functions f and g if the involved integrals exist. We set
g(x) = sin(x) and f(x) = |f(x)| = u′ (because u′ is nonnegative), account for the
constraints ∫ π

0

|f(x)|dx = u(π)− u(0) = 1 and max
x∈[0,π]

sin(x) = 1,

and obtain the upper bound

I(u) =
∫ π

0

u′ sin(x)dx ≤ 1 ∀u.

This bound corresponds to the minimizing sequence un that tends to a Heaviside
function un(x) → H(x − π/2). The derivative of such sequence tends to the
δ-function, u′(x) = δ(x − π/2). Indeed, immediately check that the bound is
realizable, substituting the limit of un into the problem∫ π

0

δ
(
x− π

2

)
sin(x)dx = sin

(π
2

)
= 1.

The reason for the absence of a stationary solution is the openness of the set
of differentiable function. This problem also can be regularized. Here, we show
another way to regularization, by imposing an additional pointwise inequality
u′(x) ≤ 1

γ ∀x (Lipschitz constraint). Because the intermediate values of u′ are
never optimal, optimal u′ alternates the limiting values:

u′γ(x) =
{

0 if x /∈
[
π
2 − γ,

π
2 + γ

]
,

1
2γ if x ∈

[
π
2 − γ,

π
2 + γ

]
,

The objective functional is equal to

I(uγ) =
1

2γ

∫ π
2 +γ

π
2−γ

sin(x)dx =
1
γ

sin (γ)

When γ tends to zero, IM goas to its limit

lim
γ→0

Iγ = 1,

the length γ of the interval where u′ = 1
2γ goes to zero so that u′γ(t) weakly

converges to the δ-function for u′, u′γ(t) ⇁ δ
(
x− π

2

)
.

This example clearly demonstrates the source of irregularity: The absence
of the upper bound for the derivative u′. The constrained variational problems
are studied in the control theory; they are are discussed later in Section 5.1.
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3.1.3 Regularization by penalization

Regularization as smooth approximation The smoothing out feature of
regularization is easy demonstrated on the following example of a quadratic
approximation of a function by a smoother one.

Approximate a function f(x) where x ∈ R, by the function u(x), adding a
quadratic stabilizer; this problem takes the form

min
u

∫ ∞
−∞

[ε2(u′)2 + (u− f)2]dx

The Euler equation
ε2u′′ − u = −f (3.5)

can be easily solved using the Green function

G(x, y) =
1
2ε

exp
(
−|x− y|

ε

)
of the operator in the left-hand side of (3.5). We have

u(x) =
1
2ε

∫ ∞
−∞

exp
(
−|x− y|

ε

)
f(y)dy

that is the expression of the averaged f . The smaller is ε the closer is the average
to f .

Quadratic stabilizers Besides the stabilizer εu′2 , other stabilizers can be
considered: The added term εu2 penalizes for large values of the minimizer,
ε(u′′)2 penalizes for the curvature of the minimizer and is insensitive to linearly
growing solutions. The stabilizers can be inhomogeneous like ε(u − utarget)2;
they force the solution stay close to a target value. The choice of a specific
stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

F = ε4(u′′)2 + (u− f(x)2

Show that u = f(x) if f(x) is any polynomial of the order not higher than three.
Find an integral representation for u(f) if the function f(x) is defined at the
interval |x| ≤ 1 and at the axis x ∈ R.

Regularization of a finite-dimensional problem

As the most of variational methods, the regularization has a finite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have infinitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.
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Let us illustrate ideas of regularization by studying a finite dimensional
problem. Consider a linear system

Ax = b (3.6)

where A is a square n× b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

• If detA 6= 0, the problem has a unique solution:

x = A−1b if detA 6= 0 (3.7)

• If detA = 0 and Ab 6= 0, the problem has no solutions.

• If detA = 0 and Ab = 0, the problem has infinitely many solutions.

In practice, we also deal with an additional difficulty: The determinant detA
may be a “very small” number and one cannot be sure whether its value is a
result of rounding of digits or it has a “physical meaning.” In any case, the
errors of using the formula (3.7) can be arbitrary large and the norm of the
solution is not bounded.

To address this difficulties, it is helpful to restate linear problem (3.6) as an
extremal problem:

min
x∈Rn

(Ax− b)2 (3.8)

This problem does have at least one solution, no matter what the matrix A
is. This solution coincides with the solution of the original problem (3.6) when
this problem has a unique solution; in this case the cost of the minimization
problem (3.8) is zero. Otherwise, the minimization problem provides ”the best
approximation” of the non-existing solution.

If the problem (3.6) has infinitely many solutions, so does problem (3.8).
Corresponding minimizing sequences {xs} can be unbounded, ‖xs‖ → ∞ when
s→∞.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x∈Rn

(Ax− b)2 + εx2

The solution of the last problem exists and is unique. Indeed, we have by
differentiation

(ATA+ εI)x−AT b = 0

and
x = (ATA+ εI)−1AT b

We mention that

1. The inverse exists since the matrix ATA is nonnegative defined, and ε is
positively defined. The eigenvalues of the matrix (ATA + εI)−1 are not
smaller than ε−1
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2. Suppose that we are dealing with a well-posed problem (3.6), that is the
matrix A is not degenerate. If ε � 1, the solution approximately is x =
A−1b− ε(A2AT )−1b When ε→ 0, the solution becomes the solution (3.7)
of the unperturbed problem, x→ A−1b.

3. If the problem (3.6) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

‖x‖ ≤ 1
ε
‖b‖

Remark 3.1.2 Instead of the regularizing term εx2, we may use any positively
define quadratic ε(xTPx + pTx) where matrix P is positively defined, P > 0, or
other strongly convex function of x.

3.2 Lagrangians of sublinear growth

Discontinuous extremals Some applications, such as an equilibrium in or-
ganic or breakable materials, deal with Lagrangians of sublinear growth. If the
Lagrangian Fsub(x, u, u′) growths slower that |u′|,

lim
|z|→∞

Fsub(x, y, z)
|z|

= 0 ∀x, y

then the discontinuous trajectories are expected because the functional is insen-
sitive to finite jumps of the trajectory.

The Lagrangian is obviously a nonconvex function of u′, The convex envelope
of a bounded from below function Fsub(x, y, z) of a sublinear with respect to z
growth is independent of z.

CFsub(x, y, z) = min
z
Fsub(x, y, z) = Fconv(x, y)

In the problems of sublinear growth, the minimum f(x) of the Lagrangian
correspond to pointwise condition

f(x) = min
u

min
v
F (x, u, v)

instead of Euler equation. The second and the third argument become inde-
pendent of each other. The condition v′ = u is satisfied (as an average) by
fast growth of derivatives on the set of dense set of interval of arbitrary small
the summary measure. Because of sublinear growth of the Lagrangian, the
contribution of this growth to the objective functional is infinitesimal.

Namely, at each infinitesimal interval of the trajectory x0, x0 + ε the mini-
mizer is a broken curve with the derivative

u′(x) =
{
v0 if x ∈ [x0, x0 + γε]
v0 if x ∈ [x0 + γε, x0 + ε]
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where v0 = arg minz F (x, y, z), 1− γ � 1, and v1 is found from the equation

u′(x) ≈ u(x+ ε)− u(x)
ε

=
v1γε+ v2(1− γ)ε

ε

to approximate the derivative u′. When γ → 1, the contribution of the second
interval becomes infinitesimal even if v2 →∞.

The solution u(x) can jump near the boundary point, therefore the main
boundary conditions are irrelevant. The optimal trajectory will always satisfy
natural boundary conditions that correspond to the minimum of the functional,
and jump at the boundary points to meet the main conditions.

Example 3.2.1 (Jump at the boundary)

F = log2(u+ u′) u(0) = u(1) = 10

The minimizing sequence converges to a function from the family

u(x) = A exp(−x) + 1 x ∈ (0, 1)

(A is any real number) and is discontinuous on the boundaries.

A problem with everywhere unbounded derivative This example shows
an instructive minimizing sequence in a problem of sublinear growth. Consider
the problem with the Lagrangian

J(u) =
∫ 1

0

F (x, u, u′)dx, F = (ax− u)2 +
√
|u′|

This is an approximation problem: we approximate a linear function f(x) = ax
on the interval [0, 1] by a function u(x) using function

√
|u′| as a penalty. We

show that the minimizer is a distribution that perfectly approximate f(x), is
constant almost everywhere, and is nondifferentiable everywhere.

We mention two facts first: (i) The cost of the problem is nonnegative,

J(u) ≥ 0 ∀u,

and (ii) when the approximating function simply follows f(x), utrial = ax, the
cost J of the problem is J =

√
a > 0 because of the penalty term.

Minimizing sequence Let us construct a minimizing sequence uk(x) with
the property:

J(uk)→ 0 if s→∞
Partition the interval [0, 1] into N equal subintervals and request that approxi-
mation u(x) be equal to f(x) = ax at the ends xk = k

N of the subintervals, and
that the approximation is similar in all subintervals of partition,

u(x) = u0

(
x− k

N

)
+ a

k

N
if x ∈

[
k

N
,
k + 1
N

]
,

u0(0) = 0, u0

(
1
N

)
=

a

N
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Because of self-similarity, he cost J of the problem becomes

J = N

∫ 1
N

0

(
(ax− u0)2 +

√
|u′0|
)
dx (3.9)

The minimizer u0(x) in a small interval x ∈
[
0, 1

N

]
is constructed as follows

u0(x) =
{

0 if x ∈ [0, ε]
a 1+δ

δ (x− ε) if x ∈ [ε, ε(1 + δ)]

Here, ε and δ are two small positive parameters, linked by the condition ε(1 +
δ) = 1

N . The minimizer stays constant in the interval x ∈ [0, ε] and then linearly
growths on the supplementary interval x ∈ [ε, ε(1 + δ)]. We also check that

u0

(
1
N

)
= u0(ε+ δε) =

a

N

Derivative u′0(x) equals

u′0(x) =
{

0 if x ∈ [0, ε]
a 1+δ

δ if x ∈ [ε, ε(1 + δ)]

Computing the functional (3.9) of the suggested function u0,

J = N

(∫ ε

0

((ax)2dx+
∫ ε+δ

ε

[(
ax− a1 + δ

δ
(x− ε)

)2

+

√
a

1 + δ

δ

]
dx

)
we obtain, after obvious simplifications,

J = N

(
a2ε3

3
(1 + δ) + ε

√
a(1 + δ)δ

)
Excluding ε = 1

N(1+δ) we finally compute

J =
a2

3N2(1 + δ)2
+

√
aδ

1 + δ

Increasing N , N →∞ and decreasing δ, δ → 0 we can bring the cost functional
arbitrary close to zero.

The minimizing sequence consists of the functions that are constant almost
everywhere and contain a dense set of intervals of rapid growth. It tends to
a nowhere differentiable function of the type of Cantor’s ”devils steps.” The
derivative is unbounded on a dense in [0, 1] set. Because of slow growth of F ,

lim
|u′|→∞

F (x, u, u′)
|u′|

→ 0

the functional is not sensitive to large values of u′, if the growth occurs at the
interval of infinitesimal measure. The last term of the Lagrangian does not
contribute at all to the cost.
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Regularization and relaxation To make the solution regular, we may go
in two different directions. The first way is to forbid the wiggles by adding a
penalization term ε(u′ − a)2 to the Lagrangian which is transformed to:

Fε = (u− ax)2 +
√
|u′|+ ε(u′ − a)2

The solution would become smooth, but the cost of the problem would signifi-
cantly increase because the term

√
|u′| contributes to it and the cost Jε = J(Fε)

would depend on ε and will rapidly grow to be close to
√
a. Until the cost grows

to this value, the solution remain nonsmooth.
Alternatively, we may ”relax” the problem, replacing it with another one that

preserves its cost and has a classical solution that approximates our nonregular
minimizing sequence. To perform the relaxation, we simply ignore the term√
|u′| and pass to the Lagrangian

Frelax = (u− ax)2

which corresponds the same cost as the original problem and a classical solu-
tion uclass = ax that in a sense approximate the true minimizer, but not its
derivative; it is not differentiable at all.

3.3 Nonuniqueness and improper cost

Unbounded cost functional An often source of ill-posedness (the nonexis-
tence of the minimizer) is the convergence to minimizing functional to −∞ or
the maximizing functional to +∞. To illustrate this point, consider the opposite
of the brachistochrone problem: Maximize the travel time between two points.
Obviously, this time can be made arbitrary large by different means: For exam-
ple, consider the trajectory that has a very small slop in the beginning and then
rapidly goes down. The travel time in the first part of the trajectory can be
made arbitrary large (Do the calculations!). Another possibility is to consider
a very long trajectory that goes down and then up; the larger is the loop the
more time is needed to path it. In both cases, the maximizing functional goes
to infinity. The sequences of maximizing trajectories either tend to a discontin-
uous curve or is unbounded and diverges. The sequences do not convergence to
a finite differentiable curve.

Generally, the problem with an improper cost does not correspond to a
classical solution: a finite differentiable curve on a finite interval. Such prob-
lems have minimizing sequences that approach either non-smooth or unbounded
curve or do not approach anything at all. One may either accept this ”exotic
solution,” or assume additional constraints and reformulate the problem. In
applications, the improper cost often means that something essential is missing
in the formulation of the problem.

Nonuniqueness Another source of irregular solutions is nonuniqueness. If
the problem has families of many extremal trajectories, the alternating of them
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can occur in infinitely many ways. The problem could possess either classical or
nonclassical solution. To detect such problem, we investigate the Weierstrass-
Erdman conditions which show the possibilities of broken extremals.

An example of nonuniqueness, nonconvex Lagrangian As a first exam-
ple, consider the problem

I(v) = min
u

∫ 1

0

(
1− (u′)2

)2
dx, u(0) = 0, u(1) = v (3.10)

The Euler equation admits the first integral, because the Lagrangian depends
only on u′, (

1− (u′)2
)

(1− 2u′) = C;

the optimal slope is constant everywhere and is equal to V .
When −1 ≤ v ≤ 1, the constant C is zero and the value of I is zero as well.

The solution is not unique. Indeed, in this case one can joint the initial and the
final points by the curve with the slope equal to either one or negative one in
all points. The Weierstrass-Erdman condition[(

1− (u′)2
)

(1− 2u′)
]+
− = 0

is satisfied if u′ = ±1 to the left and to the right of the point of break. There
are infinitely many extremals with arbitrary number of breaks that all join the
end points and minimize the functional making it equal to zero. Notice that
Lagrangian is not convex function of u′.

Similarly to the finite-dimensional case, regularization of variational prob-
lems with nonunique solutions can be done by adding a penalty ε(u′)2, or ε(u′′)2

to the minimizer. Penalty would force the minimizer to prefer some trajecto-
ries. Particularly, the penalty term may force the solution to become infinitely
oscillatory at a part of trajectory.

Another example of nonuniqueness, convex Lagrangian Work on the
problem

I(v) = min
u

∫ 1

0

(1− u′)2 sin2(mu)dx, u(0) = 0, u(1) = v (3.11)

As in the previous problem, here there are two kinds of ”free passes” (the
trajectories that correspond to zero Lagrangian that is always nonnegative):
horizontal (u = πk/m, u′ = 0) and inclined (u = c+x, u′ = 1). The Weierstrass-
Erdman condition

[sin(mu)2(1− u′)]+− = 0

allows to switch these trajectories in infinitely many ways.
Unlike the previous case, the number of possible switches is finite; it is

controlled by parameter m. The optimal trajectory is monotonic; it becomes
unique if v ≥ 1 or v ≤ 0, and if |m| < 1

π .
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3.4 Conclusion and Problems

We have observed the following:

• A one-dimensional variational problem has the fine-scale oscillatory min-
imizer if its Lagrangian F (x, u, u′) is a nonconvex function of its third
argument.

• Homogenization leads to the relaxed form of the problem that has a clas-
sical solution and preserves the cost of the original problem.

• The relaxed problem is obtained by replacing the Lagrangian of the ini-
tial problem by its convex envelope. It can be computed as the second
conjugate to F .

• The dependence of the Lagrangian on its third argument in the region of
nonconvexity does not effect the relaxed problem.

To relax a variational problem we have used two ideas. First, we replaced the
Lagrangian with its convex envelope and obtained a stable variational problem
of the problem. Second, we proved that the cost of variational problem with
the transformed Lagrangian is equal to the cost of the problem with the original
Lagrangian if its argument u is a zigzag-like curve.

Problems

1. Formulate the Weierstrass test for the extremal problem

min
u

∫ 1

0

F (x, u, u′, u′′)

that depends on the second derivative u′′.

2. Find the relaxed formulation of the problem

min
u1,u2

∫ 1

0

(
u2

1 + u2
2 + F (u′1, u

′
2)
)
,

u1(0) = u2(0) = 0, u1(1) = a, u2(1) = b,

where F (v1, v2) is defined by (2.9). Formulate the Euler equations for the
relaxed problems and find minimizing sequences.

3. Find the relaxed formulation of the problem

min
u

∫ 1

0

(
u2 + min {|u′ − 1|, |u′ + 1|+ 0.5}

)
,

u(0) = 0, u(1) = a.

Formulate the Euler equation for the relaxed problems and find minimizing
sequences.
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4. Find the conjugate and second conjugate to the function

F (x) = min
{
x2, 1 + ax2

}
, 0 < a < 1.

Show that the second conjugate coincides with the convex envelope CF of
F .

5. Let x(t) > 0, y(t) be two scalar variables and f(x, y) = x y2. Demonstrate
that

f(〈x〉, 〈y〉) ≥ 〈y〉2
〈

1
x

〉−1

.

When is the equality sign achieved in this relation?

Hint: Examine the convexity of a function of two scalar arguments,

g(y, z) =
y2

z
, z > 0.



Chapter 4

Hamilton-Jacobi Theory

So far we discussed properties of a single minimizing trajectories. Now we look
at the family of the minimizers that differ by their destination points. Each
curve of this family –the minimizer – can be treated as a coordinate curve for
some curvilinear system of coordinates. We define the orthogonal curvilinear
coordinate below as a solution of the problem of canonic transformation.

4.1 Geometric Optics. Eikonal

Let us start with an example. Consider again the problem of geometric optics
or a problem of maximally quick passage from the starting point x0 to a final
point x. A logical difficulty of such formulation is the necessity to fix the des-
tination point x which the light will reach at a future instance and choose the
present trajectory depending on the future destination position. To resolve this
difficulty, we consider a family of rays (trajectories) that aim to all directions
from x0 and later choose the right trajectory. In the simplest case of constant
speed v of propagation the minimizers (rays) are straight lines originated at the
point x0.

Let t = W (x) be a minimal time required for the light to reach a point x; call
it the Eikonal or the optical length. The surface W (x) is a propagation front
for the family of rays that propagate from x0 in different directions. Surface
W (x) is orthogonal to the rays in the family. In the simplest case of constant
speed, W (x) is a sphere centered at x0 with the radius equal to the time needed
to reach a point on it, that is

t =
‖x‖
v

= W (x)

We may describe the propagation of the light in terms of evolution of the surface
W (x) rather than in terms of the rays.

To describe the evolution of this surface, we consider an infinitesimal step dt
in its propagation. We follow Huygens principle. Namely, we assume that the

59
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surface W (x) radiate a light as if it would be new light source. In other words,
the optimal trajectory from x0 to a point x that lasts the time equal to t + dt
is a superposition of an optimal trajectory from x0 to a point on the surface
W (x) which requires the time t to reach and an infinitesimal and also optimal
trajectory from that point to the point of destination x.

The source at each point on the surface W (x) highlights a spherical (or, in
anisotropic case, elliptical) neighborhood; the common boundary (envelope) of
these neighborhoods determines the surface W (x, t+dt). A point of the surface
W (x+ dx) that is the closest to a fixed point x at the surface W (x) lies at the
normal to this surface. The light propagated along the normal N = ∇W

|∇W | to
the surface W (x) with the speed v(x); therefore

dx = Nv dt =
∇W
|∇W |

v dt. (4.1)

We arrive at the equation

W (x+ dx) = W (x) + dt (4.2)

Its left-hand side is transformed by linearization

W (x+ dx) = W (x) +∇W dx

and by using (4.1),

W (x+ dx) = W (x) +
∇W 2

|∇W |
v dt = W (x) + v|∇W |dt (4.3)

and the equation (4.2) of Eikonal becomes

(∇W )2 =
1
v2
.

Solution of this nonlinear first order partial differential equation represents the
moving boundary of the lighted part of the space, and the rays are the charac-
teristics of the equation. The particle move along the (generally curved) rays
with the speed v(x).

Example 4.1.1 The Eikonal for the homogeneous medium (v = constant)

(∇W )2 =
(
∂W

∂x

)2

+
(
∂W

∂y

)2

+
(
∂W

∂y

)2

=
1
v2
. (4.4)

where x, y, z are Cartesian coordinates, has a solution

W =
1
v

√
x2 + y2 + z2 (4.5)

which can be checked by the differentiation.
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The Eikonal equation is a nonlinear first-order partial differential equation.
It can be integrated with various boundary condition

W (x0) = 0 ∀x0 ∈ S0

that introduces the shape S0 of the original radiating body.

Example 4.1.2 One checks immediately, that the radiating line S0 : x = y = 0
produces the Eikonal

W =
1
v

√
x2 + y2.

and the radiation plane z = 0 corresponds to the Eikonal

W =
1
v
|z|.

These Eikonals satisfy the equation (4.4)
Generally, the Eikonal in an homogeneous isotropic media (v = constant(x))

describes the manifold that consists of points equally distant from the initially given
surface. Combining the obtained solutions for a radiating point, line, and plane one
can obtain the Eikonal for a radiation polyhedron. For example, the Eikonal surface
for an illuminating cube is piece-wise analytic and contains the images of radiating
sides, edges and corners. The surface consists of six squares separated by twelve
cylindrical quarters and eight spherical octants.

The Eikonal equations can be solved in the appropriate coordinate system
by separation of variables.

Example 4.1.3 Consider the Eikonal corresponding to the radiating sphere of the
radius R. Introduce the spherical coordinates r, φ, θ in which Eikonal equation
becomes (

∂W

∂r

)2

+
1

r2 sin2 θ

(
∂W

∂φ

)
+

1
r2

(
∂W

∂θ

)
=

1
v2

To solve, assume that W = W (r). The above equation simplifies to

dW

dr
= ±1

v

and the initial condition becomes W (R) = 0. The problem has two solutions that
correspond to different signs of the right-hand side. The first solution

W1 =
r −R
v

describes the light propagating away from the sphere. It exist for all r ≥ R. The
second solution

W1 =
R− r
v

describes the light propagating inside the sphere from its surface. Because of the
natural constraints r ≥ 0 and W ≥ 0, it exist for r smaller than 0 ≤ r ≤ R.
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Example: Radiating ellipsoid in the homogeneous medium.
The solution of the Eikonal can have singularities.
Example: Refraction on a wedge.

4.2 Hamilton-Jacobi equation

Hamilton (1834) applied the approach to mechanical systems as well, using
Lagrange principle instead of Fermat principle and respectively, Lagrangian L
instead of Eikonal.

S(t, x) =
∫
γ

L(x, u, u′)dt

where γ is the trajectory between the fixed initial point t0, x0 and the current
point t, x.

Jacobi (1837) suggested to consider the function S for an arbitrary varia-
tional problem. All extremals originated at t0, x0 cross the surface level of the
action transversally, that is in a manner similar to (4.4) for the rays of light.
This implies the representation

dS = pT du−Hdt

where p = ∂L
∂u̇ is the impulse and H = u̇T ∂L∂u̇ − L is the Hamiltonian. The

last representation leads to the following equation called the Hamilton-Jacobi
equation for the function S(t, u):

∂S

∂t
+H

(
x, u,

∂S

∂u

)
= 0 (4.6)

where H is the Hamiltonian of the system, H = u′p− L. The Hamilton-Jacobi
equation is equivalent to the Euler or Hamilton equations of an extremal.

In a conservative system, Hamiltonian H(u, p) is constant along the trajec-
tory, H(u, p) = E, where E is the energy. This suggest a convenient represen-
tation of Hamilton-Jacobi function S,

S(t, q) = −Et+ S∗(u)

where S∗ is the modified Jacobi function. In terms of S∗, the equation (4.6) for
the conservative system takes the form

H

(
x, u,

∂S∗

∂u

)
= E. (4.7)

The Hamilton-Jacobi equation contains the information of a family of ex-
tremals directed toward various end points; it can be used to investigate the
variation of the objective functional caused by the variation of the position of
the end point, etc. The Hamilton-Jacobi equation is a nonlinear partial differ-
ential equation of the first order which solution may exist only in a proximity
of initial surface or not exist at all. In spite of its appearing complexity, the
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investigation of the Hamilton-Jacobi equation is very fruitful in Optics, Mechan-
ics, and Geometry; in control theory, this equation leads to Bellman’s dynamic
programming, see Chapter 5.1.

Example 4.2.1 (Hamilton-Jacobi equation for a free particle) Consider
motion of one particle in constant gravitational field f = mg directed along Z axis.
The kinetic energy T of the mass is

T =
1
2
m
(
ẋ2 + ẏ2 + ż2

)
and the potential energy V is V = gz. The impulses are

px =
∂(T − V )

∂ẋ
= mẋ, py =

∂(T − V )
∂ẏ

= mẏ, pz =
∂(T − V )

∂ż
= mż

and the Hamiltonian H is

H(x, y, z, px, py, pz) = gz +
m

2
(
p2
x + p2

y + p2
z

)
The Hamilton-Jacobi equation is obtained when we formally replace the impulses
with the corresponding derivatives of S∗, as follows

gz +
m

2

(
∂S∗

∂x

2

+
∂S∗

∂y

2

+
∂S∗

∂z

2)
= E

Separating the variables, we look for the solution in the form

S∗(x, y, z) = X(x) + Y (y) + Z(z);

the previous equation then becomes

X ′(x)2 + Y ′(y)2 +
(
Z ′(z)2 +

2g
m
z

)
=

2E
m

The three terms in the left-hand side depends only on x, y, and z, respectively, and
therefore each of them is constant. We obtain

X(x) = a1x+ b1, Y (y) = a2y + b2, Z(z) =
(−2mgz +m2a2

3)
3
2

3m2g

where ai and bi, i = 1, 2, 3 are constants,

a2
1 + a2

2 + a2
3 = 2

E

m

that are determined from the initial position and speed of the particle. Function S
becomes

a1x+ a2y +
(−2mgz +m2a2

3)
3
2

3m2g
+ b = Et

where b is a constant. It determines the time-dependent family of the surfaces that
are perpendicular to the trajectory of a particle.
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4.3 Canonic transformation and Jacobi theorem

We may look at the Hamilton-Jacobi equations from a geometric perspective.
The extremals (rays) and the orthogonal to them front surfaces W form a curved
coordinate system in the space. The Hamilton-Jacobi equation describes these
curved coordinates; more precisely, it describes the mapping from a initial carte-
sian coordinates to the coordinates defined by the extremals. For example, a
light front from a point-like source in a homogeneous space form a family of con-
centrated spheres centered around the source point, and the rays are the radii.
In spherical coordinates φ, θ, r, these are lines φ = constant, θ = constant and
a flat surfaces r = constant, respectively.

In the proper curved coordinates, the front propagates straightforward and
with the constant speed; the problem therefore can be reformulated to the
problem of finding a proper mapping. We start with the general representation
of the canonic transformation that keeps the form of Hamiltonian.

Canonic transformations Consider a system

qk =
∂H

∂pk
, pk = −∂H

∂qk
, k = 1, . . . , n

where H(q, p) is the Hamiltonian. Let us make the transform

Qk = Qk(q, p), Pk = Pk(q, p)

such that

1. There exists a function K = K(Q,P ) such that

Q̇k =
∂K

∂Pk
, Ṗk = − ∂K

∂Qk
, k = 1, . . . , n

2.

3.

Such transformation is called canonical transformation. The transform that
we want to find is a canonical transformation with K =constant. We observe:

Q̇k = Ṗk = 0, or Q(t) = Q(0) and P (t) = P (0) if K = constant

In the properly transformed coordinates, all paths are straight and all velocities
are constant. The question becomes: How to find this canonical transformation?
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Control theory

5.1 Optimal control

The theory of optimal control was developed starting from 1950s to meet the
needs of designed the automatic control systems. Optimal control problem is
essentially the variational problem with an additional feature: The pointwise
constraints of the set of admissible controls.

5.1.1 Formulation

Variational and control problems Let us begin with reformulation of a
classical variational problem using the optimal control notations. Consider the
simplest variational problem

I = min
z

∫ 1

0

F (x, z, z′)dx z(0) = z0, z(1) = z1. (5.1)

The minimizer z is a differentiable function, but its derivative, z′ is free of any
pointwise constraints. We rewrite (5.1) introducing a new variable u = z′ called
control. The control can be arbitrarily assigned at each point of trajectory.
When the control is fixed, the trajectory z is uniquely defined.

The problem becomes a constrained one:

I = min
z,u

∫ 1

0

F (x, z, u)dx z(0) = z0, z(1) = z1, z′ = u. (5.2)

We solve this problem using the standard Lagrange multipliers method. The
extended functional is

I = min
z,u

∫ 1

0

G(t, z, u, µ)dt z(0) = z0, z(1) = z1, G = F + µ(u− z′). (5.3)

The Euler equations are obtained by variation of z and u:

δz :
∂F

∂z
+ µ′ = 0, δu :

∂F

∂u
+ µ = 0 (5.4)

65
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We obtained the two first order equations for z and µ and an algebraic relation
for the control u:

u′ = z, µ′ =
∂F

∂z
, µ = −∂F

∂u

supplemented with two boundary conditions z(0) = z0, z(1) = z1. Excluding
µ, we obtain the classical Euler equation.

d

dx

∂F

∂z
− ∂F

∂u
= 0

Therefore, a variational problem can always be viewed as an optimal control
problem; z can be either a scalar or a vector. The inverse statement is, however,
incorrect: The control problem can handle a more general type of extremal
problem, accounting for conditions of the type u(t) ∈ U ,∀t; for example |u| > 1..

A general control problem Formulating a control problem, the variables
are separated into two groups

1. Controls u = [u1 . . . , uk] that are arbitrary assigned at each point and
may be subject to some pointwise algebraic constraints

u ∈ U(u, z, t)

so that they are bounded in L∞[0, 1].

2. Phase variables z = [z1, . . . , zn] that are (i) differentiable and (ii) entirely
defined by the controls through differential constraints that are repre-
sented in the Cauchy form:

z′i = fi(x, z, u) (5.5)

Some boundary conditions are applied

b(z(0), z(1)) = 0 (5.6)

The minimizing functional may consist of an integral term and a boundary
term:

I =
∫ t1

t0

Φ(x, z, u)dx+ φ(z(t1)).

Example 5.1.1 (Control of a boat) Consider a control of a motor boat mov-
ing in a river. The differential equation os the motion is

mẍ+ γ(ẋ− s) = ψ(u) (5.7)

where x is the coordinate of the boat, m is its mass, γ is the viscosity of the water,
s is the speed of the stream, f(u) is the driving force applied from the propeller,
and u is the speed of fuel consumption.
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Assume that we want to minimize the total fuel spend in an hour

I =
∫ 1

0

u dx

and we need to reach a certain point A. The boundary conditions become

x(0) = ẋ(0) = 0, x(1) = A

To rewrite the problem as an optimal control one, we transform the second-order
equation (5.7) to the Cauchy form: Call x = z1 and obtain the system

z′1 = z2, z′2 =
1
m

(−γz2 − s+ f(u))

with the boundary conditions

z1(0) = 0, z2(0) = 0, z1(1) = A

(notice that we have three boundary conditions here, the last one expresses the
requirement of reaching a prescribed point A). The variables can be calculated
if the control u is known, provided that the control is chosen to satisfy the extra
boundary condition.

Example 5.1.2 (Canonic equations for rocket motion) Original equations
are:

(mx′)′ − γx′ = f, m′ = αfβ , f ∈ [0, A]

The first one is the equation of the motion in a viscous media (air, γ is the viscosity
coefficient) of a mass m under the reactive force f , the second shows that the force
is proportional to the rate of burning of the mass, the third says that the force is
positive and restricted.

We rewrite the system as

(mx′ − γx)′ = f, m′ = αfβ , f ∈ [0, A]

Canonic variables are:

z1 = x, z3 = m, z2 = mx′ − γx, f = u

and the canonic system becomes

z′1 =
z2 + γz1

z3

z′2 = u

z′3 = αuβ
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5.1.2 Adjoint system

Accounting for differential constraints, the minimization problem can be rewrit-
ten in the form

min
z,u∈U

∫ t1

t0

(Φ(x, z, u) + µ[−z′ + f(x, z, u)]) dx+ φ(z(t1)) u(x) ∈ U (5.8)

The stationary conditions (Euler equation) are:

δz :
∂Φ
∂z

+ µT
∂f

∂z
+ µ′ = 0 (5.9)

the supplementary boundary conditions

−µi(0) + γ0
∂b

∂zi(0)
= 0, −µi(1) + γ1

∂b

∂zi(1)
= 0 (5.10)

where γ0 and γ1 are Lagrange multipliers.
The conditions for the optimal control (if u belongs to the interior of U) are

δu :
∂Φ
∂u

+ µT
∂f

∂u
= 0, u ∈ IntU . (5.11)

We postpone discussion of the conditions that holds if u belongs to the boundary
of U .

The system of n differential equations (5.9) defines the vector of adjoint
variables (a.k.a. Lagrange multipliers) µ. The boundary conditions for µ can
be found from the system:

µT · δz|t=0 = 0,
(
∂φ

∂z
+ µT

)
· δz|t=1 = 0 (5.12)

where δz are subject to constraints originated from the given initial or boundary
conditions. Notice that the total order of the system for differential constraints
and Lagrange functions is 2n , and there are 2n boundary conditions for it.

Example 5.1.3 (continue) The Lagrange functions are

µ′1 = 0 µ′2 = −µ1 +
γ

m
µ2

The variation of z2(1) is undetermined, therefore, µ2(1) = 0. The variations of
other boundary terms are zero, and no other boundary conditions for µ arise. The
order of the system for differential constraints and Lagrange functions is four, and
there are four boundary conditions.

Hamiltonian The system of differential equations is further rewritten as

µ′ = −∂H
∂z

, z′ =
∂H

∂µ
, where H = F + µT f (5.13)

Here H(t, z, µ, u) is called Hamiltonian; it contains all the information of the
extremal problem and it is an algebraic function of its argument.
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5.1.3 Pontryagin’s maximum principle

Needle variation Because of the constrained set of controls, the Weierstrass-
type variation is not always possible. Indeed, this variation would require such
a perturbation of u that its average value is zero, because u plays the role of
derivative in the classical variation problem. If u in on the boundary (say in
a corner point) of the set U , this variation is not possible. At the other hand,
the consideration of closed sets of control is the main objective of the control
theory.

Instead of the Weierstrass variation, we use the needle-type variation

∆u(x) = 0, if x 6∈ [x0, x0 + ε], u(x) = U ∈ U , if x 6∈ [x0, x0 + ε].

This variation investigates the sign of the increment of functional if a control
switch its value at a small time interval. It is applicable every time if only the
set U contains more than one element. The admissible controls do not need to
be continuous; the set U may even consists of several isolated points.

Unlike the perturbation by the Weierstrass variation, the perturbation of the
trajectory δz caused by the needle variation is not zero outside of the interval
[x0, x0 + ε] of variation, but it is of the order of ε everywhere. The main term
of the increment is of the order of ε and consists of two parts:

δI = ε([H(x0, , ., u, .)−H(x0, .., U, .)] +
∫ 1

0

µ

(
δz′ − ∂H

∂z
δz

)
dt+ o(ε)

The first term is the main term of the expansion of the integral∫ x0+ε

x0

[H(x, z(u), µ(u), u)−H(x, z(U), µ(U), U)]dx =

ε[H(x0, z, µ, u)−H(x0, z, µ, U)] + o(ε).

Here, the continuity of z and µ is used. In the perturbed system, these quantities
differs from the optimal values not more than by the term of the order of ε,
see (5.5), (5.9), and therefore can be replaced with the optimal values in the
approximation.

The second term∫ 1

0

µ

(
δz′ − ∂H

∂z
δz

)
dt = −

∫ 1

0

(
µ′ +

∂H

∂z

)
δz dt+ µ′z|10

contains terms of the order of ε. This term, however, disappears due to the
choice of the adjoint variables (by virtue of (??)).

The remaining first term leads to the condition

uopt = arg

{
min
u∈U

H(z, µ, u)
}

(5.14)

where z and µ are computed along the optimal trajectory. This condition is
called the Pontryagin’s maximum principle
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Remark 5.1.1 Traditionally, problem of the control theory is to maximize (not
minimize) the functional; wherefore the name maximum principle is originated.

Now we have the complete set of equations to determine u, z, µ: N first-order dif-
ferential equations (5.5) for the differential constraints, N first-order differential
equations (5.9) for the adjoint system, and p equations (5.14) for an optimal
control. The system is supplemented by 2N boundary conditions (5.12) and
(??).

Control inside U Particularly, if u is inside U , one can make U −u infinitely
small and obtain the conditions

∂H

∂u
= 0,

∂2H

∂u2
≥ 0 if x ∈ Int (U) (5.15)

These equalities serve to find u

Control on the boundary of U If u ∈ ∂U , u is on the boundary of U ,
the condition depend on the type of the boundary point (a point on a smooth
boundary, the corner point, isolated point, etc.) These conditions are differently
expressed in these cases. For example, if the constrain on a scalar control
restricts its values, u− ≤ u(t) ≤ u+ the conditions for the small variations are

u = u− if
∂H

∂u
> 0,

u = u+ if
∂H

∂u
< 0,

∂H

∂u
= 0,

∂2H

∂u2
≥ 0, if u− ≤ u(t) ≤ u+.

In all cases, we have one equality to find the optimal control and one inequality
to check. The condition (5.14) is obviously stronger then these last conditions,
but its verification is also more difficult.

Example 5.1.4 (boat; continue) Revisiting the example, we find that

H = u+ µ1z1 + µ2z2 − µ1z2 − µ2
1
m

(−γz2 − s+ f(u))

or

H = u− µ2
1
m
f(u) + terms independent of u

Assuming the constraints 0 ≤ u ≤ 1, we find the last condition for u

U = arg

(
max
u∈(0,1)

[
u− µ2

1
m
f(u)

])
which leads to conditions for control inside the interval

u ∈ (0, 1) if m− µ2f
′(u) = 0, µ2f

′′(u) ≥ 0,
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(the equation serves to determine u), and on the boundaries

u = 0 if m− µ2f
′(0) ≥ 0;

u = 1 if m− µ2f
′(1) ≤ 0.

5.2 Developments and examples

5.2.1 Various types of constraints

The control theory formulation is flexible enough to incorporate additional
isoperimetric constraints, uncertain interval, etc.

• The integral constraint ∫ 1

0

G(z, u)dt = A

can be rewritten in the control theory setting as following. A new variable
zn+1 is introduced by the equation

z′n+1 = G(z, u), zn+1(0) = 0, zn+1(1) = A.

This equation is added to the system (5.5).

• Similarly, one can always maximize (or minimize) the boundary value of a
variable instead of an integral. The minimization of the integral of Φ(z, u)
is equivalent to minimization of zn+1(t1) where

z′n+1 = Φ(z, u), zn+1(0) = 0

• If the final time T of the process is to be minimized, we may change the
independent variable:

t = θT, θ ∈ [0, 1]

and
d

dt
=

1
T

d

dθ

and minimize T subject to the constraints

d

dθ
z = Tf(t, z, u)

• Similarly, algebraic constraints G(t, u, z) = 0 can be incorporated using
Lagrange multiplier’s technique.


