
Chapter 1

Preliminary Remarks

1.1 Origins of extremal problems

Optimization The desire for optimality (perfection) is inherent in humans.
The search for extremes inspires mountaineers, scientists, mathematicians, and
the rest of the human race. The development of Calculus of Variation is driven
by this noble desire. Simultaneously with Calculus technique of �nding minima
of functions. A mathematical technique of minimization of functionals was
developed in the eighteen century to describe the best possible geometric objects:
The minimal surface, the shortest distance, or the trajectory of fastest travel.

In the twentieth century, control theory emerged to address the extremal
problems in science, engineering, and decision-making. These problems study
the in
uence on the objective of the available free-chosen time-dependent func-
tions called controls. Optimal design theory addresses space-dependent analog
of control problems focusing on multivariable control. Minimax problems ad-
dress optimization in con
ict situations or in an undetermined environment. A
special branch of the theory uses minimization principles to create e�ective nu-
merical algorithms such as �nite element method for computing the numerical
solutions.

Description of fundamental laws of Nature For centuries, philosophers
and scientists tried to prove that the Universe is rational, symmetric, or optimal
in some sense. Attempts were made to formulate laws of natural sciences as
extreme problems (variational principles) and to use the variational calculus
as a scienti�c instrument to derive and investigate the motion and equilibria
in Nature (Fermat, Lagrange, Gauss, Hamilton, Gibbs..). It was observed by
Fermat that light always takes the trajectory that minimizes the time of travel.
Equilibria correspond to the local minima of the energy, motion of mechanical
systems corresponds to stationarity of a functional called action, etc. In turn,
the variational principles link together conservation laws and symmetries.

Does the actual trajectory minimize the action? This question motivated
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great researchers starting from Leibnitz and Fermat to develop variational meth-
ods to justify the Nature's "desire" to choose the most economic way to move,
and it caused much heated discussions that involved philosophy and theology.
The general principle by Maupertuis proclaims: \If there occur some changes
in nature, the amount of action necessary for this change must be as small as
possible." In a sense, this principle would prove that our world is "the best of all
worlds" { the conclusion defended by Fermat, Leibnitz, Maupertuis, and Euler
but later ridiculed by Voltaire. In mid-nineteen century Jacobi showed that the
action is minimized by short trajectories, but for long ones. This mathematical
fact was disappointing for philosophical speculations, \a beautiful conjecture is
ruined by an ugly fact." Still later, the relativity and the notion of the world
lines in a sense returns the principle of minimization of a quantity at the real
trajectory over all other trajectories.

Concise description of the state of an object No matter if the actual
trajectories minimize the action or not, the variational methods in physics be-
come an important tool for investigation of motions and equilibria. First, the
variational formulation is convenient and economic: Instead of formulation of
equations it is enough to write down a single functional that must be optimized
at the actual con�guration. The equations of the state of the system follow from
the optimality requirement. Second, variational approach allows for account-
ing of symmetries, for invariants of the con�guration, and (through duality) for
di�erent di�erential equations that describe the same con�guration in di�erent
terms.

There are several ways to describe a shape or a motion. The most explicit
way is to describe positions of all points: Sphere is described by the functions
�
p
1� x2 � y2 � z(x; y) �

p
1� x2 � y2. The more implicit way is to formu-

late a di�erential equation which produces these positions as a solution: The
curvature tensor is constant everywhere in a sphere. An even more implicit
way is to formulate a variational problem: Sphere is a body with given volume
that minimizes its surface area. The minimization of a single quantity pro-
duces the "most economic" shape in each point. Such implicit description goes
back to Platonic ideals and is opposite to the Aristotelian principle to explicit
description/classi�cation of factual events (here, the explicit functions)

1.2 Remarks on history

For the rich history of Calculus of variation we refer to such books as [Kline,
Boyer].. Here we make several short remarks about the ideas of its development.
Calculus of variations is a rare disciplile that has a birthdate. The story started
with the challenge called the brachistochrone problem:

Given two points A and B in a vertical plane, what is the curve
traced out by a point acted on only by gravity, which starts at A
and reaches B in the shortest time.
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The brachistochrone problem was posed by Johann Bernoulli in Acta Erudi-
torum in June 16961. He introduced the problem with the following preambula:

I, Johann Bernoulli, address the most brilliant mathematicians in
the world. Nothing is more attractive to intelligent people than an
honest, challenging problem, whose possible solution will bestow fame
and remain as a lasting monument. Following the example set by
Pascal, Fermat, etc., I hope to gain the gratitude of the whole scien-
ti�c community by placing before the �nest mathematicians of our
time a problem which will test their methods and the strength of
their intellect. If someone communicates to me the solution of the
proposed problem, I shall publicly declare him worthy of praise.

Johann Bernoulli's solution divides the plane into strips and he assumes
that the particle follows a straight line in each strip. The path is then piecewise
linear. The problem is to determine the angle of the straight line segment in
each strip and to do this he appeals to Fermat's principle, namely that light
always follows the shortest possible time of travel. If v is the velocity in one
strip at angle a to the vertical and u in the velocity in the next strip at angle b
to the vertical then, according to the usual sine law v/sin a = u/sin b.

Within a year, �ve solutions were obtained, Newton, Jacob Bernoulli, Leibniz
and de L'Hôpital solving the problem in addition to Johann Bernoulli. The
May 1697 publication of Acta Eruditorum contained Leibniz's solution to the
brachistochrone problem on page 205, Johann Bernoulli's solution on pages 206
to 211, Jacob Bernoulli's solution on pages 211 to 214, and a Latin translation of
Newton's solution on page 223. The solution by de L'Hôpital was not published
untilnearly 300 years later, in 1988 (Jeanne Pei�er). Thus, the calculus of
variation appeared simultaneously with the Calculus, and was created by the
same brilliant group.

The optimal trajectory turns out to be a cycloid (see Section ?? for the
derivation). Cycloid was an investigated in seventeen century parametric curve.
Huygens had shown in 1659, prompted by Pascal's challenge, that the cycloid is
the tautochrone of isochrone: The curve for which the time taken by a particle
sliding down the curve under uniform gravity to its lowest point is independent of
its starting point. Johann Bernoulli ended his solution with the remark: Before
I end I must voice once more the admiration I feel for the unexpected identity of
Huygens' tautochrone and my brachistochrone. ... Nature always tends to act
in the simplest way, and so it here lets one curve serve two di�erent functions,
while under any other hypothesis we should need two curves.

For a halh of a century, the methods for funding the best curves remain a
collection of examples. Then, Leonhard Euler uni�ed them in his 1744 work
Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
solutio problematis isoperimetrici latissimo sensu accepti. (Method for �nding

1Johann Bernoulli was not the �rst to consider the brachistochrone problem. Galileo had

studied the problem in 1638 in his famous work Discourse on Two New Sciences. He correctly

concluded that the straight path is not the fastest one, but made an error concluding that an

optimal trajectory is a part of a circumference.
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plane curves that show some property of maxima and minima.) In that work,
Euler suggested a general approach to variational problems. He demonstrated
that extremal curve satis�es a di�erential equation that he derived and that
since was named after him (Euler equation or Euler-Lagrange equation),

Lagrange, in 1760, published Essay on a new method of determining the
maxima and minima of inde�nite integral formulas. It gave an analytic method
to attach calculus of variations type problems and applied it to classical mechan-
ics: He announced: "The admirers of the Analysis will be pleased to learn that
Mechanics became one of its new branches" and \The reader will �nd no �gures
in this work. The methods which I set forth do not require either constructions
or geometrical or mechanical reasonings: but only algebraic operations, subject
to a regular and uniform rule of procedure." (Lagrange, Mcanique analytique.
Preface)

New mathematical concepts Working on optimization problems, mathe-
maticians met paradoxes related to absence of optimal solution or its weird
behavior; resolving these was useful for the theory itself and resulted in new
mathematical development such as weak solutions of di�erential equations and
related functional spaces (Hilbert and Sobolev spaces), various types of con-
vergence of functional sequences, distributions and other limits of function's
sequences, and other fundamentals of modern analysis.

Many computational methods are motivated by optimization problems and
use techniques of minimization. Methods of search, �nite elements, iterative
schemes are part of optimization theory. The classical calculus of variation an-
swers the question: What conditions must the minimizer satisfy? while the
computational techniques are concerned with the question: How to �nd or ap-
proximate the minimizer?

The list of main contributors to the calculus of variations includes the most
distinguished mathematicians of the last three centuries such as Leibnitz, New-
ton, Bernoulli, Euler, Lagrange, Gauss, Jacobi, Hamilton, Hilbert.

Today, the most attention is paid to the extremal problem without classical
solution. In these problem, the minimizing sequence of di�erentiable minimizers
may turn either to a discontinuous function, or to a distribution, of to in�nitely
often oscillating function. Each of these cases requires the rethinking of the
concept of \solution", \function" and leads to new formulations of the problem.

1.3 Properties of the extrema

Every optimization problem contains several necessary components. It deals
with a set X of admissible elements x, that can be real or complex numbers,
di�erentiable curves, integrable functions, shapes, people in the town, or ants in
the colony. A real-valued function I(x) called objective is put into correspon-
dence to each admissible element. The objective could be an absolute value of
a complex number, value of the function at a certain point, value of the integral
of a function over an interval, weight of a town inhabitant, or length of an ant.
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The goal is to �nd or characterize the element x0 called minimizer, such that

I(x0) � I(x); 8x 2 X

We denote this element as

x0 = argmin
x2X

I(x)

and we denote the value I(x0 as

I(x0) = min
x2X

I(x)

Next, we list the basic properties of any extreme problem that are based on
the de�nition of the minimizer.

1. Minimum over a larger set is equal or smaller than minimum of the smaller
set

If X1 � X2, then

min
x2X1

F (x) � min
x2X2

F (x)

2. Minimum of a function F (x) is equal to the negative of maximum of
�F (x),

min
x2X

F (x) = �max
x2X

(�F (x))

This property allows us not to distinguish between minimization and max-
imization problems: We always can reformulate the maximization problem
as the minimization one.

3. Generalization the previous property has the form:

min
x2X

[cF (x)] =

�
cminx2X F (x) if c � 0

�cmaxx2X (�F (x)) if c � 0

4. Minimum of a sum of functions is not smaller than the sum of minima of
additives.

min
x
[f(x) + g(x)] � min

x
f(x) + min

x
g(x)

5. The minimizer is invariant to the superposition of the objective with a
monotonically increasing function. Consider functions F : X � Rn !
Y � R1 and G : Y ! Z � R1 and assume that Gmonotonically increases:

G(y1)�G(y2) � 0 if y1 � y2

Then minima of F (x) and of G(F (x)) are reached at the same minimizer,

x0 = argminF (x) = argminG(F (x))
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6. Maximum of several minima is not larger than minimum of several max-
ima:

max
x

fmin(x) � min
x
fmax(x)

where

fmax(x) = maxff1(x); : : : fN(x)g

fmin(x) = minff1(x); : : : fN(x)g

7. Minimax theorem

max
y

min
x
f(x; y) � min

x
max
y

f(x; y)

The listed properties can be proved by the straightforward use of the de�nition
of the minimizer. We show the prove of the minimax theorem, leaving other to
the reader.

Consider functions

�(x) = max
y

f(x; y);  (y) = min
x
f(x; y)

that satisfy the obvious inequalities

 (y) � f(x; y) � �(x); 8x; y

Therefore, the extreme value of these functions satisfy the same inequalities:

max
y

 (y) � min
x
�(x); 8x; y

which is the statement of the minimax theorem.

1.4 Variational problem

The extremal (variational) problem requires to �nd an optimal function u0(x)
which can be visualized as a curve (or a surface). Function u0(x) belongs to a set
of admissible functions U : u 2 U ; it is assumed that U is a set of continuously
di�erentiable functions on the interval [a; b] that is denoted as C1[a; b]. To
measure the optimality of a curve, we de�ne a functional (a real number) I(u)
which may depend on u(x), its derivative u0(x), and on independent variable x.
Examples of functionals are: the length of the curve, the area of the contour,
weight of a construction, its strength, etc.

The examples of variational problems are: The shortest path on a surface,
the surface of minimal area, the best approximation of experimental data by a
smooth curve, the construction of given strength and minimal weight, etc.
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Simplest variational problem The classical (simplest) variational problem
is formulated as follows: Consider an integral functional of the type

J(u) =

Z b

a

F (x; u(x); u0(x))dx: (1.1)

where F is a known function of three arguments, x; u(x); u0(x), called La-
grangian. For example, the length of a curve u(x) corresponds to F =

p
1 + (u0)2.

Find the di�erentiable function u0(x) that corresponds to minimum of J(u)
assuming that the boundary values of u are �xed:

I(u0) = min
u(x)2Ub

J(u) Ub = fu : u 2 C1(a; b); u(a) = �; u(b) = �g (1.2)

Function u0(x) is called the minimizer. For example, a curve of minimal length
corresponds to a straight line,

u0 = constant; u(x) = ua +
ub � ua

b� a
(x� a)

Minimizing sequence It is assumed that the set of minimizers Ub is chosen
so that the integral in (1.1) exists. However, there is no guarantee of existence
of the C1 minimizer. Indeed, C1 set is open and a sequence of C1-functions may
lead to a discontinuous function, or to a distribution.

To the contrary, the minimizing sequence always exists. The value of the
objective functional I(u) (also called the cost functional) is a real number. Since
real numbers are ordered, one can compare functionals J(u1); J(u2); : : : of di�er-
ent admissible functions u1; u2; : : :, and build minimizing sequences of functions

u1; u2; : : : ; un; : : :

with the property:
I(u1) � I(u2) � : : : � I(un) : : :

The limit u0 of a minimizing sequence (if it exists) is called the minimizer; it
delivers the minimum of I

I(u0) � I(u) 8u 2 U (1.3)

The minimizing sequence can always be built independently of the existence of
the minimizer.

Generalization The formulated problem can be generalized in several ways.

� The minimizer and an admissible function can be a vector-function; the
functional may depend of higher derivatives, and be of a more general
form such as a ratio of two integrals.

� The integration can be performed over a spatial domain instead of the
interval [a; b]; this domain may be completely or partly unknown and
should be determined together with the minimizer.
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� The problem may be constrained in several ways: The isoperimetric prob-
lem asks for the minimum of I(u) if the value of another functional Ir(u)
is �xed. Example: �nd a domain of maximal area enclosed by a curve
of a �xed length. The constrained problem asks for the minimum of
I(u1; : : : un) if a function(s) �(u1; : : : un) is �xed everywhere. Example:
The problem of geodesics: the shortest distance between two points on a
surface. In this problem, the path must belong to the surface everywhere.

1.5 Outline of the methods

There are several groups of methods aimed to �nd a minimizer of an extremal
problem of di�erent compexity.

Global optimization (su�cient conditions). These rigorous methods di-
rectly establish the inequality I(u0) � I(u);8u 2 U . They are applicable to a
limited variety of problems, and the results are logically perfect. To establish
the above inequality, methods based on convexity or stable point theorem are
commonly used. The methods usually require a guess of the global minimizer
u0 and therefore are applicable to relatively simple extremal problems.

For example, the variational problem (1.2), (1.1) with the Lagrangian

F (x; u) =
u(x)2 + sin2(x)

2
� u(x) sin(x)

reaches its minimum, zero, if u(x) = sin(x). This follows from the inequality
between arithmetic and harmonic means of u(x)2 and sin2(x) that is valid for
all functions u(x).

Methods of necessary conditions (variational methods). Using these
methods, we establish and analyze necessary conditions for u(x) to provide a
local minimum. In other words, the conditions tell that there is no other curve
u+ �u that is (i) su�ciently close to the chosen curve u (that is assuming k�uk
is in�nitesimal), (ii) satis�es the same boundary or other posed conditions, and
(iii) corresponds to a smaller value I(u+ �u) < I(u) of the objective functional.
The closeness of compared curves u(x) and u(x) + �u(x) allows for a relative
simple form of the resulting variational conditions of optimality. On the other
hand, it restricts the generality of the obtained conditions.

Variational methods that are discussed below yield to only necessary con-
ditions of optimality; they detect locally optimal curves. These methods are
regular and robust; they are applicable to a great variety of extremal problems
called variational problems. Necessary conditions are the true workhorses of ex-
tremal problem theory, while exact su�cient conditions are rare and remarkable
exceptions.
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Direct optimization methods These methods are aimed to building the
minimizing sequence fusg and provide a sequence of better solutions. Generally,
the convergence to the true minimizer may not be required, but it is guaranteed
that the solutions are improved on each step of the procedure: I(us) � I(us�1)
for all s. These methods require no a priori assumption of the dependence of
functional on the minimizer only the possibility to compare two values of the aim
functional and chose the better of two. Of course, additional assumptions help to
optimize the search and a smart iterative strategy takes advantage of variational
necessary conditions in forming of a minimizing sequence. However, the search
can be conducted without these assumptions. As an extreme example, one can
iteratively �nd the oldest person from the alphabetic telephone directory calling
at random, asking for the age of the responder and comparing the age with the
maximum from the already obtained answers.

There is also no guarantee that the obtained solution is truly optimal.Nevertheless,
such methods are used for practical applications when the model is too compli-
cated or the data are too unreliable for more re�ned methods.

The next table summarizes the discussion.

Global optimization Variational meth-
ods

Direct methods

Objectives Search for the
global minimum

Search for a local
minimum

An improvement of
existing solution

Means Su�cient condi-
tions

Necessary condi-
tions

Sequential improve-
ment

Tools Inequalities, Con-
vex analysis, Fixed
point methods

Analysis of features
of optimal trajecto-
ries

Gradient-type
search

Existence
of solution

Guaranteed Not guaranteed Not discussed

Table 1.1: Approaches to variational problems


