HW 4 for Calculus of Variations 2012

Andrej Cherkaev

March 2, 2012

1. Compute convex envelopes of the functions

$$
\begin{gathered}
f_{1}(u)=\min \left\{(u-1)^{2},(u+1)^{2}\right\} \\
f_{2}(u)=-\frac{1}{1+u^{2}} \\
f_{3}\left(u_{1}, u_{2}\right)= \begin{cases}0 & \text { if } u_{1}^{2}+u_{2}^{2}=0 \\
1+u_{1}^{2}+u_{2}^{2} & \text { otherwise }\end{cases}
\end{gathered}
$$

2. Consider variational problems

$$
\inf \int_{0}^{1}\left(u^{2}+f_{i}\left(u^{\prime}\right)\right) d x, \quad u(0)=a, i=1,2
$$

Find a relaxed formulation, and write the equations for the minimizers.
3. Solve the equation for eikonal $S=S\left(x_{1}, x_{2}\right)$

$$
(\nabla S)^{2}=1, \quad\left|x_{1}\right|+\left|x_{2}\right|>1, \quad S=0 \quad \text { if }\left|x_{1}\right|+\left|x_{2}\right|=1
$$

(Guess the solution, assuming that $\left|x_{1}\right|+\left|x_{2}\right|=1$ is the radiating curve, than check that the solution is correct.)

