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Chapter 4

Distinguishing minimum

from maximum or saddle

Stationary conditions point to a possibly optimal trajectory but they do not
answer the question of the sense of extremum. A stationary solution can cor-
respond to minimum, local minimum, maximum, local maximum, of a saddle
point of the functional. In this chapter, we establish methods aiming to dis-
tinguish local minimum from local maximum or saddle. In addition to being a
solution to the Euler equation, the true minimizer satis�es necessary conditions
in the form of inequalities. Here, we introduce the variational tests, Weierstrass
and Jacobi conditions, that supplement each other examining various variations
of the stationary trajectory.

4.1 Local variations

4.1.1 Legendre Tests

Consider again the simplest problem of the calculus of variations (??)

min
u(x);x2[a;b]

I(u); I(u) =

Z b

a

F (x; u; u0)dx; u(a) = ua; u(b) = ub:

and assume that the function u(x) satis�es the Euler equation and boundary
conditions, hence the �rst variation �I is zero. Let us compute the increment of
the objective caused by the variation (??), (??). This time, we expand F into
Taylor series keeping the quadratic terms

�I = I(u+ �u)� I(u) =
Z b

a

(F (x; u+ �u; u0 + �u0)� F (x; u; u0))dx

+

Z b

a

��
@F

@u
� d

dx

@F

@u0

�
�u+A�u2 + 2B�u �u0 + C(�u0)2

�
dx; (4.1)
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where

A =
@2F

@u2
; B =

@2F

@u@u0
; C =

@2F

@(u0)2

and all derivatives are computed at the point x at the optimal trajectory u(x).
The term in the brackets in the integrant in the right-hand side of (4.1) is

zero because the Euler equation is satis�ed. The variation �u is zero outside

of the interval [x; x + "], and has magnitude �(x) = �" �x� (x0 +
1
2")
�2

of the
order of "2 in this interval. Its derivative �u0 is of the order of ", therefore
j�u0j � j�uj as " ! 0. We conclude that the last term in the integrant in the
right-hand side of (4.1) dominates. The inequality � > 0 implies inequality

@2F

@(u0)2
� 0 (4.2)

which is called Legendre condition or Legendre test.

4.1.2 Weierstrass Tests

The Weierstrass test detects stability of a solution to a variational problem
against a di�erent kind of variations { the strong local perturbations. It also
compares trajectories that coincide everywhere except a small interval where
their derivatives signi�cantly di�er.

Suppose that u0 is the minimizer of the variational problem (??) that sat-
is�es the Euler equation (??). Additionally, u0 should satisfy another test that
uses a type of variation �u di�erent from (??). The variation used in the Weier-
strass test is an in�nitesimal triangle supported on the interval [x0; x0 + "] in a
neighborhood of a point x0 2 (0; 1) (see ??):

�u(x) =

8<
:
0 if x 62 [x0; x0 + "];
v1(x � x0) if x 2 [x0; x0 + �"];
v2(x � x0)� �"(v1 � v2) if x 2 [x0 + �"; x0 + "]

where the parameters � (0 < � < 1); v1 and v2 are related

�v1 + (1� �)v2 = 0: (4.3)

to provide the continuity of u0 +�u at the point x0 + ", or equality �u(x0 +
"� 0) = 0.

The considered variation (the Weierstrass variation) is localized and has an
in�nitesimal absolute value (if " ! 0), but its derivative (�u)0 is �nite, unlike
the Legendre variation:

(�u)0 =

8<
:
0 if x 62 [x0; x0 + "];
v1 if x 2 [x0; x0 + �"];
v2 if x 2 [x0 + �"; x0 + "]:

(4.4)

Computing �I from (??) and rounding up to ", we �nd that the inequality holds

�I = "[�F (x0; u0; u
0
0 + v1) + (1� �)F (x0; u0; u00 + v2)

�F (x0; u0; u00)] + o(") � 0
(4.5)



4.1. LOCAL VARIATIONS 5

for a minimizer u0. Notice that we approximately replace u0 + �u0 with u0
keeping only terms of the order of O(1) in the varied integrand, but we have to
count for di�erent value of the derivative.

The last expression yields to the Weierstrass test and the necessary Weier-
strass condition. Any minimizer u(x) of (??) satis�es the inequality

�F (x0; u0; u
0
0 + v1) + (1� �)F (x0; u0; u00 + v2)� F (x0; u0; u00) � 0: (4.6)

The reader may recognize in this inequality the de�nition of convexity, or
the condition that the graph of the function F (:; :; z) lie below the the chord in
between the points there the chord meet the graph. The Weierstrass condition
requires convexity of the Lagrangian F (x; y; z) with respect to its third argument
z = u0. The �rst two arguments x; y = u here are the coordinates x; u(x) of
the testing minimizer u(x). Recall that the tested minimizer u(x) is a solution
to the Euler equation.

Theorem 4.1.1 (Weierstrass test) A di�erentiable minimizer u(x) of the sim-
plest variational problem that solves Euler equation yields to convexity of the inte-
grand F (x; u; v) with respect of its third argument v = u0 when x; u(x); u0(x) is
an arbitrary point of the stationary trajectory.

The Weierstrass test is stronger than the Legendre test because the convexity
implies the nonnegativity of the second derivative. It compares the optimal
trajectory with larger set of admissible trajectories.

Example 4.1.1 Consider the Lagrangian

F (u; u0) = [(u0)2 � u2]2

It is convex as a function of u0 if ju0j � juj. Consequently, the solution u of Euler
equation

d

dx
[(u0)3 � u2u0] + u(u0)2 � u3 = 0; u(0) = a0; u(1) = a1

or
(3(u0)2 � u2)u00 � u((u0)2 + u2) = 0 u(0) = a0; u(1) = a1

corresponds to a local minimum of the functional if, in addition, the inequality
ju0(x)j � ju(x)j is satis�ed in all points x 2 (0; 1).

The Legendre test gives the inequality

u02 � 2

3
u2

that is weaker than the Weierstrass condition.

Remark 4.1.1 Convexity of the Lagrangian does not guarantee the existence of
a solution to variational problem. It states only that a di�erentiable minimizer (if
it exists) is stable against �ne-scale perturbations. However, the minimum may not
exist at all or be unstable to other variations.
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If the solution of a variational problem fails the Weierstrass test, then its
cost can be decreased by adding in�nitesimal centered wiggles to the solution.
The wiggles are the Weierstrass trial functions, which decrease the cost. In this
case, we call the variational problem ill-posed, and we say that the solution is
unstable against �ne-scale perturbations.

Example 4.1.2 Notice that Weierstrass condition is always satis�ed in the geo-

metric optics. The Lagrangian depends on the derivative as L =

p
1+y02

v(y) and its

second derivative
@2L

@y0 2
=

1

v(y)(1 + y02)
3

2

is always nonnegative if v > 0. It is physically obvious that the fastest path is stable
to short-term perturbations.

Example 4.1.3 Notice that Weierstrass condition is always satis�ed in the La-
grangian mechanics. The Lagrangian depends on the derivatives of the generalized
coordinates through the kinetic energy T = 1

2 _qR(q) _q and its Hessian equals general-
ized inertia R which is always positive de�nite. Physically speaking, inertia does not
allow for in�nitesimal oscillations because they always increase the kinetic energy
while potential energy is insensitive to them.

Weierstrass E-function Weierstrass suggested a convenient test for convex-
ity of Lagrangian, the so-called E-function equal to the di�erence between the
value of Lagrangian L(x; u; ẑ) in a trial point u; z = z0 and the tangent hy-

perplane L(x; u; u0)� (ẑ � u0)T @L(x;u;u0)
@u0

to the optimal trajectory at the point
u; u0:

E(L(x; u; u0; ẑ) = L(x; u; ẑ)� L(x; u; u0)� (ẑ � u0)T @L(x; u; u
0)

@u0
(4.7)

Function E(L(x; u; u0; ẑ) vanishes together with the derivative @E(L)
@ẑ

when ẑ =
u0:

E(L(x; u; u0; ẑ)jẑ=u0 = 0;
@

@ẑ
E(L(x; u; u0; ẑ)jẑ=u0 = 0:

According to the basic de�nition of convexity, the graph of a convex function
is greater than or equal to a tangent hyperplane. Thereafter, the Weierstrass
condition of minimum of the objective functional can be written as the condition
of positivity of the Weierstrass E-function for the Lagrangian,

E(L(x; u; u0; ẑ) � 0 8ẑ; 8x; u(x)
where u(x) tested trajectory.

Example 4.1.4 Check the optimality of Lagrangian

L = u04 � �(u; x)u02 +  (u; x)
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Figure 4.1: The construction of Weierstrass E-function. The graph of a convex
function and its tangent plane.

where � and  are some functions of u and x using Weierstrass E-function.
The Weierstrass E-function for this Lagrangian is

E(L(x; u; u0; ẑ) = �ẑ4 � �(u; x)ẑ2 +  (u; x)
�

� �u04 � �(u; x)u02 +  (u; x)
�� (ẑ � u0)(4u03 � 2�(u; x)u):

or

E(L(x; u; u0; ẑ) = (ẑ � u0)2 �ẑ2 + 2ẑu0 � �+ 3u02
�
:

As expected, E(L(x; u; u0; ẑ) is independent of an additive term  and contains a
quadratic coe�cient (ẑ�u0)2. It is positive for any trial function ẑ if the quadratic

�(ẑ) = �ẑ2 � 2ẑu0 + �� 3u02

does not have real roots, or if

�(u; x)� 2u2 � 0

If this condition is violated at a point of an optimal trajectory u(x), the trajectory
is nonoptimal.

Vector-Valued Minimizer The Legendre and Weierstrass conditions and
can be naturally generalized to the problem with the vector-valued minimizer. If
the Lagrangian is twice di�erentiable function of the vector u0 = z, the Legendre
condition becomes

He(F; z) � 0 (4.8)

(see Section ??) where He(F; z) is the Hessian

He(F; z) =

0
@ @2F

@z2
1

: : : @2F
@z1@zn

: : : : : : : : :
@2F

@z1@zn
: : : @2F

@z2n

1
A

and inequality in (4.8) means that the matrix is nonnegative de�nite (all its
eigenvalues are nonnegative). TheWeierstrass test requires convexity of F (x;y; z)
with respect to the last vector argument.

4.1.3 Null-Lagrangians and convexity

Find the Lagrangian cannot be uniquely reconstructed from its Euler equation.
Similarly to antiderivative, it is de�ned up to some term called null-Lagrangian.
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De�nition 4.1.1 The Lagrangians �(x;u;u0) for which the operator S(�; u) of
the Euler equation (??) identically vanishes

S(�; u) = 0 8u
are called Null-Lagrangians.

Null-Lagrangians in variational problems with one independent variable are
linear functions of u0. Indeed, the Euler equation is a second-order di�erential
equation with respect to u:

d

dx

�
@

@u0
�

�
� @

@u
� =

@2�

@(u0)2
� u00 + @2�

@u0@u
� u0 + @2�

@u@x
� @�

@u
� 0: (4.9)

The coe�cient of u00 is equal to @2�
@(u0)2 . If the Euler equation holds identically,

this coe�cient is zero, and therefore @�
@u0

does not depend on u0. Hence, �
linearly depends on u0:

�(x;u;u0) = u0 �A(u; x) +B(u; x);

A = @2�
@u0@u ; B = @2�

@u@x � @�
@u :

(4.10)

If, inn addition, the following equality holds

@A

@x
=
@B

@u
; (4.11)

then the Euler equation vanishes identically. In this case, � is a null-Lagrangian.
We notice that the Null-Lagrangian (4.10) is simply a full di�erential of a

function �(x; u):

�(x;u;u0) =
d

dx
�(x; u) =

@�

@x
+
@�

@u
u0;

equations (4.11) are the integrability conditions (equality of mixed derivatives)
for �. The vanishing of the Euler equation corresponds to the Fundamental
theorem of calculus: The equalityZ b

a

d�(x; u)

dx
dx = �(b; u(b))��(a; u(a)):

that does not depend on u(x) only on its end-points values.

Example 4.1.5 Function � = uu0 is the null-Lagrangian. Indeed,we check

d

dx

�
@

@u0
�

�
� @

@u
� = u0 � u0 � 0:

Remark 4.1.2 We will show in Section ?? that nonlinear null-Lagrangians in
multivariable problems exist that express the integrability conditions.
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Null-Lagrangians and Convexity The convexity requirements of the La-
grangian F that follow from the Weierstrass test are in agreement with the
concept of null-Lagrangians (see, for example [?]).

Consider a variational problem with the Lagrangian F ,

min
u

Z 1

0

F (x;u;u0)dx:

Adding a null-Lagrangian � to the given Lagrangian F does not a�ect the Euler
equation of the problem. The family of problems

min
u

Z 1

0

(F (x;u;u0) + t�(x;u;u0)) dx;

where t is an arbitrary number, corresponds to the same Euler equation. There-
fore, each solution to the Euler equation corresponds to a family of Lagrangians
F (x;u; z) + t�(x;u; z), where t is an arbitrary real number. This says, in par-
ticular, that a Lagrangian cannot be uniquely de�ned by the solution to the
Euler equation.

The stability of the minimizer against the Weierstrass variations should be a
property of the Lagrangian that is independent of the value of the parameter t.
It should be a common property of the family of equivalent Lagrangians. On the
other hand, if F (x;u; z) is convex with respect to z, then F (x;u; z)+t�(x;u; z)
is also convex. Indeed, �(x;u; z) is linear as a function of z, and adding the term
t�(x;u; z) does not a�ect the convexity of the sum. In other words, convexity
is a characteristic property of the family. Accordingly, it serves as a test for the
stability of an optimal solution.

4.2 Jacobi condition

4.2.1 Su�cient condition for the weak local minimum

We assume that a trajectory u(x) satis�es the stationary conditions and Legen-
dre condition. We investigate the increment caused by a nonlocal variation �u
of an in�nitesimal magnitude:

NJacobi(�u) = N1(�u) +N2(�u) < "; N3(�u) is arbitrary:

To compute the increment, we expand the Lagrangian into Taylor series keeping
terms up to O(�2). Recall that the linear of � terms are zero because the Euler
equation S(u; u0) = 0 for u(x) holds. We have

�I =

Z r

0

S(u; u0)�u dx+

Z r

0

�2Fdx+ o(�2) (4.12)

where

�2F =
@2F

@u2
(�u)2 + 2

@2F

@u@u0
(�u)(�u0) +

@2F

@(u0)2
(�u0)2 (4.13)
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No variation of this kind can improve the stationary solution if the quadratic
form

Q(u; u0) =

 
@2F
@u2

@2F
@u@u0

@2F
@u@u0

@2F
@(u0)2

!

is positively de�ned,

Q(u; u0) > 0 on the stationary trajectory u(x) (4.14)

This condition is called the su�cient condition for the weak minimum because
it neglects the relation between �u and �u0 and treats them as independent trial
functions. If the su�cient condition is satis�ed, no trajectory that is smooth
and su�ciently close to the stationary trajectory can increase the objective
functional of the problem compared with the objective at that tested stationary
trajectory.

Notice that the term @2F
@u02

is nonnegative because of the Legendre condition
(??).

Example 4.2.1 Show that the su�cient condition is satis�ed for the Lagrangians

F =
1

2
u2 +

1

2
(u0)2 and F2 =

1

juj(u
0)2

Next example shows that violation of the su�cient conditions can yield to nonex-
istence of the solution.

Example 4.2.2 (Stationary solution is not a minimizer) Consider the vari-
ational problem:

I = min
u

Z r

0

�
1

2
(u0)2 � c

2
u2
�
dx u(0) = 0; u(r) = A

where c is a constant. The �rst variation �I is zero,

�I =

Z r

0

�
u00 + c2u

�
�udx = 0

if u(x) satis�es the Euler equation

u00 + c2u = 0; u(0) = 0; u(r) = A: (4.15)

The stationary solution u(x) is

u(x) =

�
A

sin(cr)

�
sin(cx)

The Weierstrass test is satis�ed, because the dependence of the Lagrangian on the
derivative u0 is convex, @L

@2u02
= c2.
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The second variation equals

�2I =

Z r

0

�
1

2
(�u0)2 � c2

2
(�u)2

�
dx

Since the ends of the trajectory are �xed, the variation �u satis�es homogeneous
conditions �u(0) = �u(r) = 0. Let us choose the variation as follow:

�u =

�
�x(a� x); 0 � x � a

0 x > a

where the interval of variation [0; a] is not greater that [0; r], a � r. Computing
the second variation, we obtain

�2I(a) =
�2

60
a3(c2a2 � 10); a � r

If second variation �2I(a) is negative, �2I(a) < 0 the stationary solution does not
correspond to the minimum of I . The second variation of the chosen type depends
on a and �2I is maximal when a = r. This maximum is negative when

r > rcrit =

p
10

c

We conclude that the stationary solution does not correspond to the minimum of
I if the length of the trajectory is larger than rcrit. If the length is smaller than
rcrit, the situation is inconclusive. We do not know at this point if it still possible
to choose another type of variation di�erent from considered here and disprove the
optimality of the stationary solution.

4.2.2 Jacobi variation

The Jacobi necessary condition examines the optimality of "long" trajectories.
It complements the Weierstrass test that investigates stability of a Lagrangian
to strong localized variations. Jacobi condition tries to disprove optimality of
a stationary trajectory by testing stability of the Lagrangian against nonlocal
variations with small magnitude. This condition is stronger than the su�cient
condition for the weak minimum.

Assume that a trajectory u(x) satis�es the stationary condition and Weier-
strass condition but does not satisfy the su�cient conditions for weak minimum,
that is Q(u; u0) is not positively de�ned,

S(u; u0) = 0;
@2F

@(u0)2
> 0; Q(u; u0) 6> 0

To derive Jacobi condition, we apply again an in�nitesimal nonlocal varia-
tion: �u = O(�)� 1 and �u0 = O(�)� 1 and examine the expression (4.13) for
the second variation. Notice that we denote the upper limit of integration in
(4.13) by r; we are testing the stability of the trajectory depending on its length.
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When a nonlocal "shallow" variation is applied, the increment increases because

of assumed positivity of @2F
@(u0)2 and decreases because of assumed nonpositivity

of the matrix Q. Depending on the length r of the interval of integration and
of chosen form of the variation �u, one of these e�ects prevails. If the second
e�ect is stronger, the extremal fails the test and is nonoptimal.

Jacobi conditions asks for the choice of the \best shape" �u of the variation.
The expression (4.13) itself is a variational problem for �u which we rename as
v; the Lagrangian is quadratic of v and v0 and the coe�cients are functions of
x determined by the stationary trajectory u(x):

�I =

Z r

0

�
Av2 + 2B v v0 + C(v0)2

�
dx; v(0) = v(r) = 0 (4.16)

where

A =
@2F

@u2
; B =

@2F

@u@u0
; C =

@2F

@(u0)2

are computed at the stationary trajectory u. The problem (4.16) is the varia-
tional problem for the unknown variation v. Its Euler equation is a solution to
Storm-Liouville problem:

d

dx
(Cv0 +Bv) �Av = 0; v(0) = v(rconj) = 0 if r < rconj (4.17)

with boundary conditions v(0) = v(r) = 0. The point rconj is called a conjugate
point to the end of the interval. The problem is homogeneous: If v(x) is a
solution and c is a real number, cv(x) is also a solution.

Jacobi condition is satis�ed if the interval does not contain conjugate points,
that is there is no nontrivial solutions to (4.17) on any subinterval of [0; rconj],
that is if there are no nontrivial solutions of (4.17) with boundary conditions
v(r) = v(rconj) = 0 where 0 � rconj � r.

If this condition is violated, than there exist a family of trajectories

u(x)

�
u0 + v if x 2 [0; rconj]
u0 if x 2 [rconj; r]

that deliver the same value of the cost. Indeed, v is de�ned up to a multiplier:
If v is a solution, �v is a solution too. These trajectories have discontinu-
ous derivative at the points r1 and r2 which leads to a contradiction to the
Weierstrass-Erdman condition that does not allow a broken extremal at these
points.

Examples

Example 4.2.3 (Nonexistence of the minimizer: Blow up) Consider again
the problem in example 4.2.2

I = min
u

Z r

0

�
1

2
(u0)2 � c2

2
u2
�
dx u(0) = 0; u(r) = A
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The stationary trajectory and the second variation are give by formulas (4.12) and
(4.12), respectively.

Instead of arbitrary choosing the second variation, we now choose it as a solution
to the homogeneous problem (4.17) for v = �u

v00 + c2v = 0; u(0) = 0; u(rconj) = 0; rconj � r (4.18)

This problem has a nontrivial solution v = � sin(cx) if the length of the interval is
large enough to satisfy homogeneous condition of the right end, crconj = � or

r � r(conj) =
�

c

The second variation �2I is negative when r is large,

�2I � 1

r
�2
�
�2

r2
� c2

�
< 0 if r >

�

c

which shows that the a stationary solution is not a minimizer.
To clarify the phenomenon, let us compute the stationary solution from the

Euler equation (4.15). We have

u(x) =

�
A

sin(cr)

�
sin(cx) and I(u) =

A2

sin2(cr)

�
�2

r2
� c2

�
When r increases approaching the value c

�
, the magnitude of the stationary solution

inde�nitely grows, and the cost inde�nitely decreases:

lim
r! c

�
�0
I(u) = �1

Obviously, the solution of the Euler equation that corresponds to �nite I(u)
when r > �

c
is not a minimizer.

Remark 4.2.1 Comparing this result with the result in Example (4.2.3), we see
that the optimal choice of variation improved the result at only 0:65%.

4.2.3 Does Nature minimize action?

The next example deals with a system of multiple degrees of freedom.
Consider the variational problem with the Lagrangian

L =

nX
i=1

1

2
mui

02 � 1

2
C(ui � ui�1)

2; u(0) = u0

We will see later in Chapter ?? that this Lagrangian describes the action of a
chain of particles with masses m connected by springs with constant C. The
second variation

�2L =

nX
i=1

1

2
m _vi

2 � 1

2
C(vi � vi�1)

2; v0 = 0; vn = 0
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corresponds to the Euler equation { the eigenvalue problem

m �V =
C

m
AV

where V = v1(t); : : : ; vn(t) and

A =

0
BBB@
�2 1 0 : : : 0
1 �2 1 : : : 0
0 1 �2 : : : 0
: : : : : : : : : : : : : : :

0 0 0 : : : �2

1
CCCA :

The problem has a solution { vector v(t)

v(t) =
X

�kvk sin!kt v(0) = v(Tconj) = 0; Tconj � T

where vk are the eigenvectors, � are coe�cients found from initial conditions,
and !k are the square roots of eigenvalues of the matrix A. Solving the charac-
teristic equation for eigenvalues det(A�!2I) = 0 we �nd that these eigenvalues
are

!k = 2

r
C

m
sin2

 r
C

m

�k

n

!
; k = 1; : : : n

The Jacobi condition is violated if v(t) is consistent with the homogeneous initial
and �nal conditions that is if the time interval is short enough. Namely, The
condition is violated when the duration T is larger than

T � �

max(!k)
� 2�

r
m

C

.
The continuous limit of the chain with the masses is achieved when the

number N of notes inde�nitely growth and their mass decreases correspondingly

as m(N) = m(0)
N

, and the sti�ness of one link growth as C(N) = C(0)N as it
become N times shorter. Correspondingly,s

C(N)

m(N)
= N

s
C(0)

m(0)

and the maximal eigenvalue !N tends to in�nity as N !1. This implies that
the action J of the continuous system is not minimized at any time interval T .

What is minimized in classical mechanics? The action L = T � V does
not satisfy Jacobi condition because kinetic and potential energies, both convex
functions or q and _q, enter the action with di�erent signs. Therefore the action
is not convex function of both q and _q. If would become convex, if we could
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change the sign of the kinetic energy. Formally, we may replace time t with the
imaginary variable t = i� and use the second-order homogeneity of T :

T (q; _q) =
1

2
_qTR(q) _q = �q0�TR(q)q0�

The Lagrangian, considered as a function of q and q0� instead of q and _q, become a
negative of a convex function if potential energy and R(q) are convex. It become
equal to the �rst integral: the energy

L(q; q0� ) = �q0�TR(q)q0� � V (q)
The maximal of the variational problem

J = max
q(�)

Z t

t0

L(q; q0� )d�

does exist. The Euler equations are
They de�ne a function q(�). The true solution is q(t) = <q(i�).

4.2.4 Overview: Norms in functional space

Calculus of variation studies increment of a functional at close-by curves. The
answer to the question whether or not two curves are close to each other, depends
on de�nition of closeness. This question is studied in theory of topological
spaces. Unlike the distance between two points in �nite-dimensional Euclidian
space, the same two curves can be considered to be in�nitesimally close or far
parted depending of the meaning of \distance." The variational tests examine
the stability of the stationary solutions to small perturbations; di�erent tests
di�erently de�ne the smallness of perturbation.

In calculus of variations, there are three mostly used criteria to measure
the closeness of two di�erentiable functions f1(x) and f2(x): The norm N1 of
di�erence �f(x) = f1(x) � f2(x) in the values of functions

N1(�f) = max
x2(0;1)

j�f(x)j

the norm N2 of di�erence of their derivatives,

N2(�f) = max
x2(0;1)

j�f 0(x)j

and the length N3 of the interval on which these functions are di�erent

N3(�f) = � if �f(x) = 0 8x 62 [x; x+�]

None of variational tests guarantees the global optimality of the tested tra-
jectory, only local minimum; at the other hand, these tests are simple enough
to be applied to practically interesting problems. The local minimum satis�es
the inequality

I(u) � I(u+ �u) 8�u : N (�u(x)) < "
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where " is in�nitesimally small and N is a norm. The de�nition of what is local
minimum depends on the above de�nitions of the norm N .

If the perturbation is small in the following sense

NLegendre(�u) = N1(�u) +N2(�u) +N3(�u) < "

the Legendre text is satis�ed. The test assumes that the compared functions
and their derivatives are close everywhere, and they are identical outside of an
in�nitesimal interval.

The Weierstrass text assumes that the compared functions are close every-
where, and they are identical outside of an in�nitesimal interval, but their deriv-
atives are not close in that in�nitesimal interval of variation:

NWeierstrass(�u) = N1(�u) +N3(�u) < "; N2(�u) is arbitrary:

If the objective functional satisfy the Weierstrass test we say that the extremal
u(x) realizes a strong local minimum. The Weierstrass test is stronger than the
Legendre test.

The Jacobi test (see below, Section 4.2.2) assumes that

NJacobi(�u) = N1(�u) +N2(�u) < "; N3(�u) is arbitrary

that is the compared functions and their derivatives are close everywhere, but
the variation is not localized. The Jacobi test is stronger than the Legendre
test. If Jacobi test is satis�ed we say that the extremal u(x) realizes a weak local

minimum (not to be confused with minimum of weakly convergent sequence or
with minimum for localized variations). Neither Weierstrass and Jacobi tests
is stronger than the other: They test the stationary trajectory from di�erent
angles.



Chapter 5

Constrained problems

5.1 Constrained minimum in �nite-dimensional

problems

5.1.1 Lagrangre Multiplyers method

Consider �rst a �nite-dimensional problem of constrained minimum. Namely,
we �nd the condition of the minimum:

min
x
f(x); x 2 Rn; f 2 C2(R

n) (5.1)

assuming that p constraints are applied

gi(x1; : : : xn) = 0 i = 1; : : : p (5.2)

or in the vector form
g(x) = 0

where g and x are p- and n-dimensional vectors, respectively.
To �nd minimum, we add the constraints with the Lagrange multipliers

� = (�1; : : : �p) and end up with the problem

min
x

f(x) +

pX
i

�igi(x)

The stationary conditions become:

@f

@xk
+

pX
i

�i
@gi

@xk
= 0; k = 1; : : : ; n

or, in the vector form
@f

@x
+W � � = 0 (5.3)

17
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where the p� n Jacobian matrix W is

W =
@g

@x
or, by elements, Wnm =

@gn

@xm

The system (5.3) together with the constraints (5.2) forms a system of n + p

equations for n+ p unknowns: Components of the vectors x and �.

Example Consider the problem

J = min
x

X
i

A2
i xi

with the constraint X
i

1

xi � k =
1

c
:

We rewrite it in the form:

Ja = min
x

X
i

A2
ixi + �

 X
i

1

xi � k �
1

c

!
:

From the condition @Ja
@x = 0 we obtain

A2
i �

�

(xi � k)2 = 0; i = 1; : : : ; n:

Then we �nd
1

xi � k =
jAijp
�

and compose the equation for �

1

c
=
X
i

1

xi � k =
1p
�

X
i

jAij

Now we �nd �, the minimizer xi

p
� = c

X
i

jAij; xi = k +

p
�

jAij ;

and the value of the minimizing function J :

J = k
X
i

A2
i + c

 X
i

jAij
!2
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5.1.2 How does it work? (Min-max approach)

Consider again the �nite-dimensional minimization problem

min
x1;:::xn

F (x1; : : : xn) (5.4)

subject to one constraint

g(x1; : : : xn) = 0 (5.5)

and assume that there exist solutions to (5.5) in the neighborhood of the minimal
point.

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

L� = min
x1;:::xn

max
�

(F (x1; : : : xn) + �g(x1; : : : xn)) (5.6)

Indeed, the inner maximization gives

max
�

�g(x1; : : : xn) =

�1 if g 6= 0
0 if g = 0

because � can be made arbitrary large or arbitrary small. This possibility
forces us to choose such x that delivers equality in (5.5), otherwise the cost of
the problem (5.6) would be in�nite (recall that x \wants" to minimize L�). At
the other hand, the constrained problem (5.4)-(5.5) does not change its value if
zero g = 0 is added to it. Thereby the problem (5.4) and (5.5) is equivalent to
(5.6).

If we are able to interchange the sequence of the two extremal operations in
(5.6), we would arrive at the problem for the augmented Lagrangian L

L(x; �) = max
�

min
x1;:::xn

(F (x1; : : : xn) + �g(x1; : : : xn)) (5.7)

Remark 5.1.1 Such interchange preserves the problems cost if F (x1; : : : xn) +
�g(x1; : : : xn) is a convex function of x1; : : : xn; in this case L = L�. In a general
case, we arrive at an inequality L � L� (see the min-max theorem)

The extended Lagrangian L depends on n + 1 variables. The stationary point
corresponds to a solution to a system

@L

@xk
=

@F

@xk
+ �

@g

@xk
= 0; k = 1; : : : n; (5.8)

@L

@�
= g = 0 (5.9)

The procedure is easily generalized for a case of several constrains. In this case,
we add each constraint with its own Lagrange multiplier to the minimizing
function and arrive at expression (5.3)
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5.1.3 Excluding Lagrange multipliers

We can exclude the multipliers � from the system (5.3) as follows:

1. Multiply (5.3) by W T :

GT @f

@x
+W TW � � = 0; (5.10)

Assume that constraints are independent or that p � p matrix W TW is
nonsingular.

2. Find �:

� = �(W TW )�1W T @f

@x
;

(Notice thatW TW is a nonnegative symmetric p�pmatrix. It is invertible
if the gradients (gi)x are linearly independent.)

3. Substitute the obtained expression for � into (5.3) and obtain:

(I �W (W TW )�1W T )
@f

@x
= 0 (5.11)

Notice that the rank of the matrix W (W TW )�1W T is equal to p; it has p
eigenvalues equal to one and n � p eigenvalues equal to zero. Therefore the
rank of I �W (W TW )�1W T is equal to n� p, and the system (5.11) produces
n� p independent boundary conditions. The remaining p conditions are given
by (5.2): gi = 0; i = 1; : : : p. We consider several special cases.

n constraints Suppose that we assign n independent constraints. They de�ne
vector x and no additional condition is needed. Let us see what happens with
our formula (5.11) in this case. The rank of the matrix W (W TW )�1W T is
equal to n, (W�1 exists) therefore this matrix-projector is equal to I :

W (W TW )�1W T = I

and the equation (5.11) becomes a trivial identity. No new condition is produced
by (5.11) in this case, as it should be. The set of admissible values of x shrinks
to the point and it is completely de�ned by the n equations g(x) = 0.

One constraint Another special case occurs if only one constraint is imposed;
in this case p = 1 and the Lagrange multiplier � becomes a scalar and the
conditions (5.3) have the form:

@f

@xi
+ �

@g

@xi
= 0 i = 1; : : : n

Solving for � and excluding it, we obtain n� 1 stationary conditions:

@f

@x1
:
@g

@x1
= : : : =

@f

@xn
:
@g

@xn
(5.12)
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Let us �nd how does this condition follow from the system (5.11). This time,
W is a 1� n matrix, or a vector. We have:

rank W (W TW )�1W T = 1; rank(I �W (W TW )�1W T ) = n� 1

Matrix I �W (W TW )�1W T has n � 1 eigenvalues equal to one and one zero
eigenvalue that corresponds to the eigenvectorW . At the other hand, optimality
condition (5.11) states that the vector @f

@x (if it is not equal to zero) lies the

null-space of the matrix I �W (W TW )�1W T that is the vectors @f
@x and W are

parallel. Equation (5.12) expresses parallelism of these two vectors.

Exercise Consider minimization of a quadratic function (norm)

F = xTAx

Subject to linear constraints

Bx = �

Derive the formulas for the minimal point.

5.1.4 Finite-dimensional variational problem revisited

Consider the optimization problem for a �nite-di�erence
system of equations

J = min
y1;:::;yN

NX
i

fi(yi; zi)

where f1; : : : ; fN are given value of a function f , y1; : : : ; yN is the N -dimensional
vector of unknowns, and zi i = 2; : : : ; N are the �nite di�erences of yi:

zi = Di�(yi) where Di�(yi) =
1

�
(yi � yi�1); i = 1; : : : ; N (5.13)

Assume that the boundary values y1 and yn are given and take (5.13) as con-
straints. Using Lagrange multiplies �1; : : : ; �N we pass to the augmented func-
tion

Ja = min
y1;:::;yN ; z1;:::;zN

NX
i

�
fi(yi; zi) + �i

�
zi � 1

�
(yi � yi�1)

��

The necessary conditions are:

@Ja

@yi
=
@fi

@yi
+

1

�
(��i + �i+1) = 0 2 = 1; : : : ; N � 1

and
@Ja

@zi
=
@fi

@zi
+ �i = 0 i = 2; : : : ; N � 1



22 CHAPTER 5. CONSTRAINED PROBLEMS

Excluding �i from the last equation and substituting their values into the pre-
vious one, we obtain the conditions:

@Ja

@yi
=
@fi

@yi
+

1

�

�
@fi

@zi
� @fi+1

@zi+1

�
= 0 i = 2; : : : ; N � 1

or, recalling the de�nition of the Di� -operator,

Di�

�
@fi+1

@zi+1

�
� @fi

@yi
= 0 zi = Di�(yi) (5.14)

One can see that the obtained necessary conditions have the form of the di�er-
ence equation of second-order.

On the other hand, Di�-operator is an approximation of a derivative and
the equation (5.14) is a �nite-di�erence approximation of the Euler equation.

5.2 Isoperimetric problem

5.2.1 Stationarity conditions

Isoperimetric problem of the calculus of variations is

min
u

Z b

a

F (x; u; u0)dx subject to

Z b

a

G(x; u; u0)dx = 0 (5.15)

Applying the same procedure as in the �nite-dimensional problem, we reformu-
late the problem using Lagrange multiplier �:

min
u

Z b

a

[F (x; u; u0) + �G(x; u; u0)] dx (5.16)

To justify the approach, we may look on the �nite-dimensional analog of the
problem

min
ui

NX
i=1

Fi(ui;Di�(ui)) subject to

NX
i=1

Gi(ui;Di�(ui)) = 0

The Lagrange method is applicable to the last problem which becomes

min
ui

NX
i=1

[Fi(ui;Di�(ui)) + �Gi(ui;Di�(ui))] :

Passing to the limit when N !1 we arrive at (5.16).
The procedure of solution is as follows: First, we solve Euler equation for

the problem(5.16)

d

dx

@

@u0
(F + �G)� @

@u
(F + �G) = 0:
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Keeping � unde�ned and arrive at minimizer u(x; �) which depends on parame-
ter �. The equation Z b

a

G(x; u(x; �); u0(x; �))dx = 0

de�nes this parameter.

Remark 5.2.1 The method assumes that the constraint is consistent with the
variation: The variation must be performed upon a class of functions u that sat-
isfy the constraint. Parameter � has the meaning of the cost for violation of the
constraint.

Of course, it is assumed that the constraint can be satis�ed for all varied func-
tions that are close to the optimal one. For example, the method is not applicable
to the constraint Z b

a

u2dx � 0

because this constraint allows for only one function u = 0 and will be violated at
any varied trajectory.

5.2.2 Dido problem revisited

Let us apply the variational technique to Dido Problem discussed in Chapter
??. It is required to maximize the area A between the OX axes and a positive
curve u(x)

A =

Z b

a

udx u(x) � 08x 2 [a; b]

assuming that the length L of the curve is given

L =

Z b

a

p
1 + u02dx

and that the beginning and the end of the curve belong to OX-axes: u(a) = 0
and u(b) = 0. Without lose of generality we assume that a = 0 and we have to
�nd b.

The constrained problem has the form

J = A+ �L =

Z b

0

�
u+ �

p
1 + u02

�
dx

where � is the Lagrange multiplier.
The Euler equation for the extended Lagrangian is

1� � d

dx

�
u0p

1 + u02

�
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Let us �x � and �nd u as a function of x and �. Integrating, we obtain

�
u0p

1 + u02
= x� C1

where C1 is a constant of integration. Solving for u0 = du
dx
, we rewrite the last

equation as

du = � (x� C1)dxp
�2 + (x� C1)2

;

integrate it:
u = �

p
�2 + (x� C1)2 + C2

and rewrite the result as

(x� C1)
2 + (u� C2)

2 = �2 (5.17)

The extremal is a part of the circle. The constants C1, C2 and � can be found
from boundary conditions and the constraints.

To �nd the length b of the trajectory, we use the transversality condition
(??):

u0
@F

@u0
� F jx=b = � �p

1 + u02
� u
����
x=b;u(b)=0

=
�p

1 + u02

����
x=b

= 0

which gives ju0(b)j =1. We have shown that the optimal trajectory approaches
OX-axis at the point b perpendicular to it. By symmetry, ju0(a)j = 1 as
well which means that the optimal trajectory is the semicircle of the radius �,
symmetric with respect to OX-axis. We �nd � = L

�
, C1 = a+ L

2� , and C2 = 0.

5.2.3 Catenoid

The classical problem of the shape of a heavy chain (catenoid, from Latin catena)
was considered by Euler ?? using a variational principle. It is postulated, that
the equilibrium minimizes the potential energy W of the chain

W =

Z 1

0

g�u ds = g�

Z 1

0

u
p
1 + (u0)2dx

de�ned as the limit of the sum of vertical coordinates of the parts of the chain.
Here, � is the density of the mass of the chain, ds is the element of its length,
x and u are the horizontal and vertical coordinates, respectively. The length of
the chain

L =

Z 1

0

p
1 + (u0)2dx

and the coordinates of the ends are �xed. Normalizing, we put g� = 1. Formally,
the problem becomes

I = min
u(x)

(W (u) + �L(u)); W (u) + �L(u) =

Z 1

0

(u+ �)
p
1 + (u0)2dx
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The Lagrangian is independent of x and therefore permits the �rst integral

(u+ �)

 
(u0)2p
1 + (u0)2

�
p
1 + (u0)2

!
= C

that is simpli�ed to
u+ �p
1 + (u0)2

= C:

We solve for u0

du

dx
=

s�
u+ �

C

�2

� 1

integrate

x = ln

0
@�+ u+

s�
u+ �

C

�2

� 1

1
A� lnC + x0

and �nd the extremal u(x)

u = �C cosh

�
x� x0
C

�
+ �

The equation { the catenoid { de�nes the shape of a chain; it also gave the name
to the hyperbolic cosine.

5.3 General form of a variational functional

5.3.1 Reduction to isoperimetric problem

Lagrange method allows for reformulation of an extremal problem in a general
form as a simplest variational problem. The minimizing functional can be the
product, ratio, superposition of other di�erentiable function of integrals of the
minimizer and its derivative. Consider the problem

J = min
u

�(I1; : : : ; In) (5.18)

where

Ik(u) =

Z b

a

Fk(x; u; u
0)dx k = 1; : : : n (5.19)

and � is a continuously di�erentiable function. Using Lagrange multipliers
�1; �n, we transform the problem (5.18) to the form

J = min
u

min
I1;:::;In

max
�1;:::�n

(
�+

nX
k=1

�k

 
Ik �

Z b

a

Fk(x; u; u
0)dx

!)
: (5.20)
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The stationarity conditions for (5.20) consist of n algebraic equations

@�

@Ik
+ �i = 0 (5.21)

and the di�erential equation { the Euler equation

S(	; u) = 0�
recall that S(	; u) =

d

dx

@	

@u0
� @	

@u

�
for the function

	(u) =

nX
k=1

�kFk(x; u; u
0)

Together with the de�nitions (5.19) of Ik, this system enables us to determine
the real parameters Ik and �k and the function u(x). The Lagrange multipliers
can be excluded from the previous expression using (5.21), then the remaining
stationary condition becomes an integro-di�erential equation

S( �	; u) = 0; �	(Ik ; u) =

nX
k=1

@�

@Ik
Fk(x; u; u

0) (5.22)

Next examples illustrate the approach.

The product of integrals

Consider the problem

min
u
J(u); J(u) =

 Z b

a

�(x; u; u0)dx

! Z b

a

 (x; u; u0)dx

!
:

We rewrite the minimizing quantity as

J(u) = I1(u)I2(u); I1(u) =

Z b

a

�(x; u; u0)dx; I2(u) =

Z b

a

 (x; u; u0)dx;

apply stationary condition (5.22), and obtain the condition

I1�I2 + I2�I1 = I2(u)S(�(u); u) + I1(u)S( (u); u) = 0: (5.23)

or  Z b

a

�(x; u; u0)dx

!�1

S(�(u); u) +

 Z b

a

 (x; u; u0)dx

!�1

S( (u); u) = 0

The equation is nonlocal: Solution u at each point depends on its �rst and second
derivatives and integrals of �(x; u; u0) and �(x; u; u0) over the whole interval
[a; b].
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Example 5.3.1 Solve the problem

min
u

�Z 1

0

(u0)2dx

��Z 1

0

(u+ 1)dx

�
u(0) = 0; u(1) = a

We denote

I1 =

Z 1

0

(u0)2dx; I2 =

Z 1

0

(u+ 1)dx

and compute the Euler equation using (5.23)

I2u
00 � I1 = 0; u(0) = 0; u(1) = a:

or

u00 �R = 0; u(0) = 0; u(1) = a; R =
I1

I2

The integration gives

u(x) =
1

2
Rx2 +

�
a� 1

2
R

�
x;

We obtain the solution that depends on R { the ratio of the integrals of two
function of this solution. To �nd R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2; I2 = � R

12
+

1

2
a+ 1

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R + 6a+ 12

Solving it, we �nd R = 1
2 (3a+ 6�p36 + 36a� 15a2).

At this point, we do not know whether the solution correspond to minimum or
maximum. This question is investigated later in Chapter 4.

The ratio of integrals

Consider the problem

min
u
J(u); J(u) =

R b
a
�(x; u; u0)dxR b

a
 (x; u; u0)dx

:

We rewrite it as

J =
I1

I2
; I1(u) =

Z b

a

�(x; u; u0)dx; I2(u) =

Z b

a

 (x; u; u0)dx; (5.24)
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apply stationary condition (5.22), and obtain the condition

1

I2(u)
S(�(u); u)� I1(u)

I22 (u)
S( (u); u) = 0:

Multiplying this equality by I2 and using de�nition (5.24) of the goal functional,
we bring the previous expression to the form

S(�; u)� J S( ; u) = S(�� J ; u) = 0

Observe that the stationarity condition depends on the cost J of the problem.

Example 5.3.2 Solve the problem

min
u
J(u); J =

R 1
0 (u

0)2dxR 1
0
(u� 1)dx

u(0) = 0; u(1) = a

We compute the Euler equation

u00 � J = 0; u(0) = 0; u(1) = a:

where

R =
I1

I2
; I1 =

Z 1

0

(u0)2dx; I2 =

Z 1

0

(u� 1)dx

The integration gives

u(x) =
1

2
Rx2 +

�
a� 1

2
R

�
x;

We obtain the solution that depends on R { the ratio of the integrals of two
function of this solution. To �nd R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2; I2 = � R

12
+

1

2
a+ 1

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R+ 6a+ 12

Solving it, we �nd R = 1
2 (3a+ 6�p36 + 36a� 15a2).

At this point, we do not know whether the solution correspond to minimum or
maximum. This question is investigated later in Chapter 4.

The examples will be given in the next section.
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Superposition of integrals

Consider the problem

min
u

Z b

a

R

 
x; u; u0;

Z b

a

�(x; u; u0)dx

!
dx

We introduce a new variable I

I =

Z b

a

�(x; u; u0)dx

and reformulate the problem as

min
u

Z b

a

�
R(x; u; u0; I) + �

�
�(x; u; u0)� I

b� a
��

dx

where � is the Lagrange multiplier. The stationarity conditions are:

S((R+ ��); u) = 0;
@R

@I
� 1

b� a = 0:

and the above de�nition of I .

Example 5.3.3 (Integral term in the Lagrangian) Consider the following
extremal problem posed in \physical terms": Find the function u(x) at the interval
[0; 1] that is has prescribed values at its ends,

u(0) = 1; u(1) = 0; (5.25)

has a smallest L2-norm Z 1

0

u02dx

of the derivative u0, and stays maximally close to its averaged over the interval [0; x]
value a,

a =

Z x

0

u(t)dt (5.26)

In order to formulate a mathematical extremal problem, we combine the two above
requests on u(x) the into one Lagrangian F equal to the weighted sum of them:

F = u02 + �

�
u�

Z 1

0

u(t)dt

�2

; u(0) = 1; u(1) = 0

where � � 0 is a weight coe�cient that show the relative importance of the two
criteria. Function u(x) is a solution to the extremal problem

min
u(x); u(0)=1;u(1)=0

Z 1

0

F

�
u; u0;

Z 1

0

u(t)dt

�
dx (5.27)

We end up with the variational problem with the Lagrangian that depends on the
minimizer u, its derivative and its integral.
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Remark 5.3.1 Formulating the problem, we could include boundary conditions
into a minimized part of the functional instead of postulating them; in this case the
problem would be

min
u(x)

�Z 1

0

F

�
u; u0;

Z 1

0

u(t)dt

�
dx+ �1(u(0)� 1)2 + �2u(1)

2

�
where �1 � 0 and �2 � 0 are the additional weight coe�cients.

We bring the problem (5.27) to the form of the standard variational problem,
accounting for the equality (5.26) with the Lagrange multiplier �; the objective
functional becomes

J =

Z 1

0

�
u02 + �(u� a)2� dx+ �

�
a�

Z 1

0

u dx

�
or

J =

Z 1

0

�
u02 + �(u� a)2 + �(a� u)� dx

The parameter a and the function u(x) are the unknowns. The stationary condition
with respect to a is

@J

@a
=

Z 1

0

(�2�(u� a) + �) dx = 2�a+ �� 2

Z 1

0

u dx| {z }
=a

= 0;

it allows for linking a and �,
� = 2(�� 1)a:

The stationary condition with respect to u(x) (Euler equation) is

2u00 � 2�(u� a)� � = 0

We exclude � using the obtained expression for �, and obtain

2u00 � 2�u+ a = 0 (5.28)

The integro-di�erential system (5.26) and (5.28) with the boundary conditions
(5.25) determines the minimizer.

To solve the system, we �rst solve (5.28) and (5.25) treating a as a parameter,

u(x) =
a

2�
+A sinh(

p
�x) +B cosh(

p
�x)

where

A =
� a

2�
� 1
� cosh(p�)
sinh(

p
�)
; B = 1� a

2�
;

and substitute this solution into (5.26) obtaining the linear equation for the remain-
ing unknown a. We have

u(x) = c1(x)a + c2(x)
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where

c1(x) =
1

2�

�
1 +

cosh(
p
�)

sinh(
p
�)

sinh(
p
�x)� cosh(

p
�x)

�
and

c2(x) =

�
cosh(

p
�x)� cosh(

p
�)

sinh(
p
�)

sinh(
p
�x)

�
and (5.26) becomes

a = a

Z 1

0

c1(x)dx +

Z 1

0

c2(x)dx

which implies

a =

R 1
0 c2(x)dxR 1

0
c1(x)dx � 1

The general procedure is similar: We always can rewrite a minimization
problem in the standard form adding new variables (as the parameter c in the
previous examples) and corresponding Lagrange multipliers.

Inequality in the isoperimetric condition Often, the isoperimetric con-
straint is given in the form of an inequality

min
u

Z b

a

F (x; u; u0)dx subject to

Z b

a

G(x; u; u0)dx � 0 (5.29)

In this case, the additional condition � � 0 is added to the Euler-Lagrange
equations (??) according to the (??).

Remark 5.3.2 Sometimes, the replacement of an equality constraint with the cor-
responding inequality can help to determine the sign of the Lagrange multiplier. For
example, consider the Dido problem, and replace the condition that the perimeter
is �xed with the condition that the perimeter is smaller than or equal to a constant.
Obviously, the maximal area corresponds to the maximal allowed perimeter and the
constraint is always active. On the other hand, the problem with the inequality
constraint requires positivity of the Lagrange multiplier; so we conclude that the
multiplier is positive in both the modi�ed and original problem.

5.3.2 Homogeneous functionals and Eigenvalue Problem

The next two problems are homogeneous: The functionals do not vary if the
solution is multiplied by any number. Therefore, the solution is de�ned up to a
constant multiplier.

The eigenvalue problem corresponds to the functional

I1 = min
u

R 1
0 (u

0)2dxR 1
0
u2dx

x(0) = x(1) = 0 (5.30)
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it can be compared with the problem:

I2 = min
u

R 1
0
(u0)2dx�R 1
0 udx

�2 x(0) = x(1) = 0 (5.31)

Do these problem have nonzero solutions?
Consider the problem (5.30). Because the solution is de�ned up to a multi-

plier, we can normalize it assuming thatZ 1

0

u2dx = 1 (5.32)

Then the problem takes the form

I1 = min
u

Z 1

0

�
(u0)2 + �u2

�
dx x(0) = x(1) = 0

where � is the Lagrange multiplier by the normalization constraint (5.32). The
Euler equation is

u00 � �u = 0; x(0) = x(1) = 0

This equation represents the eigenvalue problem. It has nonzero solutions u
only if � takes special values { the eigenvalues. These values are �n = �(�n)2
where n is a nonzero integer; the corresponding solutions { the eigenfunctions
un { are equal to un(x) = C sin(�nx). The constant C is determined from
the normalization (5.32) as C =

p
2. The cost of the problem at a stationary

solution un is Z 1

0

(u0n)
2
dx = n2�2

The minimal cost I1 corresponds to n = 1 and is equal to I1 = �2

The problem (5.31) is also homogeneous, and its solution u is de�ned up a
multiplier. We reformulate the problem by normalizing the solution,Z 1

0

udx = 1:

The problem (5.31) becomes

min
u

Z 1

0

�
(u0)2 + �u)

�
dx x(0) = x(1) = 0

where � is the Lagrange multiplier by the normalization constraint.
The minimizer u satis�es the Euler equation

u00 � �

2
= 0; x(0) = x(1) = 0
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and is equal to u = �
2x(x� 1). The constraint gives � = 12 and the objective is

Z 1

0

(u0)2dx =

Z 1

0

(6� 12x)2dx = 12

These two homogeneous variational problems correspond to di�erent types
of Euler equation. The equation for the problem (5.30) is homogeneous; it has
either in�nitely many solutions or no solutions depending on �. It can select the
stationary solution set but cannot select a solution inside the set: this is done
by straight comparison of the objective functionals. The problem (5.31) leads
to hon-homogeneous Euler equation that linearly depend on the constant � of
normalization. It has a unique solution if the normalization constant is �xed.

Homogeneous with a power functionals To complete the considerations,
consider a larger class of homogeneous with a power p functionals, I(qu) =
qpI(u) where q > 0 is an arbitrary positive number. For example function
I(x) = ax4 is homogeneous with the power four, because I(qx) = aq4x4 =
q4I(x). Here, p 6= 1 is a real number. for all u. For example, the functional can
be equal to

J3(u) =

R 1
0
(u0)2dx���R 1

0
udx

���p ; x(0) = x(1) = 0; u 6� 0 (5.33)

which implies that it is homogeneous with the power 2 � p, because J3(qu) =
q2�pJ3(u).

The minimization of such functionals leads to a trivial result: Either infu J3 =
0 or infu J3 = �1, because the positive factor qp can be make arbitrarily large
or small.

More exactly, if there exist u0 such that I(u0) � 0, than infu J3 = �1;
the minimizing sequence consists of the terms qku0 where the multipliers qk are
chosen so that lim q

p
k =1.

If I(u0) � 0 for all u0, than infu J3 = 0; the minimizing sequence again
consists of the terms qku0 where the multipliers qk are chosen so that lim q

p
k = 0.

Remark 5.3.3 In the both cases, the minimizer itself does not exist but the mini-
mizing sequence can be built. These problems are examples of variational problems
without classical solution that satis�es Euler equation. Formally, the solution of
problem (5.33) does not exist because the class of minimizers is open: It does not
include u � 0 and u � 1 one of which is the minimizer. We investigate the
problems without classical solutions in Chapter ??.

5.3.3 Constraints in boundary conditions

Constraints on the boundary, �xed interval Consider a variational prob-
lem (in standard notations) for a vector minimizer u. If there are no constrains
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imposed on the end of the trajectory, the solution to the problem satis�es n
natural boundary conditions

�u(b) � @F
@u0

����
x=b

= 0

(For de�niteness, we consider here conditions on the right end, the others are
clearly identical).

The vector minimizer of a variational problem may have some additional
constraints posed at the end point of the optimal trajectory. Denote the bound-
ary value of ui(b) by vi The constraints are

�i(v1; : : : vn) = 0 i = 1; : : : ; k; k � n

or in vector form,
�(x;v) = 0;

where � is the corresponding vector function. The minimizer satis�es these
conditions and n � k supplementary natural conditions that arrive from the
minimization requirement. Here we derive these supplementary boundary con-
ditions for the minimizer.

Let us add the constrains with a vector Lagrange multiplier � = (�1; : : : :�k)
to the problem. The variation of v = u(b) gives the conditions

�v �
"
@F

@u0

����
x=b;u=v

+
@�

@v
�

#
= 0

The vector in the square brackets must be zero because of arbitrariness of � =
�u(b).

Next, we may exclude � from the last equation (see the previous section
5.1.3):

� = �
"�

@�

@u

�T
@�

@u

#�1
@F

@u0

����
x=b;u=v

(5.34)

and obtain the conditions0
@I � @�

@u

T
"�

@�

@u

�T
@�

@u

#�1
@�

@u

1
A @F

@u0

����
x=b;u=v

= 0 (5.35)

The rank of the matrix in the parenthesis is equal to n � k. Together with
k constrains, these conditions are the natural conditions for the variational
problem.

Example

min
u1;u2

Z b

a

(u021 + u022 + u03)dx; u1(b) + u2(b) = 1; u1(b)� u3(b) = 1;
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We compute

@F

@u0
=

0
@ 2u1
2u2
1

1
A ;

@�

@u
=

0
@ 1 1
1 0
0 �1

1
A ;

(please continue..)

Free boundary with constraints Consider a general case when the con-
straints �(x; u) = 0 are posed on the solution at the end point. Variation of
these constrains results in the condition:

��(x; u)jx=b = @�

@u
�u+

�
@�

@x
+
@�

@u
u0
�
�x

Adding the constraints to the problem with Lagrange multiplier �, performing
variation, and collecting terms proportional to �x, we obtain the condition at
the unknown end point x = b

F (x; u; u0)� @F

@u0
u0 + �T

�
@�

@x
+
@�

@u
u0
�
= 0

where � is de�ned in (5.34). Together with n � k conditions (5.35) and k

constraints, they provide n+ 1 equations for the unknowns u1(b); : : : ; un(b); b.

5.4 Pointwise Constraints

5.4.1 Stationarity conditions

Consider a variational problem for a vector-valued minimizer u = u1; : : : un.

min
u

Z b

a

F (x;u;u0)dx

Assume that the minimizer obeys certain constraint(algebraic or di�erential) in
each point of any admissible trajectory,

G(x;u;u0) = 0;8x 2 (a; b) (5.36)

The number of constraints is less than the number of minimizers. This way, we
arrive at the constrained variational problem

min
u

Z b

a

F (x;u;u0)dx subject to G(x;u;u0) = 0;8x 2 (a; b) (5.37)

As in the isoperimetric problem, we use the Lagrange multipliers method to
account for the constrain. This time, the constraint must be enforced in every
point of the trajectory, therefore the Lagrange multiplier becomes a function
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of x. To prove the method, it is enough to pass to �nite-dimensional problem;
after discretization, the constraint is replaced by the array of equations

G(x; u; u0) = 0 ) Gi(ui;Di� (ui)) = 0; i = 1; : : :N:

Each of this constrains, multiplied by its own Lagrange multiplier �1; : : : �N ,
must be added to the functional. The array of these multipliers converge to a
function �(x) when N !1. The variational problem becomes

min
u

Z b

a

[F (x; u; u0) + �(x)G(x; u; u0)] dx (5.38)

The necessary conditions are expressed in the form of di�erential constraints
(5.36) and Euler equation:

G(x; u; u0) = 0 (5.39)�
d

dx

@

@u0
@

@u

�
(F + �G) = 0: (5.40)

They de�ne functions u(x) and �(x).

Algebraic constraints Notice that if the constraints are algebraic, G =
G(x; u), then (5.40) does not depend on �0 and is an algebraic relation for
�.

Consider the case of one constraint G(x; u) = 0. The Euler equations are

d

d x

@F

@u0k
� @F

@uk
� � @G

@uk
= 0; k = 1 : : : ; n:

We may exclude � = �(x) from the system and obtain n� 1 equations�
@F

@u1
� d

d x

@F

@u01

��
@G

@u1

��1

=

�
@F

@uk
� d

d x

@F

@u0k

��
@G

@uk

��1

; k = 2; : : : ; n

for u1; : : : un; this system is supplemented with the constraint G(x; u) = 0.
The general case is considered similarly. Euler equation forms a linear system

for vector-function �; it can be excluded from the system, as it will be shown
in following examples.

Example 5.4.1 (Euler equation revisited) As a �rst example, we derive Euler
equation in a di�erent manner: The minimization problem

min
u

Z b

a

F (x; u; v)dx subject to v = u0 (5.41)

is obviously equivalent to the canonic variational problem.
Using Lagrange multiplier, we rewrite the problem as

min
u

Z b

a

(F (x; u; v) + �(u0 � v)) dx
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Variation with respect to u; v gives, respectively,

�0 � @F

@u
= 0; �+

@F

@v
= 0

(the term �u0 is transformed by integration by parts). We exclude � by di�erenti-
ation of the second equation and subtraction of the �rst one:�

@F

@v

�0
� @F

@u
= 0

Accounting for the constraint v = u0 we arrive at Euler equation.

Geodesics as constrained problem We return to the problem of geodesics
{ the shortest path on a surface between two points at this surface. Here we will
develop a general approach to the problem without assumptions that the local
coordinates and the metric is introduced on the surface. We simply assume that
the surface is parameterized as

 (x1; x2; x3) = 0 (5.42)

where x1; x2; x3 are Cartesian coordinates. The distanceD along a path x(t); y(t); z(t)
is

D =

Z 1

0

q
x01(t)

2 + x02(t)
2 + x03(t)

2dt

The extended Lagrangian is

F =
q
x01(t)

2 + x02(t)
2 + x03(t)

2 + �(t) (x1; x2; x3) = 0

where �(t0 is the Lagrange multiplier. Euler equations are

d

dt

x0ip
x0i(t)

2 + x02(t)
2 + x03(t)

2
� � @ 

@xi
= 0; i = 1; 2; 3:

Excluding �, we obtain two equalities�
@ 

@xi

��1
d

dt

 
x0ip

x0i(t)
2 + x02(t)

2 + x03(t)
2

!
= �(t) i = 1; 2; 3

which together with equation (5.42) for the surface determine the optimal tra-
jectory: the geodesic.

5.4.2 Constraints in the form of di�erential equations

The same idea of constrained variational problem can be used to account for
the di�erential equations of the motion as constraints

g(u; u0) = 08x 2 [0; 1]: (5.43)



38 CHAPTER 5. CONSTRAINED PROBLEMS

This idea is fully exploited in the control theory, (see below, Section ??). The
formal scheme is as in the previous case, but this time the derivatives of the
Lagrange multipliers participate in the Euler equation:

dd

dx

�
@F

@u0
+ �

@g

@u0

�
� @F

@u
� @g

@u0

that should be solved together with (5.43) to determine u and �. Here we
illustrate it by an example.

Example 5.4.2 (Antiderivative in Lagrangian) Consider an extremal prob-
lem similar to Example 5.3.3: Find the function u(x) at the interval [0; 1] that is
equal to one at its ends, u(0) = 1 and u(1) = 1, has a smallest L2-normZ 1

0

u02dx

of the derivative u0, and at each instance x stays maximally close to its accumulated
over the interval [0; x] value v(x),

v(x) =

Z x

0

u(t)dt (5.44)

Combine the two above requests on u(x), we form the Lagrangian F equal to the
weighted sum of them:

F = u02 + �

�
u�

Z x

0

u(t)dt

�2

where � � 0 is a weight coe�cient. Function u(x) is a solution to the extremal
problem

min
u(x); u(0)=u(1)=1

Z 1

0

F

�
u; u0;

Z x

0

u(t)dt

�
dx

We end up with the variational problem with the Lagrangian that depends on the
minimizer u, its derivative, and its antiderivative.

To deal with this problem, we �rst reformulate it as a standard variational prob-
lem. Di�erentiation of the de�nitive equation (5.44) replaces it with the equivalent
di�erential equation for v,

v0 = u; v(0) = 0

and allows to rewrite the Lagrangian in the form

Fext(u; v) = u02 + � (u� v)2 + �(v0 � u)
where � = �(x) is the Lagrange multiplier by the di�erential constrain v0 = u.

The Euler equations express the stationarity with respect to variations of u and
v,

d

dx

@Fext

@u0
� @Fext

@u
= 2u00 � 2� (u� v) + � = 0

d

dx

@Fext

@v0
� @Fext

@v
= �0 + 2� (u� v) = 0;
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the natural boundary condition is �(1) = 0

To exclude � we di�erentiate the �rst equation and subtract the second:

2u000 � 2� (u0 � v0)� 2� (u� v) = 0

Now, use the de�nition of v: u = v0 and exclude u and its derivatives, obtaining a
single equation for v(x),

vIV � �v00 + �v = 0

The boundary conditions are

v(0) = 0; v0(0) = 1; v0(1) = 1; �(1) = 2(v000(1)� �v0(1) + �v(1)) = 0

The solution to this linear problem is obtained by a standard procedure.

Problem 5.4.1 Derive the equations for the case when the boundary terms are
not prescribed by included into Lagrangian. Discuss the di�erence.

Problem 5.4.2 Replace the accumulated value by average value and obtain dif-
ferential equations and boundary conditions

Sailing boat

Consider the problem: How to use the minimal resources to sail to a proper
destination. First, let us do the modelling. The equations of the boat in the
water are

m�x+  _x = f(t)

where x is the coordinate of the boat, m is its mass,  is the dissipation, and
f(t) is the time-dependent driving force that depends on the used amount of
fuel

jf j = rq :

It is required to bring the boat to the moorage x(T ) = P from the moorage
x(0) = 0 in the given time T ; the speed in the beginning and in the end must
be zero, _x(0) = _x(T ) = 0.

The total amount R of the fuel

R =

Z T

0

r(t)dt (5.45)

must be minimized:

Remark 5.4.1 In the modelling, it was assumed that the boat is moving straight
from the start to the destination and the forward and backward acceleration require
the same amount of fuel.
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We formulate the variational problem for the unknown fuel consumption
rate r(t) and the boat's speed v(t) = _r subject to di�erentia constraint

m _v + v = rq ; (5.46)

boundary conditions
v(0) = v(T ) = 0;

and the integral constraint Z T

0

v(t) = L: (5.47)

Accounting for the constrains (5.46) and (5.47) by Lagrange multiplier � =
�(x) and � = constant, we obtain the variational problem

min
x(x);r(x)

Z b

a

F (r; v; �; �)dx; v(0) = 0

with the Lagrangian

F = r + �(m _v + v � rq) + �v

The Euler equations are respectively (from the variation with respect to v and
r)

�v : �m _�+ �+ � = 0

�r : 1 + qrq�1� = 0

Solving this system, we �nd

� = ��

+ C exp

�
t

m

�
; ; r(t) =

1

q
�

1

q�1 =
1

q

�
��

+ C exp

�
t

m

�
;

� 1

q�1

where � and C are still unde�ned constants. Those are found evaluating v(t)

v(t) = � exp

�
�t
m

�Z t

0

r(t)q

m
exp

�
t

m

�
dt

and applying the integral constraint (5.47) and boundary condition v(T ) = 0.

5.4.3 Notion of variational inequalities

The variational problem with pointwise constraints in the form of inequalities,
called variational inequalities, were investigated only recently, see [?]. These
problems are formulated as a variational problem plus an inequality.

min
u(x)��(x)

Z b

a

F (x; u; u0)dx (5.48)
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The increment of the objective functional I(u+ �u)� I(u) is nonnegative at
the optimal trajectory

I(u+ �u)� I(u) = �
Z b

a

S(F; u)�u dx � 0:

Here, S(F; u) is left-hand-term of the Euler equation (4.12). Let us analyze this
formula.

When the constraint is satis�ed as strict inequality, u > �(x), an in�nitesimal
variation �u is not constrained and the minimizer u satis�es the Euler equation
S(F; u) = 0 to keep the increment nonnegative. Otherwise, the extremal is
coincide with the constraint, u = �(x), variation �u of the trajectory but must
be positive �u � 0 because all admissible trajectories u + �u are above the
constraint �(x), u(x) + �u(x) � �(x) for all x. Correspondingly, the variation
I(u+ �u)� I(u) is nonnegative if the inequality holds

S(F; u)ju(x)=�(x) � 0:

To sum up, we formulate the obtained optimality conditions. The optimal
trajectory satis�es one of the two supplementary conditions:
Either

S(F; u) = 0 and u(x) � �(x)

or
u(x) = �(x) and S(F; u) � 0

The equalities de�ne the minimizer in each regime, and the inequalities check
the optimality of the regime.

String (membrane) over an obstacle

Consider again the problem of catenoid, assuming in addition that the chain
is hanged over a plane surface and is cannot go beneath it. The variational
problem is

min
u(x)�0;u(a)=A;u(b)=B

Z b

a

()dx

and its solution is
u(x) = a u00 � 0
u00(x) = q u > a

Convex envelope

Consider the problem about the shortest path around an obstacle discussed in
Chapter ?? in geometric terms. Now we formulate the problem as a variational
inequality. We �nd a curve u(x) � 0 that has the shortest length L

L =

Z b

a

p
1 + u02dx;
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passes through the points (a; 0) and (b; 0), lies over the obstacle �(x)

u(x) � �(x); 8x 2 [a; b]

Remark 5.4.2 We assume that the equation of the obstacle �(x) is de�ned for
all x 2 [a; b]. If it is not de�ned for some x, we put �(x) = 0 for these x.

The Euler equation S(F; u) = 0 corresponds to the operator

S(F; u) =
d

dx

u0p
1 + u02

=
u00p

1 + u02
3

its sign coincide with the sign of u00,

S(F; u) = A2u00; where A =
1

(1 + u02)
3

4

> 0

The extremal is found from the conditions (??) which take the form:

Either u(x) = �(x) and u00 � 0;
or u00 = 0 and u(x) > �(x)

Multidimensional version The problem of the convex envelope of a function
of a vector argument can be formulated as the variational inequality as well. The
conditions of convexity of a di�erentiable function are

u(x) = f(x) H(u) � 0
detH(u) = 0; H(u) � 0; u(x) < f(x)

This problem will be discussed in Chapter ??

5.4.4 Summary

1. Euler equations and Lagrange method in variational problems can be
viewed as limits of stationary conditions of a �nite-dimensional minimiza-
tion problem.

2. Lagrange method allows to solve isoperimetric or constrained extremal
problem of a rather general form, reducing it to the canonic variational
problem. The solution is �rst de�ned as a function of the unknown multi-
pliers, which are later determined from the constraints. Alternatively, the
multipliers can be algebraically excluded from the optimality condition.

3. The total number of boundary conditions in a variational problem always
matches the order of di�erential equations. The boundary conditions are
either initially given or are obtained from the minimization requirement.

4. The length of the interval of integration, if unknown, also can be obtained
from the minimization requirement.
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We will observe these features also in the optimization of multiple integrals:
The variational problems supply of missing components of the problem formu-
lation. We will see that they also can make the solution \better" that is more
stable and even can help de�ne the solution to the problem where no solution
exist.


