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Chapter 8

Multivariable problems:
Scalar minimizer

8.1 Reminder of multivariable calculus
This part deals with multivariable variational problem that describe minimal
surface areas, equilibria and dynamics of continua, optimization of shapes, etc.
These problems require minimization of an integral of multivariable function
and its gradient over a region 
 of a plane or space. The arguments of the
Lagrangian are: Vector u of minimizers and the matrix Du = ru of gradients
of these minimizers. Correspondingly, the analysis of these problem requires
di�erentiation with respect to vectors and matrices. First, we remind of several
formulas of vector (multivariable) calculus which will be commonly used in the
next exposition.

8.1.1 Vector di�erentiation
Vector di�erentiation We remind the de�nition of the derivative.

De�nition 8.1.1 If �(a) is a scalar function of a column vector argument a =
(a1; : : : ; an)T , then the derivative d�

da is a row vector

d�
da

=
�
d�
da1

; : : : ;
d�
dan

�
if a =

0@ a1
: : :
an

1A (8.1)

assuming that all partial derivatives exist.

This de�nition comes from the consideration of for di�erential d� of the scalar
function �(a):

��(a) = �(a+ da)� �(a) =
d�(a)
da

� da+ okak)
3
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The left-had side is scalar and the second multiplier in the right-hand side is a
column vector, therefore the �rst multiplier is a row vector de�ned in (8.1)

Examples of vector di�erentiation The next examples show the calcula-
tion of several commonly met functions. The results can be checked by straight
calculations.

1. If �(a) = kak2 = a2
1 + : : : a2

n, the derivative is

d
da
a2 = 2aT

2. The derivative of L2 norm of a is

c =
d
da
p
a2 = 2

aTp
a2

=
aT

jaj
Observe that c is codirected with a and has unit length.

3. The derivative of the scalar product c�a where c is an n-dimensional vector
is equal to c

d
da
cTa = c

Similarly, the derivative of a product Ca where C is a n�k matrix equals
CT ,

d
da
Ca = CT

4. The derivative of a quadratic form aTCa where C is a symmetric matrix
equals

d
da
aTCa = 2aTC = 2(Ca)T :

Gradient of a vector If u = (u1; : : : ; un) is a vector function, uk = uk(x1; : : : xd),
then the gradient of u is de�ned as the n � d matrix denoted ru or Du,
ru = @ui

@xj , or, in elements,

ru = Du ==

0@ @u1
@x1

@u2
@x1

: : : @un
@x1

: : : : : : : : : : : :
@u1
@xd

@u2
@xd : : : @un

@xd

1A (8.2)

The columns of this matrix are gradients of the elements of the vector u.

Directional derivative Let un be a directional derivative of a scalar function
u in the direction n: un = ru � n. Partial derivative of F (ru)with respect to
un is de�ned as:

@F
@un

=
@F
@ru � n (8.3)
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8.1.2 Matrix di�erentiation
Similarly to the vector di�erentiation we de�ne matrix di�erentiation consider-
ing a scalar function �(A) of a matrix argument A. As in the vector case, the
de�nition is based on the notion of the scalar product.

De�nition 8.1.2 The scalar product a.k.a. the convolution of the n�m matrices
A and m� n matrix B is de�ned as following

A : B =
nX
i=1

mX
j=1

aijbji:

One can check the formula

A : B = Tr (AB) (8.4)

that brings the convolution into the family of the familiar matrix operations.
The convolution allows for calculation of increment of a matrix-di�erentiable

function of a matrix argument caused by variation of this argument:

��(A) = �(A+ dA)� �(A) =
d�(A)
dA

: dA+ okdAk):
and to de�nition of the matrix-derivative:

De�nition 8.1.3 The derivative of a scalar function � by an n�m matrix argu-
ment A is an m� n matrix D = d�

dA with elements

Dij =
@�
@aji

where aij is the ij-element of A.

In element form, the de�nition becomes

d�
dA

=

0@ @�
@a11

@�
@a21

: : : @�
@am1

: : : : : : : : : : : :
@�
@a1n

@�
@a2n

: : : @�
@amn

1A
Examples of matrix di�erentiation Next examples show the derivatives
of several often used functions of matrix argument.

1. As the �rst example, consider �(A) = TrA =
Pn
i=1 aii. Obviously,

d�
daij

=
�

1 if i = j
0 if i 6= j ;

therefore the derivative of the trace is the unit matrix,

d
dA

TrA = I:
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2. Using de�nition of the derivative, we easily compute the derivative of a
scalar product,

d(A : B)
dA

= TrATB = BT :

One can check that A : B = TrATB.

3. The derivative of the quadratic form xTAx =
Pn
i;j=1 xixjaij is an n � n

diad
d(xTAx)
dA

= xxT

4. Compute the derivatives of the determinant of matrix A. Notice that the
determinant linearly depends on each matrix element,

detA = aijMij + constant(aij)

where Mij is the minor obtained by elimination the ith row and the jth
column of A; it is independent of aij . Therefore,

@detA
@aij

= Mij

and the derivative of detA is the matrix M of minors of A,

d
dA

detA = M =

0@M11 : : : M1n
: : : : : : : : :
M1n : : : Mnn

1A
Here, Mij is the minor of the matrix A obtained by eliminating its ith
row and jth column.

Recall that the inverse matrix A�1 can be conveniently expressed through
these minors, A�1 = 1

detAM , and rewrite the result as

d
dA

detA = (detA)A�1

We may rewrite the result once more using the logarithmic derivative
d
dx log f(x) = f 0(x)

f(x) . The derivative becomes more symmetric,

d
dA

(log detA) = A�1:

Remark 8.1.1 If A is symmetric and positively de�ned, we can bring the
result to a perfectly symmetric form

d
dlogA

(log detA) = I
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if we introduce the matrix logarithmic derivative similarly to the logarithmic
derivative of a real positive argument,

df
dlog x

= x
df
dx
;

which reads
df

dlogA
= A

df
dA

:

Here, logA is the matrix that has the same eigenvectors as A and the eigen-
values equal to logarithms of the corresponding eigenvalues of A. (These
logarithms when the eigenvalues of A are real and positive which in turn
means that matrix A is symmetric and positively de�ned, as required above).
Notice that log detA is the sum of logarithms of eigenvalues of A,

log detA = Tr logA

.

5. Using the chain rule, we compute the derivative of the trace of the inverse
matrix:

d
dA

TrA�1 = �A�2:

6. Similarly, we compute the derivative of the quadratic form associated with
the inverse matrix:

d
dA

xTA�1x = �xA�2xT :

Remark 8.1.2 (About the notations) The historical Leibnitz notation � =
@f
@z for partial derivative is not the most convenient one and can even be ambiguous.
Indeed, the often used in one-variable variational problems partial @f

@u0 becomes in
multivariable problem the partial of the partials @u

@x . Since there is no conventional
analog for the symbol 0 in partial derivatives, we need a convenient way to express
the fact that the argument z of di�erentiation can itself be a partial derivative like
z = @u1

@x2
. If we were substitute this expression for z into @f

@z , we would arrive at an
a bit awkward expression

� =
@f
@ @u1
@x2

(still used in Gelfand & Fomin) which replaces the expression @f
@u0 used in one-

variable variational problem.
There are several ways to �x the inconvenience. To keep analogy with the one-

variable case, we use the vector of partials @f
@(ru) in the place of @F

@u0 . If needed, we
specify a component of this vector, as follows

� =
�

@f
@(ru1)

�
2
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Alternatively, we could rename the partial derivatives of u with a simple indexed
array Dij arriving at the formula of the type

� =
@f
@D12

; where D12 =
@u1

@x2
:

or use comma to show the derivative

� =
@f
@u1;2

; where u1;2 =
@u1

@x2
:

The most radical and logical solution (which we do not dare to develop in the
textbook) replaces Leibnitz notation with something more convenient, namely with
Newton-like or Maple-like notation

� = D(f;D(u1; x2))

Remark 8.1.3 (Ambiguity in notations) A more serious issue is the possible
ambiguity of partial derivative with respect to one of independent coordinates. The
partial @

@x means the derivative upon the explicitly given argument x of a function
of the type F (x; u). If the argument x is one of the independent coordinates, and if
u is a function of these coordinates, in particular of x (as it is common in calculus of
variations problems), the same partial could mean @F

@x + @F
@u

@u
@x . To �x this, we need

to specify whether we consider u as a function of x u = u(x) or as an independent
argument, which could make the notations awkward.

For this reason, we always assign the symbol x for a vector of independent
variables (coordinates). When di�erentiation with respect to independent coordi-
nates in considered, we use the gradient notations as ru. Namely, the vector is
introduced

rF (u; x) =

0@ @F
@x1
::
@F
@xd

1A+

0@ @F
@u

@u
@x1
::

@F
@u

@u
@xd

1A
where @

@xk always means the derivative upon explicit variable x. The partials corre-
sponds to components of this vector. If necessary, we specify the argument of the
gradient, as follows r�.

8.1.3 Multidimensional integration
Change of variables Consider the integral

I =
Z



f(x) dx

and assume that x = x(�), or in coordinates

xi = xi(�1; : : : ; �d); i = 1; : : : ; d
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In the new coordinates, the domain 
 is mapped into the domain 
� and the
volume element dx becomes det J d� where det J is the Jacobian and J is the
d� d matrix gradient

J = r�x = fJijg; Jij =
@xi
@�j

; i; j = 1; : : : ; d:

The integral I becomes

I =
Z


�
f(x(�))(detr�x) dx (8.5)

The change of variables in the multivariable integrals is analogous to the one-
dimensional case .

Green's formula The Green's formula is a multivariable analog of the Leib-
nitz formula a.k. the fundamental theorem of calculus. It has the formZ



r � a dx =

Z
@

a � n ds (8.6)

Here, n is the outer normal to 
.

Integration by parts We will use multivariable analogs of the integration
by parts. Suppose that b(x) is a scalar di�erentiable function in 
 and a(x) is a
vector di�erentiable �eld in 
. Then the following generalization of integration
by parts holds Z



(a � rb) dx = �

Z



(br � a) dx+
Z
@


(a � n)b ds

The formula follows from the di�erential identity (di�erentiation of a product)

a � rb+ br � a = r � (ba)

and Green's formula Z



(r � c)dx =
Z
@


(c � n) ds

A similar formula holds for two di�erentiable in 
 vector �elds a and b:Z



(a � r � b) dx =
Z



(r� a � b) dx�

Z
@


(a� b � n) ds

It immediately follows from the identity

r � (a� b) = b � r � a� a � r � b
and the Green's formula.



10 CHAPTER 8. MULTIVARIABLE PROBLEMS: SCALAR MINIMIZER

8.2 Euler equations for multiple integrals

8.2.1 Euler equation
Consider the simplest problem of multivariable calculus of variation: Minimize
an integral over a regular bounded domain 
 with a smooth boundary @
 of
a twice di�erentiable Lagrangian F (x; u;ru) which depends on the minimizer
u and its gradient ru and holds prescribed values u0(s) where s is (are) the
coordinate(s) along the boundary @
,

min
u:u@
=u0

I(u); I(u) =
Z



F (x; u;ru)dx (8.7)

As in the one-variable version, the Euler equation expresses the stationarity of
the functional I to the variation of u. To derive the Euler equation, we consider
the variation �u of the minimizer u and the di�erence �I = I(u + �u) � I(u).
For any minimizer u, this di�erence must be nonnegative, �I(u; �u) � 0 8�u.

Increment When the variation �u and its gradient are both in�nitesimal and
F is twice di�erentiable, we are allowed to linearize the perturbed Lagrangian:

F (x; u+ �u;r(u+ �u)) = F (x; u;ru) +
@F (x; u;ru)

@u
�u

+
@F (x; u;ru)

@ru �ru+ o(j�uj; jr�uj)

Here, the term @F (x;u;ru)
@(ru) denotes the vector partial derivatives of F with respect

of partial derivatives of u,

@F (x; u;ru)
@(ru)

=

24@F (x; u;ru)

@
�
@u
@x1

� ; : : : ;
@F (x; u;ru)

@
�
@u
@xn

� 35 :
Substituting this linearized expression into the expression for �I, we obtain

�I =
Z




�
@F
@u

�u+
@F
@ru � �ru

�
dx+ o(j�uj; jr�uj):

Interchanging two linear operators of variation and di�erentiation, �ru = r�u
and performing integration by parts of the second term in the above integrand:Z




�
@F
@ru � �ru

�
dx = �

Z


�u
�
r � @F

@ru
�
dx+

Z
@

�u
�
@F
@ru � n

�
ds

we obtain

�I =
Z



S(F; u)�u dx+

Z
@

S@(F; u; n)�u ds+ o(j�uj; jr�uj): (8.8)
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where
S(F; u) =

@F
@u
�r �

�
@F
@ru

�
(8.9)

{ the coe�cient by �u { is called the variational derivative in 
 or the sensitivity
function and

S@(F; u; n) =
@F
@ru � n =

@F
@
� @u
@n

� (8.10)

is called the variational derivative at @
. It is equal to the partial of F with
respect to the normal derivative of u.

Stationarity The stationarity condition �I = 0 and the arbitrariness of vari-
ation �u in the domain 
 and possibly on its boundary @
 lead to di�erential
equation:

S(u; F ) = 0 or r � @F
@ru �

@F
@u

= 0 in 
 (8.11)

and the boundary condition

S@(F; u; n) �u = 0 on @
 (8.12)

Notice that we leave �u is the expression for the boundary condition. This
allows us to either assign u on the boundary or leave it free.

Main boundary conditions In the considered simplest problem, the partial
di�erential equation (8.11) is integrated in 
 with the boundary conditions u =
u0. The boundary term (8.12) of the increment vanishes because the variation �u
is zero (the value of u on the boundary is prescribed). This condition is called
the main boundary condition. It is assigned independently of any variational
requirements.

Natural boundary conditions If the value of u at the boundary is not
�xed, the term (8.12) supplies the boundary conditions. When u on a boundary
component is prescribed we say that the main boundary conditions are posed;
in this case the variation of u on the boundary is zero, �u = 0 and (8.12)
is satis�ed. When no condition is prescribed on a boundary component, the
natural condition

S@(F; u; n) =
@F

@(ru)
� n = 0 or

@F
@un

= 0 (8.13)

(see (8.3)) must be hold. Notice, that the natural boundary condition appears
from the minimization requirement; it must be satis�ed to minimize the func-
tional in (8.7).

Remark 8.2.1 The stationarity condition and the natural boundary conditions
represent the stationarity (Euler-Lagrange equation) for multiple integrals. Notice
that it is a direct analog of one-variable Euler equation: The derivative d

dx with
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respect to the independent variable is replaced by r or by r�. At the boundary,
the derivative du

dx is replaced by @u
@n = @

@ru � n. In the last case, the derivative with
respect to x becomes the directional derivative along the normal to the boundary.

Remark 8.2.2 The existence of a solution to the boundary value problem (8.11),
(8.12) in a bounded domain 
 requires ellipticity of the Euler equation. In turn, the
ellipticity requires some properties of the Lagrangian which we will address later.

8.2.2 Examples of Euler-Lagrange equations
Here, we give several examples of Lagrangians, their Euler equations, and nat-
ural boundary conditions. We do not discuss the physics and do not derive the
Lagrangians from some general principles of symmetry; this will be done later.
Here, we simply introduce in algebraic derivation of the stationary equations.

Example 8.2.1 (Linear elliptic equation) The conductivity energy or a lin-
ear heterogeneous anisotropic material is

F =
1
2

(ru)TA(x)(ru)

where A(x) = fAij(x)g is a symmetric positively de�ned conductivity tensor which
represent the material properties, and u is the potential like temperature or the
concentration of conducting particles. The steady state distribution of the poten-
tial minimizes the total energy or to solve the variations problem (8.7) with the
Lagrangian F . We comment on the derivation of this energy below in Section ??.
Here, we are concern with the form of the stationarity condition for this Lagrangian.

Compute the variational derivative. We have

@F
@ru = Aru; S(u; F ) = r � @F

@ru = r �Aru:
The stationarity condition (Euler equation) is the second-order elliptic equation:

S(u; F ) = r �A(x)ru = 0

or in the coordinates

S(u; F ) =
dX
i=1

dX
j=1

@
@xi

Aij
@u
@xj

= 0:

The natural boundary condition is S@(F; u; n) = nTAru = 0.
When A is proportional to the unit matrix I, A = �(x)I, where � > 0 is called

the scalar conductivity, the Lagrangian becomes

F =
�(x)

2
(ru)2



8.2. EULER EQUATIONS FOR MULTIPLE INTEGRALS 13

The Euler equation describes conductivity in a heterogeneous isotropic medium with
a variable scalar conductivity constant �(x) > 0. Its Euler equation is

r � �(x)ru = 0

or, in coordinate form
dX
i=1

@
@xi

k(x)
@u
@xi

= 0

and the natural boundary condition is k(x) @u@n = 0 which is simpli�ed to @u
@n = 0. It is

called the homogeneous Neumann condition, while the principle boundary conditions
u = u0 on @
 is called the Dirichlet boundary condition. Notice that a directional
derivative, not the normal derivative, is zero on the boundary.

If the conductivity is constant, say � = 1, Euler equation becomes the Laplace
equation:

r2u = 0;

it describes the stationary conductivity of a isotropic homogeneous medium.

Example 8.2.2 (Poisson and Helmholtz equations) Let us demonstrate that
classical linear elliptic equations of mathematical physics originate from a variational
problem of minimization of a quadratic Lagrangian. The Lagrangian in a form:

F =
1
2

(ru)2 � 1
2
au2 � bu (8.14)

corresponds to the Euler equation

S(u; F ) = r2u+ au+ b = 0

which is called the inhomogeneous Helmholtz equation. The natural boundary
condition @u

@n = 0 are independent on a and b.
If a = 0, the inhomogeneous Helmholtz equation degenerates into Poisson equa-

tion. If b = 0, it becomes homogeneous Helmholtz equation, and if a = b = 0 it
degenerates into Laplace equation.

Example 8.2.3 (Nonlinear elliptic equation) Assume that the Lagrangian
depends only on magnitude of the gradient:

F = �(jruj2) (8.15)

where � is a monotonically increasing convex function, �0(z) > 0, 8z 2 [0;1).
Such Lagrangians describe the steady state conductivity or di�usion of an isotropic
nonlinear material; u is the potential or concentration of di�using particles.

The Euler equation is computed as

r � ��0(jruj2)ru� = 0
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If �0 � 0, the equation is elliptic. It is also can be rewritten as two �rst-order
equations

r � j = 0; j = �0(jruj2)ru = 0

where j is a divergencefree vector of current. The �rst equation express the equilib-
rium of the current density. The second equation is called the constitutive relation.
It demonstrates the property of the material: the dependence of the current on the
�eld ru. The coe�cient �0(jruj2) is the conductivity of a nonlinear material; it
depends on the magnitude of the �eld.

The natural boundary condition is �0 @u@n = 0 Because �0 > 0, it simpli�es to
@u
@n = 0 and again expresses the vanishing of the normal derivative of u on the
boundary.

In the next examples, we specify the function � and obtain the variational
form of well-studied nonlinear equations.

Example 8.2.4 (p-Laplacian) Consider the Lagrangian that corresponds to spe-
cial nonlinearity �(z) = pzp in (8.16)

F = pjrujp (8.16)

The Euler equation is:
r � �jrujp�2ru� = 0

The equation it is called p-Laplacian. It degenerates into Laplace equation when
p = 2. Another interesting case p = 1. The Lagrangian becomes the norm of the
gradient,

F = jruj =
s�

@u
@x1

�2

+
�
@u
@x2

�2

(8.17)

(here, we consider for the de�niteness the two-dimensional case). The corresponding
Euler equation is:

r �
� jruj
ru

�
= a in 


It can be written as a system of two �rst-order partial di�erential equations

j =
jruj
ru ; r � j = a; jjj = 1;

Observe that in this case jjj = 1 Here, the current j is codirected with ru and has
the unit magnitude. As any unit vector, it admits the representation

j = (j1; j2); j1 = cos �; j2 = sin �

where �(x) is an unknown scalar function, that is de�ned by the �rst-order equation
r � j = a or

� sin �
@�
@x1

+ cos �
@�
@x2

= a
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Potential u is found from another �rst-order equation that states that j is parallel
ru, or j �ru=0. In the coordinate form, the equation becomes

@u
@x1

j2 � @u
@x2

j1 = 0 or
@u
@x1

+ (cot �)
@u
@x2

= 0

Notice the Euler equation is split into two �rst order equations.

A linear Null-Lagrangian Null-Lagrangians are important: the de�ne the
nonuniqueness of the problem of determination of the Lagrangian from the Euler
equations. We discuss the null-Lagrangians for multivariable problems below in
Section ??. Here �nd the multidimensional linear null-Lagrangian.

Consider the Lagrangian L0(u) = hTru + (r � h)u, where h is a arbitrary
di�erentiable vector �eld, and u is the scalar minimizer. L0 depends on u
linearly. It is easy to show that L0 is a null-Lagrangian: Its Euler equation

r � @L0

@ru �
@L0

@u
= r � h�r � h � 0

is identically satis�ed for all u. This Null-Lagrangian is similar to the linear
null-Lagrangians in one-variable variational problems, see Section ??. This is
also evident from the identity (??) that allows for rewriting L0 as L0 = r�(hu).
By the divergence theorem, the minimizing functional is in fact the contour
integral

L0dx = r � (hu)dx =
Z
@

u(hTn)ds:

Therefore the Euler equation in the domain vanishes.

8.2.3 Smooth Approximation and continuation
As a �rst application of the theory of multivariable extremal problems, con-
sider the problem of the approximation of data by a function u with assumed
smoothness. The problem of approximation of a bounded, integrable, but may
be discontinuous function f(x) in R3, by a smooth function u(x) yields to the
variational problem

min
u

Z
Rn

�
(u� f)2 + �2(ru)2� dx

where term �2(ru)2 represents penalization. If � � 1, the �rst term of the
integrand prevail, and u exactly approximates f . The � grows, the approxima-
tion becomes less accurate but the u become more smooth. When � � 1, the
approximation u tend to a constant function equal to the mean value of f .

The Euler equation for the approximation u is the inhomogeneous Helmholtz
equation:

�2r2u� u = f; limjxj!1u(x) = 0
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This inhomogeneous Helmholtz problem can be explicitly solved through the
resolvent representation:

u(x) =
Z
R3
f(y)K(x� y)dy

Where K(x� y) is the Green's function: Solution to the problem

(�2r2 � 1)K(r) = �(r); limjrj!1u(r) = 0

The Green's function for the Helmholtz problem for the whole R3 can be easily
found in handbooks: It is

K(r) =
1

4�2�jrj exp
�
�jrj
�

�
; jrj =

q
x2

1 + x2
2 + x2

3

Using this representation, we obtain expression for u

u(x) =
1

4�2�

Z
R3

exp
�
�jx� yj

�

�
f(y)
jx� yjdy

One observes that the smoothness of u is controlled by �. When � ! 0, the
kernel K(r) becomes the delta-function, and u(x)! f(x).

Remark 8.2.3 Similar explicit solutions can be derived for R2 and for some
bounded domains, such as rectangles or circles (spheres).

Remark 8.2.4 In contrast with one-dimensional problems, the Green's function
is unbounded but integrable.

Dealing with bounded domains, it is better to use the eigenfunction expansion,
as it was explained in Section ??.

A close problem is the analytic continuation.

Example 8.2.5 (Analytic continuation) Let 
 � R2 be a domain in a plane
with a di�erentiable boundary @
. Let �(s) be a di�erentiable function of the point
s of @
. Consider the problem of analytic continuation: Find a function u(x) in 

such that it coincides with � at the boundary, u(s) = �(s); 8s 2 @
 and minimizes
the \roughness" inside 
. To quantitatively measure the roughness we require that
u minimizes the integral over 
 of (ru)2. Thus, we formulate a variational problem:

min(ru)2dx in 
; uj@
 = �

Compute the stationarity conditions. We have

@(ru)2

@ru = 2ru; r � @(ru)2

@ru = 2r � ru = 2r2u = 0

which demonstrates that the minimizer must be harmonic in 
 or be a real part of
an analytic function. This explains the name \analytic continuation".
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Remark 8.2.5 Notice that the one-dimensional case is trivial: 
 is an interval,
the boundary consists of two points, the minimizer is a straight line between these
points. In that sense, harmonic functions are two-dimensional generalization of
linear functions.

8.2.4 Change of coordinates
In order to transform the variational conditions to polar, spherical and other
coordinates, consider the transformation of the independent variables x = w(�)
in a multivariable variational problem. Assume that the Jacobian of the trans-
form is not zero in all points of 
. In the new variables, the domain 
 becomes

�, the di�erential dx is transformed as

dx = det(J)d�

where J is the Jacobi matrix with the elements Jij = f@wi@�j g. By the chain rule,
gradient rxu in x coordinates becomes

rxu = r�u@�@x = J�1r�u
where r� is the gradient in �-coordinates.

The integral

R =
Z



F (x; u;ru)dx

becomes
R =

Z

�
F�(�; u;r�u)d�

where F� is de�ned as follows

F�(�; u;r�u) = F (w(�); u; J�1(�)r�u) det J(�) (8.18)

The Euler equation in the w-coordinates becomes S(u; F�) = 0, where

S(u; F�) = r� � @F�@r�u �
@F�
@u

(8.19)

and the derivatives are related as
@F�
@u

= (det J)
@F
@u

and
@F�
@r�u = (det J)J�1 @F

@ru
Example 8.2.6 (Helmholtz equation in polar coordinates) Let F be

F = r2u+ �u2 = u2
x + u2

y + �u2

and let pass to the polar coordinates x = r cos �, y = r sin(�) and compute the
Euler equation for F . We compute

J =
�

cos � �r sin �
sin � r cos �

�
; det J = r
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Then

F� = F�(r; �; u;r�u) = r

"�
@u
@r

�2

+
1
r2

�
@u
@�

�2

+ �u2

#
and the Euler equation (??) becomes

@
@r
r
@u
@r

+
1
r
@2u
@�2 � �ru = 0

Example 8.2.7 (Laplacian in spherical coordinates)

8.2.5 First integrals
The �rst integrals in multivariable problems have some similarities to the �rst
integrals in one-variable case.

Independence of the gradient of minimizer If the Lagrangian is inde-
pendent of ru, F = F (x; u), the Euler equation becomes an algebraic relation

@F
@u

= 0:

As in one-dimensional case, the minimizer u does not need to be di�erentiable,
even continuous function of x.

Independence of the minimizer If the Lagrangian is independent of u,
F = F (x;ru) then Euler equation becomes

r � @F
@ru = 0:

Instead of the constancy of @F
@u0 in one-dimensional case, here we state only the

divergencefree nature of @F
@ru which implies the existence of a vector potential.

@F
@ru = r�  (8.20)

In the one-variable case, r �  is replaced by a constant and we obtain the
�rst integral; in multivariable case, the left-hand side of the previous equation
is de�ned by two degrees of freedom (because  is de�ned up to a additive term
r�); no additional �rst integrals arrive.

Example 8.2.8 The one-dimensional analog of the two-dimensional Lagrangian
L2 = (ru)2 is the Lagrangian L1 =

�du
dx

�2 or L1 = (u0)2. The Euler equation for
the one-dimensional problem has the �st integral

@L1

@u0 =
du
dx

= C1
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followed by a solution u = C1x+ C2.
In multivariable case, we compute @F

@ru = 2ru = V . Here, we denote the
gradient by V = (v1; v2). The stationarity condition r � V = 0 or

@
@x1

v1 +
@
@x2

v2 = 0

are identically satis�ed if

v1 =
@ 
@x2

and v2 = � @ 
@x1

that is if (8.20) holds.  is called the adjoint potential, see below, Section ??.
Instead of being a linear function as in one-dimensional case, the the minimizer u
is harmonic { a solution to the Laplace equation r2u = 0.

8.3 Variation of Boundary terms

8.3.1 Boundary integrals and Maier-Bolza problem
A natural extension of the simplest variational problem is the Meier-Bolza prob-
lem that asks for minimization of the sum of the volume and the integrals

I(u) = min
u

�Z


F (x; u;ru)dx+

Z
@

f(s; u)ds

�
(8.21)

This problem arrives both in physics when the boundary energy is taken into
account and in optimization theory where the functionals could be of any form.

The increment of the functional consists of the bulk and boundary parts:

�I =
Z



S(x; u;ru)�u dx+

Z
@

B(s; u; un)�u ds

The boundary integral does not contribute to the bulk part and the Euler
equation remains S = 0 where S is de�ned in (??). The boundary term B
consists of the variation @F

@ru �n�u that is supplied by the variation of the volume
integral, and of the variation @f

@u�u supplied by the variation of the boundary
integral:

B(s; u; un)�u =
�
@F
@ru n+

@f
@u

�
�u

The stationary condition is

@F
@ru n+

@f
@u

= 0 on @
 (8.22)

Notice, that this condition degenerates into natural boundary condition (??)
when the boundary term is zero, f = 0.Next example slightly generalizes the
result demonstrating the variational problem that generates various classical
types of boundary value problems for Laplace equation.
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Variational origin of the Dirichlet, Neumann, and Robin problems

I(u) = min
u

�
1
2

Z


ru2dx+

Z
@


�
1
2
a(s)u2 + b(s)u

�
ds
�

The Euler equation in the domain is the Laplace equation:

r2u = 0 in 


The boundary condition is
@u
@n

+ a(s)u+ b(s) = 0 on @


This is the so-called radiation condition (Robin conditions) that speci�es the
rate of radiation @u

@n depending on the value of u. When a = b = 0, the condition
becomes an isolation condition (this is the natural condition for the bulk part
of the problem); when a = 0 we deal with inhomogeneous Neumann conditions.
Notice that the Dirichlet conditions u = �(s) can be obtained as natural con-
ditions in the limiting case when b(s) = �(s)a(s) and a(s) are arbitrary large,
a(s)!1.

Equilibrium of a loaded elastic body We revisit the linear elasticity prob-
lem, considering the equilibrium of an elastic body loaded by boundary and bulk
forces. Assume that traction forces f(s) are applied on the boundary @1 of a
domain 
 �lled with a linear elastic material. The displacement u at the com-
plementary component @1 is prescribed. In addition, the bulk forces q(x) like
the gravity are applied in 
. Then the equilibrium corresponds to the minimum
of the sum of the whole elastic energy and the work of the bulk and boundary
forces,

min
u

�
W (�(ru))dx+ w q dx+

Z
@2

fTu ds
�
; uj@1 = u0

(compare with (9.2). This time, we deal with Maier-Bolza problem for the
vector minimizer u.

The stationarity is derived similarly to (9.3) and (9.4) correspond to the
equilibrium of the loaded elastic material

r � � = q; � =
@W
@ru = ��+ � Tr �I in 
; (8.23)

These equations di�er from (9.3) by an added bulk force q in the equilibrium
condition. The boundary terms are

(� u)T (� n+ f) = 0 on @


Using the main boundary condition uj@1 = u0, we determine the mixed bound-
ary conditions on @
.

u = u0 on @1; � n+ f = 0 on @2: (8.24)

Problem 8.3.1 Determine the boundary term in the Maier-Bolza problem which
corresponds to the force f linearly depending on the displacement u on the boundary.
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8.3.2 Examples
Inversion: Determination of the Lagrangian from Euler equation Af-
ter the link between the variational problem and the boundary value problem
is established, we can invert the situation and ask what variational functional
corresponds to the given boundary value problem which we treat as the sta-
tionary condition to the unknown variational problem. Of course, we do not
expect to obtain a unique solution. For instance, the null-Lagrangians cannot
be accounted for. However, in many cases the variational problem can be easily
guessed, as it is demonstrated at the next example.

Example 8.3.1 (Radiation of the black body) Consider the following inver-
sion of the variational problem. Find the variational principle for the absolute black
body with the radiation law @u

@n = u4 at the boundary. It is assumed that the
temperature u inside the body is harmonic. Using previous Example ??, we easily
guess the bulk and boundary terms in the Lagrangian:

I(u) = min
u

Z



1
2

(ru)2dx+

5

Z
@

u5ds

Example 8.3.2 (Relaxed analytic continuation) Let us return to the prob-
lem of analytic continuation, Example 8.2.5. We relax the problem's condition:
Instead of prescribing the boundary data uj@
 = �(s) at every boundary point, we
penalize solution its a deviation of the prescribed boundary value �(s). Assuming
that the penalty is proportional to the square of L2 norm of the di�erence, we
formulate the problem of relaxed analytic continuation:

min
u
I; I = (ru)2dx+ �

Z
@


(u� �)2ds

where � > 0 is the penalization parameter. The stationarity condition is

r2u = 0 in 
; �
@u
@n

+ u = � on @
 (8.25)

Minimizer u satis�es Laplace equation with the boundary conditions of the third
type, the so-called Robin problem. Notice that the minimizer tends to the minimizer
of the problem in Example 8.2.5 if � !1.

The solution allows for the following physical visualization. Imagine that u is the
temperature. The problem in Example 8.2.5 describes the temperature distribution
in a body with the �xed boundary temperature. The relaxed problem describes
the temperature distribution in a body with the radiation from /absorbtion at the
boundary. The rate of radiation is proportional to the di�erence (u � �) between
the �xed boundary temperature and target function and to �.

Example 8.3.3 (Relaxed continuation in circular domain) For demonstra-
tion of the relaxed analytic continuation, consider a circular domain 0 � r � 1 and
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expand the boundary data into Fourier series

�(�) = a0 +
1X
k=1

ak cos(k�)

where
a0 = 2�

Z �

��
�(�)d�; ak = �

Z �

��
�(�) cos(k�)d�

are the known Fourier coe�cients. The general solution of the Laplace equation in
the circle has the form

u(r; �) = c0 +
1X
k=1

ckrk cos(k�);

the coe�cients ck are found from the boundary condition in (8.25) as

c0 = a0;
k
�
ck + ck = ak

The solution to the relaxed continuation problem becomes

u(r; �) = a0 +
1X
k=1

�
� + k

ak rk cos(k�):

One observes that the coe�cients by high harmonics (k � 1) in u(r; �) are dumped
due to relaxation. In other words, the problem of relaxed continuation is the con-
tinuation problem (Example 8.2.5) of continuation with smoothed boundary data
�smooth instead of Gf . This smoothed data are given by the Fourier series

�smooth(�) = a0 +
1X
k=1

�
� + k

ak rk cos(k�):

The solution to the stationary problem may not exist We remind that
the stationarity is the necessary condition of the extremum. If the minimizer
to the variational problem is continuous and di�erentiable, then it satis�es the
stationary conditions. Next example shows that the Mayer-Bolza problem may
lead to contradictory requirements so that the stationary solution of the problem
does not exist.

Example 8.3.4 (Controversial boundary conditions) Consider the problem

I(u) = min
u

Z


jrujdx+

Z
@

au ds

or F = jruj; f = au. The Euler equation in 
 was derived in the previous
section, example ??. The boundary condition is

ru � n
jruj + a = 0
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The �rst term in the left-hand side of the last expression is equal to the cosine of
the angle between the normal n and the direction rujruj of the gradient; therefore
the boundary condition becomes

cos( dn;ru) = �a
The last condition is not controversial if jaj � 1. If jaj = 1, the direction of
gradient coincide with the normal n, if a = 0, ru �n = 0. If jaj � 1, solution of the
boundary values problem does not exists. We conjecture that the true minimizer is
discontinuous and does not corresponds to Euler equation.

8.3.3 Weierstrass-Erdman condition

The Weierstrass-Erdman condition is satis�ed on a surface where the gradient
of an extremal is discontinuous; this discontinuity might be caused by a discon-
tinuity in coe�cients in the Lagrangian. Assume that Lagrangian is de�ned by
two di�erent expressions in two connected 
1 and 
2 parts of 
:

F (x; u;ru) = F1(x; u;ru) if x 2 
1;
F (x; u;ru) = F2(x; u;ru) if x 2 
2:

and consider the problem with the objective

I =
Z


1

F1(x; u;ru)dx+
Z


2

F2(x; u;ru)dx (8.26)

The Weierstrass-Erdman condition is the boundary condition on the shared part
@12 of the boundary between 
1 and 
2. At that surface, two conditions on u
and @u

@n are needed to uniquely continue the solution from one part to another.
The �rst (main) condition is the continuity of the di�erentiable potential u

everywhere in 
, including @12.

[u]+� = 0

This condition implies the continuity of the tangential derivative @u
@t where t a

tangent to @12. �
@u
@t

�+

�
= 0 on @12

Indeed, the tangential derivative is calculated independently in the domains 
1
and 
2 as a limit of di�erence of potentials. Since the potential u is the same
on the neighboring points on both sides, so is the di�erence between them.

Remark 8.3.1 In a three-dimensional problem, there are two independent tan-
gential partial derivatives in two orthogonal tangential directions.
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The second (variational) condition is called the Weierstrass-Erdman condi-
tion. It comes from the �rst variation of the objective (8.26)

�I =
Z


1

S(F1; u)�u dx+
Z


2

S(F2; u)�u dx

+
Z
@
1

@F1

@run1 �u ds+
Z
@
2

@F2

@run2 �u ds

The stationarity of the integrals over 
1 and 
2 gives the Euler equations in that
domains, and the boundary integrals give the variational boundary conditions.
The variational condition on the shared boundary @12 involves both boundary
integrals because the variation of �u is the same in both integrals, and the
normals are codirected n1 = �n2. (Di�erent signs of the normal correspond to
the agreement that the normal is outer to the domain of variation. The outer
normal to 
1 is the inner normal to 
2.) On the shared boundary @12, we state
the stationarity condition

�u :
Z
@12

�
@F1

@ru �
@F2

@ru
�
� n �u ds = 0

which results in the Weierstrass-Erdman condition

@F
@ru � n

����+� = 0 on @12 (8.27)

This condition is the direct analog of the Weierstrass-Erdman condition on
the broken extremal in one-variable case (see Section ??) that has the form
[ @F@u0 ]

+� = 0. In multivariate case, the Weierstrass-Erdman condition depends on
the normal to the surface (line) of the discontinuity. The normal derivative of
the minimizer can be discontinuous discontinuous. Simultaneously, its tangent
derivative remains continuous to preserve the continuity of the surface.

Example 8.3.5 (Inhomogeneous conducting medium) The steady state con-
ductivity of a medium corresponds to the variational problem with the Lagrangian
F = �

2 (ru)2. where � = �(x) is the conductivity. Assume that the medium is
heterogeneous, and �(x) is a discontinuous function that takes two values �1 and
�2 in 
1 and 
2, respectively,

�(x) = �1�(x) + �2(1� �(x)) (8.28)

where
�(x) =

�
1 if x 2 
1
0 if x 62 
1

(8.29)

Let us establish continuity conditions on the boundary @12
 between 
1 and 
2.
We set Fi = �i

2 (ru)2, i = 1; 2 and compute @F
@ru � n = � @u@n . The continuity

conditions on the boundary @12
 become

�ruTnj+� = 0; ruT tj+� = 0;
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or, in coordinates,
@u�
@t

=
@u+

@t
; ��

@u�
@n

= �+
@u+

@n
where u� and u+ are the minimizers in 
1 and 
2, respectively. These conditions
allows for the following physical interpretation. The tangent component of the
�eld u and the normal component of the current j = �ru are continuous on the
boundary between domains of di�erent conductivity.

8.3.4 E�ective conductivity of a laminate
The derived formulas allow for calculation of the e�ective conductivity of a lam-
inate composite. Consider a periodic laminate submerged into a homogeneous
�eld u0. Let 
 be a unit square 
 = [0; 1]�[0; 1] separated into 
1 = [0; 1]�[0;m]
and 
2 = [0; 1]� [m; 1]. Call the components of the boundary by @1; : : : ; @4

@1 = fx : x1 = 0; x2 2 [0; 1]g; @2 = fx : x1 = 1; x2 2 [0; 1]g;
@3 = fx : x1 2 [0; 1]; x2 = 0g; @4 = fx : x1 2 [0; 1]; x2 = 1g:

The conductivity corresponds to the minimization of the energy W (V; �)

W = min
u

1
2
�ru2dx; � = �1�(x) + �2(1� �(x)) (8.30)

where � is de�ned in (8.29), with the corresponding homogeneous boundary
conditions uj@
 = V .

In order to �nd the e�ective properties of the structure, we want to replace
inhomogeneous distribution of the conductivity in 
 with a new equivalent ma-
terial. Our goal is to express the energy as a quadratic form

W =
1
2
ruT� ��ru�; ru� = ru dx

of the average gradient ru�, where u is the solution of (8.30). This way we de-
termine the e�ective property ��. There are two cases that should be considered
separately.

Case A. Let the �eld be applied across the layers. Assume that the main
boundary conditions are

u = 0 if x 2 @1; u = V if x 2 @2:

Here, V is the intensity of average �eld in the unit cell, V = jru�j. The
stationary condition in the domains 
i and the natural condition ruTn = 0 on
the horizontal boundaries have the form

�ir2u = 0 in 
i;
@u
@x1

= 0 on @3 and @4

They are satis�ed if the potential is a continuous piece-wise linear function of
x1:

u(x1) = A1x1x2 2 [0;m]A1m+A2(x1 �m)x1 2 [m; 1] (8.31)
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where A1 and A2 are related as follows

u(1) = A1m+A2(1�m) = V;

The second condition for the constants A1 and A2, we use the Weierstrass-
Erdman condition:

�
@u(m)
@x1

����2
1

= �2A2 � �1A1 = 0

and �nd

A1 =
�2

m�2 + (1�m)�1
V; A2 =

�1

m�2 + (1�m)�1
V

Substituting the found values of A1, A2 into (8.31) and compute the energy

WA = m1�1ru2jx2
1 + (1�m1)�2ru2jx2
1 =
1
2
�HV 2

where �H is the e�ective conductivity of the laminate across the layers,

�H =
�
m
�1

+
1�m
�2

��1

Case B. Let the �eld be applied across the layers. The main boundary
conditions are

u = 0 if x2 = 0; x 2 @3; u = V x 2 @4

where V is the intensity of the average �eld, jru�j = V . The stationary condi-
tion

�ir2u = 0 in 
i;
@u
@x2

= 0 on @1 and @2

and the main boundary conditions are satis�ed if potential u is a linear function
of x2:

u(x2) = V x2 in 
1 and 
2

The Weierstrass-Erdman condition is trivially satis�ed because the �eld ru is
parallel to the layers everywhere and @u

@n = 0. The energy WB of this loading is

WB =
1
2
�
m1�1ru2jx2
1 + �2ru2jx2
1

�
=

1
2
�AV 2

where
�A = m1�1 + (1�m1)�2

is the e�ective conductivity of the laminate across the layers.
The results for the two loading cases are di�erent from each other. This

shows that the e�ective conductivity �� is anisotropic; it corresponds to a sym-
metric tensor

�� =
�
�H 0
0 �A

�
with eigenvalues �A and �H . The anisotropy is caused by the Weierstrass-
Erdman conditions that introduce the dependence on the normal to the dividing
boundary.
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G-convergence If we consider the sequence of variational problems corre-
sponding to a sequence of laminate layouts that are more and more �ne but
keep the volume fraction. The Lagrangians LS of this sequence are

LS =
1
2
�S(x)(ruS)2

The limiting Lagrangian corresponds to the anisotropic e�ective material with
the Lagrangian

L0 =
1
2
ru0 � ��ru0

where u0 = lims!1 uS and �� is the tensor of e�ective conductivity with eigen-
values equal to �A and �H . One can see that the limiting Lagrangian changes
its algebraic form. The convergence of the layouts �s(x) to the tensorial layout
�� is called G-convergence.

8.4 Isoperimetric problems

8.4.1 Constrained problems

The problems with isoperimetric constants are addressed similarly to the one-
variable case. The extended functional is constructed in a usual way, by adding
the constraint Z



G(x; u;ru)dx = 0

with a Lagrange multiplier � to the Lagrangian

I =
Z



F (x; u;ru)dx; uj@
 = a(s):

The augmented Lagrangian isZ



(F (x; u;ru) + �G(x; u;ru)) dx; uj@
 = a(s): (8.32)

Solution u of the Euler equation�
r � @

@(ru)
� @
@u

�
(F + �G) = 0 (8.33)

with natural boundary condition

n � @
@(ru)

(F + �G) = 0 on @
 (8.34)

depends on �, u = u(�) which value is de�ned by the constraint.
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Example 8.4.1 Consider the generalization of the problem of analytic continua-
tion (Example 8.2.5): Find a function u(x) that is equal to a given function � on
the boundary @
 of 
 and minimizes the integral over the domain 
 of the La-
grangian W = 1

2 (ru)2. Generalizing the problem, we additionally require to keep
the integral equality Z



� u dx = 0 (8.35)

where � = �(x) is a weight function. The augmented functional is

I =
Z




�
1
2

(ru)2 + �u
�
dx

where  is the Lagrange multiplier by the constraint (8.35). The Euler equation is

r2u� � = 0 in 
; u = � on @


We solve this equation using the potential theory [?] treating  as a known
parameter and obtain u = u(). Then, we compute integral of �u() and solve the
equation (8.35) to .

The potential u has the representation

u(x) = E(x; �)�(�)d� +
Z
@

E(x; s)u0(s)ds

where E =. Substituting this expression into (8.35), we �nd ,

 = ��(x)
�R
@
E(x; s)u0(s)ds

�
dx

�(x) (E(x; �)�(�)d�) dx

The problem is solved.

8.4.2 Incomplete boundary conditions
Integral constraints can be imposed on the boundary values of the minimizer
if these values are determined from the optimality requirement, as the varia-
tional boundary conditions. The technique permits for addressing the problem
in which the boundary conditions are not completely known, only some av-
erage information of them is available. This information must be accounted
as the constraints to the boundary values of the minimizer, and the complete
description comes from optimality requirement.

The Lagrange multipliers technique is used to formulate the problem for the
extremal. The constraint Z

@

�(u; x)ds = 0

applied to the previous problem (8.33) (8.34) leads to the natural boundary
conditions in the form

n � @
@(ru)

(F + �G) + �
@�
@u

on @
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The Euler equation is a complete boundary value problem that automatically
incorporates the incomplete information about boundary condition and provides
the bound for all admissible distribution of boundary values.

Example 8.4.2 (Incomplete conditions on the conducting rectangle) Consider
the following problem. A rectangular domain 
 conducts electricity from the left
@
1 to the right @
2 side, while the upper and lower sides @
3 and @
4 are in-
sulated. The total current conducted through the domain is equal to j, but the
details of the distribution of the boundary current is unknown.

We avoid the uncertainty requiring that the boundary currents would be "opti-
mally" chosen to minimize the total energy of the domain. Assuming these boundary
conditions, we formulate the variational problem

min
u

Z



(ru)2 dx

subject to constraints Z
@
1

u ds = j;
Z
@
2

u ds = �j; (8.36)

It is assumed here that the normal to 
1 coincides with the direction of the current,
then the normal to the opposite side 
2 is opposite directed. We do not pose
constraints to account for the insulation condition on the horizontal parts @
3 and
@
4 because it is a natural condition that will be automatically satis�ed at the
optimal solution.

Accounting for the above constraints (8.36) with Lagrange multipliers �1 and
�2 (that are related, as we show below), we end up with the variational problem

I = min
u

Z



�
(ru)2 dx+ �1

�Z
@
1

u ds� j
�

+ �2

�Z
@
2

u ds+ j
��

:

The calculation of the �rst variation of I with respect to u leads to the Euler
equation in the domain

r2u = 0 in 


and the boundary conditions

@u
@n

+ �1 = 0 on @
1;
@u
@n

+ �2 = 0 on @
2;

@u
@n

= 0 on @
3;
@u
@n

= 0 on @
4

One can see that the boundary currents (the normal derivatives of the potential)
are constant at the optimal solution. Finally, we exclude the Lagrange multipliers
�1 and �2. The solvability conditionZ

@
1

@u
@n

ds+
Z
@
2

@u
@n

ds = 0
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(which is observed in the formulation of the constraints but is not exploited so far)
yields to the equality �1 + �2 = 0.

The boundary current at @
1 and @
2 are constants that are calculated from
the constraints,

@u
@n

����

1

=
j
l1

� @u
@n

����

2

=
j
l2

where l1; l2 are the lengths of the sides 
1 and 
2, l1 = k@
1k and l2 = k@
2k.
The optimality requirement completely determines the problem requiring the

constancy of the current density on the upper and lower sides. The magnitude of
the current is adjusted to make the potential di�erence equal to two.

Problem 8.4.1 Consider the previous problem assuming that the domain 
 is a
sector of the annulus r0 � r1, �0 � � � �1 that conducts the �xed total current
from one radial cut to another.

Problem 8.4.2 Consider the previous problem assuming that the conductivity is
inhomogeneous. Derive the boundary conditions.

8.5 Lagrangian dependent on second derivatives

8.5.1 Stationarity conditions
Consider the problem

I(u) = min
u:u@
=u0

Z


F (x; u;ru;rru)dx

with the Lagrangian that depends on the minimizer, its gradient, and its the
Hessian matrix

H(u) = rru =

0@ @2u
@x2

1
:: @2u

@x1@xn
:: :: ::
@2u

@xn@x1
:: @2u

@x2
n

1A
The Euler equation for this problem are derived in the same way as before.

First, compute the linear with respect to �u terms of the increment:

�I =
Z




�
@F
@u

�u+
@F
@ru � �ru+

@F
@rru : �rru

�
dx

where the formula (??) for matrix di�erentiation is used.
The last two terms in the integrant are transformed by integrating them by

parts so that they depend on �u but not of its graduent. The term @F
@ru � �ru

is transformed as before by the means of the Green's formula (??)Z



�
@F
@ru � �ru

�
dx =

Z


r �
�
@F
@ru

�
+
Z
@


�
@F
@ru � n

�
� �u ds
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To transform the last term we apply the Green's formula twice:Z



�
@F

@rru : �rru
�
dx =

Z



�
rr :

@F
@rru

�
�u dx

+
Z
@


��
@F

@rru � n
�
� �
�
@u
@n

�
�r �

�
@F

@rru � n
�
�u
�
ds;

as a result, we obtain two boundary integrals proportional to �u(s) and to
� @u@n (s), respectively. Notice that these variations are mutually independent.
Indeed, one can visualize u(x) as a surface in three-dimensional space. It can be
kept �xed at the boundary u(s) = u0 but be approached from di�erent angles,
varying and vary the normal derivative @u

@n (s).
Collecting the terms by independent variations �u(x) in 
 and �u(s) and

� @u@n (s) on @
, we obtain the increment as the sum of the integral I
 over 
 and
the integral I@
 over @
:

�I =
Z



S(u; F ) �udx+

Z
@


�
B� �u+B� �

@u
@n

(s)
�
ds

where the bulk part S(u; F ) of the variational derivative is

S(u; F ) =
@F
@u
�r �

�
@F
@ru

�
+rr :

�
@F

@rru
�

and the boundary parts B� and B� of the derivative are

B� =
@F
@ru � n�r �

�
@F

@rru � n
�

and B� =
@F

@rru : (nnT )

The stationarity condition

S(u; F ) = 0 in 
 (8.37)

is the partial di�erential equation of the fourth order.
It is supplemented by the two boundary conditions

B� �u = 0 on @
 (8.38)

B� �
@u
@n

= 0 on @
 (8.39)

which required that one of the two multipliers in each condition is zero. The
main conditions correspond to �u = 0 and � @u@n = 0. The natural (variational)
conditions correspond to B� = 0 and B� = 0. There are also mixed cases.

To make notation clearer, we rewrite these equations in the coordinate form.
Let us call hij the entries of the Hessian and gk { the entries of the gradient of
u. The vector of the normal n has the coordinates n = (cos �1; : : : cos �n) where
�i is tha angle between the normal and the coordinate axes. In these notations,
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we write F = F (u; g1; : : : ; gd; h11; : : : ; hdd). The variational derivative S(u; F )
becomes

S(u; F ) =
@F
@u
�

nX
k=1

@
@xk

@F
@gk

+
nX

i;j=1

@2

@xi@xj
@2F
@hij

The boundary terms become

B� =
nX
k=1

cos �k
@F
@gk
�

nX
i;j=1

@
@xi

�
@2F
@hij

cos(�j)
�

and

B� =
nX

i;j=1

@2F
@hij

cos(�i) cos(�j)

The last two expression look awkward which is expected since the labor coordi-
nate system is independent on the coordinates on the boundary. Alternatively,
the boundary conditions can be rewritten in the local coordinates n; t on the
boundary (we consider here the two-dimensional case for clarity in notations).
The expressions for B� and B� are simpli�es to

B� =
@F
@gn
� @
@n

@2F
@hnn

� @
@t
@2F
@hnt

and B� =
@2F
@hnn

where gn = @u
@n and hnn = @2u

@n2 .
The main conditions are always supplemented by the natural conditions so

that the boundary value problem has two boundary conditions.

Remark 8.5.1 (Generalization) The generalization of the variational deriva-
tive to the lagrangian dependent of higher derivatives is straightforward. We leave
this to the reader.

8.5.2 Bending plate
The energy Here we derive the energy W of an elastic bending surface. Con-
sider the plane compact domain 
 with a di�erentiable boundary. Let u(x)
be the deection of a point of the surface from the corresponding initial plane
state, in the direction orthogonal to that plane. Assume that the energy W de-
pends only on the tensor � of curvatures of the surface, which in a sense de�ne
the bending as the resistance to the shape change of a surface. The curvatures
tensor for the surface u(x1; x2) has the form (see [?])

� =
1

(1 + (ru)2)
3
2
H (8.40)

where H is the Hessian

H =

 
@2u
@x2

@2u
@x@y

@2u
@x@y

@2u
@y2

!
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it depends on the second derivatives of u.
Assume that the plate is isotropic and homogeneous: The energy is inde-

pendent of the direction of the labor axes and on the position x. This property
requires that the energy depends only on rotational invariants of �, or on its
trace and determinant,

W = W ( Tr �; det �)

Finally, assume that the surface is close to a plane so that the deection u
and all its derivatives are small,

u� 1; jruj � 1; krruk � 1

and the energy W is a di�erentiable function of its argument. Expand the
energy W into Taylor series. In the expansion, the constant is of no interest
because they it does not a�ect the stationarity. The linear terms are assumed
to be zero

@W
@u

����
u�0

= 0;
@W
@ru

����
u�0

= 0;
@W
@rru

����
u�0

= 0

because u � 0 (no bending at all) must be a minimizer that corresponds to the
global energy minimum.

There are only two quadratic terms: The square of the trace of � and its
determinant. Notice that the quadratic terms of the curvatures � of u are
approximated as the corresponding quadratic forms of Hessian H

� =
1

(1 + (ru)2)
3
2
H = H + o((ru)2):

The energy W of the bending plate (up to the terms o
�juj2; jruj2; krruk2k�

becomes

W (H) =
1
2
�(hx1x1 + hx2x2)2 +

1
2
�(hx1x1hx2x2 � h2

x1x2
)

or
W (rru) =

1
2
�( Tr [rru])2 +

1
2
� det[rru] (8.41)

where � and � are real constants and hij are the entries of the Hessian. We
arrive at a surprising fact: the above mild and natural assumption determine the
bending energy up to two real constants. Even more surprising (and may even
be disappointing for the engineering students) is that the complicated equation
of bending was derived without referring to the elasticity theory, but only to
the geometrical features of surface bending and smallness of the deection.

Remark 8.5.2 This energy is unsensitive to the shift of the deection and to the
small rotation of the plate in the three-dimensional space x1; x2; u,

F (u;ru;rru) = F (u+ a;ru+ b;rru) 8a; b:



34 CHAPTER 8. MULTIVARIABLE PROBLEMS: SCALAR MINIMIZER

Lagrangian The Lagrangian that determines the equilibrium of an elastic
plate consist of its energy W , the work q u of external loading by a distributed
force q = q(x) applied orthogonal to the plane of the plate, and the boundary
terms. The bulk part of the Lagrangian is L is

L(u;rru) = W (rru) + q w

The boundary terms consist on the work f u of the perpendicular to the plate
forces f = f(s) applied on the boundary, and the work of M @u

@n of the bending
momentums M = M(s) applied on the boundary. The boundary part L@ of the
Lagrangian is

L@
�
u;
@u
@n

�
= f u+M

@u
@n

Equilibrium corresponds to minimum of the objective

L(u;rru) dx+ L@
�
u;
@u
@n

�
ds:

Euler equation To derive Euler equation we compute

@F
@rru = � (h11 + h22)

�
1 0
0 1

�
+ �

�
h22 �h12�h12 h22

�
;

@F
@ru = 0:

The Euler equation is bi-Laplacian equation

S(u; F ) =
�
@2

@x2 +
@2

@y2

�
�
�
@2

@x2 +
@2

@y2

�
u+ q = 0 in 
 (8.42)

In nable-notations, it has the form:

r2�r2u = 0

Observe further that it does not depend on �. Indeed, the Euler equation S0(u)
corresponding to the variation of the determinant,

�
Z



(� detH(u))dx =

Z


S0(u)�u dx; (8.43)

where

S0(u) =
�
@2

@x2 �
�
@w2

@y2

�
+

@2

@y2 �
�
@w2

@x2

�
� 2

@2

@x@y
�
�

@2w
@x@y2

��
�u � 0 (8.44)

is identically zero because of equality of the mixed derivatives. In other words,
detH(u) is a null-Lagrangian.

Remark 8.5.3 Notice that we found a null-Lagrangian S0(u) that is a nonlinear
function of the derivatives of u. Such functionals do not exist in one-variable prob-
lem, as is was shown in Section ??. Here, the Euler equation vanishes because of
integrability conditions, that is a pure multidimensional phenomenon. We investi-
gate quadratic null-Lagrangians later in Section ?? where we develop the method
to regularly �nd all of them.
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First condition Second condition Comment
u is �xed @u

@n is �xed Clamped
u is �xed M +B� = 0 Simply supported
f +B� = 0 @u

@n is �xed Sliding
f +B� = 0 M +B� = 0 Free boundary

Boundary terms The boundary terms in the �rst variation are on @
 are

�u(f +B�) + �
�
@u
@n

�
(M +B�) = 0

where

B� =
@
@n

(B�) +
@
@t

�
�
@2u
@n@t

�
; (8.45)

B� = �
@2u
@n2 + (�+ �)

@2u
@t2

(8.46)

The natural boundary conditions do depend on �.
If the main conditions are given �u = 0 and �

� @u
@n

�
= 0, the plate is called

clamped. Its deection on the boundary is �xed, and so is the normal angle. If
one main condition �u = 0 is given, the plate is called simply supported. It is
allowed to turn the plate around the point of support. The natural boundary
condition M+B� = 0 becomes active. It expresses the vanishing of the bending
moment on the boundary of the plate.

Finally, let us comment on simpli�cation of the expressions for B� and B� .
Consider the simply supported boundary and assume that u = 0 along it. The
tangent derivative @u

@t is obviously zero as well. However, the second tangential
derivative @2u

@t2 is not zero if the boundary is curved. One can use Frenet formula

@2

@t2
=

@2

@s2 + k
@
@n

where k is the curvature, to express the second tangential derivative through the
second derivative @2u

@s2 = 0 along the arc of the boundary, which is zero because
u = 0. The conditions on the simply supported boundary are

u = 0; M + �
@2u
@n2 + (�+ �)k

@u
@n

= 0:

The other boundary conditions can be simpli�ed in the same way.
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Chapter 9

Multivariable problems:
Vector minimizer

9.1 Several minimizers

9.1.1 Stationarity conditions
The next generalization is quite straightforward. Assume that Lagrangian de-
pends on several potentials u = (u1; : : : ; un) and on their derivatives: n � d
Jacobian matrix

ru =

0@ @u1
@x1

: : : @un
@x1

: : : : : : : : :
@u1
@xd : : : @un

@xd

1A
as follows: F = F (x; u;ru).

The stationarity conditions are derived in the same way as in the case of one
unknown function u. The variation of the functional is

�I =

 
nX
k=1

S(F; uk)�uk

!
dx+

Z
@


 
nX
k=1

S@(F; uk; n)�uk

!
ds

where S(F; uk) and S@(F; uk; n) are the bulk and boundary parts of functional
derivatives.

Stationarity corresponds to the system of Euler equations

S(F; uk) = 0 in 
; S@(F; uk; n)�uk = 0 on @
; k = 1; : : : ; n

which express independency of the variation of each potential. The stationary
conditions form a system of n second-order equations for n unknown potentials.
Equations are of the same form as the Euler equations for the scalar case: scalar
operations are simply replaced by vectorial ones and vectorial operations become
matrix ones:

r � @F
@(ru)

� @F
@u

= 0

37
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where u is a vector u = (u1; : : : ; un).
The coordinate form is

dX
k=1

@
@xk

@F
@gik

� @F
@ui

= 0; gik =
@ui
@xk

; i = 1; : : : ; n

Obviously this system degenerates into (8.11) when n = 1 and into (??) when
d = 1.

The natural boundary conditions are

S@(ui; F ) =
@F

@(rui)n = 0; i = 1; : : : ; n

or, in the coordinate form,

@F
@gik

nk � @F
@ui

= 0; gik =
@ui
@xk

; i = 1; : : : ; n

where nk is the projection of the normal to the axis xk.

9.2 Elasticity
Elastic energy First, we argue on the form of elastic energy. Assume the
following. The elastic equilibrium is de�ned by the vector u of displacements.
The equilibrium corresponds to minimization of a function (the elastic energy)
W (ru) of matrix ru. The stationarity relation are linear which implies that
the energy is a homogeneous quadratic function of the elements of matrix ru.

The energy must be invariant to in�nitesimal rotation of the labor system.
Therefore, the energy is a quadratic function of the symmetric part of the dis-
placement gradient

�(ru) =
1
2
�ru+ (ru)T

�
:

that is called strain. The supplementary antisymmetric part of gradient repre-
sents an in�nitesimal rotation or the domain as a whole; such a motion which
does not a�ect the elastic energy. The coordinate form of the strain is

�ii =
@ui
@xi

and �ij =
1
2

�
@ui
@xj

+
@uj
@xi

�
if i 6= j

The eigenvalues of strain are real.
The coe�cients of the quadratic form W (ru) determine the material's elas-

tic properties. Assume that the material is isotropic. It corresponds to the
isotropic (rotationally invariant) quadratic form W (�) of �. Thus, the energy
must be a function of the eigenvalues of �. An the same time, it must be a
quadratic function of the entries of this matrix. The general form of functions
of a symmetric matrix � with required properties is

W =
1
2
� Tr (�2) +

1
2
�( Tr �)2
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where � and � are some real constants { elastic moduli of the material called
also Lam�e moduli. The coordinate form of the energy is

W =
1
2
�

241
4

dX
i;j

�
@ui
@xj

+
@uj
@xi

�2
35+

1
2
�

"
dX
i

@ui
@xi

#2

(9.1)

This derivation shows that the elastic properties of an arbitrary isotropic
elastic material are de�ned by only two constants. Natural assumptions on the
energy form based on expected linearity of the stationary condition and the
symmetry principles lead to a unique form of the energy of a linear isotropic
elastic material. The physical arguments are not directly used in this derivation.

Elasticity equations Let us �nd the stationarity conditions for the energy
minimization. In physical terms, consider domain 
 �lled with the linear
isotropic elastic material. Assume that the displacements u are �xed on a com-
ponent @1 of the boundary and is free on the other boundary component @2.
The corresponding variational problem is

min
u
W (�(ru))dx; uj@1 = u0 (9.2)

For convenience, we call � = @F
@ru and notice that � is a symmetric matrix

because of the symmetry of the energy F called stress tensor. We write the
Euler equation as the system

r � � = 0; � =
@W
@ru = ��+ � Tr �I in 
; (9.3)

and
(� u)T� n = 0 on @
 (9.4)

where I is the unit matrix. In elasticity � is called the stress tensor, the �rst
equation is called equilibrium condition, and the second { the Hook's law or the
constitutive relations. Their coordinate forms are

dX
i

@�ij
@xj

= 0; j = 1; : : : d; �ij = �ji;

{ equilibrium conditions, and

�ij = � �ij ; i 6= j; i; j = 1; : : : d;

�ii = � �ii + �
X
k

�kk; i = 1; : : : d;

{ Hooke's law.
The elasticity equations can be presented as the system of second-order

equation called Lam�e equations

@
@xi

24(�+ �)
@ui
@xi

+ �
dX
j 6=i

@ui
@xj

35 = 0; i = 1; : : : ; d
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for the displacement vector u.
The main boundary conditions prescribe the displacement at the boundary

u(x) = u0 if s 2 @
. The natural boundary conditions

(� u)T� n = 0

require vanishing of a column (and, by the symmetry of �, of a raw) of the stress
tensor. Physically, they means the absence of the surface force at the boundary.

9.2.1 Other examples
Example 9.2.1 (Coupled conductivity) Consider the quadratic Lagrangian

F =
1
2
ru1 �A1ru1 +ru1 �A12ru2 +

1
2
ru2 �A2ru2 + �(u1; u2)

where A1 and A2 are positive symmetric matrices, and the whole system is positive:

det
�
A1 A12
A12 A2

�
> 0

The Euler equations are linear partial di�erential equations in the divergence form

r � (A1ru1 +A12ru2)� @�
@u1

= 0

r � �AT12ru1 +A2ru2
�� @�

@u2
= 0

They describe di�usion of two groups of particles that may transform to each other
like groups of fast and slow neutrons in a nuclear reactor model. � describes the
recombination.

Example 9.2.2 (Polylinear null-Lagrangians) The vector problem admits a
new type of nonlinear null-Lagrangians. A quadratic nonlinear (but polylinear) null-
Lagrangian has the form

L0 = ruT1 A12ru2

where A12 is antisymmetric aij = �aji. We compute the Euler equation varying
u1

r �A12ru2 =
X
i;j

@
@xi

aij
@u2

@xj
=
X
i;j

(aij + aij)
@2u2

@xi@xj
� 0 8u2

(the equation for u1 is similar) Notice that the Euler equation is identically satis�ed
thanks to the integrability conditions (the equality of the mixed derivatives). This
phenomenon is essentially multivariable, in is discussed below in Section ??.

Example 9.2.3 (A design problem) Find the Euler equations for the Lagrangian

L(u;ru;R) = R(ru)2 + pRp
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where u(x) and R(x) > 0 are the minimizers and p > 1 is a real parameter.
This variational problem arrives in a problem of optimal design of an inhomoge-

neous conducting material. We assume that u is the concentration of the di�usive
material and R(x) is the variable resistivity (the reciprocal to the conductivity �) of
the designed material. We further assume that the cost c of the material depends
on its resistivity as follows c = pRp. The design problem asks of the distribution of
the resistivity R(x) of the material in the domain that minimizes the total energy
while keeping the materials cost low, or minimizes the sum of integrals of total
energy and cost.

min
u;R

L(u;ru;R)dx; u = u0 on @
:

Notice that the Lagrangian does not depends on rR. The stationarity with
respect to R corresponds to the algebraic relation

@L
@R

= �R2(ru)2 +Rp�1 = 0

or R = jruj 2
p+1 . Substituting this value into L, we obtain

L(u;ru; jruj 2
p+1 ) = jruj p+3

2 + pjruj 2p
p+1

This Lagrangian depends only on u and is of the type (8.16). Notice that the
problem of the optimal distribution of the resistivity turns out to be equivalent
to the resistivity of a nonlinear material. The nonlinearity occurs because the the
optimal resistivity is proportional to the �eld ru.

9.2.2 Complement: Energy in nonlinear elasticity
Consider a body 
 and mark a point in 
 by a three-dimensional vector r.
Assume that the body experience a deformation which brings the point r into
a point U(r). The mapping U(r) is di�erentiable.

A particular mapping called translation is U(r) = r+a where a is a constant
vector. It shifts the coordinate system but does not change the shape of 
.
Another spacial mapping called rotation has the form U = Rr where R is the
rotation matrix, or detR = 1, and RT = R�1. A rotation also does not change
the shape of 
. All other mapping do. Mechanics of continuum describes these
other mappings, which the mechanics of a point describes translations and the
mechanics of rigid bodies { the translations and the rotations.

Elasticity assumes that the deformation of a body minimizes a functional {
the energy of deformation. The density F of the energy { the Lagrangian of
the variational problem { determines the material properties. Let us discuss the
form of the elastic energy.

Material independence The elastic energy is independent on the translation
and rotation. These motions correspond to the positioning of the labor axes,
not to material properties. The independency of the translation is achieved if we
assume that the energy density depends only on the deformation gradient, F =
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F (rU). When the coordinates are rotated, the gradient is rede�ned because
the partials are computed in di�erent directions. In a rotated coordinated, rU
becomes RrU . The energy density is independent of the rotation, if it depends
on the Cauchi deformation

Ca(u) = [(ru)T (ru)]
1
2

F = F (Ca(u)) Indeed, in the rotated coordinates, (ru)T (ru) remains invari-
ant,

(ru)T (RTR)(ru) = (ru)T (ru)

because RTR = I.
Cauchi deformation is a symmetric positive de�nite matrix with the eigen-

values equal to the absolute values of the eigenvalues of ru.

Isotropy Dealing with isotropic materials, we assume in addition that the
energy depends only on eigenvalues �i of Ca(u) but not on its eigenvectors.
Physically, this corresponds to the following requirement of isotropy: The same
energy is stored in an isotropic material if a sphere of the material is cut, rotated,
and clued to its place. because the eigenvalues are the roots of the characteristic
equation for the matric Ca(u), the energy is a function of the coe�cients of this
equation, or of the main invariants

i1 = TrCa(U) = �1 + �2 + �3

i2 = �1�2 + �2�3 + �3�1

i3 = detCa(U) = �1�2�3

of tensor Ca(U):

F = F (i1(Ca(U)); i2(Ca(U)); i3(Ca(U))

This is surprising: the energy of any nonlinear isotropic elastic material depends
on only three scalar characteristics of the deformation.

Linear elasticity To derive equations for the linear elasticity, we assume
that the deection u(r) = U(r)�r is small, or that the point after deformation
remain close it their original position. The gradient of the deformation is close
to the unit matrix, rU = ru� I, because kruk � 1. The Cauchi deformation
becomes

a(rU) = [(rU)T (rU)]
1
2 = I +

1
2

(ru+ (ru)T = okruk
The symmetric part of the deection gradient is called the strain �

� =
1
2

(ru+ (ru)T ;
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It de�nes the energy of any linear elastic body. The linearity of the equations
require that the energy is expandable into Taylor series, and we keep only three
�rst terms

F = F0 +  : �+
1
2
� : C : �+ o(kruk2)

where  is a symmetric tensor called the self-stress, C is the fourth-order sti�-
ness tensor: C = fcijklg, and : means the contraction by two indices.

A quadratic form xTAx for a vector is de�ned by a symmetric matrix A;
similarly, the quadratic form for a symmetric matrix � = f�ijg is de�ned by a
fourth-rank tensor C with special symmetries:

Cijkl = Cklij = Cjikl = Cijlk

Remark 9.2.1 The three-dimensional sti�ness tensor C is determined by 21 con-
stants. Indeed, an arbitrary array Cijkl is de�ned by 34 = 81 constant because each
index can take of of three values. However, C de�nes a quadratic form and therefore
is symmetric Cijkl = Cjikl. The components �ij are also symmetric, �ij = �ji, with
yields to the symmetries Cijkl = Cijlk and Cijkl = Cijkl. These symmetries reduce
the number of independent components of � to six. The quadratic form over six-
dimensional vector is de�ned by a 6� 6 symmetric matrix is de�ned by 7 � 6=2 = 21
constants. Out of these constants, there are three angles of orientation of the labor
system in space and eighteen are material characteristics that are invariant to the
orientation of the labor system.

A similar consideration for the two-dimensional sti�ness tensor shows that it
depends on 4 � 3=2 = 6 constants. Five constants de�ne the material properties,
and one de�ned the angle of orientation of the labor system.

The Euler equations are
r � � = 0; � = �T ;

� = C : �+  ;

� =
1
2
�
(ru) + (ru)T

�
Here, � = @F

@ru is called the stress tensor, its symmetry follows from the sym-
metry of �(ru), the linear relation between is called the constitutive relation,
or, in elasticity, the generalized Hooke's law.

If the body 
 is not prestressed that is if the energy F is minimal when
u = 0, the self-stress is zero,  = 0 and the generalized Hooke's law takes the
form � = C : �.

Isotropic linear elasticity Finally, we establish the form of the energy of
an isotropic linear material. The requirements (??) and (??) together com-
pletely determine the �rst terms in the Taylor series expansion for energy of a
homogeneous body. We may rewrite this expression in the form

F =
1
2
� Tr (�2) +

1
2
�( Tr �)2 + o(k(�k2)
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which coincide with (9.2). This derivation shows that the listed above assump-
tions yield to the only variant of elasticity equations; the elastic properties of
an arbitrary isotropic elastic material are de�ned by the two constants.

Existence of minimizers and stability Notice that the energy (9.1) is not
the convex but polyconvex function of ru.

Explain the di�erence between elasticity equations and elliptic system. Why
elasticity equations have two constants and elliptic system depends on three?

9.3 Stationarity of Lagrangians of Div and Curl
We start with the derivation of the Euler equations for Lagrangians of the type
L(u;r�u;r�u), where u is a vector minimizer. In the next section, we expand
the technique to a general case of Lagrangians that depends on an arbitrary
linear combination of partials of the vector potential.

Some formal identities Before deriving the equations, we explain the struc-
ture of the Curl and Divergence operators. Both of them are linear combinations
of partials of a vector �eld. Consider a vector �eld v = [v1; v2; v3]T in R3 where
vi are di�erentiable function of x. The 3� 3 matrix rv is a list of all partials

rv =

0@ @v1
@x1

@v2
@x1

@v3
@x1

@v1
@x2

@v2
@x2

@v3
@x2

@v1
@x3

@v2
@x3

@v3
@x3

1A
The trace of this matrix is the divergence of v

r � v = Trrv =
@v1

@x1
+
@v2

@x1
+
@v3

@x1

The antisymmetric part rAv = 1
2 (rv � (rv)T ) of rv is a matrix de�ned

by three nonzero entrances

rAv =
1
2

(rv � (rv)T ) =

0@ 0 c3 �c2�c3 0 c1
c3 �c1 0

1A
de�ned by three nonzero entrances

c1 =
@v3

@x2
� @v2

@x3
; c2 =

@v1

@x1
� @v3

@x1
; c3 =

@v2

@x1
� @v1

@x2
:

These entrances form the vector r � v = (c1; c2; c3). The matrix is called the
adjoint to r� v (CHECK IT) matrix.

We also mention the identity

r�r� u = r2u�r � ru (9.5)

for the second-order di�erential operations, that is easy to check using the in-
tegrability conditions.
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Stationarity of a Lagrangian of Divergence Consider the Lagrangian
F (x; u;r�u) where F (x; y; z) is the function of two d-dimensional vectors x and
y and a scalar z. Consider the variational problem

minu I; I =
Z



F (x;u;r � u)dx+

Z
@

f(s;u)ds

where u is a minimizer, and f is a boundary Lagrangian.
The stationarity of I with respect to variation of a component ui of the

minimizer u gives the Euler equation

@
@xi

@F
@z
� @F
@ui

in 
;
@F
@z

ni +
@f
@ui

on @
 (9.6)

where ni is the ith component of the normal n, because F depends only of one
partial @ui@xi of ui. The stationarity with respect to the variation of the vector v
corresponds to the vector equation

r
�
@F
@z

�
� @F
@u

= 0 in 
; n
@F
@z

+
@f
@u

= 0 on @
 (9.7)

where z = r�u that has scalar equations (9.6) as components. The stationarity
conditions form the system of the partial di�erential equations of the order 2d
with d boundary conditions. The boundary conditions state that @f

@u is parallel
to the normal n. They can be rewritten as����@f@u ���� =

�
@F
@z

�2

;
�
@f
@u

�
� n = 0

Problem 9.3.1 Derive Euler equations formally using the formula (??) for matrix
di�erentiation and recalling that r � u = Tr (ru).

Example 9.3.1 (Quadratic Lagrangian) Assume that Lagrangian has the form
L = 1

2 (r�u)2 + 1
2u

tu and f = 1
2u

2 where u is a two-dimensional vector minimizer,
and 
 � R2. The Euler equation is

r(r � u)� u = 0; nr � u = u

or, in coordinates,�
1 +

@2

@x2
1

�
u1 +

@2

@x1@x2
u2 = 0; n1r � u = u1�

1 +
@2

@x2
2

�
u2 +

@2

@x1@x2
u1 = 0 n2r � u = u2

The boundary conditions are transformed to the form

juj2 = (r � u)2; n� u = 0 on @
:
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Dependence on Curl Consider the variational problem with Lagrangian
F (x; u;r� u), for a vector minimizer u,

min
u
I

Z


F (x; u;r� u)dx+

Z
@

f(s; u)ds:

We derive Euler equation is a standard manner. We compute the linearized
increment of I as

I(u+ �u)� I(u) =
Z




�
@F
@u

+
@F

@(r� u)
� r � (�u)

�
dx

+
Z
@


@f(s; u)
@u

ds+ o(k�uk):
We integrate by parts the last term under bulk integral in the right-hand side
using Stoks' theorem (??),Z




@F
@(r� u)

�r�(�u)dx = �
Z



r� @F

@(r� u)
��udx+

Z
@


@F
@(r� u)

�n(�u)ds

and arrive at the Euler-Lagrange equation:

r� @F
@(r� u)

� @F
@u

= 0 in 
 (9.8)

and natural boundary condition
@F

@(r� u)
� n+

@f
@u

= 0:

Example 9.3.2 (Maxwell equations) Lagrangian for the Maxwell equation in
vacuum is (see [])

1
8�

(�
rA0 � @A

@t

�2

�
�
r �A� @A0

@t

�2

� (r�A)2

)
(9.9)

where A is the vector of magnetic potential and A0 is the electric potential. We
will comment on its derivation later, in Section ??. Now we formally derive Euler
equations.

Using the derived formulas, we obtain the stationarity conditions with respect
to A and A0 as

� @
@t

�
rA0 � @A

@t

�
�r�r�A�r

�
r �A� @A0

@t

�
= 0

and
r �
�
rA0 � @A

@t

�
+
@
@t

�
r �A� @A0

@t

�
= 0

respectively.
After the simpli�cation, and the use of (9.5) they take the canonic form of the

Maxwell equations:

� @2

@t2
A+r2A = 0; � @2

@t2
A0 +r2A0 = 0 (9.10)
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9.4 Pointwise constraints: Optimal design
The technique of dealing with pointwise algebraic or di�erential constraints is
similar those used in to one-dimensional variational problems. The statement of
the problem requires the de�nition of the goal functional, di�erential constraints
(the equations of the equilibrium of dynamics), the possible integral constraints,
and the set of controls.

Here we consider several simple minimization problems with di�erential con-
straints that express the thermal equilibrium. The equilibrium depends on the
control (thermal sources or boundary conditions) that must be assigned to min-
imize the functional related to the temperature distribution. The relation be-
tween the temperature and the sources (the conductivity equation) is treated
as di�erential constraint.

9.4.1 Design of boundary temperature
Consider the following problem: A bounded domain 
 is in thermal equilibrium.
The temperature on its boundary �(s) must be chosen to minimize the L2 norm
of deection of the temperature T from a given target distribution �(x) in a
domain 
.

Let us formally state the problem. The objective is

I = min
T

1
2

Z



(T � �)2dx (9.11)

where T is a solution to the boundary value problem of thermal equilibrium
(the di�erential constraint)

r2T = 0 in 
; T = � on @
: (9.12)

This problem connects the control �(s) with the state variable T (x), while the
objective depends on T . The set of controls is the open set of all ny piece-wise
di�erentiable functions.

Harmonic target The problem become trivial when target � is harmonic,
r2� = 0 in 
. In this case, we simply set T = � everywhere in 
 and in
particular at the boundary. The di�erential constraint is satis�ed. The cost of
the problem is zero, which mean that the global minimum is achieved.

Nonharmonic target We account for the �rst equation (9.12) as for the
pointwise constraint. The Lagrange multiplier for the di�erential constraint
(called also the adjoint variable) �(x) is a function of a point of the domain,
because the constraint is enforced everywhere there. The augmented functional
is

IA =
Z




�
1
2

(T � �)2 + �r2T
�
dx: (9.13)
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The variation with respect to T in 
 gives

IA =
Z




�
T � �+r2�

�
�T dx+

I
@


��
�
@T
@n

�
�� �T

�
@
@n

�
��

ds (9.14)

The variation leads to the stationarity condition { the boundary value problem
for �,

r2�+ T = � in 
; (9.15)

Notice that the variations (see (9.12)) of the value of T and its normal derivative
@T
@n at the boundary @
 are arbitrary because the control � is not constrained,
therefore the coe�cients by these variations must be zero at the stationary
solution. We obtain

� = 0;
@
@n

� = 0 on @
 (9.16)

Observe that the problem for the dual variable � has two boundary conditions,
and the problem for T has none. These two problem are solved as a system of
two second-order partial di�erential equations with two boundary conditions.

Remark 9.4.1 The primal problem is underdetermined because the control is not
speci�ed without the dual problem. The dual problem is overdetermined because it
determines the control, and thus makes the pair of problem well-posed.

To solve the system of necessary conditions, we �rst exclude T by taking
Laplacian r2 of the left- and right-hand side of the equation (9.15) and ac-
counting for (9.12). Thus, we obtain a regular fourth-order problem for �

r4� = r2� in 
; � = 0;
@
@n

� = 0 on @
: (9.17)

that has a unique solution. After �nding �, we �nd T from (9.15). Then we
compute the boundary values � = T j@
 and de�ne the control. Notice that if the
target is harmonic, r2� = 0, the second term vanishes and T = � as expected.

The computation goes as following. We de�ne the Green's function G(x; �) of
the di�erential operator from the problem (9.17), or the solution to the boundary
value problem

r4G = �(�) in 
; G = 0;
@
@n

G = 0 on @
: (9.18)

Then � { the solution of (9.17) { is expressed as a convolution

� = G � r2� =
Z



G(x; �)r2

��(�)d� (9.19)

where � is sign of convolution and subindex � show the variable of di�erentia-
tion. From (9.15) we �nd the integral representation of the optimal temperature
distribution through the target function �,

T = ��r2 �G � r2�
�

= ��
Z



r2
xG(x; �)r2

��(�)d� (9.20)
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Remark 9.4.2 Symbolically, denoting the Green's function of biharmonic equa-
tion (9.18) by r�4, we rewrite (9.20) as

T = L�; L = I �r2r�4r2 (9.21)

Observe that r2T � 0 so that the di�erential constraints are always satis�ed.

9.4.2 Design of the bulk sources
Consider again problem (9.11) of the best approximation of the target temper-
ature. This time, consider the control of bulk sources. Namely, assume that
the heat sources � = �(x) can be applied everywhere in the domain 
 but the
boundary temperature is kept equal zero. Assume in addition, that the L2 norm
of the sources is bounded.

In this case, T is a solution to the boundary value problem (the di�erential
constraint)

r2T = � in 
; T = 0 on @
 (9.22)
and � is bounded by an integral constraint

1
2

Z


�2dx = A (9.23)

but not pointwise. These constraints are accounted with Lagrange multipliers
�(x) and , respectively. The extended functional depends on two functions T
and �, Z



L(T; �)dx� A

where
L(T; �) =

1
2

(T � �)2 + �(r2T � �) +
1
2
�2 (9.24)

The variations of L with respect to T and � lead to stationary conditions. The
stationarity with respect to T results in the boundary value problem for �,

r2� = T � � in 
; � = 0 on @
 (9.25)

The stationarity with respect to variation of � leads to the pointwise condition

� = ��
that allows to exclude � from (9.22). and obtain the linear system

r2T = � 1

� in 
; T = 0 on @


r2� = T � � in 
; � = 0 on @


and an integral constraint
1
2

Z


�2dx =

A
2 :

This system could be solved for T (x), �(x) and the constant , which would
completely de�ne the solution.
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Problem 9.4.1 Reduce the system to one fourth-order equation as in the previous
problem. Derive boundary conditions. Using Green's function, obtain the integral
representation of the solution through the target.


