Contents

6 Localization and Discontinuous minimizers 3
6.1 Irregular solutions 3
6.2 Solutions with unbounded derivative. Regularization 7
6.2.1 Lagrangians of linear growth 7
6.2.2 Examples of discontinuous solutions 8
6.2.3 Regularization by penalization 11
6.3 Lagrangians of sublinear growth 13
6.4 Nonuniqueness and improper cost 17
6.5 Conclusion and Problems 18
7 Nonconvex Lagrangians 21
7.0.1 Formalism of convex envelopes 21
7.1 Infinitely oscillatory solutions: Relaxation 25
7.1.1 Nonconvex Variational Problems 25
7.1.2 Minimal Extension 28
7.1.3 Examples 31

Chapter 6

Localization and Discontinuous minimizers

6.1 Irregular solutions

The classical approach to variational problems assumes that the optimal trajectory is a differentiable curve - a solution to the Euler equation that, in addition, satisfies the Weierstrass and Jacobi tests. In this chapter, we consider the variational problems which solutions do not satisfy necessary conditions of optimality. Either the Euler equation does not have solution, or Jacobi or Weierstrass tests are not satisfied at any stationary solution. If this is a case, the extremal cannot be found from necessary conditions. We have met such solution in the problem of minimal surface (Goldschmidt solution, Section ??).

As always, we point to an analogy of irregular solutions in finite-dimensional minimization problems. Consider such a problem of minimization of a scalar function $F(x)$ of a vector $x \in R_{n}$,

$$
\min _{x \in R_{n}} F(x)
$$

The infimum of F may correspond to the regular stationary point where $\nabla F(x)=$ 0 and Hessian is positively defined. This case is an analog of optimality of a stationary solution for which Legandre and Jacobi conditions safisfied. The infimum may also correspond to an irregular point x where $\nabla F(x)$ is not defined, or its norm is unbounded, $\|\nabla F(x)\| \rightarrow \infty$ or x can be improper, $\|x\| \rightarrow \infty \mathrm{mIn}$ the last case, a minimizing sequence x_{n} diverges.

It is natural to expect that in variational problems where the minimizing functions $u(x)$ belong to more complex than R_{n} sets and and are bounded by additional requirements of differentiability, the number of irregular cases growths and causes for these cases are more diverse.

Irregular limits of minimizing sequences A minimization problem always can be solved by a direct method that is by constructing a corresponding min-
imizing sequence, the functions $u^{s}(t)$ with the property $I\left(u^{s}\right) \geq I\left(u^{s+1}\right)$. The functionals $I\left(u^{s}\right)$ form a monotonic sequence of real number that converges to a real or improper limit. In this sense, every variational problem can be solved, but the limiting solution $\lim _{s \rightarrow \infty} u^{s}$ may be irregular; in other terms, it may not exist in an assumed set of functions. Especially, derivation of Euler equation uses an assumption that the minimum is a differentiable function. This assumption leads to complications because the set of differentiable functions is open and the limits of sequences of differentiable functions are not necessary differentiable functions themselves.

We list several types of minimizing sequences that one meets in variational problems

Example 6.1.1 (Various limits of functional sequences)

- The sequence of infinitely differentiable function

$$
\phi_{n}(x)=\frac{n}{\sqrt{\pi}} \exp \left(-\frac{x^{2}}{n^{2}}\right)
$$

when $n \rightarrow \infty$ tends to the δ function, $\phi_{n}(x) \rightarrow \delta(x)$, which is not a function but a distribution.

- The limit $H(x)$ of the sequence of antiderivatives of these infinitely differentiable functions is a discontinuous function (Heaviside function)

$$
H(x)=\int_{-\infty}^{x} \phi_{n}(t) d t= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>1\end{cases}
$$

- The limit of the sequence of oscillating functions

$$
\lim _{n \rightarrow \infty} \sin (n x)
$$

does not exist for any $x \neq 0$.

- The sequence $\left\{\phi_{n}(x)\right\}$, where $\phi_{n}(x)=\frac{1}{\sqrt{n}} \sin (n x)$ converges to zero pointwise, but the sequence of the derivatives $\phi_{n}(x)^{\prime}=\sqrt{n} \cos (n x)$ does not converges and is unbounded everywhere.

These or similar functional sequences often represent minimizing sequences in variational problems. Here we give a brief introduction to several methods aimed to deal with such "exotic" solutions, that do not correspond to solutions of Euler equations

Regularization and relaxation The possible nonexistence of minimizer poses several challenging questions. Some criteria are needed to establish which problems have a classical solution and which do not. These criteria analyze the type of Lagrangians and result in existence theorems.

There are two alternative ideas in handling problems with nondifferentiable minimizers. The admissible class of minimizers can be enlarged and closed in such a way that the "exotic" limits of minimizers would be included in the admissible set. This procedure called relaxation and underlined in the Hilbert's quotation, has motivated the introduction of theory of distributions and the corresponding functional spaces, as well as development of relaxation methods. Below, we consider several ill-posed problems that require rethinking of the concept of a solution.

Alternatively, the minimization problem can be constrained so that the "exotic" behavior of the solutions is penalized and the minimizer will avoid it; this approach is called regularization. It forces the problem to select a classical solution at the expense of increasing the value of the objective functional. When the penalization decreases, the solution tends to the solution of the original problem, remaining conventional. An example of this approach is the viscosity solution developed for dealing with the shock waves.

Existence of a differentiable minimizer We formulate here a list of conditions guarantying the smooth classical solution to a variational problem.

1. The Lagrangian grows superlinearly with respect to u^{\prime} :

$$
\begin{equation*}
\lim _{\left|u^{\prime}\right| \rightarrow \infty} \frac{F\left(x, u, u^{\prime}\right)}{\left|u^{\prime}\right|}=\infty \quad \forall x, u(x) \tag{6.1}
\end{equation*}
$$

This condition forbids any finite jumps of the optimal trajectory $u(x)$; any such jump leads to an infinite penalty in the problem's cost.
2. The cost of the problem increases when $|u| \rightarrow \infty$. This condition forbids a blow-up of the solution.
3. The Lagrangian is convex with respect to u^{\prime} :

$$
F\left(x, u, u^{\prime}\right) \text { is a convex function of } u^{\prime} \quad \forall x, u(x)
$$

at the optimal trajectory u. This condition forbids infinite oscillations because they would increase the cost of the problem.

Let us outline the idea of the proof:

1. First two conditions guarantee that the limit of any minimizing sequence is bounded and has a bounded derivative. The cost of the problem unlimitedly grows when either the function or its derivative tend to infinity at a set of nonzero measure.
2. It is possible to extract a weakly convergent subsequence $u^{S} \rightharpoondown u^{0}$ from a weakly bounded minimizing sequence. Roughly, this means that the subsequence $u^{\epsilon}(x)$ in a sense approximates a limiting function u^{0}, but may wiggle around it infinitely often.
3. Next, we need the property of lower weakly semicontinuity of the objective functional $I(u)$. The lower weakly semicontinuity states that

$$
\lim _{u^{s} \rightarrow u^{0}} I\left(u^{s}\right) \geq I\left(u^{0}\right)
$$

We illustrate this property on the following examples.

Example 6.1.2 The weak limit of the sequence $u^{s}=\sin (s x)$ is zero.

$$
\sin (s x) \rightharpoondown 0 \quad s \rightarrow \infty
$$

Compute the limit of the functional

$$
I_{1}\left(u^{s}\right)=\int_{0}^{1}\left(u^{s}\right)^{2} d x
$$

We have

$$
\lim _{s \rightarrow \infty} \int_{0}^{1} \sin ^{2}(s x) d x=\frac{1}{2} \lim _{s \rightarrow \infty} \int_{0}^{1}\left(1-\cos (2 s x) d x=\frac{1}{2}\right.
$$

and we observe that

$$
\lim _{u^{S} \dashv u^{0}} I_{1}\left(u^{s}\right)>I\left(u^{0}\right)=0
$$

The limit of the functional

$$
I_{2}\left(u^{s}\right)=\int_{0}^{1}\left(\left(u^{s}\right)^{4}-\left(u^{s}\right)^{2}\right) d x
$$

is smaller than $I_{2}(0)$. Indeed,

$$
\lim _{s \rightarrow \infty} \int_{0}^{1}\left(\sin ^{4}(s x)-\sin ^{2}(s x)\right) d x=-\frac{1}{4}
$$

or

$$
\lim _{u^{S} \rightarrow u^{0}} I_{2}\left(u^{s}\right)<I\left(u^{0}\right)=0
$$

The wiggling minimizing sequence u^{s} increases the value of the first functional and decrease the value of the second. The fist functional corresponds to convex integrand and is weakly lower semicontinuous.

The convexity of Lagrangian eliminates the possibility of wiggling, because the cost of the problem with convex Lagrangian is smaller for a smooth function than on any close-by wiggling function by virtue of Jensen inequality. The functional of a convex Lagrangian is lower weakly semicontinuous.

6.2 Solutions with unbounded derivative. Regularization

6.2.1 Lagrangians of linear growth

A minimizing sequence may tend to a discontinuous function if the Lagrangian growth slowly with the increase of u^{\prime}. Here we investigate discontinuous solutions of Lagrangians of linear growth. Assume that the Lagrangian F satisfies the limiting equality

$$
\begin{equation*}
\lim _{\left|u^{\prime}\right| \rightarrow \infty} \frac{F\left(x, u, u^{\prime}\right)}{\left|u^{\prime}\right|} \leq \beta u \tag{6.2}
\end{equation*}
$$

where β is a nonnegative constant.
Considering the scalar case (u is a scalar function), we assume that the minimizing sequence tends to a finite discontinuity (jump) and calculate the impact of it for the objective functional. Let a miniming sequence u^{ϵ} of differentiable functions tend to a discontinuous at the point x_{0} function, as follows

$$
\begin{aligned}
u^{\epsilon}(x) & =\phi(x)+\psi^{\epsilon}(x) \\
\psi^{\epsilon}(x) & \rightharpoondown \alpha H\left(x-x_{0}\right), \quad \beta \neq 0
\end{aligned}
$$

where ϕ is a differentiable function with the bounded everywhere derivative, and H is the Heaviside function.

Assume that functions ψ^{ϵ} that approximate the jump at the point x_{0} are piece-wise linear,

$$
\psi^{\epsilon}(x)= \begin{cases}0 & \text { if } x<x_{0}-\epsilon \\ \frac{\alpha}{\epsilon}\left(x-x_{0}+\epsilon\right) & \text { if } x_{0}-\epsilon \leq x \leq x_{0} \\ \alpha & \text { if } x>x_{0}\end{cases}
$$

The derivative $\left(\psi^{\epsilon}\right)^{\prime}$ is zero outside of the interval $\left[x_{0}-\epsilon, x_{0}\right]$ where it is equal to a constant,

$$
\psi^{\prime}= \begin{cases}0 & \text { if } x \notin\left[x_{0}-\epsilon, x_{0}\right] \\ \frac{\alpha}{\epsilon} & \text { if } x \in\left[x_{0}-\epsilon, x_{0}\right]\end{cases}
$$

The Lagrangian is computed as

$$
F\left(x, u, u^{\prime}\right)= \begin{cases}F\left(x, \phi, \phi^{\prime}\right) & \text { if } x \notin\left[x_{0}-\epsilon, x_{0}\right] \\ F\left(x, \phi+\psi^{\epsilon}, \phi^{\prime}+\frac{\alpha}{\epsilon}\right)=\frac{\alpha \beta}{\epsilon}+o\left(\frac{1}{\epsilon}\right) & \text { if } x \in\left[x_{0}-\epsilon, x_{0}\right]\end{cases}
$$

Here, we use the condition (6.2) of linear growth of F.
The variation of the objective functional is

$$
\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x \leq \int_{a}^{b} F\left(x, \phi, \phi^{\prime}\right) d x+\alpha \beta .
$$

We observe that the contribution $\alpha \beta$ due to the discontinuity of the minimizer is finite when the magnitude $|\alpha|$ of the jump is finite. Therefore, discontinuous
solutions are tolerated in the problems with Lagrangian of linear growth: They do not lead to infinitely large values of the objective functionals. To the contrary, the problems with Lagrangians of superlinear growth $\beta=\infty$ do not allow for discontinuous solution because the penalty is infinitely large.

Remark 6.2.1 The problems of Geometric optics and minimal surface are or linear growth because the length $\sqrt{1+u^{\prime 2}}$ linearly depends on the derivative u^{\prime}. To the contrary, problems of Lagrange mechanics are of quadratic (superlinear) growth because kinetic energy depends of the speed \dot{q} quadratically.

6.2.2 Examples of discontinuous solutions

Example 6.2.1 (Discontinuities in problems of geometrical optics) We have already seen in Section ?? that the minimal surface problem

$$
\begin{equation*}
I_{0}=\min _{u(x)} I(u), \quad I(u)=\pi \int_{o}^{L} u \sqrt{1+\left(u^{\prime}\right)^{2}} d x, \quad u(-1)=1, \quad u(1)=1 \tag{6.3}
\end{equation*}
$$

can lead to a discontinuous solution (Goldschmidt solution)

$$
u=-H(x+1)+H(x-1)
$$

if L is larger than a threshold.
Particularly, the Goldschmidt solution corresponds to zero smooth component $u(x)=0, x=(a, b)$ and two jumps M_{1} and M_{2} of the magnitudes $u(a)$ and $u(b)$, respectively. The smooth component gives zero contribution, and the contributions of the jumps are

$$
I=\pi \frac{1}{2}\left(u^{2}(a)+u^{2}(b)\right)
$$

Problem 6.2.1 Suggest a regularization procedure for monimal surface problem.
The next example (Gelfand \& Fomin) shows that the solution may exhibit discontinuity if the superlinear growth condition is violated even at a single point.

Example 6.2.2 (Discontinuous extremal and viscosity-type regularization) Consider the minimization problem

$$
\begin{equation*}
I_{0}=\min _{u(x)} I(u), \quad I(u)=\int_{-1}^{1} x^{2} u^{2} d x, \quad u(-1)=-1, \quad u(1)=1 \tag{6.4}
\end{equation*}
$$

We observe that $I(u) \geq 0 \forall u$, and therefore $I_{0} \geq 0$. The Lagrangian is convex function of u^{\prime}, and the third condition is satisfied. However, the second condition is violated in $x=0$:

$$
\left.\lim _{\left|u^{\prime}\right| \rightarrow \infty} \frac{x^{2} u^{\prime 2}}{\left|u^{\prime}\right|}\right|_{x=0}=\left.\lim _{\left|u^{\prime}\right| \rightarrow \infty} x^{2}\left|u^{\prime}\right|\right|_{x=0}=0
$$

6.2. SOLUTIONS WITH UNBOUNDED DERIVATIVE. REGULARIZATION9

The functional is of sublinear growth at only one point $x=0$.
Let us show that the solution is discontinuous. Assume the contrary, that the solution satisfies the Euler equation $\left(x^{2} u^{\prime}\right)^{\prime}=0$ everywhere. The equation admits the integral

$$
\frac{\partial L}{\partial u^{\prime}}=2 x^{2} u^{\prime}=C
$$

If $C \neq 0$, the value of $I(u)$ is infinity, because then $u^{\prime}=\frac{C}{2 x^{2}}$, the Lagrangian becomes

$$
x^{2} u^{\prime 2}=\frac{C^{2}}{x^{2}} \quad \text { if } C \neq 0
$$

and the integral of Lagrangian diverges. A finite value of the objective corresponds to $C=0$ which implies that $u_{0}^{\prime}(x)=0$ if $x \neq 0$. Accounting for the boundary conditions, we find

$$
u_{0}(x)=\left\{\begin{array}{r}
-1 \text { if } x<0 \\
1 \text { if } x>0
\end{array}\right.
$$

and $u_{0}(0)$ is not defined.
We arrived at the unexpected result that violates the assumptions used when the Euler equation is derived: $u_{0}(x)$ is discontinuous at $x=0$ and u_{0}^{\prime} exists only in the sense of distributions:

$$
u_{0}(x)=-1+2 H(x), \quad u_{0}^{\prime}(x)=2 \delta(x)
$$

This solution delivers absolute minimum $\left(I_{0}=0\right)$ to the functional, is not differentiable and satisfies the Euler equation in the sense of distributions,

$$
\left.\int_{-1}^{1} \frac{d}{d x} \frac{\partial L}{\partial u^{\prime}}\right|_{u=u_{0}(x)} \phi(x) d x=0 \quad \forall \phi \in L_{\infty}[-1,1]
$$

Regularization A slightly perturb the problem (regularization) yields to the problem that has a classical solution and this solution is close to the discontinuous solution of the original problem. This time, regularization is performed by adding to the Lagrangian a stabilizer, a strictly convex function $\epsilon \rho\left(u^{\prime}\right)$ of superlinear growth.

Consider the perturbed problem for the Example 6.4:

$$
\begin{equation*}
I_{\epsilon}=\min _{u(x)} I_{\epsilon}(u), \quad I_{\epsilon}(u)=\int_{-1}^{1}\left(x^{2} u^{\prime 2}+\epsilon^{2} u^{\prime 2}\right) d x, \quad u(-1)=-1, \quad u(1)=1 \tag{6.5}
\end{equation*}
$$

Here, the perturbation $\epsilon^{2} u^{\prime}$ is added to the original Lagrangian $\epsilon^{2} u^{\prime}$; the perturbed Lagrangian is of superlinear growth everywhere.

The first integral of the Euler equation for the perturbed problem becomes

$$
\left(x^{2}+\epsilon^{2}\right) u^{\prime}=C, \quad \text { or } d u=C \frac{d x}{x^{2}+\epsilon^{2}}
$$

Integrating and accounting for the boundary conditions, we obtain

$$
u_{\epsilon}(x)=\left(\arctan \frac{1}{\epsilon}\right)^{-1} \arctan \frac{x}{\epsilon}
$$

When $\epsilon \rightarrow 0$, the solution $u_{\epsilon}(x)$ converges to $u_{0}(x)$ although the convergence is not uniform at $x=0$.

Unbounded solutions in constrained problems The discontinuous solution often occurs in the problem where the derivative satisfies additional inequalities $u^{\prime} \geq c$, but is unbounded. In such problems, the stationary condition must be satisfied everywhere where derivative is not at the constrain, $u^{\prime}>c$. The next example shows, that the measure of such interval can be infinitesimal.

Example 6.2.3 (Euler equation is meaningless) Consider the variational problem with an inequality constraint

$$
\max _{u(x)} \int_{0}^{\pi} u^{\prime} \sin (x) d x, \quad u(0)=0, u(\pi)=1, u^{\prime}(x) \geq 0 \forall x
$$

The minimizer should either corresponds to the limiting value $u^{\prime}=0$ of the derivative or satisfy the stationary conditions, if $u^{\prime}>0$. Let $\left[\alpha_{i}, \beta_{i}\right]$ be a sequence of subintervals where $u^{\prime}=0$. The stationary conditions must be satisfied in the complementary set of intervals ($\left.\beta_{i}, \alpha_{i+1}\right]$) located between the intervals of constancy. The derivative cannot be zero everywhere, because this would correspond to a constant solution $u(x)$ and would violate the boundary conditions.

However, the minimizer cannot correspond to the solution of Euler equation at any interval. Indeed, the Lagrangian L depends only on x and u^{\prime}. The first integral $\frac{\partial L}{\partial u^{\prime}}=C$ of the Euler equation yields to an absurd result

$$
\sin (x)=\text { constant } \quad \forall x \in\left[\beta_{i}, \alpha_{i+1}\right]
$$

The Euler equation does not produce the minimizer. Something is wrong!
The objective can be immediately bounded by the inequality

$$
\int_{0}^{\pi} f(x) g(x) d x \leq\left(\max _{x \in[0, \pi]} g(x)\right) \int_{0}^{\pi}|f(x)| d x
$$

that is valid for all functions f and g if the involved integrals exist. We set $g(x)=\sin (x)$ and $f(x)=|f(x)|=u^{\prime}$ (because u^{\prime} is nonnegative), account for the constraints

$$
\int_{0}^{\pi}|f(x)| d x=u(\pi)-u(0)=1 \quad \text { and } \max _{x \in[0, \pi]} \sin (x)=1
$$

and obtain the upper bound

$$
I(u)=\int_{0}^{\pi} u^{\prime} \sin (x) d x \leq 1 \quad \forall u
$$

This bound corresponds to the minimizing sequence u_{n} that tends to a Heaviside function $u_{n}(x) \rightarrow H(x-\pi / 2)$. The derivative of such sequence tends to the δ-function, $u^{\prime}(x)=\delta(x-\pi / 2)$. Indeed, immediately check that the bound is realizable, substituting the limit of u_{n} into the problem

$$
\int_{0}^{\pi} \delta\left(x-\frac{\pi}{2}\right) \sin (x) d x=\sin \left(\frac{\pi}{2}\right)=1
$$

The reason for the absence of a stationary solution is the openness of the set of differentiable function. This problem also can be regularized. Here, we show another way to regularization, by imposing an additional pointwise inequality $u^{\prime}(x) \leq \frac{1}{\gamma} \forall x$ (Lipschitz constraint). Because the intermediate values of u^{\prime} are never optimal, optimal u^{\prime} alternates the limiting values:

$$
u_{\gamma}^{\prime}(x)= \begin{cases}0 & \text { if } x \notin\left[\frac{\pi}{2}-\gamma, \frac{\pi}{2}+\gamma\right] \\ \frac{1}{2 \gamma} & \text { if } x \in\left[\frac{\pi}{2}-\gamma, \frac{\pi}{2}+\gamma\right]\end{cases}
$$

The objective functional is equal to

$$
I\left(u_{\gamma}\right)=\frac{1}{2 \gamma} \int_{\frac{\pi}{2}-\gamma}^{\frac{\pi}{2}+\gamma} \sin (x) d x=\frac{1}{\gamma} \sin (\gamma)
$$

When γ tends to zero, I_{M} goas to its limit

$$
\lim _{\gamma \rightarrow 0} I_{\gamma}=1
$$

the length γ of the interval where $u^{\prime}=\frac{1}{2 \gamma}$ goes to zero so that $u_{\gamma}^{\prime}(t)$ weakly converges to the δ-function for $u^{\prime}, u_{\gamma}^{\prime}(t) \rightharpoondown \delta\left(x-\frac{\pi}{2}\right)$.

This example clearly demonstrates the source of irregularity: The absence of the upper bound for the derivative u^{\prime}. The constrained variational problems are studied in the control theory; they are are discussed later in Section ??.

6.2.3 Regularization by penalization

Regularization as smooth approximation The smoothing out feature of regularization is easy demonstrated on the following example of a quadratic approximation of a function by a smoother one.

Approximate a function $f(x)$ where $x \in \mathcal{R}$, by the function $u(x)$, adding a quadratic stabilizer; this problem takes the form

$$
\min _{u} \int_{-\infty}^{\infty}\left[\epsilon^{2}\left(u^{\prime}\right)^{2}+(u-f)^{2}\right] d x
$$

The Euler equation

$$
\begin{equation*}
\epsilon^{2} u^{\prime \prime}-u=-f \tag{6.6}
\end{equation*}
$$

can be easily solved using the Green function

$$
G(x, y)=\frac{1}{2 \epsilon} \exp \left(-\frac{|x-y|}{\epsilon}\right)
$$

of the operator in the left-hand side of (6.6). We have

$$
u(x)=\frac{1}{2 \epsilon} \int_{-\infty}^{\infty} \exp \left(-\frac{|x-y|}{\epsilon}\right) f(y) d y
$$

that is the expression of the averaged f. The smaller is ϵ the closer is the average to f.

Quadratic stabilizers Besides the stabilizer $\varepsilon u^{\prime 2}$, other stabilizers can be considered: The added term εu^{2} penalizes for large values of the minimizer, $\varepsilon\left(u^{\prime \prime}\right)^{2}$ penalizes for the curvature of the minimizer and is insensitive to linearly growing solutions. The stabilizers can be inhomogeneous like $\varepsilon\left(u-u_{\text {target }}\right)^{2}$; they force the solution stay close to a target value. The choice of a specific stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

$$
F=\epsilon^{4}\left(u^{\prime \prime}\right)^{2}+\left(u-f(x)^{2}\right.
$$

Show that $u=f(x)$ if $f(x)$ is any polynomial of the order not higher than three. Find an integral representation for $u(f)$ if the function $f(x)$ is defined at the interval $|x| \leq 1$ and at the axis $x \in R$.

Regularization of a finite-dimensional problem

As the most of variational methods, the regularization has a finite-dimensional analog. It is applicable to the minimization problem of a convex but not strongly convex function which may have infinitely many solutions. The idea of regularization is to slightly perturb the function by small but a strictly convex term; the perturbed problem has a unique solution to matter how small the perturbation is. The numerical advantage of the regularization is the convergence of minimizing sequences.

Let us illustrate ideas of regularization by studying a finite dimensional problem. Consider a linear system

$$
\begin{equation*}
A x=b \tag{6.7}
\end{equation*}
$$

where A is a square $n \times b$ matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

- If $\operatorname{det} A \neq 0$, the problem has a unique solution:

$$
\begin{equation*}
x=A^{-1} b \quad \text { if } \operatorname{det} A \neq 0 \tag{6.8}
\end{equation*}
$$

- If $\operatorname{det} A=0$ and $A b \neq 0$, the problem has no solutions.
- If $\operatorname{det} A=0$ and $A b=0$, the problem has infinitely many solutions.

In practice, we also deal with an additional difficulty: The determinant $\operatorname{det} A$ may be a "very small" number and one cannot be sure whether its value is a result of rounding of digits or it has a "physical meaning." In any case, the errors of using the formula (6.8) can be arbitrary large and the norm of the solution is not bounded.

To address this difficulties, it is helpful to restate linear problem (6.7) as an extremal problem:

$$
\begin{equation*}
\min _{x \in R^{n}}(A x-b)^{2} \tag{6.9}
\end{equation*}
$$

This problem does have at least one solution, no matter what the matrix A is. This solution coincides with the solution of the original problem (6.7) when this problem has a unique solution; in this case the cost of the minimization problem (6.9) is zero. Otherwise, the minimization problem provides "the best approximation" of the non-existing solution.

If the problem (6.7) has infinitely many solutions, so does problem (6.9). Corresponding minimizing sequences $\left\{x^{s}\right\}$ can be unbounded, $\left\|x^{s}\right\| \rightarrow \infty$ when $s \rightarrow \infty$.

In this case, we may select a solution with minimal norm. We use the regularization, passing to the perturbed problem

$$
\min _{x \in R^{n}}(A x-b)^{2}+\epsilon x^{2}
$$

The solution of the last problem exists and is unique. Indeed, we have by differentiation

$$
\left(A^{T} A+\epsilon I\right) x-A^{T} b=0
$$

and

$$
x=\left(A^{T} A+\epsilon I\right)^{-1} A^{T} b
$$

We mention that

1. The inverse exists since the matrix $A^{T} A$ is nonnegative defined, and ϵ is positively defined. The eigenvalues of the matrix $\left(A^{T} A+\epsilon I\right)^{-1}$ are not smaller than ϵ^{-1}
2. Suppose that we are dealing with a well-posed problem (6.7), that is the matrix A is not degenerate. If $\epsilon \ll 1$, the solution approximately is $x=$ $A^{-1} b-\epsilon\left(A^{2} A^{T}\right)^{-1} b$ When $\epsilon \rightarrow 0$, the solution becomes the solution (6.8) of the unperturbed problem, $x \rightarrow A^{-1} b$.
3. If the problem (6.7) is ill-posed, the norm of the solution of the perturbed problem is still bounded:

$$
\|x\| \leq \frac{1}{\epsilon}\|b\|
$$

Remark 6.2.2 Instead of the regularizing term ϵx^{2}, we may use any positively define quadratic $\epsilon\left(x^{T} P x+p^{T} x\right)$ where matrix P is positively defined, $P>0$, or other strongly convex function of x.

6.3 Lagrangians of sublinear growth

Discontinuous extremals Some applications, such as an equilibrium in organic or breakable materials, deal with Lagrangians of sublinear growth. If the Lagrangian $F_{\text {sub }}\left(x, u, u^{\prime}\right)$ growths slower that $\left|u^{\prime}\right|$,

$$
\lim _{|z| \rightarrow \infty} \frac{F_{\text {sub }}(x, y, z)}{|z|}=0 \quad \forall x, y
$$

then the discontinuous trajectories are expected because the functional is insensitive to finite jumps of the trajectory.

The Lagrangian is obviously a nonconvex function of u^{\prime}, The convex envelope of a bounded from below function $F_{\text {sub }}(x, y, z)$ of a sublinear with respect to z growth is independent of z.

$$
\mathcal{C} F_{\mathrm{sub}}(x, y, z)=\min _{z} F_{\mathrm{sub}}(x, y, z)=F_{\mathrm{conv}}(x, y)
$$

In the problems of sublinear growth, the minimum $f(x)$ of the Lagrangian correspond to pointwise condition

$$
f(x)=\min _{u} \min _{v} F(x, u, v)
$$

instead of Euler equation. The second and the third argument become independent of each other. The condition $v^{\prime}=u$ is satisfied (as an average) by fast growth of derivatives on the set of dense set of interval of arbitrary small the summary measure. Because of sublinear growth of the Lagrangian, the contribution of this growth to the objective functional is infinitesimal.

Namely, at each infinitesimal interval of the trajectory $x_{0}, x_{0}+\varepsilon$ the minimizer is a broken curve with the derivative

$$
u^{\prime}(x)= \begin{cases}v_{0} & \text { if } x \in\left[x_{0}, x_{0}+\gamma \varepsilon\right] \\ v_{0} & \text { if } x \in\left[x_{0}+\gamma \varepsilon, x_{0}+\varepsilon\right]\end{cases}
$$

where $v_{0}=\arg \min _{z} F(x, y, z), 1-\gamma \ll 1$, and v_{1} is found from the equation

$$
u^{\prime}(x) \approx \frac{u(x+\varepsilon)-u(x)}{\varepsilon}=\frac{v_{1} \gamma \varepsilon+v_{2}(1-\gamma) \varepsilon}{\varepsilon}
$$

to approximate the derivative u^{\prime}. When $\gamma \rightarrow 1$, the contribution of the second interval becomes infinitesimal even if $v_{2} \rightarrow \infty$.

The solution $u(x)$ can jump near the boundary point, therefore the main boundary conditions are irrelevant. The optimal trajectory will always satisfy natural boundary conditions that correspond to the minimum of the functional, and jump at the boundary points to meet the main conditions.

Example 6.3.1 (Jump at the boundary)

$$
F=\log ^{2}\left(u+u^{\prime}\right) \quad u(0)=u(1)=10
$$

The minimizing sequence converges to a function from the family

$$
u(x)=A \exp (-x)+1 \quad x \in(0,1)
$$

(A is any real number) and is discontinuous on the boundaries.

A problem with everywhere unbounded derivative This example shows an instructive minimizing sequence in a problem of sublinear growth. Consider the problem with the Lagrangian

$$
J(u)=\int_{0}^{1} F\left(x, u, u^{\prime}\right) d x, \quad F=(a x-u)^{2}+\sqrt{\left|u^{\prime}\right|}
$$

This is an approximation problem: we approximate a linear function $f(x)=a x$ on the interval $[0,1]$ by a function $u(x)$ using function $\sqrt{\left|u^{\prime}\right|}$ as a penalty. We show that the minimizer is a distribution that perfectly approximate $f(x)$, is constant almost everywhere, and is nondifferentiable everywhere.

We mention two facts first: (i) The cost of the problem is nonnegative,

$$
J(u) \geq 0 \quad \forall u
$$

and (ii) when the approximating function simply follows $f(x), u_{t r i a l}=a x$, the cost J of the problem is $J=\sqrt{a}>0$ because of the penalty term.

Minimizing sequence Let us construct a minimizing sequence $u^{k}(x)$ with the property:

$$
J\left(u^{k}\right) \rightarrow 0 \quad \text { if } s \rightarrow \infty
$$

Partition the interval $[0,1]$ into N equal subintervals and request that approximation $u(x)$ be equal to $f(x)=a x$ at the ends $x_{k}=\frac{k}{N}$ of the subintervals, and that the approximation is similar in all subintervals of partition,

$$
\begin{aligned}
u(x) & =u_{0}\left(x-\frac{k}{N}\right)+a \frac{k}{N} \quad \text { if } x \in\left[\frac{k}{N}, \frac{k+1}{N}\right] \\
u_{0}(0) & =0, \quad u_{0}\left(\frac{1}{N}\right)=\frac{a}{N}
\end{aligned}
$$

Because of self-similarity, he cost J of the problem becomes

$$
\begin{equation*}
J=N \int_{0}^{\frac{1}{N}}\left(\left(a x-u_{0}\right)^{2}+\sqrt{\left|u_{0}^{\prime}\right|}\right) d x \tag{6.10}
\end{equation*}
$$

The minimizer $u_{0}(x)$ in a small interval $x \in\left[0, \frac{1}{N}\right]$ is constructed as follows

$$
u_{0}(x)= \begin{cases}0 & \text { if } x \in[0, \epsilon] \\ a \frac{1+\delta}{\delta}(x-\epsilon) & \text { if } x \in[\epsilon, \epsilon(1+\delta)]\end{cases}
$$

Here, ϵ and δ are two small positive parameters, linked by the condition $\epsilon(1+$ $\delta)=\frac{1}{N}$. The minimizer stays constant in the interval $x \in[0, \epsilon]$ and then linearly growths on the supplementary interval $x \in[\epsilon, \epsilon(1+\delta)]$. We also check that

$$
u_{0}\left(\frac{1}{N}\right)=u_{0}(\epsilon+\delta \epsilon)=\frac{a}{N}
$$

Derivative $u_{0}^{\prime}(x)$ equals

$$
u_{0}^{\prime}(x)= \begin{cases}0 & \text { if } x \in[0, \epsilon] \\ a \frac{1+\delta}{\delta} & \text { if } x \in[\epsilon, \epsilon(1+\delta)]\end{cases}
$$

Computing the functional (6.10) of the suggested function u_{0},

$$
J=N\left(\int_{0}^{\epsilon}\left((a x)^{2} d x+\int_{\epsilon}^{\epsilon+\delta}\left[\left(a x-a \frac{1+\delta}{\delta}(x-\epsilon)\right)^{2}+\sqrt{a \frac{1+\delta}{\delta}}\right] d x\right)\right.
$$

we obtain, after obvious simplifications,

$$
J=N\left(\frac{a^{2} \epsilon^{3}}{3}(1+\delta)+\epsilon \sqrt{a(1+\delta) \delta}\right)
$$

Excluding $\epsilon=\frac{1}{N(1+\delta)}$ we finally compute

$$
J=\frac{a^{2}}{3 N^{2}(1+\delta)^{2}}+\sqrt{\frac{a \delta}{1+\delta}}
$$

Increasing $N, N \rightarrow \infty$ and decreasing $\delta, \delta \rightarrow 0$ we can bring the cost functional arbitrary close to zero.

The minimizing sequence consists of the functions that are constant almost everywhere and contain a dense set of intervals of rapid growth. It tends to a nowhere differentiable function of the type of Cantor's "devils steps." The derivative is unbounded on a dense in $[0,1]$ set. Because of slow growth of F,

$$
\lim _{\left|u^{\prime}\right| \rightarrow \infty} \frac{F\left(x, u, u^{\prime}\right)}{\left|u^{\prime}\right|} \rightarrow 0
$$

the functional is not sensitive to large values of u^{\prime}, if the growth occurs at the interval of infinitesimal measure. The last term of the Lagrangian does not contribute at all to the cost.

Regularization and relaxation To make the solution regular, we may go in two different directions. The first way is to forbid the wiggles by adding a penalization term $\epsilon\left(u^{\prime}-a\right)^{2}$ to the Lagrangian which is transformed to:

$$
F_{\epsilon}=(u-a x)^{2}+\sqrt{\left|u^{\prime}\right|}+\epsilon\left(u^{\prime}-a\right)^{2}
$$

The solution would become smooth, but the cost of the problem would significantly increase because the term $\sqrt{\left|u^{\prime}\right|}$ contributes to it and the cost $J \epsilon=J\left(F_{\epsilon}\right)$ would depend on ϵ and will rapidly grow to be close to \sqrt{a}. Until the cost grows to this value, the solution remain nonsmooth.

Alternatively, we may "relax" the problem, replacing it with another one that preserves its cost and has a classical solution that approximates our nonregular
minimizing sequence. To perform the relaxation, we simply ignore the term $\sqrt{\left|u^{\prime}\right|}$ and pass to the Lagrangian

$$
F_{\text {relax }}=(u-a x)^{2}
$$

which corresponds the same cost as the original problem and a classical solution $u_{\text {class }}=a x$ that in a sense approximate the true minimizer, but not its derivative; it is not differentiable at all.

6.4 Nonuniqueness and improper cost

Unbounded cost functional An often source of ill-posedness (the nonexistence of the minimizer) is the convergence to minimizing functional to $-\infty$ or the maximizing functional to $+\infty$. To illustrate this point, consider the opposite of the brachistochrone problem: Maximize the travel time between two points. Obviously, this time can be made arbitrary large by different means: For example, consider the trajectory that has a very small slop in the beginning and then rapidly goes down. The travel time in the first part of the trajectory can be made arbitrary large (Do the calculations!). Another possibility is to consider a very long trajectory that goes down and then up; the larger is the loop the more time is needed to path it. In both cases, the maximizing functional goes to infinity. The sequences of maximizing trajectories either tend to a discontinuous curve or is unbounded and diverges. The sequences do not convergence to a finite differentiable curve.

Generally, the problem with an improper cost does not correspond to a classical solution: a finite differentiable curve on a finite interval. Such problems have minimizing sequences that approach either non-smooth or unbounded curve or do not approach anything at all. One may either accept this "exotic solution," or assume additional constraints and reformulate the problem. In applications, the improper cost often means that something essential is missing in the formulation of the problem.

Nonuniqueness Another source of irregular solutions is nonuniqueness. If the problem has families of many extremal trajectories, the alternating of them can occur in infinitely many ways. The problem could possess either classical or nonclassical solution. To detect such problem, we investigate the WeierstrassErdman conditions which show the possibilities of broken extremals.

An example of nonuniqueness, nonconvex Lagrangian As a first example, consider the problem

$$
\begin{equation*}
I(v)=\min _{u} \int_{0}^{1}\left(1-\left(u^{\prime}\right)^{2}\right)^{2} d x, \quad u(0)=0, u(1)=v \tag{6.11}
\end{equation*}
$$

The Euler equation admits the first integral, because the Lagrangian depends only on u^{\prime},

$$
\left(1-\left(u^{\prime}\right)^{2}\right)\left(1-2 u^{\prime}\right)=C
$$

the optimal slope is constant everywhere and is equal to V.
When $-1 \leq v \leq 1$, the constant C is zero and the value of I is zero as well. The solution is not unique. Indeed, in this case one can joint the initial and the final points by the curve with the slope equal to either one or negative one in all points. The Weierstrass-Erdman condition

$$
\left[\left(1-\left(u^{\prime}\right)^{2}\right)\left(1-2 u^{\prime}\right)\right]_{-}^{+}=0
$$

is satisfied if $u^{\prime}= \pm 1$ to the left and to the right of the point of break. There are infinitely many extremals with arbitrary number of breaks that all join the end points and minimize the functional making it equal to zero. Notice that Lagrangian is not convex function of u^{\prime}.

Similarly to the finite-dimensional case, regularization of variational problems with nonunique solutions can be done by adding a penalty $\epsilon\left(u^{\prime}\right)^{2}$, or $\epsilon\left(u^{\prime \prime}\right)^{2}$ to the minimizer. Penalty would force the minimizer to prefer some trajectories. Particularly, the penalty term may force the solution to become infinitely oscillatory at a part of trajectory.

Another example of nonuniqueness, convex Lagrangian Work on the problem

$$
\begin{equation*}
I(v)=\min _{u} \int_{0}^{1}\left(1-u^{\prime}\right)^{2} \sin ^{2}(m u) d x, \quad u(0)=0, u(1)=v \tag{6.12}
\end{equation*}
$$

As in the previous problem, here there are two kinds of "free passes" (the trajectories that correspond to zero Lagrangian that is always nonnegative): horizontal ($u=\pi k / m, u^{\prime}=0$) and inclined ($u=c+x, u^{\prime}=1$). The WeierstrassErdman condition

$$
\left[\sin (m u)^{2}\left(1-u^{\prime}\right)\right]_{-}^{+}=0
$$

allows to switch these trajectories in infinitely many ways.
Unlike the previous case, the number of possible switches is finite; it is controlled by parameter m. The optimal trajectory is monotonic; it becomes unique if $v \geq 1$ or $v \leq 0$, and if $|m|<\frac{1}{\pi}$.

6.5 Conclusion and Problems

We have observed the following:

- A one-dimensional variational problem has the fine-scale oscillatory minimizer if its Lagrangian $F\left(x, u, u^{\prime}\right)$ is a nonconvex function of its third argument.
- Homogenization leads to the relaxed form of the problem that has a classical solution and preserves the cost of the original problem.
- The relaxed problem is obtained by replacing the Lagrangian of the initial problem by its convex envelope. It can be computed as the second conjugate to F.
- The dependence of the Lagrangian on its third argument in the region of nonconvexity does not effect the relaxed problem.

To relax a variational problem we have used two ideas. First, we replaced the Lagrangian with its convex envelope and obtained a stable variational problem of the problem. Second, we proved that the cost of variational problem with the transformed Lagrangian is equal to the cost of the problem with the original Lagrangian if its argument \boldsymbol{u} is a zigzag-like curve.

Problems

1. Formulate the Weierstrass test for the extremal problem

$$
\min _{u} \int_{0}^{1} F\left(x, u, u^{\prime}, u^{\prime \prime}\right)
$$

that depends on the second derivative $u^{\prime \prime}$.
2. Find the relaxed formulation of the problem

$$
\begin{array}{r}
\min _{u_{1}, u_{2}} \int_{0}^{1}\left(u_{1}^{2}+u_{2}^{2}+F\left(u_{1}^{\prime}, u_{2}^{\prime}\right)\right) \\
u_{1}(0)=u_{2}(0)=0, \quad u_{1}(1)=a, \quad u_{2}(1)=b
\end{array}
$$

where $F\left(v_{1}, v_{2}\right)$ is defined by (7.8). Formulate the Euler equations for the relaxed problems and find minimizing sequences.
3. Find the relaxed formulation of the problem

$$
\begin{array}{r}
\min _{u} \int_{0}^{1}\left(u^{2}+\min \left\{\left|u^{\prime}-1\right|,\left|u^{\prime}+1\right|+0.5\right\}\right) \\
u(0)=0, \quad u(1)=a
\end{array}
$$

Formulate the Euler equation for the relaxed problems and find minimizing sequences.
4. Find the conjugate and second conjugate to the function

$$
F(x)=\min \left\{x^{2}, 1+a x^{2}\right\}, \quad 0<a<1
$$

Show that the second conjugate coincides with the convex envelope $\mathcal{C} F$ of F.

20 CHAPTER 6. LOCALIZATION AND DISCONTINUOUS MINIMIZERS
5. Let $x(t)>0, y(t)$ be two scalar variables and $f(x, y)=x y^{2}$. Demonstrate that

$$
f(\langle x\rangle,\langle y\rangle) \geq\langle y\rangle^{2}\left\langle\frac{1}{x}\right\rangle^{-1} .
$$

When is the equality sign achieved in this relation?
Hint: Examine the convexity of a function of two scalar arguments,

$$
g(y, z)=\frac{y^{2}}{z}, \quad z>0
$$

Chapter 7

Nonconvex Lagrangians

7.0.1 Formalism of convex envelopes

In dealing with nonconvex variational problems, the central idea is to relax them replacing the nonconvex Lagrangian with its convex envelope. We already introduced the convex envelope of sets in R^{n}. Here we transform the notion of convex envelope from sets to functions.

A graph of any function $y=f(x)$ divides the space into two sets, and the convex envelope of a function is the convex envelope of the set $y>f(x)$. It the function is not defined for all $x \in R^{n}$ (like $\log x$ is defined only for $x \geq 0$), we extend the definition of a function assigning the improper value $+\infty$ to function of in all undefined values arguments.

There are two dual description of the convex envelope. One can either define it as a unity of all planes that lie below the graph of the function, or as a unity of all intervals that join two points on that graph

They are formalized as follows.
Definition 7.0.1 (Convex envelope of a function) The convex envelope $\mathcal{C} f(x v)$ of a function $f: R^{n} \rightarrow R^{1}$ is the maximal of the set of affine function $g(v)=a^{T} v+b$ that do not surpass $f(v)$ everywhere [?]:.

$$
\begin{equation*}
\mathcal{C} F(\boldsymbol{v})=\max _{a, b} \phi(\boldsymbol{v}): \phi(\boldsymbol{v}) \leq F(\boldsymbol{v}) \forall \boldsymbol{v} \quad \text { and } \phi(\boldsymbol{v}) \text { is convex. } \tag{7.1}
\end{equation*}
$$

Remark 7.0.1 In the above definition, one can replace the set of affine functions with convex functions.

The Jensen's inequality produces the following definition of the convex envelope:

Figure 7.1: Left: Convex envelope as a unity of lines, Right: Convex envelope as a unity of intervals

Definition 7.0.2 The convex envelope $\mathcal{C} F(v)$ is a solution to the following minimal problem:

$$
\begin{equation*}
\mathcal{C} F(\boldsymbol{v})=\inf _{\boldsymbol{\xi}} \frac{1}{l} \int_{0}^{l} F(\boldsymbol{v}+\boldsymbol{\xi}) d x \quad \forall \boldsymbol{\xi}: \int_{0}^{l} \boldsymbol{\xi} d x=0 . \tag{7.2}
\end{equation*}
$$

This definition determines the convex envelope as the minimum of all parallel secant hyperplanes that intersect the graph of F; it is based on Jensen's inequality (??).

To compute the convex envelope $\mathcal{C} F$ one can use the Carathéodory theorem (see [?, ?]). It states that the argument $\boldsymbol{\xi}(x)=\left[\xi_{1}(x), \ldots, \xi_{n}(x)\right]$ that minimizes the right-hand side of (7.2) takes no more than $n+1$ different values. This theorem refers to the obvious geometrical fact that the convex envelope consists of the supporting hyperplanes to the graph $F\left(\xi_{1}, \ldots, \xi_{n}\right)$. Each of these hyperplanes is supported by no more than $(n+1)$ points. For example, a line $\left(x \in R^{1}\right)$ is supported by two points, a plane $\left(x \in R^{2}\right)$ - by three points. These points are called supporting points.

The Carathéodory theorem allows us to replace the integral in the right-hand side of (7.2) in the definition of $\mathcal{C} F$ by the sum of $n+1$ terms; the definition (7.2) becomes:

$$
\begin{equation*}
\mathcal{C} F(\boldsymbol{v})=\min _{m_{i} \in M} \min _{\boldsymbol{\xi}_{i} \in \boldsymbol{\Xi}}\left\{\sum_{i=1}^{n+1} m_{i} F\left(\boldsymbol{v}+\boldsymbol{\xi}_{i}\right)\right\}, \tag{7.3}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\left\{m_{i}: \quad m_{i} \geq 0, \quad \sum_{i=1}^{n+1} m_{i}=1\right\} \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\Xi}=\left\{\boldsymbol{\xi}_{i}: \quad \sum_{i=1}^{n+1} m_{i} \boldsymbol{\xi}_{i}=0\right\} . \tag{7.5}
\end{equation*}
$$

The convex envelope $\mathcal{C} F(\boldsymbol{v})$ of a function $F(\boldsymbol{v})$ at a point \boldsymbol{v} coincides with either the function $F(\boldsymbol{v})$ or the hyperplane that touches the graph of the function F. The hyperplane remains below the graph of F except at the tangent points where they coincide.

The position of the supporting hyperplane generally varies with the point \boldsymbol{v}. A convex envelope of F can be supported by fewer than $n+1$ points; in this case several of the parameters m_{i} are zero. Generally, the are only n parameters that vary, some them are coordinates of of the supporting points, other are coordinates of the points

Example 7.0.1 Obviously, the convex envelope of a convex function coincides with the function itself, so all m_{i} but m_{1} are zero in (7.25) and $m_{1}=1$; the parameter $\boldsymbol{\xi}_{1}$ is zero because of the restriction (7.5).

The convex envelope of a "two-well" function,

$$
\begin{equation*}
\Phi(\boldsymbol{v})=\min \left\{F_{1}(\boldsymbol{v}), F_{2}(\boldsymbol{v})\right\} \tag{7.6}
\end{equation*}
$$

where F_{1}, F_{2} are convex functions of \boldsymbol{v}, either coincides with one of the functions F_{1}, F_{2} or is supported by no more than two points for every \boldsymbol{v}; supporting points belong to different wells. In this case, formulas (7.25)-(7.5) for the convex envelope are reduced to

$$
\begin{equation*}
\mathcal{C} \Phi(\boldsymbol{v})=\min _{m, \boldsymbol{\xi}}\left\{m F_{1}(\boldsymbol{v}-(1-m) \boldsymbol{\xi})+(1-m) F_{2}(\boldsymbol{v}+m \boldsymbol{\xi})\right\} \tag{7.7}
\end{equation*}
$$

Indeed, the convex envelope touches the graphs of the convex functions F_{1} and F_{2} in no more than one point. Call the coordinates of the touching points $\boldsymbol{v}+\boldsymbol{\xi}_{1}$ and $\boldsymbol{v}+\boldsymbol{\xi}_{2}$, respectively. The restrictions (7.5) become $m_{1} \boldsymbol{\xi}_{1}+m_{2} \boldsymbol{\xi}_{2}=$ $0, m_{1}+m_{2}=1$. It implies the representations $\boldsymbol{\xi}_{1}=-(1-m) \boldsymbol{\xi}$ and $\boldsymbol{\xi}_{2}=m \boldsymbol{\xi}$.

Example 7.0.2 Consider the special case of the two-well function,

$$
F\left(v_{1}, v_{2}\right)= \begin{cases}0 & \text { if } v_{1}^{2}+v_{2}^{2}=0 \tag{7.8}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } \quad v_{1}^{2}+v_{2}^{2} \neq 0\end{cases}
$$

The convex envelope of F is equal to

$$
\mathcal{C} F\left(v_{1}, v_{2}\right)= \begin{cases}2 \sqrt{v_{1}^{2}+v_{2}^{2}} & \text { if } v_{1}^{2}+v_{2}^{2} \leq 1 \tag{7.9}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } \\ v_{1}^{2}+v_{2}^{2}>1\end{cases}
$$

Here the envelope is a cone if it does not coincide with F and a paraboloid if it coincides with F.

Indeed, the graph of the function $F\left(v_{1}, v_{2}\right)$ is rotationally symmetric in the plane v_{1}, v_{2}; therefore, the convex envelope is symmetric as well: $\mathcal{C} F\left(v_{1}, v_{2}\right)=$ $f\left(\sqrt{v_{1}^{2}+v_{2}^{2}}\right)$. The convex envelope $\mathcal{C} F(\boldsymbol{v})$ is supported by the point $\boldsymbol{v}-(1-m) \boldsymbol{\xi}=$ $\mathbf{0}$ and by a point $\boldsymbol{v}+m \boldsymbol{\xi}=\boldsymbol{v}^{0}$ on the paraboloid $\phi(\boldsymbol{v})=1+v_{1}^{2}+v_{2}^{2}$. We have

$$
\boldsymbol{v}^{0}=\frac{1}{1-m} \boldsymbol{v}
$$

and

$$
\begin{equation*}
\mathcal{C} F(\boldsymbol{v})=\min _{m}\left\{(1-m) \phi\left(\frac{1}{1-m} \boldsymbol{v}\right)\right\} . \tag{7.10}
\end{equation*}
$$

The calculation of the minimum gives (7.9).
Example 7.0.3 Consider the nonconvex function $F(v)$ used in Example ??:

$$
F(v)=\min \left\{(v-1)^{2},(v+1)^{2}\right\}
$$

It is easy to see that the convex envelope $\mathcal{C} F$ is

$$
\mathcal{C} F(v)= \begin{cases}(v+1)^{2} & \text { if } v \leq-1 \\ 0 & \text { if } v \in(-1,1) \\ (v-1)^{2} & \text { if } v \geq 1\end{cases}
$$

Example 7.0.4 Compute convex envelope for a more general two-well function:

$$
F(v)=\min \left\{(a v)^{2},(b v+1)^{2}\right\}
$$

The envelope $\mathcal{C} F_{n}(v)$ coincides with either the graph of the original function or the linear function $l(v)=A v+B$ that touches the original graph in two points (as it is predicted by the Carathéodory theorem; in this example $n=1$). This function can be found as the common tangent $l(v)$ to both convex branches (wells) of $F(v)$:

$$
\left\{\begin{array}{l}
l(v)=a v_{1}^{2}+2 a v_{1}\left(v-v_{1}\right) \tag{7.11}\\
l(v)=\left(b v_{2}^{2}+1\right)+2 b v_{2}\left(v-v_{2}\right)
\end{array}\right.
$$

where v_{1} and v_{2} belong to the corresponding branches of F_{p} :

$$
\left\{\begin{array}{l}
l\left(v_{1}\right)=a v_{1}^{2} \tag{7.12}\\
l\left(v_{2}\right)=b v_{2}^{2}+1
\end{array}\right.
$$

Solving this system for v, v_{1}, v_{2} we find the coordinates of the supporting points

$$
\begin{equation*}
v_{1}=\sqrt{\frac{b}{a(a-b)}}, \quad v_{2}=\sqrt{\frac{a}{b(a-b)}}, \tag{7.13}
\end{equation*}
$$

and we calculate the convex envelope:

$$
\mathcal{C} F(v)= \begin{cases}a v^{2} & \text { if }|v|<v_{1} \tag{7.14}\\ 2 v \sqrt{\frac{a b}{a-b}}-\frac{b}{a-b} & \text { if } v \in\left[v_{1}, v_{2}\right] \\ 1+b v^{2} & \text { if }|v|<v_{2}\end{cases}
$$

that linearly depends on v in the region of nonconvexity of F.
Hessian of Convex Envelope We mention here an algebraic property of the convex envelope that we will use later. If the convex envelope $\mathcal{C} F(\boldsymbol{v})$ does not coincide with $F(\boldsymbol{v})$ for some $\boldsymbol{v}=\boldsymbol{v}_{n}$, then the graph of $\mathcal{C} F\left(\boldsymbol{v}_{n}\right)$ is convex, but not strongly convex. At these points the Hessian $H e(F)=\frac{\partial^{2}}{\partial v_{i} \partial v_{j}} F(\boldsymbol{v})$ is semi-positive; it satisfies the relations

$$
\begin{equation*}
H e(\mathcal{C} F(\boldsymbol{v})) \geq 0, \quad \operatorname{det} H(\mathcal{C} F(\boldsymbol{v}))=0 \quad \text { if } \mathcal{C} F<F \tag{7.15}
\end{equation*}
$$

which say that $H e(\mathcal{C} F)$ is a nonnegative degenerate matrix. These relations can be used to compute $\mathcal{C} F(\boldsymbol{v})$. For example, compute the Hessian of the convex envelope $\mathcal{C} F\left(v_{1}, v_{2}\right)=\sqrt{v_{1}^{2}+v_{2}^{2}}$ obtained in Example 7.0.2. The Hessian is

$$
H e\left(\sqrt{v_{1}^{2}+v_{2}^{2}}\right)=\frac{1}{\left(v_{1}^{2}+v_{2}^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{cc}
v_{1}^{2} & v_{1} v_{2} \\
v_{1} v_{2} & v_{2}^{2}
\end{array}\right)
$$

and its determinant is clearly zero.
Comparing the minimization problems

$$
I=\min _{x \in R^{n}} F(x) \quad \text { and } \quad I_{c}=\min _{x \in R^{n}} \mathcal{F}(x)
$$

we observe that (i) $I=I_{c}$ - the minimum of a function coincides with the minimum of its convex envelope, and (ii) the convex envelope of a function does not have local minima but only not global one.

Remark 7.0.2 (Convex envelope as second conjugate) We may as well compute convex envelope in more regular way as a second conjugate of the original function as described later in Section ??.

Convex envelope are used below in the next Section to address ill-posed variational problems.

7.1 Infinitely oscillatory solutions: Relaxation

7.1.1 Nonconvex Variational Problems.

Consider the variational problem

$$
\begin{equation*}
\inf _{u} J(u), \quad J(u)=\inf _{u} \int_{0}^{1} F\left(x, u, u^{\prime}\right) d x, \quad u(0)=a_{0}, u(1)=a_{1} \tag{7.16}
\end{equation*}
$$

with Lagrangian $F(x, \boldsymbol{y}, \boldsymbol{z})$ and assume that the Lagrangian is nonconvex with respect to \boldsymbol{z}, for some values of $z, z \in \mathcal{Z}_{\mathrm{f}}$.

Definition 7.1.1 We call the forbidden region $\mathcal{Z}_{\mathfrak{f}}$ the set of \boldsymbol{z} for which $F(x, \boldsymbol{y}, \boldsymbol{z})$ is not convex with respect to \boldsymbol{z}.

The Weierstrass test requires that the derivative u^{\prime} of an extremal never assume values in the set \mathcal{Z}_{f},

$$
\begin{equation*}
u^{\prime} \notin \mathcal{Z}_{\mathrm{f}} \tag{7.17}
\end{equation*}
$$

On the other hand, a stationary trajectory u may be required by Euler equations to pass through this set. Such trajectories fail the Weierstrass test and must be rejected. We conclude that the true minimizer (the limit of a minimizing sequence) is not a classical differentiable curve, otherwise it would satisfy both the Euler equation and the Weierstrass test.

We will demonstrate that a minimizing sequence tends to a "generalized curve." It consists of infinitely many infinitesimal zigzags. The derivative of the minimizer "jumps over" the forbidden set, and does it infinitely often. Because of these jumps, the derivative of a minimizer stays outside of the forbidden interval but its average can take any value within or outside the forbidden region. The limiting curve - the minimizer - has a dense set of points of discontinuity of the derivative.

Example of a nonconvex problem Consider a simple variational problem that yields to an irregular solution [?]:

$$
\begin{equation*}
\inf _{u} I(u)=\inf _{u} \int_{0}^{1} G\left(u, u^{\prime}\right) d x, \quad u(0)=u(1)=0 \tag{7.18}
\end{equation*}
$$

where

$$
G(u, v)=u^{2}+\left\{\begin{array}{lll}
(v-1)^{2}, & \text { if } v \geq \frac{1}{2} & \text { Regime 1 } \tag{7.19}\\
\frac{1}{2}-v^{2} & \text { if }-\frac{1}{2} \leq v \leq \frac{1}{2} & \text { Regime 2 } \\
(v+1)^{2} & \text { if } v \leq-\frac{1}{2} & \text { Regime 3 }
\end{array} .\right.
$$

The graph of the function $G(., v)$ is presented in ??B; it is a nonconvex differentiable function of v of superlinear growth.

The Lagrangian G penalizes the trajectory u for having the speed $\left|u^{\prime}\right|$ different from ± 1 and penalizes the deflection of the trajectory u from zero. These contradictory requirements cannot be resolved in the class of classical trajectories.

Indeed, a differentiable minimizer satisfies the Euler equation (??) that takes the form

$$
\begin{array}{ll}
u^{\prime \prime}-u=0 & \text { if } \tag{7.20}\\
u^{\prime \prime}+u=0 & \left|u^{\prime}\right| \geq \frac{1}{2} \\
\hline u^{\prime} \left\lvert\, \leq \frac{1}{2} .\right.
\end{array}
$$

The Weierstrass test additionally requires convexity of $G(u, v)$ with respect to v; the Lagrangian $G(u, v)$ is nonconvex in the interval $v \in(-1,1)$ (see ??). The Weierstrass test requires the extremal (7.20) to be supplemented by the constraint (recall that $v=u^{\prime}$)

$$
\begin{equation*}
u^{\prime} \notin(-1,1) \text { at the optimal trajectory. } \tag{7.21}
\end{equation*}
$$

The second regime in (7.20) is never optimal because it is realized inside of the forbidden interval. It is not clear how to satisfy both the Euler equations and Weierstrass test because the Euler equation does not have a freedom to change the trajectory to avoid the forbidden interval.

We can check that the stationary trajectory can be broken at any point. The Weierstrass-Erdman condition (??) (continuity of $\frac{\partial L}{\partial u^{\prime}}$) must be satisfied at a point of the breakage. This condition permits switching between the first ($u^{\prime}>1 / 2$) and third ($u^{\prime}<-1 / 2$) regimes in (7.19) when

$$
\left[\frac{\partial L}{\partial u^{\prime}}\right]_{-}^{+}=2\left(u_{(1)}^{\prime}-1\right)-2\left(u_{(3)}^{\prime}+1\right)=0
$$

or when

$$
u_{(1)}^{\prime}=1, \quad u_{(3)}^{\prime}=-1
$$

which means the switching from one end of the forbidden interval $(-1,1)$ to another.

Remark 7.1.1 Observe, that the easier verifiable Legendre condition $\frac{\partial^{2} F}{\partial\left(u^{\prime}\right)^{2}} \geq 0$ gives a twice smaller forbidden region $\left|u^{\prime}\right| \leq \frac{1}{2}$ and is not in the agreement with Weierstrass-Erdman condition. One should always use stronger conditions!

Minimizing sequence The minimizing sequence for problem (7.18) can be immediately constructed. Indeed, the infimum of (7.18) obviously is nonnegative, $\inf _{u} I(u) \geq 0$. Therefore, any sequence u^{s} with the property

$$
\begin{equation*}
\lim _{s \rightarrow \infty} I\left(u^{s}\right)=0 \tag{7.22}
\end{equation*}
$$

is a minimizing sequence.
Consider a set of functions $\tilde{u}^{s}(x)$ with the derivatives equal to ± 1 at each point,

$$
\tilde{u}^{\prime}(x)= \pm 1 \quad \forall x
$$

These functions belong to the boundary of the forbidden interval of the nonconvexity of $G(., v)$; they make the second term in the Lagrangian (7.19) vanish, $G\left(\tilde{u}, \tilde{u}^{\prime}\right)=u^{2}$, and the problem becomes

$$
\begin{equation*}
I\left(\tilde{u}^{s},\left(\tilde{u}^{s}\right)^{\prime}\right)=\min _{\tilde{u}} \int_{0}^{1}\left(\tilde{u}^{s}\right)^{2} d x \tag{7.23}
\end{equation*}
$$

The sequence \tilde{u}^{s} oscillates near zero if the derivative $\left(\tilde{u}^{s}\right)^{\prime}$ changes its sign on intervals of equal length. The cost $I\left(\tilde{u}^{s}\right)$ depends on the density of switching points and tends to zero when the number of these points increases (see ??). Therefore, the minimizing sequence consists of the saw-tooth functions \tilde{u}^{s}; the heights of the teeth tend to zero and their number tends to infinity as $s \rightarrow \infty$.

Note that the minimizing sequence $\left\{\tilde{u}^{s}\right\}$ does not converge to any classical function. This minimizer $\tilde{u}^{s}(x)$ satisfies the contradictory requirements, namely, the derivative must keep the absolute value equal to one, but the function itself must be arbitrarily close to zero:

$$
\begin{equation*}
\left|\left(\tilde{u}^{s}\right)^{\prime}\right|=1 \quad \forall x \in[0,1], \quad \max _{x \in[0,1]} \tilde{u}^{s} \rightarrow 0 \quad \text { as } s \rightarrow \infty \tag{7.24}
\end{equation*}
$$

The limiting curve u_{0} has zero norm in $C_{0}[0,1]$ but a finite norm in $C_{1}[0,1]$.
Remark 7.1.2 Below, we consider this problem with arbitrary boundary values; the solution corresponds partly to the classical extremal (7.20), (7.21), and partly to the saw-tooth curve; in the last case u^{\prime} belongs to the boundary of the forbidden interval $\left|u^{\prime}\right|=1$.

Regularization and relaxation We may apply regularization to discourage the solution to oscillate infinitely often. For example, we may penalize for the discontinuity of the u^{\prime} adding the stabilizing term $\epsilon\left(u^{\prime \prime}\right)^{2}$ to the Lagrangian. Doing this, we pass to the problem

$$
\min _{u} \int_{0}^{1}\left(\epsilon^{2}\left(u^{\prime \prime}\right)^{2}+G\left(u, u^{\prime}\right)\right) d x
$$

that corresponds to Euler equation:

$$
\begin{array}{ll}
\epsilon^{2} u^{I V}-u^{\prime \prime}+u=0 & \text { if } \tag{7.25}\\
\epsilon^{2} u^{I V}+u^{\prime \prime}+u=0 & \left|u^{\prime}\right| \geq \frac{1}{2} \\
\text { if } & \left|u^{\prime}\right| \leq \frac{1}{2}
\end{array}
$$

The Weierstrass condition this time requires the convexity of the Lagrangian with respect to $u^{\prime \prime}$; this condition is satisfied.

One can see that the solution of equation (7.25) is oscillatory; the period of oscillations is of the order of $\epsilon \ll 1$: The solution still tends to an infinitely often oscillating distribution. When ϵ is positive but small, the solution has finite but large number of wiggles. The computation of such solutions is difficult and often unnecessary: It strongly depends on an artificial parameter ϵ, which is difficult to justify physically. Although formally the solution of regularized problem exists, the questions remain. The problem is still computationally difficult and the difficulty grows when $\epsilon \rightarrow 0$ because the finite frequency of the oscillation of the solution tends to infinity.

Below we describe the relaxation of a nonconvex variational problem. The idea of relaxation is in a sense opposite to regularization. Instead of penalization for fast oscillations, we admit oscillating functions as legitime minimizers enlarging set of minimizers. The main problem is to find an adequate description of infinitely often switching controls in terms of smooth functions. It turns out that the limits of oscillating minimizers allows for a parametrization and can be effectively described by a several smooth functions: the values of alternating limits for u^{\prime} and the average time that minimizer spends on each limit. The relaxed problem has the following two basic properties:

- The relaxed problem has a classical solution.
- The infimum of the functional (the cost of the problem) in the initial problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation based on necessary and sufficient conditions. Each of them yields to the same construction but uses different arguments to achieve it. In the next chapters we will see similar procedures applied to variational problems with multiple integrals; sometimes they also yield the same construction, but generally they result in different relaxations.

7.1.2 Minimal Extension

We introduce the idea of relaxation of a variational problem. Consider the class of Lagrangians $\mathcal{N} F(x, y, z)$ that are smaller than $F(x, y, z)$ and satisfy the Weierstrass test $\mathcal{W}(\mathcal{N} F(x, y, z)) \geq 0$:

$$
\left\{\begin{array}{l}
\mathcal{N} F(x, y, z)-F(x, y, z) \leq 0, \tag{7.26}\\
\mathcal{W}(\mathcal{N} F(x, y, z)) \geq 0
\end{array} \quad \forall x, y, z\right.
$$

Let us take the maximum on $\mathcal{N} F(x, y, z)$ and call it $\mathcal{S} F$. Clearly, $\mathcal{S} F$ corresponds to turning one of these inequalities into an equality:

$$
\begin{array}{llll}
\mathcal{S} F(x, y, z)=F(x, y, z), & \mathcal{W}(\mathcal{S} F(x, y, z)) \geq 0 & \text { if } & z \notin \mathcal{Z}_{\mathrm{f}} \\
\mathcal{S F}(x, y, z) \leq F(x, y, z), & \mathcal{W}(\mathcal{S} F(x, y, z))=0 & \text { if } & z \in \mathcal{Z}_{\mathrm{f}} \tag{7.27}
\end{array}
$$

This variational inequality describes the extension of the Lagrangian of an unstable variational problem. Notice that

1. The first equality holds in the region of convexity of F and the extension coincides with F in that region.
2. In the region where F is not convex, the Weierstrass test of the extended Lagrangian is satisfied as an equality; this equality serves to determine the extension.

These conditions imply that $\mathcal{S F}$ is convex everywhere. Also, $\mathcal{S F}$ is the maximum over all convex functions that do not exceed F. Again, $\mathcal{S} F$ is equal to the convex envelope of F :

$$
\begin{equation*}
\mathcal{S} F(x, y, z)=\mathcal{C}_{z} F(x, y, z) \tag{7.28}
\end{equation*}
$$

The cost of the problem remains the same because the convex envelope corresponds to a minimizing sequence of the original problem.

Remark 7.1.3 Note that the geometrical property of convexity never explicitly appears here. We simply satisfy the Weierstrass necessary condition everywhere. Hence, this relaxation procedure can be extended to more complicated multidimensional problems for which the Weierstrass condition and convexity do not coincide.

Recall that the derivative of the minimizer never takes values in the region \mathcal{Z}_{f} of nonconvexity of F. Therefore, a solution to a nonconvex problem stays the same if its Lagrangian $F(x, \boldsymbol{y}, \boldsymbol{z})$ is replaced by any Lagrangian $\mathcal{N} F(x, \boldsymbol{y}, \boldsymbol{z})$ that satisfies the restrictions

$$
\begin{array}{ll}
\mathcal{N} F(x, \boldsymbol{y}, \boldsymbol{z})=F(x, \boldsymbol{y}, \boldsymbol{z}) & \forall z \notin \mathcal{Z}_{\mathrm{f}} \tag{7.29}\\
\mathcal{N} F(x, \boldsymbol{y}, \boldsymbol{z})>\mathcal{C} F(x, \boldsymbol{y}, \boldsymbol{z}) \forall z \in \mathcal{Z}_{\mathrm{f}}
\end{array}
$$

Indeed, the two Lagrangians $F(x, \boldsymbol{y}, \boldsymbol{z})$ and $\mathcal{N} F(x, \boldsymbol{y}, \boldsymbol{z})$ coincide in the region of convexity of F. Therefore, the solutions to the variational problem also coincide in this region. Neither Lagrangian satisfies the Weierstrass test in the forbidden region of nonconvexity. Therefore, no minimizer can distinguish between these two problems: It never takes values in Z_{f}. The behavior of the Lagrangian in the forbidden region is simply of no importance. In this interval, the Lagrangian cannot be computed back from the minimizer.

Minimizing Sequences Let us prove that the considered extension preserves the value of the objective functional. Consider the extremal problem (7.16) of superlinear growth and the corresponding stationary solution $u(x)$ that may not satisfy the Weierstrass test. Let us perturb the trajectory u by a differentiable function $\omega(x)$ with the properties:

$$
\begin{equation*}
\max _{x}|\omega(x)| \leq \varepsilon, \quad \omega\left(x_{k}\right)=0 k=1 \ldots N \tag{7.30}
\end{equation*}
$$

where the points x_{k} uniformly cover the interval (a, b). The perturbed trajectory wiggles around the stationary one, crossing it at N uniformly distributed points x_{k}; the derivative of the perturbation is not bounded.

The integral $J(u, \omega)$

$$
J(u, \omega)=\int_{0}^{1} F\left(x, u+\omega, u^{\prime}+\omega^{\prime}\right) d x
$$

on the perturbed trajectory is estimated as

$$
J(u, \omega)=\int_{0}^{1} F\left(x, u, u^{\prime}+\omega^{\prime}\right) d x+o(\varepsilon) .
$$

because of the smallness of ω (see (7.30)). The derivative $\omega^{\prime}(x)=v(x)$ is a new minimizer constrained by N conditions (see (7.30))

$$
\begin{equation*}
\int_{\frac{k}{N}}^{\frac{k+1}{N}} v(x) d x=0, \quad k=0, \ldots N-1 ; \tag{7.31}
\end{equation*}
$$

correspondingly, the variational problem can be rewritten as

$$
J(u, \omega)=\sum_{k=1}^{N-1} \int_{\frac{k}{N}}^{\frac{k+1}{N}} F\left(x, u, u^{\prime}+\omega^{\prime}\right) d x+o\left(\frac{1}{N}\right) .
$$

Perform minimization of a term of the above sum with respect of v, treating u as a fixed variable:

$$
I_{k}(u)=\min _{v(x)} \int_{\frac{k}{N}}^{\frac{k+1}{N}} F\left(x, u, u^{\prime}+v\right) d x \quad \text { subject to } \int_{\frac{k}{N}}^{\frac{k+1}{N}} v(x) d x=0
$$

This is exactly the problem (??) of the convex envelope with respect to v.
By referring to the Carathéodory theorem (7.4) we conclude that the minimizer $v(x)$ is a piece-wise constant function in $\left(\frac{k}{N}, \frac{k+1}{N}\right)$ that takes at most $n+1$ values $v_{1}, \ldots v_{n+1}$ at each interval. These values are subject to the constraints (see (7.31))

$$
\begin{equation*}
m_{i}(x) \geq 0, \quad \sum_{i=1}^{n} m_{i}=1, \quad \sum_{i=1}^{p} m_{i} \boldsymbol{v}_{i}=0 . \tag{7.32}
\end{equation*}
$$

This minimum coincides with the convex envelope of the original Lagrangian with respect to its last argument (see (7.4)):

$$
\begin{equation*}
I_{k}=\min _{m_{i}, \boldsymbol{v}_{i} \in(7.32)} \frac{1}{N}\left(\sum_{i=1}^{p} m_{i} F\left(x, \boldsymbol{u}, u^{\prime}+\boldsymbol{v}_{i}\right)\right) \tag{7.33}
\end{equation*}
$$

Summing I_{k} and passing to the limit $N \rightarrow \infty$, we obtain the relaxed variational problem:

$$
\begin{equation*}
I=\min _{\boldsymbol{u}} \int_{0}^{1} \mathcal{C}_{\boldsymbol{u}^{\prime}} F\left(x, \boldsymbol{u}(x), \boldsymbol{u}^{\prime}(x)\right) d x . \tag{7.34}
\end{equation*}
$$

Note that $n+1$ constraints (7.32) leave the freedom to choose $2 n+2$ inner parameters m_{i} and \boldsymbol{v}_{i} to minimize the function $\sum_{i=1}^{p} m_{i} F\left(u, \boldsymbol{v}_{i}\right)$ and thus to

Average derivative	Pointwise deriva- tives	Optimal concen- trations	Convex enve- lope $\mathcal{C} G(u, v)$
$v<-1$	$v_{1}^{0}=v_{2}^{0}=v$	$m_{1}^{0}=1, m_{2}^{0}=0$	$u^{2}+(v-1)^{2}$
$\|v\|<1$	$v_{1}^{0}=1, v_{2}^{0}=-1$	$m_{1}^{0}=m_{2}^{0}=\frac{1}{2}$	u^{2}
$v>1$	$v_{1}^{0}=v_{2}^{0}=v$	$m_{1}^{0}=0, m_{2}^{0}=1$	$u^{2}+(v+1)^{2}$

Table 7.1: Characteristics of an optimal solution in Example ??.
minimize the cost of the variational problem (see (7.33)). If the Lagrangian is convex, $\boldsymbol{v}_{i}=0$ and the problem keeps its form: The wiggle trajectories do not minimize convex problems.

The cost of the reformulated (relaxed) problem (7.34) corresponds to the cost of the problem (7.16) on the minimizing sequence (??). Therefore, the cost of the relaxed problem is equal to the cost of the original problem (7.16). The extension of the Lagrangian that preserves the cost of the problem is called the minimal extension. The minimal extension enlarges the set of classical minimizers by including generalized curves in it.

7.1.3 Examples

Relaxation of nonconvex problem in Example ?? We revisit Example ??. Let us solve this problem by building the convex envelope of the Lagrangian $G(u, v)$:

$$
\begin{align*}
\mathcal{C}_{v} G(u, v) & =\min _{m_{1}, m_{2}} \min _{v_{1}, v_{2}}\left\{u^{2}+m_{1}\left(v_{1}-1\right)^{2}+m_{2}\left(v_{2}+1\right)^{2}\right\}, \\
v & =m_{1} v_{1}+m_{2} v_{2}, \quad m_{1}+m_{2}=1, \quad m_{i} \geq 0 . \tag{7.35}
\end{align*}
$$

The form of the minimum depends on the value of $v=u^{\prime}$. The convex envelope $\mathcal{C} G(u, v)$ coincides with either $G(u, v)$ if $v \notin[0,1]$ or $\mathcal{C} G(u, v)=u^{2}$ if $v \in[0,1]$; see Example 7.0.3. Optimal values $v_{1}^{0}, v_{2}^{0}, m_{1}^{0} m_{2}^{0}$ of the minimizers and the convex envelope $\mathcal{C} G$ are shown in Table 7.1. The relaxed form of the problem with zero boundary conditions

$$
\begin{equation*}
\min _{u} \int_{0}^{1} \mathcal{C} G\left(u, u^{\prime}\right) d x, \quad u(0)=u(1)=0 \tag{7.36}
\end{equation*}
$$

has an obvious solution,

$$
\begin{equation*}
u(x)=u^{\prime}(x)=0 \tag{7.37}
\end{equation*}
$$

that yields the minimal (zero) value of the functional. It corresponds to the constant optimal value $m_{\text {opt }}$ of $m(x)$:

$$
m_{\mathrm{opt}}(x)=\frac{1}{2} \forall x \in[0,1]
$$

The relaxed Lagrangian is minimized over four functions u, m_{1}, v_{1}, v_{2} bounded by one equality, $u^{\prime}=m_{1} v_{1}+\left(1-m_{1}\right) v_{2}$ and the inequalities $0 \leq m \leq 1$, while the original Lagrangian is minimized over one function u. In contrast to the initial problem, the relaxed one has a differentiable solution in terms of these four controls.

Inhomogeneous boundary conditions Let us slightly modify this example. Assume that boundary conditions are

$$
u(0)=V(0<V<1), \quad u(1)=0
$$

In this case, an optimal trajectory of the relaxed problem consists of two parts,

$$
u^{\prime}<-1 \quad \text { if } x \in\left[0, x_{0}\right), \quad u=u^{\prime}=0 \quad \text { if } x \in\left[x_{0}, 1\right]
$$

At the first part of the trajectory, the Euler equation $u^{\prime \prime}-u=0$ holds; the extremal is

$$
u= \begin{cases}A e^{x}+B e^{-x} & \text { if } x \in\left[0, x_{0}\right) \\ 0 & \text { if } x \in\left[x_{0}, 1\right]\end{cases}
$$

Since the contribution of the second part of the trajectory is zero, the problem becomes

$$
I=\min _{u, x_{0}} \int_{O}^{x_{0}} \mathcal{C}_{v} G\left(u, u^{\prime}\right) d x
$$

To find unknown parameters A, B and x_{0} we use the conditions

$$
u(0)=V, \quad u\left(x_{0}\right)=0, \quad u^{\prime}=-1
$$

The last condition expresses the optimality of x_{0}, it is obtained from the condition (see (??))

$$
\left.\mathcal{C}_{v} G\left(u, u^{\prime}\right)\right|_{x=x_{0}}=0
$$

We compute

$$
A+B=V, \quad A e^{x_{0}}+B e^{-x_{0}}=0, \quad A e^{x}-B e^{-x}=1
$$

which leads to

$$
\begin{aligned}
u(x) & = \begin{cases}\sinh \left(x-x_{0}\right) & \text { if } x<x_{0} \\
0 & \text { if } x>x_{0}\end{cases} \\
x_{0} & =\sinh ^{-1}(V)
\end{aligned}
$$

The optimal trajectory of the relaxed problem decreases from V to zero and then stays equal zero. The optimal trajectory of the actual problem decays to zero and then become infinite oscillatory with zero average.

Relaxation of a two-wells Lagrangian We turn to a more general example of the relaxation of an ill-posed nonconvex variational problem. This example highlights more properties of relaxation. Consider the minimization problem

$$
\begin{equation*}
\min _{u(x)} \int_{0}^{z} F_{p}\left(x, u, u^{\prime}\right) d x, \quad u(0)=0, u^{\prime}(z)=0 \tag{7.38}
\end{equation*}
$$

with a Lagrangian

$$
\begin{equation*}
F_{p}=\left(u-\alpha x^{2}\right)^{2}+F_{n}\left(u^{\prime}\right) \tag{7.39}
\end{equation*}
$$

where

$$
F_{n}(v)=\min \left\{a v^{2}, b v^{2}+1\right\}, \quad 0<a<b, \alpha>0
$$

Note that the second term F_{n} of the Lagrangian F_{p} is a nonconvex function of u^{\prime}.

The first term $\left(u-\alpha x^{2}\right)^{2}$ of the Lagrangian forces the minimizer u and its derivative u^{\prime} to increase with x, until u^{\prime} at some point reaches the interval of nonconvexity of $F_{n}\left(u^{\prime}\right)$, after which it starts oscillating by alternation of the values of the ends of this interval, because u^{\prime} must vary outside of this forbidden interval at every instance. (see ??)

To find the convex envelope $\mathcal{C} F$ we must transform $F_{n}\left(u^{\prime}\right)$ (in this example, the first term of F_{p} (see (7.39)) is independent of u^{\prime} and it does not change after the convexification). The convex envelope $\mathcal{C} F_{p}$ is equal to

$$
\begin{equation*}
\mathcal{C} F_{p}=\left(u-\alpha x^{2}\right)^{2}+\mathcal{C} F_{n}\left(u^{\prime}\right) \tag{7.40}
\end{equation*}
$$

The convex envelope $\mathcal{C} F_{n}\left(u^{\prime}\right)$ is computed in Example 7.0.4 (where we use the notation $v=u^{\prime}$). The relaxed problem has the form

$$
\begin{equation*}
\min _{u} \int \mathcal{C} F_{p}\left(x, u, u^{\prime}\right) d x \tag{7.41}
\end{equation*}
$$

where

$$
\mathcal{C} F_{p}\left(x, u, u^{\prime}\right)=\left\{\begin{array}{lll}
\left(u-\alpha x^{2}\right)^{2}+a\left(u^{\prime}\right)^{2} & \text { if } & \left|u^{\prime}\right| \leq v_{1} \\
\left(u-\alpha x^{2}\right)^{2}+2 u^{\prime} \sqrt{\frac{a b}{a-b}}-\frac{b}{a-b} & \text { if } v_{1} \leq\left|u^{\prime}\right| \leq v_{2} \\
\left(u-\alpha x^{2}\right)^{2}+b\left(u^{\prime}\right)^{2}+1 & \text { if } & \left|u^{\prime}\right| \geq v_{2}
\end{array}\right.
$$

Note that the variables u, v in the relaxed problem are the averages of the original variables; they coincide with those variables everywhere when $\mathcal{C} F=F$. The Euler equation of the relaxed problem is

$$
\begin{align*}
& a u^{\prime \prime}-\left(u-\alpha x^{2}\right)=0 \text { if }\left|u^{\prime}\right| \leq v_{1}, \\
& \left(u-\alpha x^{2}\right)=0 \text { if } v_{1} \leq\left|u^{\prime}\right| \leq v_{2}, \tag{7.42}\\
& b u^{\prime \prime}-\left(u-\alpha x^{2}\right)=0 \text { if }\left|u^{\prime}\right| \geq v_{2} .
\end{align*}
$$

The Euler equation is integrated with the boundary conditions shown in (7.38). Notice that the Euler equation degenerates into an algebraic equation in the interval of convexification. The solution u and the variable $\frac{\partial}{\partial u^{\prime}} \mathcal{C} F$ of the relaxed problem are both continuous everywhere.

Integrating the Euler equations, we sequentially meet the three regimes when both the minimizer and its derivative monotonically increase with x (see ??). If the length z of the interval of integration is chosen sufficiently large, one can be sure that the optimal solution contains all three regimes; otherwise, the solution may degenerate into a two-zone solution if $u^{\prime}(x) \leq v_{2} \forall x$ or into a one-zone solution if $u^{\prime}(x) \leq v_{1} \forall x$ (in the last case the relaxation is not needed; the solution is a classical one).

Let us describe minimizing sequences that form the solution to the relaxed problem. Recall that the actual optimal solution is a generalized curve in the region of nonconvexity; this curve consists of infinitely often alternating parts with the derivatives v_{1} and v_{2} and the relative fractions $m(x)$ and $(1-m(x))$:

$$
\begin{equation*}
v=\left\langle u^{\prime}(x)\right\rangle=m(x) v_{1}+(1-m(x)) v_{2}, \quad u^{\prime} \in\left[v_{1}, v_{2}\right] \tag{7.43}
\end{equation*}
$$

where \rangle denotes the average, u is the solution to the original problem, and $\langle u\rangle$ is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic one $\langle u\rangle=\alpha x^{2}$ because of the linear dependence of the Lagrangian on $\langle u\rangle^{\prime}$ in this region. The first term of the Euler equation,

$$
\begin{equation*}
\frac{d}{d x} \frac{\partial F}{\partial\langle u\rangle^{\prime}} \equiv 0 \quad \text { if } \quad v_{1} \leq\left|\langle u\rangle^{\prime}\right| \leq v_{2} \tag{7.44}
\end{equation*}
$$

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime. This variable can be found by differentiation of the optimal solution:

$$
\begin{equation*}
\left(\langle u\rangle-\alpha x^{2}\right)^{\prime}=0 \quad \Longrightarrow \quad\langle u\rangle^{\prime}=2 \alpha x \tag{7.45}
\end{equation*}
$$

This equality, together with (7.43), implies that

$$
m= \begin{cases}0 & \text { if }\left|u^{\prime}\right| \leq v_{1} \tag{7.46}\\ \frac{2 \alpha}{v_{1}-v_{2}} x-\frac{v_{2}}{v_{1}-v_{2}} & \text { if } v_{1} \leq\left|u^{\prime}\right| \leq v_{2} \\ 1 & \text { if }\left|u^{\prime}\right| \geq v_{2}\end{cases}
$$

Variable m linearly increases within the second region (see ??). Note that the derivative u^{\prime} of the minimizing generalized curve at each point x lies on the boundaries v_{1} or v_{2} of the forbidden interval of nonconvexity of F; the average derivative varies only due to varying of the fraction $m(x)$ (see ??).

