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Chapter 6

Localization and

Discontinuous minimizers

6.1 Irregular solutions

The classical approach to variational problems assumes that the optimal trajec-
tory is a di�erentiable curve { a solution to the Euler equation that, in addition,
satis�es the Weierstrass and Jacobi tests. In this chapter, we consider the varia-
tional problems which solutions do not satisfy necessary conditions of optimality.
Either the Euler equation does not have solution, or Jacobi or Weierstrass tests
are not satis�ed at any stationary solution. If this is a case, the extremal cannot
be found from necessary conditions. We have met such solution in the problem
of minimal surface (Goldschmidt solution, Section ??).

As always, we point to an analogy of irregular solutions in �nite-dimensional
minimization problems. Consider such a problem of minimization of a scalar
function F (x) of a vector x 2 Rn,

min
x2Rn

F (x):

The in�mum of F may correspond to the regular stationary point whererF (x) =
0 and Hessian is positively de�ned. This case is an analog of optimality of a
stationary solution for which Legandre and Jacobi conditions sa�s�ed. The in-
�mum may also correspond to an irregular point x where rF (x) is not de�ned,
or its norm is unbounded,krF (x)k ! 1 or x can be improper, kxk ! 1 mIn
the last case, a minimizing sequence xn diverges.

It is natural to expect that in variational problems where the minimizing
functions u(x) belong to more complex than Rn sets and and are bounded
by additional requirements of di�erentiability, the number of irregular cases
growths and causes for these cases are more diverse.

Irregular limits of minimizing sequences A minimization problem always
can be solved by a direct method that is by constructing a corresponding min-
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4 CHAPTER 6. LOCALIZATION AND DISCONTINUOUS MINIMIZERS

imizing sequence, the functions us(t) with the property I(us) � I(us+1). The
functionals I(us) form a monotonic sequence of real number that converges to
a real or improper limit. In this sense, every variational problem can be solved,
but the limiting solution lims!1 us may be irregular; in other terms, it may
not exist in an assumed set of functions. Especially, derivation of Euler equa-
tion uses an assumption that the minimum is a di�erentiable function. This
assumption leads to complications because the set of di�erentiable functions is
open and the limits of sequences of di�erentiable functions are not necessary
di�erentiable functions themselves.

We list several types of minimizing sequences that one meets in variational
problems

Example 6.1.1 (Various limits of functional sequences)

� The sequence of in�nitely di�erentiable function

�n(x) =
np
�
exp

�
�x

2

n2

�

when n!1 tends to the � function, �n(x)! �(x), which is not a function
but a distribution.

� The limit H(x) of the sequence of antiderivatives of these in�nitely di�eren-
tiable functions is a discontinuous function (Heaviside function)

H(x) =

Z x

�1
�n(t)dt =

�
0 if x < 0
1 if x > 1

� The limit of the sequence of oscillating functions

lim
n!1

sin(nx)

does not exist for any x 6= 0.

� The sequence f�n(x)g, where �n(x) = 1p
n
sin(nx) converges to zero point-

wise, but the sequence of the derivatives �n(x)
0 =

p
n cos(nx) does not

converges and is unbounded everywhere.

These or similar functional sequences often represent minimizing sequences in
variational problems. Here we give a brief introduction to several methods
aimed to deal with such "exotic" solutions, that do not correspond to solutions
of Euler equations

Regularization and relaxation The possible nonexistence of minimizer poses
several challenging questions. Some criteria are needed to establish which prob-
lems have a classical solution and which do not. These criteria analyze the type
of Lagrangians and result in existence theorems.
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There are two alternative ideas in handling problems with nondi�erentiable
minimizers. The admissible class of minimizers can be enlarged and closed in
such a way that the "exotic" limits of minimizers would be included in the
admissible set. This procedure called relaxation and underlined in the Hilbert's
quotation, has motivated the introduction of theory of distributions and the
corresponding functional spaces, as well as development of relaxation methods.
Below, we consider several ill-posed problems that require rethinking of the
concept of a solution.

Alternatively, the minimization problem can be constrained so that the "ex-
otic" behavior of the solutions is penalized and the minimizer will avoid it; this
approach is called regularization. It forces the problem to select a classical so-
lution at the expense of increasing the value of the objective functional. When
the penalization decreases, the solution tends to the solution of the original
problem, remaining conventional. An example of this approach is the viscosity

solution developed for dealing with the shock waves.

Existence of a di�erentiable minimizer We formulate here a list of con-
ditions guarantying the smooth classical solution to a variational problem.

1. The Lagrangian grows superlinearly with respect to u0:

lim
ju0j!1

F (x; u; u0)
ju0j =1 8x; u(x) (6.1)

This condition forbids any �nite jumps of the optimal trajectory u(x); any
such jump leads to an in�nite penalty in the problem's cost.

2. The cost of the problem increases when juj ! 1. This condition forbids
a blow-up of the solution.

3. The Lagrangian is convex with respect to u0:

F (x; u; u0) is a convex function of u0 8x; u(x)

at the optimal trajectory u. This condition forbids in�nite oscillations
because they would increase the cost of the problem.

Let us outline the idea of the proof:

1. First two conditions guarantee that the limit of any minimizing sequence
is bounded and has a bounded derivative. The cost of the problem unlim-
itedly grows when either the function or its derivative tend to in�nity at
a set of nonzero measure.

2. It is possible to extract a weakly convergent subsequence uS + u0 from
a weakly bounded minimizing sequence. Roughly, this means that the
subsequence u�(x) in a sense approximates a limiting function u0, but
may wiggle around it in�nitely often.
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3. Next, we need the property of lower weakly semicontinuity of the objective
functional I(u). The lower weakly semicontinuity states that

lim
uS+u0

I(us) � I(u0)

We illustrate this property on the following examples.

Example 6.1.2 The weak limit of the sequence us = sin(s x) is zero.

sin(s x)+ 0 s!1

Compute the limit of the functional

I1(u
s) =

Z 1

0

(us)2dx

We have

lim
s!1

Z 1

0

sin2(s x)dx =
1

2
lim
s!1

Z 1

0

(1� cos(2s x)dx =
1

2

and we observe that

lim
uS+u0

I1(u
s) > I(u0) = 0

The limit of the functional

I2(u
s) =

Z 1

0

�
(us)4 � (us)2

�
dx

is smaller than I2(0). Indeed,

lim
s!1

Z 1

0

�
sin4(s x)� sin2(s x)

�
dx = �1

4

or

lim
uS+u0

I2(u
s) < I(u0) = 0

The wiggling minimizing sequence us increases the value of the �rst functional
and decrease the value of the second. The �st functional corresponds to
convex integrand and is weakly lower semicontinuous.

The convexity of Lagrangian eliminates the possibility of wiggling, because
the cost of the problem with convex Lagrangian is smaller for a smooth
function than on any close-by wiggling function by virtue of Jensen in-
equality. The functional of a convex Lagrangian is lower weakly semicon-
tinuous.
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6.2 Solutions with unbounded derivative. Reg-

ularization

6.2.1 Lagrangians of linear growth

A minimizing sequence may tend to a discontinuous function if the Lagrangian
growth slowly with the increase of u0. Here we investigate discontinuous solu-
tions of Lagrangians of linear growth. Assume that the Lagrangian F satis�es
the limiting equality

lim
ju0j!1

F (x; u; u0)
ju0j � �u (6.2)

where � is a nonnegative constant.
Considering the scalar case (u is a scalar function), we assume that the min-

imizing sequence tends to a �nite discontinuity (jump) and calculate the impact
of it for the objective functional. Let a miniming sequence u� of di�erentiable
functions tend to a discontinuous at the point x0 function, as follows

u�(x) = �(x) +  �(x)

 �(x) + �H(x � x0); � 6= 0

where � is a di�erentiable function with the bounded everywhere derivative,
and H is the Heaviside function.

Assume that functions  � that approximate the jump at the point x0 are
piece-wise linear,

 �(x) =

8<
:

0 if x < x0 � �
�
�
(x� x0 + �) if x0 � � � x � x0

� if x > x0:

The derivative ( �)0 is zero outside of the interval [x0 � �; x0] where it is equal
to a constant,

 0 =
�
0 if x =2 [x0 � �; x0]
�
�

if x 2 [x0 � �; x0]

The Lagrangian is computed as

F (x; u; u0) =
�
F (x; �; �0) if x =2 [x0 � �; x0]

F
�
x; �+  �; �0 + �

�

�
= ��

�
+ o

�
1
�

�
if x 2 [x0 � �; x0]

Here, we use the condition (6.2) of linear growth of F .
The variation of the objective functional is

Z b

a

F (x; u; u0)dx �
Z b

a

F (x; �; �0)dx + ��:

We observe that the contribution �� due to the discontinuity of the minimizer
is �nite when the magnitude j�j of the jump is �nite. Therefore, discontinuous
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solutions are tolerated in the problems with Lagrangian of linear growth: They
do not lead to in�nitely large values of the objective functionals. To the contrary,
the problems with Lagrangians of superlinear growth � = 1 do not allow for
discontinuous solution because the penalty is in�nitely large.

Remark 6.2.1 The problems of Geometric optics and minimal surface are or linear
growth because the length

p
1 + u02 linearly depends on the derivative u0. To the

contrary, problems of Lagrange mechanics are of quadratic (superlinear) growth
because kinetic energy depends of the speed _q quadratically.

6.2.2 Examples of discontinuous solutions

Example 6.2.1 (Discontinuities in problems of geometrical optics) We
have already seen in Section ?? that the minimal surface problem

I0 = min
u(x)

I(u); I(u) = �

Z L

o

u
p
1 + (u0)2dx; u(�1) = 1; u(1) = 1; (6.3)

can lead to a discontinuous solution (Goldschmidt solution)

u = �H(x+ 1) +H(x� 1)

if L is larger than a threshold.
Particularly, the Goldschmidt solution corresponds to zero smooth component

u(x) = 0, x = (a; b) and two jumps M1 and M2 of the magnitudes u(a) and u(b),
respectively. The smooth component gives zero contribution, and the contributions
of the jumps are

I = �
1

2

�
u2(a) + u2(b)

�
Problem 6.2.1 Suggest a regularization procedure for monimal surface problem.

The next example (Gelfand & Fomin) shows that the solution may exhibit
discontinuity if the superlinear growth condition is violated even at a single
point.

Example 6.2.2 (Discontinuous extremal and viscosity-type regularization)
Consider the minimization problem

I0 = min
u(x)

I(u); I(u) =

Z 1

�1
x2u02dx; u(�1) = �1; u(1) = 1; (6.4)

We observe that I(u) � 0 8u, and therefore I0 � 0. The Lagrangian is convex
function of u0, and the third condition is satis�ed. However, the second condition
is violated in x = 0:

lim
ju0j!1

x2u02

ju0j
����
x=0

= lim
ju0j!1

x2ju0j
����
x=0

= 0
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The functional is of sublinear growth at only one point x = 0.
Let us show that the solution is discontinuous. Assume the contrary, that the

solution satis�es the Euler equation (x2u0)0 = 0 everywhere. The equation admits
the integral

@L

@u0
= 2x2u0 = C:

If C 6= 0, the value of I(u) is in�nity, because then u0 = C
2x2 , the Lagrangian

becomes

x2u02 =
C2

x2
if C 6= 0:

and the integral of Lagrangian diverges. A �nite value of the objective corresponds
to C = 0 which implies that u00(x) = 0 if x 6= 0. Accounting for the boundary
conditions, we �nd

u0(x) =

��1 if x < 0
1 if x > 0

and u0(0) is not de�ned.
We arrived at the unexpected result that violates the assumptions used when

the Euler equation is derived: u0(x) is discontinuous at x = 0 and u00 exists only in
the sense of distributions:

u0(x) = �1 + 2H(x); u00(x) = 2�(x)

This solution delivers absolute minimum (I0 = 0) to the functional, is not di�eren-
tiable and satis�es the Euler equation in the sense of distributions,Z 1

�1

d

dx

@L

@u0

����
u=u0(x)

�(x)dx = 0 8� 2 L1[�1; 1]

Regularization A slightly perturb the problem (regularization) yields to the
problem that has a classical solution and this solution is close to the discontinuous
solution of the original problem. This time, regularization is performed by adding to
the Lagrangian a stabilizer, a strictly convex function ��(u0) of superlinear growth.

Consider the perturbed problem for the Example 6.4:

I� = min
u(x)

I�(u); I�(u) =

Z 1

�1

�
x2u02 + �2u02

�
dx; u(�1) = �1; u(1) = 1;

(6.5)
Here, the perturbation �2u0 is added to the original Lagrangian �2u0; the perturbed
Lagrangian is of superlinear growth everywhere.

The �rst integral of the Euler equation for the perturbed problem becomes

(x2 + �2)u0 = C; or du = C
dx

x2 + �2

Integrating and accounting for the boundary conditions, we obtain

u�(x) =

�
arctan

1

�

��1
arctan

x

�
:
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When � ! 0, the solution u�(x) converges to u0(x) although the convergence is
not uniform at x = 0.

Unbounded solutions in constrained problems The discontinuous solu-
tion often occurs in the problem where the derivative satis�es additional in-
equalities u0 � c, but is unbounded. In such problems, the stationary condition
must be satis�ed everywhere where derivative is not at the constrain, u0 > c.
The next example shows, that the measure of such interval can be in�nitesimal.

Example 6.2.3 (Euler equation is meaningless) Consider the variational prob-
lem with an inequality constraint

max
u(x)

Z �

0

u0 sin(x)dx; u(0) = 0; u(�) = 1; u0(x) � 0 8x:

The minimizer should either corresponds to the limiting value u0 = 0 of the deriv-
ative or satisfy the stationary conditions, if u0 > 0. Let [�i; �i] be a sequence
of subintervals where u0 = 0. The stationary conditions must be satis�ed in the
complementary set of intervals (�i; �i+1]) located between the intervals of con-
stancy. The derivative cannot be zero everywhere, because this would correspond
to a constant solution u(x) and would violate the boundary conditions.

However, the minimizer cannot correspond to the solution of Euler equation at
any interval. Indeed, the Lagrangian L depends only on x and u0. The �rst integral
@L
@u0

= C of the Euler equation yields to an absurd result

sin(x) = constant 8x 2 [�i; �i+1]

The Euler equation does not produce the minimizer. Something is wrong!
The objective can be immediately bounded by the inequalityZ �

0

f(x)g(x)dx �
�

max
x2[0;�]

g(x)

�Z �

0

jf(x)jdx:

that is valid for all functions f and g if the involved integrals exist. We set
g(x) = sin(x) and f(x) = jf(x)j = u0 (because u0 is nonnegative), account for the
constraints Z �

0

jf(x)jdx = u(�)� u(0) = 1 and max
x2[0;�]

sin(x) = 1;

and obtain the upper bound

I(u) =

Z �

0

u0 sin(x)dx � 1 8u:

This bound corresponds to the minimizing sequence un that tends to a Heaviside
function un(x) ! H(x � �=2). The derivative of such sequence tends to the
�-function, u0(x) = �(x � �=2). Indeed, immediately check that the bound is
realizable, substituting the limit of un into the problemZ �

0

�
�
x� �

2

�
sin(x)dx = sin

��
2

�
= 1:
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The reason for the absence of a stationary solution is the openness of the set
of di�erentiable function. This problem also can be regularized. Here, we show
another way to regularization, by imposing an additional pointwise inequality
u0(x) � 1



8x (Lipschitz constraint). Because the intermediate values of u0 are

never optimal, optimal u0 alternates the limiting values:

u0
(x) =
�
0 if x =2 ��2 � 
; �2 + 


�
;

1
2
 if x 2 ��2 � 
; �2 + 


�
;

The objective functional is equal to

I(u
) =
1

2


Z �
2
+


�
2
�


sin(x)dx =
1



sin (
)

When 
 tends to zero, IM goas to its limit

lim

!0

I
 = 1;

the length 
 of the interval where u0 = 1
2
 goes to zero so that u0
(t) weakly

converges to the �-function for u0, u0
(t)+ �
�
x� �

2

�
.

This example clearly demonstrates the source of irregularity: The absence
of the upper bound for the derivative u0. The constrained variational problems
are studied in the control theory; they are are discussed later in Section ??.

6.2.3 Regularization by penalization

Regularization as smooth approximation The smoothing out feature of
regularization is easy demonstrated on the following example of a quadratic
approximation of a function by a smoother one.

Approximate a function f(x) where x 2 R, by the function u(x), adding a
quadratic stabilizer; this problem takes the form

min
u

Z 1

�1
[�2(u0)2 + (u� f)2]dx

The Euler equation
�2u00 � u = �f (6.6)

can be easily solved using the Green function

G(x; y) =
1

2�
exp

�
�jx� yj

�

�

of the operator in the left-hand side of (6.6). We have

u(x) =
1

2�

Z 1

�1
exp

�
�jx� yj

�

�
f(y)dy

that is the expression of the averaged f . The smaller is � the closer is the average
to f .
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Quadratic stabilizers Besides the stabilizer "u02 , other stabilizers can be
considered: The added term "u2 penalizes for large values of the minimizer,
"(u00)2 penalizes for the curvature of the minimizer and is insensitive to linearly
growing solutions. The stabilizers can be inhomogeneous like "(u � utarget)

2;
they force the solution stay close to a target value. The choice of a speci�c
stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

F = �4(u00)2 + (u� f(x)2

Show that u = f(x) if f(x) is any polynomial of the order not higher than three.
Find an integral representation for u(f) if the function f(x) is de�ned at the
interval jxj � 1 and at the axis x 2 R.

Regularization of a �nite-dimensional problem

As the most of variational methods, the regularization has a �nite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have in�nitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a �nite dimensional
problem. Consider a linear system

Ax = b (6.7)

where A is a square n� b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

� If detA 6= 0, the problem has a unique solution:

x = A�1b if detA 6= 0 (6.8)

� If detA = 0 and Ab 6= 0, the problem has no solutions.

� If detA = 0 and Ab = 0, the problem has in�nitely many solutions.

In practice, we also deal with an additional di�culty: The determinant detA
may be a \very small" number and one cannot be sure whether its value is a
result of rounding of digits or it has a \physical meaning." In any case, the
errors of using the formula (6.8) can be arbitrary large and the norm of the
solution is not bounded.

To address this di�culties, it is helpful to restate linear problem (6.7) as an
extremal problem:

min
x2Rn

(Ax � b)2 (6.9)
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This problem does have at least one solution, no matter what the matrix A
is. This solution coincides with the solution of the original problem (6.7) when
this problem has a unique solution; in this case the cost of the minimization
problem (6.9) is zero. Otherwise, the minimization problem provides "the best
approximation" of the non-existing solution.

If the problem (6.7) has in�nitely many solutions, so does problem (6.9).
Corresponding minimizing sequences fxsg can be unbounded, kxsk ! 1 when
s!1.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x2Rn

(Ax � b)2 + �x2

The solution of the last problem exists and is unique. Indeed, we have by
di�erentiation

(ATA+ �I)x�AT b = 0

and
x = (ATA+ �I)�1AT b

We mention that

1. The inverse exists since the matrix ATA is nonnegative de�ned, and � is
positively de�ned. The eigenvalues of the matrix (ATA + �I)�1 are not
smaller than ��1

2. Suppose that we are dealing with a well-posed problem (6.7), that is the
matrix A is not degenerate. If � � 1, the solution approximately is x =
A�1b� �(A2AT )�1b When �! 0, the solution becomes the solution (6.8)
of the unperturbed problem, x! A�1b.

3. If the problem (6.7) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

kxk � 1

�
kbk

Remark 6.2.2 Instead of the regularizing term �x2, we may use any positively
de�ne quadratic �(xTPx + pTx) where matrix P is positively de�ned, P > 0, or
other strongly convex function of x.

6.3 Lagrangians of sublinear growth

Discontinuous extremals Some applications, such as an equilibrium in or-
ganic or breakable materials, deal with Lagrangians of sublinear growth. If the
Lagrangian Fsub(x; u; u

0) growths slower that ju0j,

lim
jzj!1

Fsub(x; y; z)

jzj = 0 8x; y
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then the discontinuous trajectories are expected because the functional is insen-
sitive to �nite jumps of the trajectory.

The Lagrangian is obviously a nonconvex function of u0, The convex envelope
of a bounded from below function Fsub(x; y; z) of a sublinear with respect to z
growth is independent of z.

CFsub(x; y; z) = min
z
Fsub(x; y; z) = Fconv(x; y)

In the problems of sublinear growth, the minimum f(x) of the Lagrangian
correspond to pointwise condition

f(x) = min
u

min
v
F (x; u; v)

instead of Euler equation. The second and the third argument become inde-
pendent of each other. The condition v0 = u is satis�ed (as an average) by
fast growth of derivatives on the set of dense set of interval of arbitrary small
the summary measure. Because of sublinear growth of the Lagrangian, the
contribution of this growth to the objective functional is in�nitesimal.

Namely, at each in�nitesimal interval of the trajectory x0; x0 + " the mini-
mizer is a broken curve with the derivative

u0(x) =
�
v0 if x 2 [x0; x0 + 
"]
v0 if x 2 [x0 + 
"; x0 + "]

where v0 = argminz F (x; y; z), 1� 
 � 1, and v1 is found from the equation

u0(x) � u(x+ ")� u(x)

"
=
v1
"+ v2(1� 
)"

"

to approximate the derivative u0. When 
 ! 1, the contribution of the second
interval becomes in�nitesimal even if v2 !1.

The solution u(x) can jump near the boundary point, therefore the main
boundary conditions are irrelevant. The optimal trajectory will always satisfy
natural boundary conditions that correspond to the minimum of the functional,
and jump at the boundary points to meet the main conditions.

Example 6.3.1 (Jump at the boundary)

F = log2(u+ u0) u(0) = u(1) = 10

The minimizing sequence converges to a function from the family

u(x) = A exp(�x) + 1 x 2 (0; 1)

(A is any real number) and is discontinuous on the boundaries.
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A problem with everywhere unbounded derivative This example shows
an instructive minimizing sequence in a problem of sublinear growth. Consider
the problem with the Lagrangian

J(u) =

Z 1

0

F (x; u; u0)dx; F = (ax� u)2 +
p
ju0j

This is an approximation problem: we approximate a linear function f(x) = ax
on the interval [0; 1] by a function u(x) using function

pju0j as a penalty. We
show that the minimizer is a distribution that perfectly approximate f(x), is
constant almost everywhere, and is nondi�erentiable everywhere.

We mention two facts �rst: (i) The cost of the problem is nonnegative,

J(u) � 0 8u;

and (ii) when the approximating function simply follows f(x), utrial = ax, the
cost J of the problem is J =

p
a > 0 because of the penalty term.

Minimizing sequence Let us construct a minimizing sequence uk(x) with
the property:

J(uk)! 0 if s!1
Partition the interval [0; 1] into N equal subintervals and request that approxi-
mation u(x) be equal to f(x) = ax at the ends xk =

k
N

of the subintervals, and
that the approximation is similar in all subintervals of partition,

u(x) = u0

�
x� k

N

�
+ a

k

N
if x 2

�
k

N
;
k + 1

N

�
;

u0(0) = 0; u0

�
1

N

�
=

a

N

Because of self-similarity, he cost J of the problem becomes

J = N

Z 1
N

0

�
(ax� u0)

2 +
q
ju00j
�
dx (6.10)

The minimizer u0(x) in a small interval x 2 �0; 1
N

�
is constructed as follows

u0(x) =

�
0 if x 2 [0; �]
a 1+�

�
(x� �) if x 2 [�; �(1 + �)]

Here, � and � are two small positive parameters, linked by the condition �(1 +
�) = 1

N
. The minimizer stays constant in the interval x 2 [0; �] and then linearly

growths on the supplementary interval x 2 [�; �(1 + �)]. We also check that

u0

�
1

N

�
= u0(�+ ��) =

a

N
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Derivative u00(x) equals

u00(x) =
�
0 if x 2 [0; �]
a 1+�

�
if x 2 [�; �(1 + �)]

Computing the functional (6.10) of the suggested function u0,

J = N

 Z �

0

((ax)2dx+

Z �+�

�

"�
ax� a

1 + �

�
(x� �)

�2

+

r
a
1 + �

�

#
dx

!

we obtain, after obvious simpli�cations,

J = N

�
a2�3

3
(1 + �) + �

p
a(1 + �)�

�

Excluding � = 1
N(1+�) we �nally compute

J =
a2

3N2(1 + �)2
+

r
a�

1 + �

Increasing N , N !1 and decreasing �, � ! 0 we can bring the cost functional
arbitrary close to zero.

The minimizing sequence consists of the functions that are constant almost
everywhere and contain a dense set of intervals of rapid growth. It tends to
a nowhere di�erentiable function of the type of Cantor's "devils steps." The
derivative is unbounded on a dense in [0; 1] set. Because of slow growth of F ,

lim
ju0j!1

F (x; u; u0)
ju0j ! 0

the functional is not sensitive to large values of u0, if the growth occurs at the
interval of in�nitesimal measure. The last term of the Lagrangian does not
contribute at all to the cost.

Regularization and relaxation To make the solution regular, we may go
in two di�erent directions. The �rst way is to forbid the wiggles by adding a
penalization term �(u0 � a)2 to the Lagrangian which is transformed to:

F� = (u� ax)2 +
p
ju0j+ �(u0 � a)2

The solution would become smooth, but the cost of the problem would signi�-
cantly increase because the term

pju0j contributes to it and the cost J� = J(F�)
would depend on � and will rapidly grow to be close to

p
a. Until the cost grows

to this value, the solution remain nonsmooth.
Alternatively, we may "relax" the problem, replacing it with another one that

preserves its cost and has a classical solution that approximates our nonregular
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minimizing sequence. To perform the relaxation, we simply ignore the termpju0j and pass to the Lagrangian

Frelax = (u� ax)2

which corresponds the same cost as the original problem and a classical solu-
tion uclass = ax that in a sense approximate the true minimizer, but not its
derivative; it is not di�erentiable at all.

6.4 Nonuniqueness and improper cost

Unbounded cost functional An often source of ill-posedness (the nonexis-
tence of the minimizer) is the convergence to minimizing functional to �1 or
the maximizing functional to +1. To illustrate this point, consider the opposite
of the brachistochrone problem: Maximize the travel time between two points.
Obviously, this time can be made arbitrary large by di�erent means: For exam-
ple, consider the trajectory that has a very small slop in the beginning and then
rapidly goes down. The travel time in the �rst part of the trajectory can be
made arbitrary large (Do the calculations!). Another possibility is to consider
a very long trajectory that goes down and then up; the larger is the loop the
more time is needed to path it. In both cases, the maximizing functional goes
to in�nity. The sequences of maximizing trajectories either tend to a discontin-
uous curve or is unbounded and diverges. The sequences do not convergence to
a �nite di�erentiable curve.

Generally, the problem with an improper cost does not correspond to a
classical solution: a �nite di�erentiable curve on a �nite interval. Such prob-
lems have minimizing sequences that approach either non-smooth or unbounded
curve or do not approach anything at all. One may either accept this "exotic
solution," or assume additional constraints and reformulate the problem. In
applications, the improper cost often means that something essential is missing
in the formulation of the problem.

Nonuniqueness Another source of irregular solutions is nonuniqueness. If
the problem has families of many extremal trajectories, the alternating of them
can occur in in�nitely many ways. The problem could possess either classical or
nonclassical solution. To detect such problem, we investigate the Weierstrass-
Erdman conditions which show the possibilities of broken extremals.

An example of nonuniqueness, nonconvex Lagrangian As a �rst exam-
ple, consider the problem

I(v) = min
u

Z 1

0

�
1� (u0)2

�2
dx; u(0) = 0; u(1) = v (6.11)

The Euler equation admits the �rst integral, because the Lagrangian depends
only on u0, �

1� (u0)2
�
(1� 2u0) = C;
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the optimal slope is constant everywhere and is equal to V .

When �1 � v � 1, the constant C is zero and the value of I is zero as well.
The solution is not unique. Indeed, in this case one can joint the initial and the
�nal points by the curve with the slope equal to either one or negative one in
all points. The Weierstrass-Erdman condition

��
1� (u0)2

�
(1� 2u0)

�+
� = 0

is satis�ed if u0 = �1 to the left and to the right of the point of break. There
are in�nitely many extremals with arbitrary number of breaks that all join the
end points and minimize the functional making it equal to zero. Notice that
Lagrangian is not convex function of u0.

Similarly to the �nite-dimensional case, regularization of variational prob-
lems with nonunique solutions can be done by adding a penalty �(u0)2, or �(u00)2

to the minimizer. Penalty would force the minimizer to prefer some trajecto-
ries. Particularly, the penalty term may force the solution to become in�nitely
oscillatory at a part of trajectory.

Another example of nonuniqueness, convex Lagrangian Work on the
problem

I(v) = min
u

Z 1

0

(1� u0)2 sin2(mu)dx; u(0) = 0; u(1) = v (6.12)

As in the previous problem, here there are two kinds of "free passes" (the
trajectories that correspond to zero Lagrangian that is always nonnegative):
horizontal (u = �k=m, u0 = 0) and inclined (u = c+x, u0 = 1). The Weierstrass-
Erdman condition

[sin(mu)2(1� u0)]+� = 0

allows to switch these trajectories in in�nitely many ways.

Unlike the previous case, the number of possible switches is �nite; it is
controlled by parameter m. The optimal trajectory is monotonic; it becomes
unique if v � 1 or v � 0, and if jmj < 1

�
.

6.5 Conclusion and Problems

We have observed the following:

� A one-dimensional variational problem has the �ne-scale oscillatory min-
imizer if its Lagrangian F (x; u; u0) is a nonconvex function of its third
argument.

� Homogenization leads to the relaxed form of the problem that has a clas-
sical solution and preserves the cost of the original problem.
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� The relaxed problem is obtained by replacing the Lagrangian of the ini-
tial problem by its convex envelope. It can be computed as the second
conjugate to F .

� The dependence of the Lagrangian on its third argument in the region of
nonconvexity does not e�ect the relaxed problem.

To relax a variational problem we have used two ideas. First, we replaced the
Lagrangian with its convex envelope and obtained a stable variational problem
of the problem. Second, we proved that the cost of variational problem with
the transformed Lagrangian is equal to the cost of the problem with the original
Lagrangian if its argument u is a zigzag-like curve.

Problems

1. Formulate the Weierstrass test for the extremal problem

min
u

Z 1

0

F (x; u; u0; u00)

that depends on the second derivative u00.

2. Find the relaxed formulation of the problem

min
u1;u2

Z 1

0

�
u21 + u22 + F (u01; u

0
2)
�
;

u1(0) = u2(0) = 0; u1(1) = a; u2(1) = b;

where F (v1; v2) is de�ned by (7.8). Formulate the Euler equations for the
relaxed problems and �nd minimizing sequences.

3. Find the relaxed formulation of the problem

min
u

Z 1

0

�
u2 +min fju0 � 1j; ju0 + 1j+ 0:5g� ;

u(0) = 0; u(1) = a:

Formulate the Euler equation for the relaxed problems and �nd minimizing
sequences.

4. Find the conjugate and second conjugate to the function

F (x) = min
�
x2; 1 + ax2

	
; 0 < a < 1:

Show that the second conjugate coincides with the convex envelope CF of
F .
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5. Let x(t) > 0, y(t) be two scalar variables and f(x; y) = x y2. Demonstrate
that

f(hxi; hyi) � hyi2
�
1

x

��1
:

When is the equality sign achieved in this relation?

Hint: Examine the convexity of a function of two scalar arguments,

g(y; z) =
y2

z
; z > 0:



Chapter 7

Nonconvex Lagrangians

7.0.1 Formalism of convex envelopes

In dealing with nonconvex variational problems, the central idea is to relax

them replacing the nonconvex Lagrangian with its convex envelope. We already
introduced the convex envelope of sets in Rn. Here we transform the notion of
convex envelope from sets to functions.

A graph of any function y = f(x) divides the space into two sets, and the
convex envelope of a function is the convex envelope of the set y > f(x). It the
function is not de�ned for all x 2 Rn (like logx is de�ned only for x � 0), we
extend the de�nition of a function assigning the improper value +1 to function
of in all unde�ned values arguments.

There are two dual description of the convex envelope. One can either de�ne
it as a unity of all planes that lie below the graph of the function, or as a unity
of all intervals that join two points on that graph

They are formalized as follows.

De�nition 7.0.1 (Convex envelope of a function) The convex envelope Cf(xv)
of a function f : Rn ! R1 is the maximal of the set of a�ne function g(v) = aT v+b
that do not surpass f(v) everywhere [?]:.

CF (v) = max
a;b

�(v) : �(v) � F (v) 8v and �(v) is convex: (7.1)

Remark 7.0.1 In the above de�nition, one can replace the set of a�ne functions
with convex functions.

The Jensen's inequality produces the following de�nition of the convex en-
velope:

Figure 7.1: Left: Convex envelope as a unity of lines, Right: Convex envelope
as a unity of intervals

21
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De�nition 7.0.2 The convex envelope CF (v) is a solution to the following mini-
mal problem:

CF (v) = inf
�

1

l

Z l

0

F (v + �)dx 8 � :
Z l

0

�dx = 0: (7.2)

This de�nition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen's
inequality (??).

To compute the convex envelope CF one can use the Carath�eodory theorem
(see [?, ?]). It states that the argument �(x) = [�1(x); : : : ; �n(x)] that mini-
mizes the right-hand side of (7.2) takes no more than n + 1 di�erent values.
This theorem refers to the obvious geometrical fact that the convex envelope
consists of the supporting hyperplanes to the graph F (�1; : : : ; �n). Each of these
hyperplanes is supported by no more than (n + 1) points. For example, a line
(x 2 R1) is supported by two points, a plane (x 2 R2) { by three points. These
points are called supporting points.

The Carath�eodory theorem allows us to replace the integral in the right-hand
side of (7.2) in the de�nition of CF by the sum of n + 1 terms; the de�nition
(7.2) becomes:

CF (v) = min
mi2M

min
�
i
2�

(
n+1X
i=1

miF (v + �i)

)
; (7.3)

where

M =

(
mi : mi � 0;

n+1X
i=1

mi = 1

)
(7.4)

and

� =

(
�i :

n+1X
i=1

mi�i = 0

)
: (7.5)

The convex envelope CF (v) of a function F (v) at a point v coincides with
either the function F (v) or the hyperplane that touches the graph of the function
F . The hyperplane remains below the graph of F except at the tangent points
where they coincide.

The position of the supporting hyperplane generally varies with the point
v. A convex envelope of F can be supported by fewer than n + 1 points; in
this case several of the parameters mi are zero. Generally, the are only n
parameters that vary, some them are coordinates of of the supporting points,
other are coordinates of the points

Example 7.0.1 Obviously, the convex envelope of a convex function coincides
with the function itself, so all mi but m1 are zero in (7.25) and m1 = 1; the
parameter �1 is zero because of the restriction (7.5).
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The convex envelope of a \two-well" function,

�(v) = min fF1(v); F2(v)g ; (7.6)

where F1; F2 are convex functions of v, either coincides with one of the functions
F1; F2 or is supported by no more than two points for every v; supporting points
belong to di�erent wells. In this case, formulas (7.25){(7.5) for the convex
envelope are reduced to

C�(v) = min
m;�

fmF1(v � (1�m)�) + (1�m)F2(v +m�)g : (7.7)

Indeed, the convex envelope touches the graphs of the convex functions F1
and F2 in no more than one point. Call the coordinates of the touching points
v + �1 and v + �2, respectively. The restrictions (7.5) become m1�1 +m2�2 =
0; m1 +m2 = 1. It implies the representations �1 = �(1�m)� and �2 = m�.

Example 7.0.2 Consider the special case of the two-well function,

F (v1; v2) =

�
0 if v21 + v22 = 0;
1 + v21 + v22 if v21 + v22 6= 0:

(7.8)

The convex envelope of F is equal to

CF (v1; v2) =
�
2
p
v21 + v22 if v21 + v22 � 1;

1 + v21 + v22 if v21 + v22 > 1:
(7.9)

Here the envelope is a cone if it does not coincide with F and a paraboloid if it
coincides with F .

Indeed, the graph of the function F (v1; v2) is rotationally symmetric in the
plane v1; v2; therefore, the convex envelope is symmetric as well: CF (v1; v2) =
f(
p
v21 + v22). The convex envelope CF (v) is supported by the point v�(1�m)� =

0 and by a point v +m� = v0 on the paraboloid �(v) = 1 + v21 + v22 . We have

v0 =
1

1�m
v

and

CF (v) = min
m

�
(1�m)�

�
1

1�m
v

��
: (7.10)

The calculation of the minimum gives (7.9).

Example 7.0.3 Consider the nonconvex function F (v) used in Example ??:

F (v) = minf(v � 1)2; (v + 1)2g:
It is easy to see that the convex envelope CF is

CF (v) =
8<
:

(v + 1)2 if v � �1;
0 if v 2 (�1; 1);
(v � 1)2 if v � 1:
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Example 7.0.4 Compute convex envelope for a more general two-well function:

F (v) = minf(av)2; (bv + 1)2g:
The envelope CFn(v) coincides with either the graph of the original function or the
linear function l(v) = Av+B that touches the original graph in two points (as it is
predicted by the Carath�eodory theorem; in this example n = 1). This function can
be found as the common tangent l(v) to both convex branches (wells) of F (v):�

l(v) = av21 + 2av1(v � v1);
l(v) = (bv22 + 1) + 2bv2(v � v2);

(7.11)

where v1 and v2 belong to the corresponding branches of Fp:�
l(v1) = av21 ;
l(v2) = bv22 + 1:

(7.12)

Solving this system for v; v1; v2 we �nd the coordinates of the supporting points

v1 =

s
b

a(a� b)
; v2 =

r
a

b(a� b)
; (7.13)

and we calculate the convex envelope:

CF (v) =

8><
>:

av2 if jvj < v1;

2v
q

ab
a�b � b

a�b if v 2 [v1; v2];

1 + bv2 if jvj < v2

(7.14)

that linearly depends on v in the region of nonconvexity of F .

Hessian of Convex Envelope We mention here an algebraic property of
the convex envelope that we will use later. If the convex envelope CF (v) does
not coincide with F (v) for some v = vn, then the graph of CF (vn) is convex,
but not strongly convex. At these points the Hessian He(F ) = @2

@vi@vj
F (v) is

semi-positive; it satis�es the relations

He(CF (v)) � 0; detH(CF (v)) = 0 if CF < F; (7.15)

which say that He(CF ) is a nonnegative degenerate matrix. These relations can
be used to compute CF (v). For example, compute the Hessian of the convex
envelope CF (v1; v2) =

p
v21 + v22 obtained in Example 7.0.2. The Hessian is

He

�q
v21 + v22

�
=

1

(v21 + v22)
3
2

�
v21 v1v2
v1v2 v22

�

and its determinant is clearly zero.
Comparing the minimization problems

I = min
x2Rn

F (x) and Ic = min
x2Rn

F(x)



7.1. INFINITELY OSCILLATORY SOLUTIONS: RELAXATION 25

we observe that (i) I = Ic { the minimum of a function coincides with the
minimum of its convex envelope, and (ii) the convex envelope of a function does
not have local minima but only not global one.

Remark 7.0.2 (Convex envelope as second conjugate) We may as well com-
pute convex envelope in more regular way as a second conjugate of the original
function as described later in Section ??.

Convex envelope are used below in the next Section to address ill-posed varia-
tional problems.

7.1 In�nitely oscillatory solutions: Relaxation

7.1.1 Nonconvex Variational Problems.

Consider the variational problem

inf
u

J(u); J(u) = inf
u

Z 1

0

F (x; u; u0)dx; u(0) = a0; u(1) = a1 (7.16)

with Lagrangian F (x;y; z) and assume that the Lagrangian is nonconvex with
respect to z, for some values of z, z 2 Zf.

De�nition 7.1.1 We call the forbidden region Zf the set of z for which F (x;y; z)
is not convex with respect to z.

The Weierstrass test requires that the derivative u0 of an extremal never
assume values in the set Zf,

u0 62 Zf: (7.17)

On the other hand, a stationary trajectory umay be required by Euler equations
to pass through this set. Such trajectories fail the Weierstrass test and must
be rejected. We conclude that the true minimizer (the limit of a minimizing
sequence) is not a classical di�erentiable curve, otherwise it would satisfy both
the Euler equation and the Weierstrass test.

We will demonstrate that a minimizing sequence tends to a \generalized
curve." It consists of in�nitely many in�nitesimal zigzags. The derivative of the
minimizer "jumps over" the forbidden set, and does it in�nitely often. Because
of these jumps, the derivative of a minimizer stays outside of the forbidden
interval but its average can take any value within or outside the forbidden region.
The limiting curve { the minimizer { has a dense set of points of discontinuity
of the derivative.

Example of a nonconvex problem Consider a simple variational problem
that yields to an irregular solution [?]:

inf
u

I(u) = inf
u

Z 1

0

G(u; u0)dx; u(0) = u(1) = 0 (7.18)
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where

G(u; v) = u2 +

8<
:

(v � 1)2; if v � 1
2 Regime 1

1
2 � v2 if � 1

2 � v � 1
2 Regime 2

(v + 1)2 if v � � 1
2 Regime 3

: (7.19)

The graph of the function G(:; v) is presented in ??B; it is a nonconvex di�er-
entiable function of v of superlinear growth.

The Lagrangian G penalizes the trajectory u for having the speed ju0j di�er-
ent from �1 and penalizes the de
ection of the trajectory u from zero. These
contradictory requirements cannot be resolved in the class of classical trajecto-
ries.

Indeed, a di�erentiable minimizer satis�es the Euler equation (??) that takes
the form

u00 � u = 0 if ju0j � 1
2

u00 + u = 0 if ju0j � 1
2 :

(7.20)

The Weierstrass test additionally requires convexity of G(u; v) with respect
to v; the Lagrangian G(u; v) is nonconvex in the interval v 2 (�1; 1) (see ??).
The Weierstrass test requires the extremal (7.20) to be supplemented by the
constraint (recall that v = u0)

u0 62 (�1; 1) at the optimal trajectory. (7.21)

The second regime in (7.20) is never optimal because it is realized inside of the
forbidden interval. It is not clear how to satisfy both the Euler equations and
Weierstrass test because the Euler equation does not have a freedom to change
the trajectory to avoid the forbidden interval.

We can check that the stationary trajectory can be broken at any point.
The Weierstrass-Erdman condition (??) (continuity of @L

@u0
) must be satis�ed

at a point of the breakage. This condition permits switching between the �rst
(u0 > 1=2) and third (u0 < �1=2) regimes in (7.19) when

�
@L

@u0

�+
�
= 2

�
u0(1) � 1

�
� 2

�
u0(3) + 1

�
= 0

or when

u0(1) = 1; u0(3) = �1
which means the switching from one end of the forbidden interval (�1; 1) to
another.

Remark 7.1.1 Observe, that the easier veri�able Legendre condition @2F
@(u0)2 � 0

gives a twice smaller forbidden region ju0j � 1
2 and is not in the agreement with

Weierstrass-Erdman condition. One should always use stronger conditions!
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Minimizing sequence The minimizing sequence for problem (7.18) can be
immediately constructed. Indeed, the in�mum of (7.18) obviously is nonnega-
tive, infu I(u) � 0. Therefore, any sequence us with the property

lim
s!1

I(us) = 0 (7.22)

is a minimizing sequence.
Consider a set of functions ~us(x) with the derivatives equal to �1 at each

point,
~u0(x) = �1 8x:

These functions belong to the boundary of the forbidden interval of the noncon-
vexity of G(:; v); they make the second term in the Lagrangian (7.19) vanish,
G(~u; ~u0) = u2, and the problem becomes

I(~us; (~us)0) = min
~u

Z 1

0

(~us)2dx: (7.23)

The sequence ~us oscillates near zero if the derivative (~us)0 changes its sign on
intervals of equal length. The cost I(~us) depends on the density of switching
points and tends to zero when the number of these points increases (see ??).
Therefore, the minimizing sequence consists of the saw-tooth functions ~us; the
heights of the teeth tend to zero and their number tends to in�nity as s!1.

Note that the minimizing sequence f~usg does not converge to any classical
function. This minimizer ~us(x) satis�es the contradictory requirements, namely,
the derivative must keep the absolute value equal to one, but the function itself
must be arbitrarily close to zero:

j(~us)0j = 1 8x 2 [0; 1]; max
x2[0;1]

~us ! 0 as s!1: (7.24)

The limiting curve u0 has zero norm in C0[0; 1] but a �nite norm in C1[0; 1].

Remark 7.1.2 Below, we consider this problem with arbitrary boundary values;
the solution corresponds partly to the classical extremal (7.20), (7.21), and partly
to the saw-tooth curve; in the last case u0 belongs to the boundary of the forbidden
interval ju0j = 1.

Regularization and relaxation We may apply regularization to discourage
the solution to oscillate in�nitely often. For example, we may penalize for the
discontinuity of the u0 adding the stabilizing term �(u00)2 to the Lagrangian.
Doing this, we pass to the problem

min
u

Z 1

0

(�2(u00)2 +G(u; u0))dx

that corresponds to Euler equation:

�2uIV � u00 + u = 0 if ju0j � 1
2

�2uIV + u00 + u = 0 if ju0j � 1
2 :

(7.25)
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The Weierstrass condition this time requires the convexity of the Lagrangian
with respect to u00; this condition is satis�ed.

One can see that the solution of equation (7.25) is oscillatory; the period of
oscillations is of the order of �� 1: The solution still tends to an in�nitely often
oscillating distribution. When � is positive but small, the solution has �nite but
large number of wiggles. The computation of such solutions is di�cult and often
unnecessary: It strongly depends on an arti�cial parameter �, which is di�cult
to justify physically. Although formally the solution of regularized problem
exists, the questions remain. The problem is still computationally di�cult and
the di�culty grows when � ! 0 because the �nite frequency of the oscillation
of the solution tends to in�nity.

Below we describe the relaxation of a nonconvex variational problem. The
idea of relaxation is in a sense opposite to regularization. Instead of penalization
for fast oscillations, we admit oscillating functions as legitime minimizers en-
larging set of minimizers. The main problem is to �nd an adequate description
of in�nitely often switching controls in terms of smooth functions. It turns out
that the limits of oscillating minimizers allows for a parametrization and can
be e�ectively described by a several smooth functions: the values of alternating
limits for u0 and the average time that minimizer spends on each limit. The
relaxed problem has the following two basic properties:

� The relaxed problem has a classical solution.

� The in�mum of the functional (the cost of the problem) in the initial
problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation based on necessary
and su�cient conditions. Each of them yields to the same construction but
uses di�erent arguments to achieve it. In the next chapters we will see similar
procedures applied to variational problems with multiple integrals; sometimes
they also yield the same construction, but generally they result in di�erent
relaxations.

7.1.2 Minimal Extension

We introduce the idea of relaxation of a variational problem. Consider the
class of Lagrangians NF (x; y; z) that are smaller than F (x; y; z) and satisfy the
Weierstrass test W(NF (x; y; z)) � 0:�NF (x; y; z)� F (x; y; z) � 0;

W(NF (x; y; z)) � 0
8 x; y; z: (7.26)

Let us take the maximum on NF (x; y; z) and call it SF . Clearly, SF corre-
sponds to turning one of these inequalities into an equality:

SF (x; y; z) = F (x; y; z); W(SF (x; y; z)) � 0 if z 62 Zf;
SF (x; y; z) � F (x; y; z); W(SF (x; y; z)) = 0 if z 2 Zf:

(7.27)

This variational inequality describes the extension of the Lagrangian of an un-
stable variational problem. Notice that
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1. The �rst equality holds in the region of convexity of F and the extension
coincides with F in that region.

2. In the region where F is not convex, the Weierstrass test of the extended
Lagrangian is satis�ed as an equality; this equality serves to determine
the extension.

These conditions imply that SF is convex everywhere. Also, SF is the maximum
over all convex functions that do not exceed F . Again, SF is equal to the convex
envelope of F :

SF (x; y; z) = CzF (x; y; z): (7.28)

The cost of the problem remains the same because the convex envelope corre-
sponds to a minimizing sequence of the original problem.

Remark 7.1.3 Note that the geometrical property of convexity never explicitly
appears here. We simply satisfy the Weierstrass necessary condition everywhere.
Hence, this relaxation procedure can be extended to more complicated multidimen-
sional problems for which the Weierstrass condition and convexity do not coincide.

Recall that the derivative of the minimizer never takes values in the region
Zf of nonconvexity of F . Therefore, a solution to a nonconvex problem stays
the same if its Lagrangian F (x;y; z) is replaced by any Lagrangian NF (x;y; z)
that satis�es the restrictions

NF (x;y; z) = F (x;y; z) 8 z 62 Zf;
NF (x;y; z) > CF (x;y; z) 8 z 2 Zf:

(7.29)

Indeed, the two Lagrangians F (x;y; z) and NF (x;y; z) coincide in the region of
convexity of F . Therefore, the solutions to the variational problem also coincide
in this region. Neither Lagrangian satis�es the Weierstrass test in the forbidden
region of nonconvexity. Therefore, no minimizer can distinguish between these
two problems: It never takes values in Zf. The behavior of the Lagrangian in
the forbidden region is simply of no importance. In this interval, the Lagrangian
cannot be computed back from the minimizer.

Minimizing Sequences Let us prove that the considered extension preserves
the value of the objective functional. Consider the extremal problem (7.16) of
superlinear growth and the corresponding stationary solution u(x) that may not
satisfy the Weierstrass test. Let us perturb the trajectory u by a di�erentiable
function !(x) with the properties:

max
x
j!(x)j � "; !(xk) = 0 k = 1 : : :N (7.30)

where the points xk uniformly cover the interval (a; b). The perturbed trajectory
wiggles around the stationary one, crossing it at N uniformly distributed points
xk; the derivative of the perturbation is not bounded.
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The integral J(u; !)

J(u; !) =

Z 1

0

F (x; u+ !; u0 + !0)dx

on the perturbed trajectory is estimated as

J(u; !) =

Z 1

0

F (x; u; u0 + !0)dx+ o("):

because of the smallness of ! (see (7.30)). The derivative !0(x) = v(x) is a new
minimizer constrained by N conditions (see (7.30))

Z k+1

N

k
N

v(x)dx = 0; k = 0; : : :N � 1; (7.31)

correspondingly, the variational problem can be rewritten as

J(u; !) =

N�1X
k=1

Z k+1

N

k
N

F (x; u; u0 + !0)dx + o

�
1

N

�
:

Perform minimization of a term of the above sum with respect of v, treating u
as a �xed variable:

Ik(u) = min
v(x)

Z k+1

N

k
N

F (x; u; u0 + v)dx subject to

Z k+1

N

k
N

v(x)dx = 0

This is exactly the problem (??) of the convex envelope with respect to v.
By referring to the Carath�eodory theorem (7.4) we conclude that the mini-

mizer v(x) is a piece-wise constant function in ( k
N
; k+1

N
) that takes at most n+1

values v1; : : : vn+1 at each interval. These values are subject to the constraints
(see (7.31))

mi(x) � 0;

nX
i=1

mi = 1;

pX
i=1

mivi = 0: (7.32)

This minimum coincides with the convex envelope of the original Lagrangian
with respect to its last argument (see (7.4)):

Ik = min
mi;vi2(7:32)

1

N

 
pX
i=1

miF (x;u; u
0 + vi)

!
(7.33)

Summing Ik and passing to the limit N !1, we obtain the relaxed variational
problem:

I = min
u

Z 1

0

Cu0F (x;u(x);u0(x)) dx: (7.34)

Note that n + 1 constraints (7.32) leave the freedom to choose 2n + 2 inner
parameters mi and vi to minimize the function

Pp
i=1miF (u;vi) and thus to
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Average
derivative

Pointwise deriva-
tives

Optimal concen-
trations

Convex enve-
lope CG(u; v)

v < �1 v01 = v02 = v m0

1 = 1; m0

2 = 0 u2 + (v � 1)2

jvj < 1 v01 = 1; v02 = �1 m0

1 = m0

2 =
1

2
u2

v > 1 v01 = v02 = v m0

1 = 0; m0

2 = 1 u2 + (v + 1)2

Table 7.1: Characteristics of an optimal solution in Example ??.

minimize the cost of the variational problem (see (7.33)). If the Lagrangian is
convex, vi = 0 and the problem keeps its form: The wiggle trajectories do not
minimize convex problems.

The cost of the reformulated (relaxed) problem (7.34) corresponds to the
cost of the problem (7.16) on the minimizing sequence (??). Therefore, the
cost of the relaxed problem is equal to the cost of the original problem (7.16).
The extension of the Lagrangian that preserves the cost of the problem is called
the minimal extension. The minimal extension enlarges the set of classical
minimizers by including generalized curves in it.

7.1.3 Examples

Relaxation of nonconvex problem in Example ?? We revisit Example
??. Let us solve this problem by building the convex envelope of the Lagrangian
G(u; v):

CvG(u; v) = min
m1;m2

min
v1;v2

�
u2 +m1(v1 � 1)2 +m2(v2 + 1)2

	
;

v = m1v1 +m2v2; m1 +m2 = 1; mi � 0: (7.35)

The form of the minimum depends on the value of v = u0. The convex envelope
CG(u; v) coincides with either G(u; v) if v 62 [0; 1] or CG(u; v) = u2 if v 2 [0; 1];
see Example 7.0.3. Optimal values v01 ; v

0
2 ; m

0
1 m

0
2 of the minimizers and the

convex envelope CG are shown in Table 7.1. The relaxed form of the problem
with zero boundary conditions

min
u

Z 1

0

CG(u; u0)dx; u(0) = u(1) = 0; (7.36)

has an obvious solution,
u(x) = u0(x) = 0; (7.37)

that yields the minimal (zero) value of the functional. It corresponds to the
constant optimal value mopt of m(x):

mopt(x) =
1

2
8x 2 [0; 1]

.
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The relaxed Lagrangian is minimized over four functions u;m1; v1, v2 bounded
by one equality, u0 = m1v1 + (1�m1)v2 and the inequalities 0 � m � 1, while
the original Lagrangian is minimized over one function u. In contrast to the
initial problem, the relaxed one has a di�erentiable solution in terms of these
four controls.

Inhomogeneous boundary conditions Let us slightly modify this example.
Assume that boundary conditions are

u(0) = V (0 < V < 1); u(1) = 0

In this case, an optimal trajectory of the relaxed problem consists of two parts,

u0 < �1 if x 2 [0; x0); u = u0 = 0 if x 2 [x0; 1]

At the �rst part of the trajectory, the Euler equation u00 � u = 0 holds; the
extremal is

u =

�
Aex +Be�x if x 2 [0; x0)
0 if x 2 [x0; 1]

Since the contribution of the second part of the trajectory is zero, the problem
becomes

I = min
u;x0

Z x0

O

CvG(u; u0)dx

To �nd unknown parameters A;B and x0 we use the conditions

u(0) = V; u(x0) = 0; u0 = �1

The last condition expresses the optimality of x0, it is obtained from the con-
dition (see (??))

CvG(u; u0)jx=x0 = 0:

We compute

A+B = V; Aex0 +Be�x0 = 0; Aex �Be�x = 1

which leads to

u(x) =

�
sinh(x� x0) if x < x0;
0 if x > x0;

x0 = sinh�1(V )

The optimal trajectory of the relaxed problem decreases from V to zero and
then stays equal zero. The optimal trajectory of the actual problem decays to
zero and then become in�nite oscillatory with zero average.
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Relaxation of a two-wells Lagrangian We turn to a more general example
of the relaxation of an ill-posed nonconvex variational problem. This example
highlights more properties of relaxation. Consider the minimization problem

min
u(x)

Z z

0

Fp(x; u; u
0)dx; u(0) = 0; u0(z) = 0 (7.38)

with a Lagrangian
Fp = (u� �x2)2 + Fn(u

0); (7.39)

where
Fn(v) = minfa v2; b v2 + 1g; 0 < a < b; � > 0:

Note that the second term Fn of the Lagrangian Fp is a nonconvex function of
u0.

The �rst term (u � �x2)2 of the Lagrangian forces the minimizer u and
its derivative u0 to increase with x, until u0 at some point reaches the interval
of nonconvexity of Fn(u

0), after which it starts oscillating by alternation of the
values of the ends of this interval, because u0 must vary outside of this forbidden
interval at every instance. (see ??)

To �nd the convex envelope CF we must transform Fn(u
0) (in this example,

the �rst term of Fp (see (7.39)) is independent of u
0 and it does not change after

the convexi�cation). The convex envelope CFp is equal to

CFp = (u� �x2)2 + CFn(u0): (7.40)

The convex envelope CFn(u0) is computed in Example 7.0.4 (where we use the
notation v = u0). The relaxed problem has the form

min
u

Z
CFp(x; u; u0)dx; (7.41)

where

CFp(x; u; u0) =

8><
>:

(u� �x2)2 + a(u0)2 if ju0j � v1;

(u� �x2)2 + 2u0
q

ab
a�b � b

a�b if v1 � ju0j � v2;

(u� �x2)2 + b(u0)2 + 1 if ju0j � v2:

Note that the variables u; v in the relaxed problem are the averages of the
original variables; they coincide with those variables everywhere when CF = F .
The Euler equation of the relaxed problem is

au00 � (u� �x2) = 0 if ju0j � v1;
(u� �x2) = 0 if v1 � ju0j � v2;

bu00 � (u� �x2) = 0 if ju0j � v2:
(7.42)

The Euler equation is integrated with the boundary conditions shown in (7.38).
Notice that the Euler equation degenerates into an algebraic equation in the
interval of convexi�cation. The solution u and the variable @

@u0
CF of the relaxed

problem are both continuous everywhere.
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Integrating the Euler equations, we sequentially meet the three regimes when
both the minimizer and its derivative monotonically increase with x (see ??).
If the length z of the interval of integration is chosen su�ciently large, one
can be sure that the optimal solution contains all three regimes; otherwise, the
solution may degenerate into a two-zone solution if u0(x) � v2 8x or into a
one-zone solution if u0(x) � v1 8x (in the last case the relaxation is not needed;
the solution is a classical one).

Let us describe minimizing sequences that form the solution to the relaxed
problem. Recall that the actual optimal solution is a generalized curve in the
region of nonconvexity; this curve consists of in�nitely often alternating parts
with the derivatives v1 and v2 and the relative fractions m(x) and (1�m(x)):

v = hu0(x)i = m(x)v1 + (1�m(x))v2; u0 2 [v1; v2]; (7.43)

where h i denotes the average, u is the solution to the original problem, and hui
is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic one
hui = �x2 because of the linear dependence of the Lagrangian on hui0 in this
region. The �rst term of the Euler equation,

d

dx

@F

@ hui0 � 0 if v1 � j hui0 j � v2; (7.44)

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime.

This variable can be found by di�erentiation of the optimal solution:

(hui � �x2)0 = 0 =) hui0 = 2�x: (7.45)

This equality, together with (7.43), implies that

m =

8<
:

0 if ju0j � v1;
2�

v1�v2x� v2
v1�v2 if v1 � ju0j � v2;

1 if ju0j � v2:
(7.46)

Variable m linearly increases within the second region (see ??). Note that the
derivative u0 of the minimizing generalized curve at each point x lies on the
boundaries v1 or v2 of the forbidden interval of nonconvexity of F ; the average
derivative varies only due to varying of the fraction m(x) (see ??).


