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Mechanical metamaterials are man-made structures with counterintuitive mechanical
properties that originate in the geometry of their unit cell instead of the properties of each
component. The typical mechanical metamaterials are generally associated with the four
elastic constants, the Young’s modulus E, shear modulus G, bulk modulus K and
Poisson’s ratio t, the former three of which correspond to the stiffness, rigidity, and com-
pressibility of a material from an engineering point of view. Here we review the important
advancements in structural topology optimisation of the underlying design principles, cou-
pled with experimental fabrication, thereby to obtain various counterintuitive mechanical
properties. Further, a clear classification of mechanical metamaterials have been estab-
lished based on the fundamental material mechanics. Consequently, mechanical metama-
terials can be divide into strong-lightweight (E/q), pattern transformation with tunable
stiffness, negative compressibility (�4G/3 < K < 0), Pentamode metamaterials (G � K) and
auxetic metamaterials (G� K), simultaneously using topology optimisation to share vari-
ous fancy but feasible mechanical properties, ultralight, ultra-stiffness, well-controllable
stiffness, vanishing shear modulus, negative compressibility and negative Poisson’s ratio.
We provide here a broad overview of significant potential mechanical metamaterials
together with the upcoming challenges in the intriguing and promising research field.
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Nomenclature

Acronyms
2D two-dimensional
3D three-dimensional
AM additive manufacturing
BCC body-centred cubic
CDC complex diamond cubic
DMLS direct metal laser sintering
EBM electron beam melting
FCC face-centred cubic
MOFs metal–organic frameworks
NAC negative area compressibility
NLC negative linear compressibility
NPR negative Poisson’s ratio
NTE negative thermal expansion
SLA stereolithography
SLM selective laser melting
SLS selective laser sintering
SEM scanning electron microscope
XRD X-ray diffraction

Symbols
A constant parameter
a gap of adjoining hexagonal faces
b1, b2 change in the interlock gap perpendicular to the adjoining hexagonal faces
c heat capacity
cm specific heat after phase change
C specific heat
a, b, c, d ordering of sector angles in single origami four-vertex geometry
E Young’s modulus
G Gibbs free energy
G shear modulus
H length of the vertical struts
h Planck’s constant
K bulk modulus
k spring constant
kh spring constant of connected stiffness in an interlocking structure
L length of the oblique struts
l the edge lengths of each hexagon in an interlocking structure
n power index
N Avogadro’s number
p hydrostatic pressure
P pressure
Ri rod diameter of the crossing rod
Ro rod diameter of FCC unit
Sij, sij, sijkl elastic compliances
S buckling strength
T temperature
t the strut thickness
v, V specific volume, volume
a linear thermal expansion coefficient; the angle between two edges
b volume thermal expansion coefficient
c, cj shear strain, components of Gruneisen function
e unit elongation
h re-entrant angle
t Poisson’s ratio
q mass density, folding angles or radius of a curve
qs relative materials density
r normal stress
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ry yield strength
rys relative yield strength
s shear stress
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1. Introduction

Metamaterials are not materials in the usual sense. They are products of human ingenuity, not observable in nature.
These manmade materials enable us to design our own atoms-like units [1,2], and thereby create materials with unprece-
dented effective properties [3–5]. These unusual material properties are derived from their microstructural geometry, rather
than from their material composition. A mechanical metamaterial or structural metamaterial refers to a sort of metamaterial
with a unique mechanical property based on its structure. An ongoing challenge for modern materials science is to create
these artificial structures with an unconventional response, programmed by a suitable geometrical or topological design.
The fabrication and testing of rationally designed metamaterial microstructures in three dimensions is just emerging.

The influential concept of metamaterials originates in a paper by Bose [6], where a manmade twisted structure was sub-
jected to the polarisation of an electromagnetic wave [7–9]. Experimental research in metamaterials first emerged in optics
[3–5,10,11] but progressed soon after to acoustics and mechanics [12,13]. Optical metamaterials are artificially structured
materials with nanoscale inclusions and unconventional properties observed for optical frequencies [10,14]. There are also
opportunities in other fields such as thermodynamics and mechanics [15–17]. Acoustic metamaterials, showing vanishing
shear [18], can in essence be classified as an individual series of metafluid mechanical metamaterials [19]. Specific metama-
terials for imperceptibility cloaks can also be considered metafluids, i.e., pentamode metamaterials [20]. Initially, rationally
designed mechanical metamaterials were developed to control wave propagation in acoustic media [21,22], thin elastic
sheets, curved shells [23] and harness elastic instabilities to generate auxetic behaviour [24–27].
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With this in mind, these newly developed mechanical metamaterials [16,17] have a variety of counterintuitive mechan-
ical properties, and thereby they are not limited just to switching between two pattern states as before. These mechanical
metamaterials can therefore be considered a counterpart to the well-known family of optical or acoustics metamaterial. So
far they include auxetic (negative Poisson’s ratio) metamaterials [28–32], metamaterials with vanishing shear modulus, such
as pentamode structures [20,33,34], metamaterials with negative compressibility [35–37], singularly nonlinear materials
[38,39], and topological metamaterials [40–42]. Fabrication of an ultra-strong glassy carbon nanolattice with a strut diam-
eter of around 200 nm could lead to the realisation of advanced nanoscale-structured materials [16,43]. These explorations
are concurrently making mechanical metamaterials much smaller and stronger. Understanding and identifying the key fea-
tures of mechanical metamaterials is a precondition to their realisation. It is necessary to elucidate feasible blueprints for
three-dimensional microstructures to achieve specific counterintuitive mechanical properties. A clear classification based
on the mechanics for various emerging mechanical metamaterials needs to be established before we progress in this
research field.

One word has been defined to describe the difference between composites and mechanical metamaterials. In contrast to
conventional composite engineering, wherein methods generally rely on designing a response based on the interaction
between the constituent parts composing the material, structural features in metamaterial design inject novelty at much
larger than the atomic level. Most meta-atoms for optical metamaterials have dimensions of at least 50 nm. Acoustic
meta-atoms are even larger, as acoustic wavelengths are larger than optical wavelengths. But the emerging mechanical
metamaterials beyond wavelengths are expected into the atomic level. Some types provide novel functionality, such as com-
plicated bistability, tunable stiffness, vanishing shear modulus, negative compressibility, negative thermal expansion, and
auxetic behaviour. Therefore, metamaterials are a type of composite, but the difference is that they can achieve at least
one abnormal property not observed in nature, due to the topographical optimisation rather than the composition of mate-
rials themselves. Just as in optical and acoustic metamaterials [2,44–46], the corresponding structural design and fabrication
in mechanical metamaterials [47–49] are prompted by many of same factors as in any other field: new and puzzling obser-
vations, new techniques and new theories. Progress here would greatly enhance the possibilities.

The main purpose of this review is to make a clearly classify mechanical metamaterials, according to essential material
mechanics, i.e., the relationships between three elastic moduli and the Poisson’s ratio. We will also provide a critical review
of the developments at the frontier of mechanical metamaterials, ranging from structural topological optimisation, design
principles and fabrication, and various enhanced mechanical properties. Anyone who attempts to write an overview of
the development from natural materials to mechanical metamaterials is bound to be heavily indebted to the work of others.
In such a brief review their contributions will inevitably be compressed to the main points. This paper is intended for readers
who seek a concise outline of mechanical metamaterials and the related terminology.

This review contains, apart from this introductory section, a historical perspective of metamaterials (Section 2), theoret-
ical fundamentals (Section 3), basic classifications (Section 4), three separate critical assessments of the corresponding group
sets (Sections 5–7), the potential applications (Section 8), and conclusions with future directions (Section 9). Section 2 pro-
vides a historical analysis encompassing more than mechanical metamaterials, including optical, acoustic and thermal meta-
materials, as well as the five general dominant trends in these smart metamaterials. Section 3 discusses some general
theoretical considerations, in particular the relevant basic concepts and equations. Section 4 establishes three group of
mechanical metamaterials according to the Milton map (i.e., correlation between shear modulus and bulk modulus) and
the materials density. Section 5 considers the first group set: mechanical metamaterials associated with stiffness. These
strong and lightweight metamaterials (a scaling relationship between Young’s modulus E and density q, E/q) may consist
of micro-/nanolattices, chiral/anti-chiral hierarchical metamaterials, origami-inspired metamaterials, cellular origami meta-
materials, and the last one for that the pattern can yield tunable stiffness. The second group set, mechanical metamaterials
associated with shear/bulk moduli, G, K, will be introduced in Section 6. This group includes vanishing shear modulus (G�
K), and negative compressibility (�4G/3 < K < 0). The third group set is presented in Section 7, and concerns auxetic meta-
materials with negative Poisson’s ratio (G � K). Fabrication techniques and application conditions for mechanical metama-
terials will be addressed in Section 8. General dominant trends in the design of mechanical metamaterials have been
highlighted in Section 9, as well as some implications for metal-organic frameworks (MOFs). Our systematic analysis aims
to draw a clear overview of the current challenges for the science and technology associated with mechanical metamaterials.
We answer many fundamental questions, while raising largely unaddressed questions. For instance, what are the design
principles behind these structured metamaterials and what are some achievable counterintuitive mechanical properties?

2. Historical perspectives of metamaterials

This section gives a broad historical perspective in optical, acoustic and thermal metamaterials, and their corresponding
structural design. The aims are to explore the rationale behind the theory, to summarise trends to target the role of mechan-
ical metamaterials in various types of metamaterials, and finally to state the gaps in this research field. It is important to
state the difference between metamaterials and photonic crystals [50]. The period and the size of a unit cell in photonic crys-
tals are comparable to the wavelength of light, whereas the size of the meta-atom is much smaller than the wavelength of
light. More importantly, photonic crystals scatter light, whereas metamaterials bend light due to the electromagnetic field
generated by the material. Thus, metamaterials can be considered as effective media, whereas photonic crystals are not [46].
Photonic crystals are a special case of metamaterials indeed, which is not included in this review.
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Optical and acoustic metamaterials have developed rapidly. The emergence of homogenised acoustic metamaterials
[50,51] with a negative modulus analogous to negative permittivity has opened the field of mechanical metamaterials.
Recently smart metamaterials have emerged in this field. These metamaterials intelligently respond to changes in the exter-
nal environments, while simultaneously responding to thermal and mechanical stimuli. The classification of a smart meta-
material is similar in all types of optical, acoustic, mechanical, and thermal metamaterials. In addition to the four types of
metamaterial, a special case is coupled smart metamaterials which are tailored for their application.

Five fundamental research fields can be proposed for these smart metamaterials. (i) Research on coupled mecha-
nisms in the field of multi-physics: The classical direction of optical metamaterials may be combined with other phys-
ical fields to create a smart metamaterial, including acoustically, mechanically and thermally dynamic responses. (ii)
Design of a unit cell on the atomic/molecular level: When fabricating a novel metamaterial of micro/nanometre size,
the size effects of these metamaterials must be considered. Additionally, the failure modes of the material as a unit
cell also play a significant role in the structural design of various metamaterials. (iii) Coupling with natural materials:
After nearly one decade, the topological design of metamaterials needs to be retraced to optimise the structure using
inspiration from nature materials. This seems but definitely not a biomimetic approach. We intend to find what prop-
erties natural materials do not have, and then to create these properties, such as tunable piezoelectric sensitivity [52].
Thus, a main challenge will be to couple natural materials in order to realise desired mechanical properties. (iv) Tuning
of metamaterials: This research direction is suitable the existing smart metamaterials, to make a bridge between their
fundamental exploration and their industrial application. (v) New product development in metamaterials sensing: The
goal of this research direction is to develop new products via existing optical or acoustic metamaterials for industrial
application. The focus is on manufacturing and the control of information in modern product technology. Two tech-
niques in smart metamaterials can be modelled or numerically simulated using gene engineering and related fabrica-
tion techniques.

All types of smart metamaterials presented here are associated with optical, acoustic, mechanical, and thermal metama-
terials. Each of them is a relatively broad field of research. Hence, the main purpose of this section is to provide common and
general background, and present the terminology that will allow further development of the analytical tools. We provide the
general directions of research for various potential smart metamaterials and the immediate challenges. Most of these can
also be extended to the development of mechanical metamaterials. At this time mechanical metamaterials is a new, emerg-
ing field.

3. Fundamentals of stiffness, rigidity and compressibility

This section is devoted to the fundamental issues of anisotropic elasticity that should be defined and summarised before
specific problems are confronted. Some simple constitutive laws are also considered corresponding to material behaviour in
the range of relatively low strains under approximately isothermal conditions. Definitions are established to relate to the
elastic constants that theoretically underpin the design principles of various mechanical metamaterial structures. The nota-
tion introduced here is well-established in engineering [53], i.e., the third case in Fig. 1a [54], whereas the notation for the
other can be found in many well-known textbooks [55–57]. The operational definitions of E, B, G, and v for isotropic media
also apply to single crystals, which is the second case in Fig. 1a. If these measurements are applied to a single crystal, the
results depend on the test axis of the crystal (hkl). The elastic constants so obtained are designated Ehkl, Ghkl, and vhkl,
and are related to the cij and sij by formulae found elsewhere [54]. Readers with sound knowledge in continuum mechanics
[58,59] might want to skip these basics.

Typical mechanical metamaterials are closely correlated to four elastic constants: Young’s modulus (E), shear modulus
(G), bulk modulus (K) and Poisson’s ratio (t). The first three in the list measure the stiffness, the rigidity, and the compress-
ibility of a structural material. The elastic constant for isotropic materials, Poisson’s ratio, offers a fundamental metric by
which to compare the structural performance of any real material, whether homogeneous or not, when strained elastically.
The Poisson’s ratio can be defined as the relative amount a given material contracts transversally when stretched axially.
Some authors prefer to use the terms ‘‘technical”, ‘‘practical”, or ‘‘bulk” instead of ‘‘engineering”, and ‘‘constants” instead
of ‘‘coefficients” [54].

The elastic modulus and Poisson’s ratio come from the Hooke’s law. Consider an elemental elastic body with sides parallel
to the coordinate axes (Fig. 1b [44]). For each pair of parallel sides of a cubic element, one symbol is needed to denote the
normal component of stress, r, and two other symbols to denote the two components of shearing stress, s. In the case of
normal stress, ry, the subscript y indicates that the stress is acting on a plane normal to the y-axis. Two subscript letters
are used for shearing stress, for instance syx. The first letter, y, indicates the direction normal to the plane under consider-
ation. The second letter, x, indicates the direction of the component of stress. When discussing deformation of an elastic
body, the components of strain are used, i.e., the increase in the length of the element, the units of elongation ex, ey, ez,
and the distortion of the angle between the two elements, the unit shearing strain cxy, cxz and cyz. In general, Hooke’s
law refers to the linear relationship between the components of stress and the components of strain under a small
deformation,
ex ¼ rx

E
ð1Þ



Fig. 1. (a) Schematic interconnectivity of elastic parameters of solids [54]. The a and b can be taken to represent extensions (or contractions) and bending of
valence bonds between atoms in solids; subscript i denotes the various sets of atomic neighbours. The Cij represent elastic stiffness coefficients that relate
stresses to strains; both stress and strain are specified with respect to a set of axes denoted by indices i and j and usually chosen to coincide with
crystallographic axes. E, G, B, and v denote the Young’s modulus, shear modulus, bulk modulus, and Poisson ratio, parameters arising naturally in
characterising, respectively, uniaxial loading, shear loading, hydrostatic loading, and transverse strain under uniaxial loading. (b) Scheme of an elemental
elastic body with sides parallel to the coordinate axes. The components of normal and shearing stress are indicated. (c) Schemes of experiments measuring
the bulk modulus K (left), the Young’s modulus E (middle) and the shear modulus G (right) [44].
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where E is the modulus of elasticity, or Young’s modulus (Fig. 1c). In other words, Young’s modulus is defined as the ratio of
uniaxial stress (tensile or compressive) to strain, measured along the same axis [54].

In most of the known elastic systems, the general stiffness refers to the ratio of the generalised force to the generalised
displacement, such as the spring constant, k. The modulus is a continuum property independent of the geometry and size of
the material. A three-dimensional solid viewed as a continuum in the context of elasticity theory, as in Eq. (1), experience
stress as force per area and strain as displacement per length. An elastic object resists a given deformation by exerting a
restoring force when pressed. A positive stiffness will occur when the deformation is in the same direction as the applied
force, corresponding to a restoring force that returns the deformable body to its neutral position [60]. Any time we see
the world as we are conditioned to see it, we see positive stiffness, but in metamaterials a negative stiffness is involved.
Negative stiffness is possible in mechanical metamaterials, which assists the imposed deformation.

Huge variations in volume occur when different materials resist distortion under a mechanical load. Poisson’s ratio can be
introduced to compare the performance of materials strained elastically by locating the performance between narrow
numerical bounds. In doing so, this extension of the element in the x-direction is normally accompanied by lateral strain
components (contractions),
ey ¼ �mrx

E
; ez ¼ �mrx

E
ð2Þ
where t is a constant called the Poisson’s ratio. Poisson’s ratio is defined as the negative of the ratio of transverse strain to
longitudinal strain in the case of uniaxial stress. Most solids contract laterally when stretched axially, i.e., ey < 0, ez < 0, com-
pared to the positive rx. The Poisson’s ratio is traditionally positive and generally ranges from 0.25 to 0.33 in conventional
materials [61,62]. We will see that the numerical limits are changing rapidly as new experiments, computational methods
and routes to materials synthesis emerge. We must thus change our understanding of the mechanical characteristics of mod-
ern materials.

When superposing the strain components produced by the three stresses, the relationship between elongation and stress
is defined by two physical constants E and t,
ex ¼ 1
E
rx � mðry þ rzÞ
� �

;

ey ¼ 1
E
ry � mðrx þ rzÞ
� �

;

ez ¼ 1
E
ðrz � m rx þ ry

� �Þ;
ð3Þ
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Similarly, the relationship between shearing strain, c, and shearing stress, s, can also be defined by the constants E and t
[53]. In the particular case of the pure shear condition, where rz ¼ r; ry ¼ �r; rx ¼ 0, s ¼ 1

2 ðrz � ryÞ ¼ r, the relation is
given by,
c ¼ 2ð1þ mÞr
E

¼ 2ð1þ mÞs
E

ð4Þ
Often the notation,
G ¼ E
2ð1þ mÞ ð5Þ
is used. Then Eq. (4) becomes c ¼ s=G. The constant G, defined by Eq. (5), is called the modulus of elasticity in shear, or the
modulus of rigidity (Fig. 1c). The shear modulus and Young’s modulus are therefore used for axial and torsional properties,
respectively. In mechanical metamaterials, the shear modulus can approach zero compared to the bulk modulus, which is
not the case for normal solid materials. This is similar to the behaviour of liquids which are difficult to compress but flow
easily [34,63].

By adding Eqs. (3) together and using the following notation, we obtain the relationship between volume expansion
e ¼ ex þ ey þ ez and the sum of normal stresses h ¼ rx þ ry þ rz,
e ¼ 1� 2m
E

h ð6Þ
In the case of a uniform hydrostatic pressure of amount p, where rz ¼ ry ¼ rx ¼ �p, then,
e ¼ �3ð1� 2mÞp
E

ð7Þ
The quantity E=3ð1� 2mÞ is called the modulus of volume expansion, i.e., the bulk modulus, K. As such, the compress-
ibility of a solid, being the inverse of the bulk modulus [64], can be given by the derivatives [56], K ¼ � 1

V
dV
dp, where V is

volume. These elasticity constants are positive and definite. However, if we have just two materials, one sufficiently soft
and the other sufficiently rigid, i.e., one with an extremely large elastic modulus and the other with an extremely small
elastic modulus, it is possible to manufacture a family of sufficiently diverse microstructures to obtain the elastic
properties that we desire [63].

To summarise, the important material properties, stiffness, rigidity, and compressibility, can be derived from four elastic
constants, the Young’s modulus, shear modulus, bulk modulus, and Poisson’s ratio. The shear modulus, G, generally refers to
a change in shape under constant volume. In ideal gases or liquids, G = 0. The bulk modulus, K, refers to the volume change of
a cube, while maintaining shape. Extensive previous studies, described in the book referenced in [55], have proved that the
Young’s modulus, E, of a metal plate with holes is independent of the Poisson’s ratio of the metal, particularly for
hierarchically porous composite [29]. Two basic charts plot combinations of properties [65]: the modulus-density (E-q)
chart, called the Ashby chart [44,66], and the bulk-shear modulus (K-G) map, the first quadrant of which is called the Milton
map [29,44].
4. Basic classification of mechanical metamaterials

Mechanical metamaterials refer to a group of artificial structures with certain unusual mechanical properties, arising
from the geometry of their subunits rather than the composition of the material. They belong within the family of metama-
terials. The concept of a metamaterial has been extended from electromagnetics and acoustics to mechanics. Although com-
posite structures are not entirely new to the field of mechanics, methods for the three-dimensional design of these
engineered microstructures are just emerging, in particular with respect to anomalous macroscopic properties. Typically,
these mechanical metamaterials carry a variety of significantly enhanced mechanical properties, such as zero or negative
Poisson’s ratios [26,28], vanishing shear modulus [20,33,34], negative stiffness [36], negative compressibility [37], singularly
nonlinear behaviour [38,39], and customised topological microstructures [40–42], all of which distinguishes them from con-
ventional natural materials. These qualities are expected to provide mechanical support and diverse protective functions in a
variety of potential industrial, biomedical and bioengineering applications, such as tissue engineering scaffolds. Neverthe-
less, understanding and identifying the key features of these various mechanical metamaterials is a prerequisite to their real-
isation via the design principles and structural engineering. The following structural classification can describe the types
mechanical metamaterial.

Fig. 2 provides a schematic diagram of the detailed classification of mechanical metamaterials. The order is established by
following the basic elastic constants, because the various structures of mechanical metamaterials are often discussed in
terms of their effective modulus and Poisson’s ratio. Therefore, this section serves to survey micromechanical structures that
seek to predict and explain various mechanical properties. Almost all mechanical metamaterials described here are related to
the three elastic constants, i.e., the Young’s modulus, shear modulus, bulk modulus, and a dimensionless parameter, Pois-
son’s ratio. From an engineering point of view, the former three respectively correspond to three elastic material properties,



Fig. 2. Basic classification of mechanical metamaterials.
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the stiffness, rigidity, and compressibility of a material. We hope to give a clear classification according to the fundamental
mechanics of material structural design. Mechanical metamaterials can be divided into three general groups based on their
elastic constants, rather than based on a composition of either metal alloys, ceramics, or polymers.

As shown in the study groups in Fig. 2, the types are all associated with a stiffness parameter, Young’s modulus, E. One is
strong and lightweight, such as micro-/nanocellular or the newly developed origami-inspired structures, represented by a
scaling relationship between the Young’s modulus and density q, E/q. Another is pattern transformation showing tunable
stiffness E, for instance conventional holey sheets. Two accessible metamaterials, the Pentamode and kagome structures,
are obtained when the elastic modulus appears as plotted on the K-axis of Fig. 3 [67,68], when the shear modulus G
approaches zero compared to the bulk modulus K, G� K. Another condition from the middle group of Fig. 2 both is closely
correlated to shear modulus G and bulk modulus K. The characteristic relationship regarding these elastic parameters can be
presented in the K-G map, i.e., the Milton map shown in Fig. 3. The range of elastic moduli for materials with negative com-
pressibility corresponds to the middle region of the lower right quadrant of the K-Gmap (Fig. 3), in which G > 0 and �4G/3 <
K < 0. This region obeys the partially constrained boundary conditions of two subclasses of negative linear compressibility
(NLC) and negative area compressibility (NAC). Only a few studies [37,69,70] focus on this sort of mechanical metamaterial
by finding natural negative compressibility candidates [71–73]. Negative thermal expansion (NTE) is another approach that
is expected to make the transition from theoretical fundamentals to potential engineering structures. The last type consists
of auxetic metamaterials with zero or negative Poisson’s ratios or with switchable negative/positive Poisson’s ratios. These
properties arise due to the structural design of mechanical metamaterials



Fig. 3. The K-G map. Correlation of the bulk modulus K and shear modulus Gwith the Poisson’s ratio and stability [67,68]. The three conditions, G � K,�4G/
3 < K < 0, G � K, correspond to Sections 6.2,6.3 and 7.2 in this review, respectively.
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5. Structural design and properties of mechanical metamaterials associated with stiffness

This section discusses mechanical metamaterials with exceptional combinations of mechanical properties (stiffness,
strength, toughness, etc.) and low weight. From the structure-principle-property perspective, this section covers the devel-
opment of various mechanical metamaterials, design principles behind these structures, and the corresponding enhance-
ment of mechanical properties. First, various mechanical metamaterials are associated with strength and lightweight (E/
q). We will introduce four main categories and one special case for the mechanical properties of tunable stiffness. These
include micro-/nanolattices, chiral/anti-chiral hierarchical metamaterials, origami-inspired metamaterials, and cellular ori-
gami metamaterials. The special case is for pattern transformation. Second, the purpose of the second subsection aims to
bring us some essential design principles behind various metamaterials. These involve Maxwell’s criterion and material
mechanics, topological optimisation, folding theory, geometrical frustration and elastic instability. Finally, part of the
enhanced mechanical properties will be described, ultra-stiffness and lightweight, tunable stiffness, and the failure mode
in corresponding mechanical metamaterials.

5.1. Mechanical metamaterials associated with strength and lightweight (E/q)

Here the subclass of these strong, lightweight mechanical metamaterials can be placed into four general categories based
on their structure: micro-/nanolattices, chiral, anti-chiral, and hierarchical metamaterials, origami-inspired metamaterials,
and cellular origami metamaterials. The last type in this subsection is pattern transformation, which demonstrates the
mechanical property of tunable stiffness. A unit cell, or a primitive cell in classical physics, is the smallest structural unit
where upon assembly in a tessellated solid, undeformed geometrical and loading patterns are recreated [74].

The reason for assembly is mainly two fold. First, these structures develop lightweight structures which are adequately
stiff and strong, calculating the strength in the strength-to-density ratio, and the stiffness in Young’s modulus-to-density.
Secondly, we have to resort to crystallographic theory in natural materials for a good understanding of what we fabricated,
particularly for various metallic or polymeric structures. An example of the first part of this subsection is the octet-truss lat-
tice structure reported in Refs. [75,76], which have the characteristic stacking arrangements of a face-centred cubic (FCC)
unit cell in cubic symmetry. Different lattice orientations can be represented by the Miller indices, where the lattice plane
that forms a flat face is that to which the loading is applied. Furthermore, tunable directivity in metamaterials occurs within
reconfigurable cell symmetry [77], which sounds like crystallographic orientation. Unlike classical hierarchical cellular struc-
tures, the newly developed origami-inspired mechanical metamaterials offer enhanced flexibility, deformability and com-
pactness [78,79]. Their corresponding strengthening mechanism largely depends on crystallographic defects, such as
vacancies, dislocations, and grain boundaries.

Another subclass in the third subsection here is pattern transformation associated with controllable stiffness. A holy
sheet, which is a typical pattern transformation, can belong to a sort of periodic elastomeric cellular solid, but the difference
is that the design concepts behind this structure are based on elastic material instabilities. Meanwhile, pattern transforma-
tion is also quite distinct from the conventional metamaterials with negative Poisson’s ratio. This is mainly due to the stiff-
ness that is constantly changing in the axial and normal direction under an external mechanical load, normally compression.
The corresponding Poisson’s ratios are thereby a variation of the duration of loading, whether negative, positive or both. This
pattern switch has similarity to a phase transition from one microstructure to another. That is why we call this phenomenon
a pattern transformation [26,80–82]. The pattern transformation event is nonlinear in nature, and thus relatively small
changes in macroscopic strains can trigger a dramatic transformation in certain classes of simple periodic structures.
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There is a relationship between origami and pattern transformation. They both share instability mechanics [25], partic-
ularly on the micro-/nanostructure level. Events causing buckling of a stiff film bound to a compliant substrate [83] happen
on the micro-/nano scale. That is the basic concept in the design of origami folded structure and pattern transformation in a
holy sheet. Thus the mechanics of origami design is also a form of instability. Another reason for this subsection is to gather
all of these large structures together.

5.1.1. Micro-/nanolattices metamaterials
Generally, we define a general lattice material as a cellular, reticulated, truss or lattice structure made up of a large num-

ber of uniform lattice elements (e.g. slender beams or rods). Such a lattice material is generated by tessellating a unit cell
through space [84]. The corresponding unit cell consists of just a few lattice elements. Hence, both the geometry of the unit
cell and its tessellation are significant in the design of these lattice materials. Normally, stochastic methods can determine
lattice architecture in conventional cellular materials, such as foams (>50% porosity [85]) and aerogels. Manmade micro-/
nanolattice metamaterials are inspired by natural cellular solids, such as honeycomb and foam-like structures. Mechanical
metamaterials are associated with relatively ordered hollow lattices which allow a high degree of control over the cellular
architecture. As research on natural cellular materials is relatively mature, the reader is referred to previously published
books [55,86]. This subsection is thus limited to engineered lattice metamaterials in the micro/nanosize.

Two factors, the unit cell and its tessellation, need to be considered in the design of micro-/nanolattice metamaterials.
That is because most of manmade ultra-light (<10 mg per cubic centimetre) metamaterials are fabricated from a wide array
of solid constituents. In such metamaterials with structural hierarchy, the stiffness depends on the relative density and the
cellular architecture, i.e. the spatial configuration of voids in the solid [86,87]. Firstly, from a topological standpoint, the spa-
tial configuration of cellular materials can be categorised as either open or closed cells [86,88], with either a stochastic or an
ordered structure [89]. Porous microstructures in cellular solids may be either heterogeneous, as a result of the foaming pro-
cess, or may be very regular due to specifically engineered structures such as honeycombs. Secondly, two-dimensional unit
cells, i.e., periodic planar lattices, can be classified as regular lattices. By tessellating a regular polygon such as a triangle,
square or hexagon to fill the entire plane, a semi-regular lattice results with two or more kinds of regular polygons [90–
92]. For instance, the triangular-hexagonal lattice, also known as the kagome lattice [93], and in particular, the twisted
kagome lattice (i.e., an isotropic structure with a vanishing bulk modulus) will be introduced in Section 6.2.2. Spatial or
three-dimensional lattices can be tessellated with regular polyhedra with a small number of faces, to fill all of the space
[86]. Alternatively, using combinations of different polyhedra, typically tetrahedral and octahedral cells [94–96] may be
packed to form the octet-truss lattice [97].

5.1.1.1. Assessment of strength and density. To characterise the mechanical properties of metamaterials, the relationship
between strength and density needs to be assessed for the micro-/nanolattices associated with strong, lightweight materials
(E/q). A decrease in density can bring forth a drastic degradation in the mechanical properties of materials. This is because
structural elements have a bending deformation at the ligament level under a macroscopically applied load [89]. Open-cell
materials with stochastic porosity, particularly those with a relative density of less than 0.1%, carry a stronger scaling rela-
tionship between Young’s modulus (stiffness) and density [E/Es / (q/qs)n] thereby between strength and density [ry/rys /
(q/qs)n] [75,87]. The Young’s modulus E of a mechanical metamaterial that is considered to be a continuum is given in terms
of the Young’s modulus Es of the solid constituent material from which the materials is made, the density q, the yield
strength ry of the solid constituent material, the density qs and the yield strength rys of the metamaterial. The power n
of the scaling relationship between relative material density and the relative mechanical property depends greatly on the
microstructure of the metamaterial. Generally, n = 2 is for an open cell [86] and n = 3 represents a closed cell [48,98] in
macroscopic hierarchical frameworks. For instance, the Eiffel Tower can be represented by third-order and possesses a rel-
ative density only 1.2 � 10�3 times that of iron [87], which is similar to that of the low density aerogels [66] that are clearly
structurally robust.

Furthermore, the approximate stiffness equations [E/Es / (q/qs)n] in previous conventional cellular materials is indepen-
dent of either the length-scale or the specific symmetry of the structure. Some initial studies reveal that the density-
dependent modulus shows structural anisotropy for the h1 0 0i and h1 1 1i directions of the simple cubic [99], body-
centred cubic [100] and face-centred cubic structures [101]. Structural anisotropy is responsible for this discrepancy. We
can tailor and tune the degree of anisotropy through the beam/strut diameter ratio in a given cellular structure at a given
density [102]. One influential idea is to design non-conventional cellular materials, particularly by making them isotropic
structures. Mechanical metamaterials, defined by their geometry rather than their composition, can maintain a nearly linear
scaling between stiffness and density spanning three orders of magnitude in density, over a variety of constituent materials
[48,75,103]. This is because a smaller scaling exponent demonstrates less loss in the elastic modulus as the relative density
decreases.

In recent years there have been many attempts to reduce the coupling between mechanical properties and mass density
in micro/nanohierarchical networks [104]. The corresponding topological design of periodically ordered architectures
enables precise control over the load transfer from the macroscale to the unit cell scale, thereby enhancing by an order of
magnitude in the specific stiffness and strength. Some extensive reviews [48,84,86,105] discuss the range of such material
properties, including high stiffness, strength and fracture toughness, exhibited by low-density in micro-/nanostructured
metamaterials.
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5.1.1.2. Typical structural designs for mechanical metamaterials. Through two examples of unit cells, we will discuss a stretch-
dominated octet-truss geometry and a bend-dominated tetrakaidecahedron geometry (Fig. 4 [75,106]), in terms of their
mechanical response to compressive loading. The former is generally made of metals (nickel-based) or ceramics (alumina),
whereas the latter is normally packed into a cubic Kelvin foam.

One typical stretch-dominated microlattice with an octet-truss geometry [97] has been developed to achieve ultra-
light and ultra-stiff metamaterials [75]. The load-bearing capacity of this octet-truss structure may be attributed to
Alexander Graham Bell’s interest in tetrahedral cells for building man-carrying kites [107], although the geometric con-
figuration was proposed by Deshpande et al. [97] later on. Since a fully-triangulated truss-type architecture deforms pri-
marily by axial stretching of the truss elements, this structure enables the modulus and strength to scale linearly with
the relatively density [97,104]. A unit cell of the octet truss has a regular octahedron as its core, surrounded by eight
tetrahedral distributed on its faces, which is identical in crystal structure to the face-centred cubic unit cell (Fig. 4).
All of the strut elements have identical aspect ratios, with a nodal connectivity, or coordination number, of 12 solid rods
or hollow tubes connected to each node, thereby packing into a stretching-dominated structure. As such, the unit cell
structure consists of b struts and j frictionless joints, satisfying Maxwell’s criterion, M = b � 3j + 6 > 0 [86,84]. The relative
density of such octet truss unit cells can be approximated by q = 26.64 (d/L)2 [97], where L and d are the length and
diameter of each beam element. On the macroscale, under uniaxial compressive loading, the relative compressive stiff-
ness and yield strength of these structures will theoretically show a linear scaling relationship: E/Es / (q/qs) and ry/rys

/ (q/qs) [97]. Correspondingly, in a Ni-P stretch-dominated metallic microlattice, the specific stiffness stays nearly con-
stant as the density is reduced from 40 mg/cm3 to 14 mg/cm3, measured as 1.8 � 106 m2/s2 and 2.1 � 106 m2/s2 at den-
sities of 14 mg/cm3 and 40 mg/cm3, respectively [75,89,108]. In such an ultra-stiff microlattice structure, the fully
triangulated truss-type architecture deforms primarily by axially stretching the truss elements, allowing the modulus
and strength to scale linearly with the relative density [104,97]. As seen in the Ashby-chart in Fig. 5 [75,66,109,110],
this nearly linear E-q scaling relationship outperforms traditional lightweight and ultra-light bending-dominated struc-
tural materials, whose properties scale as E � q2 or E � q3 [66]. Just recently, much more resilient two- or three-
dimensional hierarchical metamaterials [111] have been designed using polymers, hollow ceramics, and ceramic-
polymer composites [112], in order to obtain ultra-lightweight, recoverability, and a near-linear scaling of stiffness
and strength with density.

These studies have successfully introduced an electron back scatter diffraction (EBSD) technique to examine the film
microtexture while excluding the microlattice symmetry, in place of the obtained macrotexture analysis via X-ray diffraction
(XRD). The orientation maps of the 15� cross-section indicate that all crystals are oriented along the h1 0 0i direction, and the
pole figure shows clear texture along the family planes. The presence of this texture can be responsible for the decrease of
the modulus and strength.
Fig. 4. Architecture of stretch-dominated and bend-dominated unit cells and lattices. (a) Mechanical response to compressive loading of a stretch-
dominated octet-truss unit cell. (b) Octet-truss unit cells packed into a cubic micro-lattice [75]. (c) Zoomed-in section of the alumina octet-truss nanolattice.
The inset shows an isolated hollow tube [106]. (d) Mechanical response to compressive loading of a bend-dominated tetrakaidecahedron unit cell. (e)
Tetrakaidecahedron unit cell packed into a cubic bend-dominated lattice (Kelvin foam) [75]. (f) Pyrolysis of polymeric micro-lattices creates glassy carbon
nanolattices [43].



Fig. 5. An Ashby-chart plotting experimental stiffness versus density for currently reported mechanical metamaterials [66,75,109,110]. Dotted lines
indicate contours of constant stiffness-density ratio c = E/q (m2/s2).
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Another typical lattice is the bend-dominated tetrakaidecahedron geometry. As we have seen above, the stretch-
dominated microlattice are designed such that the trusses are in tension or compression with no bending as the absence
of bending allows the stiffness and strength to vary linearly with relative density [104]. In contrast, here the bend-
dominated tetrakaidecahedral structure with a network of elastic beams is also derived from a large pin-jointed framework
connecting Z and j joints: the total number of bars b is approximately jZ/2 [113]. The hexagonal lattice is bending dominated,
with b = 3, i.e. sharing a low nodal connectivity of 3 adjoining bars per joint [114,115]. The stiffness and strength of these
three-dimensional structures relies upon the bending stiffness of the bars, which are consequently referred to as
bending-dominated structures [84]. At the other end of the stiffness spectrum for elastic lattice structures are pentamode
materials (PMs) with five easy modes of deformation, which will be introduced in detail in Section 6.2.1. In a previous study,
the bend-dominated structure packed into a cubic Kelvin foam is softened as E � q2 or worse [75].

Because of these two types of structural designs, it is reasonable to believe that the response of low-density lattice struc-
tures depends on whether the deformation occurs under a load dominated by stretching or bending. Nevertheless, this
mechanical response in turn depends upon the coordination number, Z, the number of the nearest neighbouring joints in
the unit cell. Recently, a general theoretical approach provided an algebraic formula for the effective elasticity of such frame-
works [114,115]. The method yields the effective cubic elastic constants for three-dimensional space filling lattices with Z =
4, 6, 8, 12 and 14, the last being the ‘stiffest’ lattice proposed by Gurtner and Durand [114]. These results reveal that the dis-
placement field under uniform loading conditions is refined on the microscopic scale [114,115], using a convenient set of
criteria to identify the networks.

Such strong and lightweight mechanical metamaterials have shown exceptional potential for a broad range of applica-
tions, in particular for thermal insulation, battery electrodes, catalytic supports, and acoustic, vibration, or shock energy
damping [66]. For example, an aerographite consisting of a nitrogen doped graphene aerogel with an ultra-light, three-
dimensional graphene framework consisted main of a network of only a few graphene layers. Its ultra-low density was
2.1 ± 0.3 mg/cm3. Its adsorption capacity for common pollution and organic solvents was as 200–600 times higher than
its own weight, much higher than that of the best carbonaceous sorbents [116,117]. Nevertheless, these glass-like carbons
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(often called ‘vitreous carbons’ [118]), have superior mechanical properties and chemical resistance, while being electrically
conductive, as is required for electrode materials. Highly compressible 3D periodic graphene aerogel microlattices have been
reported with a compressive modulus (E) of 1.1 GPa and a failure strength (rf) of 10.2 MPa for a structure with a relative
density of 12.8% [118]. It is widely expected that these stiff elastic networks will compete or improve the well-known
Hashin-Shtrikman bounds.

5.1.1.3. Recent theoretical and experimental advances. Recent advances in additive manufacturing and topological optimisa-
tion techniques make it possible to design periodic lattice structures with controlled anisotropy (Fig. 6 [119]), thereby it will
be possible to explore the mechanical properties of lightweight metamaterials. These investigations suggest that the spatial
distribution of Young’s modulus over surfaces, i.e., elastic anisotropy of lattice structures, is only dependent on the spatial
arrangement and dimension of the rods, and independent of the base material. In an example of the simple crossing-rod unit
in Fig. 6a, the stiffness in diagonal directions is much higher than that in the axial directions. Something similar thing can be
found in the other cases, such as the combination of face-centred and body-centred (FCC-BCC) unit cells [120]. One type of
cellular material, called aerographite (density < 200 lg cm�3) [117], is more than 4 times lighter than the Ni microlattices,
which were up to now the most lightweight materials. Kang’s group [121–123] has introduced a new type of ultralow den-
sity material named ‘shellular’ (Fig. 7), a combination of the words ‘shell’ and ‘cellular’, which consists of a continuous thin
shell instead of hollow trusses. Note that in triply periodic minimal surfaces, P denotes primitive, and D denotes diamond
[124]. In addition to P- and D-surfaces, the G-(gyroid) surface has also been investigated [125–127].

Through recent progress in graphene-based two-dimensional and granular materials [128], we realise that myriad bulk
3D assemblies of graphene, such as complex graphene aerogel architectures [116], can possibly offer a unique combination
of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Bauer et al. [43]
have reported that pyrolysis of polymeric micro-/nanolattices can overcome these limitations and create ultra-strong glassy
carbon nanolattices with single struts shorter than 1 mm and diameters as small as 200 nm. With a honeycomb topology,
these carbon nanolattices can achieve effective strengths of 1.2 GPa at 0.6 g cm�3 [43]. Discussion of the electrical perfor-
mance is beyond the scope of the present paper.

Hollow nickel microlattices with arbitrary topologies have the potential to perform as structural damping materials for
energy dissipation [129], and thereby are applied to specific engineering systems (e.g., bone implants [130]). Particularly,
reports from Schaedler et al. [66,89,108,129,131] focus on nickel microlattice. Meanwhile, this energy absorption can also
be significantly enhanced by inertial stabilisation, by the shock wave effect and by the strain rate hardening effect [131].
These observations suggest that inertial stabilisation originates by the suppressing sudden crushing of the microlattice
and by contributing to the rate of crushing speed [131]. Because of the higher yield stress at the wrinkles, the initial buckling
stress and post buckling stress can be improved to some extent [131]. This means that the strain rate effect increases the
effective yield strength upon dynamic deformation and increases the energy absorption density.

As we have seen, it is true that some nanomaterials [132] such as ceramics and metallic alloys [133], for example nickel,
can be lightweight, but we are still eager to find other microlattice, where performance may be the key. Nothing is perfect.
Even though some black dots exist on the surface of the sun, we try to restrain the black dots, and improve the sun shining at
just right level. That is analogous to what researchers will do in metamaterials [121–123].

5.1.1.4. Short summary of micro-/nanolattice metamaterials. In summary, mechanical metamaterials that combine ultra-
stiffness with ultra-lightweight (generally less than 10 mg per cubic centimetre), are extending beyond the frontiers of exist-
ing natural materials. At the same time, most of the elegant ideas underpinning the structural design of mechanical meta-
materials were inspired by natural hierarchical cellular solids, such as honeycombs, aerogels and foams structures. In a larger
sense, hierarchical solids generally consist of structural elements which themselves are structured. Nice examples of macro-
scopic hierarchical frameworks are the design of the Eiffel tower, bridges such as the Garabit viaduct [87], and the Sydney
Harbour Bridge. The idea of hierarchical structure serves as the basis for synthesising new structures on the micro/nanoscale
which give rise to useful or even enhanced physical properties, including improved strength and toughness, and unusual
mechanical properties combining ultra-strength with low density. The stiffness of such metamaterials with structural hier-
archy, depends on the relative density and their cellular architecture, in other words, the spatial configuration of voids and
solid matter [86,87].

In comparing the mechanical properties of a structured hierarchical cellular system, we can investigate the scaling rela-
tionship between Young’s modulus and the relative material density, and between relative strength and density. That is
because, as mentioned above, in such metamaterials with structural hierarchy, the stiffness depends mainly on the density
and structure, in other words, the spatial configuration of voids and solid matter [86,87]. Here we attempt to introduce some
of the basics of the stiffness/strength-density relationship associated with mechanical metamaterials. We also present some
complicated mechanics, like iterations of the stiffness equation, which consider with difficulty the hierarchical order. Some
elegant books and literature [86,87,113] are available which delve into the details of this case. In addition, the design prin-
ciples behind this type of mechanical metamaterials, such as Maxwell’s criterion, will be addressed in detail in Section 5.2.1.

The main challenge for strong-lightweight metamaterials is to reduce the coupling between mechanical properties and
mass density in various hierarchical micro-/nanostructures. Simultaneously, the way in which we fabricate materials is
changing rapidly. Muchmore advanced processing techniques [48] enable us to achieve topological designs with periodically
ordered architectures. It is therefore possible to enhance specific stiffness and strength by an order of magnitude via the pre-



Fig. 6. Lattice structures with controlled anisotropy: architectures of typical representative units and the corresponding 3D spatial representations of
effective Young’s modulus surfaces: (a) crossing-rod unit, (b) simple cubic unit, (c) face-centre cubic unit, (d) diamond cubic unit, under the ratio of Ri/Ro,
here taking the rod diameter of the crossing rod as Ri and FCC unit as Ro, (e) octet-truss unit, and (f) a combined unit of face-centred and body-centred units
(FCC–BCC), (g) mirror operation on a diamond cubic unit to obtain a complex diamond cubic (CDC), (h) the variation in Ri/Ro ratio with the increasing
volume fraction of two types of representative units, CDC and FCC-BCC, by fixing the diameter of one type of rod and adjusting another type (left vertical
axis, solid lines). The relative stiffness (E/Es) of the two structures in relation to the volume fraction (right vertical axis, dashed lines) [119].
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Fig. 7. (A) Three options for artificial cellular structures with their unit cells to support loads at low density: polyhedron cells (a) rhombic dodecahedron, (b)
tetrakaidecahedron; struts and truss (c) cells with octahedron trusses, (d) cells with kagome trusses, triply periodic minimal surfaces (e) cells with P-
surface, (f) cells with D-surface, where P denotes primitive and D denotes Diamond [123,124], respectively; (B) (a–d) configurations of unit cells of
microlattice, a hollow octahedron truss, and a truncated conical shell, respectively. (C) Analytic solutions for the compressive strength and Young’s modulus
of the cellular material composed of hollow octahedron trusses and Shellular composed of conical shells [121–123].

128 X. Yu et al. / Progress in Materials Science 94 (2018) 114–173
cise control over load transfer from the macroscale to the unit cell scale. The upshot of this development is that we need to
know how to extend the limitation of natural material properties, e.g., here high stiffness, strength and fracture toughness
[84,134,105]. In a word, these manmade ultra-light mechanical metamaterials fabricated from a wide array of solid
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constituents can provide exceptional potential for a broad range of applications in automobiles, aircraft, and other applica-
tions, where light weighting materials could help conserve fuel without losing strength.

It is worth noticing that some other mechanical metamaterials can be based on the design concept of micro-/nanolattice
cellular materials. Tailoring the porosity of structures [135] in topological designs can yield complex ordered patterns,
thereby achieving selective buckling via states of self-stress [41,136]. It is therefore possible for a hierarchically structured
nanolattice to be under ultrahigh stress and strain within a single unit cell during deformation [137]. If we couple this to
buckling stability, a negative bulk modulus can occur. These corresponding behaviours will be address in Section 6.3.
5.1.2. Chiral, anti-chiral, and hierarchical metamaterials
A structure defined as chiral may be constructed as a left handed or right handed material, where the two are non-super-

imposable mirror images [138]. This type of mechanical metamaterial was first proposed by Wojciechowski [139], and later
implemented as a hexagonal chiral honeycomb structure by Prall and Lakes [30]. Specifically, the unit cell of this network
consists of a central cylinder called a node, with six tangentially attached ligaments, exhibiting a rotational symmetry of
order six (for a complete description, refer to Fig. 25a). This connective structure composes the basic chiral unit, where
the specific example given was classified as hexachiral by Grima [138,140].

These chiral building blocks can be divided into chiral and anti-chiral systems (Fig. 8 [138,141]), where the two-
dimensional basic units are connected together either with nodes on opposite sides of the ligaments (in the case of the chiral
system [142,143]), or with nodes on the same side of the ligaments (in the case of the anti-chiral system [140,144]). The anti-
chiral system is racemic with equal amounts of left handed and right handed basic units [145]. In these five groups of chiral/
anti-chiral networks (Fig. 8), if the thin ligaments are welded to the nodes, then a uniaxial on-axis load will result in a rota-
tion of the nodes, accompanied by a flexing of the ligaments. Such deformation can therefore result in ‘folding’ of the liga-
ments around the node when the honeycombs are subjected to compressive loading, and ‘unfolding’ when they are
subjected to tensile loading, a behaviour that results in auxeticity [138].

In examples of chiral, anti-chiral and hierarchical structures (Fig. 9 [146]), an array of cylinders (nodes) are connected by
tangential ligaments (ribs). When each cylinder is connected to 3 and 4 tangential ligaments, we call the structures tri-, and
tetrachiral or anti-chiral structures (Fig. 8). Previous studies [146] found that both chirality and hierarchy crucially affect the
in-plane mechanical properties of these structures. As we have seen, hierarchical structures demonstrate a higher stiffness,
behaving as cellular metamaterials, whereas chirality, particular anti-chiral structures, remains the only route to auxeticity.
The deformation mechanism for this observation can be extend to the design the auxetic metamaterials, discussed in Sec-
tion 7. The tetra anti-chiral [140,147,148] can even be used to form the mechanical metamaterials with negative thermal
expansion (NTE) behaviour, as discussed in Section 6.3.3, althoughmost studies so far have focused on the hexachiral lattices
Chirality = +/+ (chiral tessellations) Chirality = +/- (anti-chiral tessellations)

(a)

(b)

(c)

(e)

(d)

Fig. 8. Five tessellations and their rapid prototypes (figures in shade) that may be obtained from the ‘chiral’ basic units exhibiting rotational symmetry of
order n [138,141]. The chiral systems with the nodes on opposite sides of the ligaments are termed as (a) trichirals, (b) tetrachirals, (c) hexachirals (for n = 3,
4 and 6 respectively), whereas the anti-chiral systems with the nodes on the same sides of the ligaments are referred to as (d) anti-trichiral and (e) anti-
tetrachiral (for n = 3 and 4 respectively). Note that more systems can be obtained if the constraint that the basic units exhibits rotational symmetry of order
n is relaxed.



Fig. 9. (A) Schematic of the structure and the unit cell, and the expression of relative density for the chiral, anti-chiral and hierarchical honeycombs.
Normalised Young’s modulus as a function of geometrical parameter r/R for (B) three different hexagon based hierarchical and chiral lattices, (C) four
different anisotropic square based hierarchical and chiral lattices, where r is the radius of the cylinders, and R is the centre to centre distance between any
two adjacent cylinders [146].
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Fig. 9 (continued)
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or tetrachiral lattices used in acoustic metamaterials [21,149,150]. This is mainly because the chiral lattice inserts exhibit
unique characteristics such as frequency band gaps tuned by varying the parameters that define the lattice topology
[151]. The hexachiral lattice [136] can be used to shape memory alloys or polymers [152], and also some chiral networks
used in macrochiral components, e.g., air foil [153,154].

5.1.3. Origami-inspired metamaterials
The term origami is derived from the Japanese compound noun, ‘ori’ meaning ‘folded’, and ‘kami’ meaning ‘paper’ [155].

Currently, origami, the art of folding uncut sheets of paper into decorative and well-defined shapes, is now being used
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beyond purely aesthetic pursuits to design ultra-light and customisable mechanical metamaterials [78,156–161]. This sub-
section will address some fundamental terms and the simple classification used by this research field. Subsequently, three
classical origami patterns will be introduced, the Miura-ori pattern, a non-periodic Ron Resch pattern, and square twist.
Finally, two other fields are included: one is the special case of paper cutting, kirigami, and another is the design mechanism
behind origami-inspired frameworks. In doing so, an equivalent crystallographic classification will be summarised, targeting
the origami building blocks for future development and design.

First of all, some fundamental definitions of origami terminology must be established before we start. In an analogy to
haute couture design, origami also relies on folding and assembling planar material to create elegant three-dimensional
shapes whose variety and complexity are governed by the number, order, and orientation of the folds. Correspondingly,
in the computational origami field [162,163], certain basic geometrical parameters such as creases and vertices have been
introduced (Fig. 10a). Formally, creases refer to the locations of localised folds on a planar sheet exclusively made through
folding operations [162]. The endpoint at which several creases converge is termed as the vertex, whereas, sheet regions
bounded by the creases are known as faces. Typically, a mountain-valley assignment is used to determine the fold direction
of a crease. For mountain folds, faces on either side of the crease can be seen to be rotating into the page, whereas for valley
folds, they can be considered to be rotating out of it [164]. Alternatively, positive folding angles as form valleys and negative
ones as form mountains, when a folded state is described by the folding angles in a traditional spherical mechanism [159].
The creases, folding directions, folding magnitude, and folding sequence determine the ultimate shape of the origami
structure.

To truly consider origami structures as a class of metamaterials, a simple and effective classification method needs to be
introduced for action origami as the spherical mechanisms used in networks (Fig. 10b). From the perspective of vertices and
tessellations, it is also necessary that these kinematic origami models can be classified further into a relatively small number
of interconnected spherical mechanism combinations [165]. Kinematic origami networks include a single loop (e.g. a tradi-
tional square twist [166]), 1D periodic structures (e.g. Shafer’s ‘‘Blinking eyes” [167]), 2D periodic structures (a particular
case of the ‘‘Miura-ori pattern” [168,169]), and nonperiodic structures (e.g. Shafer’s ‘‘Monster mouth”) (Fig. 10b). Neverthe-
less, we can notice that many kinematic origami models are considered rigid, where the fold pattern can be modelled as a
series of rigid polyhedra connected by rotating torsional frictionless hinges (i.e., creases). Consequently, each category of ori-
gami structure can be combined into a wide range of interesting motion with artistic variations in the composition of ele-
ments. From these we know that the origami design is based on a sort of plate-and-hinge compliant mechanism. Specifically,
their creases act as mechanical links, i.e., joints or pins, to allow motion [165]. Such an origami structure is therefore capable
of performing folding/deploying operations rather than being triggered by external forces or moments. In doing so, this sug-
gests that the deformations of folding-based materials can be highly nonlinear owing to the complex constraint space
imposed by the fold network. That is to say, their energetic landscapes arise from torsional spring interactions rather than
central-force linear springs [159].

Current research interests are based on three representative origami patterns: a periodic Miura-ori pattern, a non-
periodic Ron Resch pattern, and a square twist with a single loop (Fig. 11). Other combined systems such as cellular origami
will be introduced in Section 5.1.4 for completeness. These origami-inspired mechanical metamaterials offer enhanced flex-
ibility, deformability and compactness, which is primarily due to their properties coupled with a dynamically alterable fold-
ing pattern [164,170], specially, bio-origami hydrogel scaffolds and other buckled surfaces [171,172].

Firstly, the classic Miura-ori tessellated folding pattern [168,169] has recently been proposed as an origami mechanical
metamaterial [157,158]. Mathematically, the geometry of a simple periodically folded Miura-ori structure is a herringbone
Fig. 10. Essentials of origami-inspired metamaterials. (a) Schematic of a pinwheel crease pattern illustrating various origami concepts [164]. (b) A
classification of action origami as the spherical mechanisms used in networks [165].



Fig. 11. Origami-inspired metamaterials. (A) Illustrations of Miura-ori [160]. (a) A Miura-ori (n1, n2) in its folded state with n1 vertices in x1 direction, n2
vertices in x2 direction. x3 is the out-of-plane direction. Specifically here, n1 = 11, n2 = 11, b = 45� and a/b = 2.42. (b) A Miura-ori in its planar state. (c) A unit
cell of a Miura-ori. a1, a2 are two dihedral angles. In each parallelogram, the length of the short side is a and that of the long side is b, with the acute angle of
b. The projected angle between the two ridges is /. The size of the unit cell is l, w, and h, in x1, x2, and x3 directions, respectively. (d) A non-local element for
Miura-ori that focuses on the central vertex. (B) Ron Resch’s tessellation. (a) Origamiser and (b) Ron Resch’s tessellation. Both are comprised of surface
polygons and tucks that are hidden. Resch’s pattern can have the tuck folded halfway, whereas origamiser vertex keeps the tuck closed because of the crimp
folds [181]. (c) Illustration of a Ron Resch dome deforms to a completely collapsed state upon compressive load from the top, where the three-fold
supporting structure is shown in the inset [160]. (C) Square twist with a single loop. (a) Schematic of the square-twist folding pattern illustrating essential
geometric properties, where the edges in black, mountain creases in red, and valley creases in blue. The geometry is defined by the length, L, and the plane
angle, /. The Euclidean distance, x, between the two yellow stars quantifies the macroscopic configuration between folded and unfolded states [166]. (b)
Folding of the square-twist structure [182]. When compressed, the structure starts to fold by bending, except for its central facet, until it reaches an unbent
folded configuration.
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pattern (Fig. 11a [160]), consisting of identical unit cells of convex mountain creases and concave valley creases with four-
coordinated ridges. Vertices are formed when four creases intersect, where the four adjacent vertices bind congruent paral-
lelograms that are arranged with inversion symmetry. This morphology also naturally occurs in leaves [173], the embryonic
intestine [174,175], and generally arises when thin sheets tethered to a surface undergo biaxial compression [83,173]. With
respect to the mechanics behind this geometry, the two-dimensional deformation of a Miura plate can be characterised in
terms of a one-dimensional beam theory because the effective bending stiffness of its unit cell is singular [158]. The folded
metamaterial can be machined into any desired shape and still preserve its folding motion, thereby these morphologies are
widely expected to open up new possibilities in materials engineering [78].

The main objective of the Miura-ori origami pattern in mechanical metamaterials was coming from the rigorously exam-
ined negative Poisson’s ratio [47,176]. Several studies [157,158] in Miura-based mechanical metamaterials revealed that the
folded shell structure provides a negative Poisson’s ratio for in-plane deformations and a positive Poisson’s ratio for out-of-
plane bending [157], which is however equal in magnitude [158] and independent of the material properties. Until recently,
Silverberg et al. [78] discovered that a Miura-based mechanical metamaterials with tunable stiffness is technically feasible
via introducing a reversible pop-through defect. Analogous to crystallology, the introduction of pop-through defects can
serve as models for emergent crystal structures [73], such as typical lattice vacancies (Fig. 12), dislocations, and grain bound-
aries [78,177]. The folded sheets with re-entrant geometries can contribute to the modulus at low densities. What we can see
behind these observations is that these mechanically stable local defects are always based on the theory of instability to



Fig. 12. Experimental data of two interacting pop-through defects. Mean curvature maps of (a) 1–2, (b) 1–3, (c) 1–4, and (d) a lattice vacancy 2–4 defect-
pair configuration. The colour maps saturate at ±1 mm�1. Schematic diagrams show defect placement (dots) and facet bending (double lines) [78].
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permit plate bending, a specific example of bistability. Such elastic multistability in the folded planar structures may be
desirable for the design of metamaterials. This is because elastic instability, including the symmetric water bomb vertex
[161] and the hypersurface [178] (e.g., hypar [179]), allows a reconfiguration of the shape and the bulk properties [159].
We will further discuss the mechanisms related to geometrical frustration in Section 5.2.4.

Secondly, the non-periodic Ron Resch pattern [160,180,181] is gradually appearing as part of the discussion of mechanical
metamaterials. In the 1960s and 1970s, Resch [180] proposed a series of origami tessellations via the insertion of a star-like
folded tuck. Thus, this basic Resch-type pattern can also be called a star tuck (Fig. 11b). The design framework of Resch-like
origami tessellations vary between polyhedral surfaces (Fig. 11b [160,181]). This non-periodic rigid origami folding pattern
demonstrates a striking load bearing capability under axial compressive force [160]. Initial attempts reveal that higher order
symmetry have even greater load bearing capability. Non-periodic Ron Resch tubes or domes need to be coupled with other
origami patterns to achieve the desired load bearing.

Lastly, we introduce the rare square twist pattern (Fig. 11c). The reason for this scarcity in practice is due to computa-
tional modelling and simulation, rather than actual experimentation [182]. Specifically, in order to perform the folding of
the square-twist pattern, we needed to consider two distinct modes of deformation, creasing and facet bending. In other
words, the square twist cannot be folded by creasing alone. In the model proposed by Silverberg et al. [166], creasing is dif-
ferentiated from bending in that creases represent a plastic mode of deformation, whereas bending is reversible. Mathemat-
ically, the traditional square twist folding pattern [179] has specific hidden degrees of freedom of bending separated by an
energy gap from the degrees of freedom of creasing. This leads to a geometrically driven critical bifurcation between mono-
and bistability, e.g., responsive micro-patterned hinges or creases [166,183]. Indeed, folding a piece of paper entails first the
formation of a fold through bending, and then the creation of a crease. Square-twist-based mechanical metamaterials
demonstrate a hysteresis in their folding dynamics when using temperature-responsive polymer gels, thereby they can
be used to fabricate mechanical switches.

We need to add a final point here for the special case of kirigami (Fig. 13). Contrary to the paper folding of origami, kir-
igami is the art of paper cutting [184]. Paper cutting is emerging to create beautiful patterns and shapes in two-dimensional
materials such as graphene and polymer films. Three promising routes have thus far been used to develop this type of kir-
igami metamaterials: One, kirigami itself has been used as two-dimensional materials [184–187]; another is lattice-based
kirigami elements, combining the folding of origami with cutting and re-gluing techniques [188–190]; and a last technique
combines the available cellular structure to create fabulous, complicated assemblies [191,192]. The various complex struc-
tures of two-dimensional materials related to kirigami, mentioned in the first case, is outside of the scope of this review. The
idea of lattice-based kirigami in the second case can enable us to obtain various manmade crystallographic lattices, such as
the honeycomb or kagome lattice [190]. Defect pairs are properly arranged and incorporated into an appropriate folding pat-
tern to target a stepped surface, for instance by using arrays of disclination defect pairs on a dual or the honeycomb lattice
(Fig. 13 [188,189]). A class of patterns combining origami folding techniques with kirigami is shown in Fig. 13b [191,192],
which belongs to one-degree of freedom (DOF) cellular mechanical metamaterials [191,192], although the main purpose of
this is to dislocate the zigzag strips of a Miura-ori pattern along the joining ridges.



Fig. 13. Making the cut: kirigami metamaterials. (A) Lattice kirigami rules [188]. (a) The ‘‘sixon.” basic template. (b) This structure is degenerate and can be
split three different ways into matching 2–4 pairs with pop up and pop down configurations. (c) An intermediate state connecting (b) to the final state (d). (e)
The two latticesK (red dots) and �K (green dots) offset byd. Yellow edges onK.We show the basis vectors of the lattices {ei} and the unit cells {di}. A 2–4 pair on
the honeycomb is a standard 5–7 pair on K. The cut is absorbed by the ~5� ~7 pair on �K creating a partial climb. The plateaus of the 2–4 and ~5� ~7 pairs are
different heights upon folding. (B) Algorithmic lattice kirigami [189]. (a–e) The basic building blocks of ~5� ~7 stepped surfaces. (Left) The unfolded
configuration,where the excisedhexagons sit ona larger-scalehoneycomb lattice. (Middle) The folded configuration. (Right)A reduced representation suitable
for easily designing target surfaces. (f) Folded configurations where the positive-climb paths of three dislocations converge. (g) Junction representation of the
meeting of folding lines and cutting lines (i.e., places where excised regions had their edges identified) in the reduced representation. Only the junctions
marked ‘‘O” represent allowed configurations. (C) Zigzag-base folded sheet [191]. Twisting, saddle-shaped and rigid origami behaviour (planarmechanism) of
a 4 � 4 regular zigzag-unit-cell sheetwith theholes oriented in variousdirections. Twisting and saddle-shapedmodes are thefirst and the secondpredominant
bending modes observed in materials with small values of Kfacet/Kfold. Rigid origami behaviour is the predominant behaviour for large values of Kfacet/Kfold.
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Origami and kirigami, the arts of paper folding and paper cutting, create elegant patterns and shapes that have emerged
as potential tools for the design of mechanical metamaterials, tuned by purely geometric criteria, particularly for two-
dimensional materials (e.g., graphene, polymer films, etc.) [184,185]. The means for defining these cuts and for performing
the folds are extending into the micro/nanoscale regime [186,187]. It is therefore possible that these emerging materials may
be effectively applied to many types of advanced materials, such as brittle semiconductors.

One final remark about this area involves origami building blocks, the unit cell of origami-inspired frameworks, and par-
ticularly on their equivalent crystallographic classification (Fig. 14). Most of the origami metamaterials designed so far are
based on the same single four-vertex geometry [193–195], i.e., four rigid panels connected by hinges that meet at a point
form a four-vertex. This fundamental origami building block can fit into 16 special vertex types (Fig. 14A–E [196]) according
to lattice theory. The concept of Gaussian curvature at a point on a unit radius sphere (the Gaussian sphere) [197], determi-



X. Yu et al. / Progress in Materials Science 94 (2018) 114–173 137
nes the possible mountain-valley arrangements and the resulting folding motions of Euclidean four-vertices [196]. Evans
et al. [198] have also recast tessellated origami into the language of conventional lattice mechanics. While the crease pattern
of a Miura-ori generally introduces only four folds per vertex, the bending of faces allows two extra folds per vertex. That is
mean that the degree-6 vertex has its graph determined by the six sector angles ai (Fig. 14I [198]). By doing so, we obtain a
crease pattern that can be generalised to a triangulated lattice (Fig. 14H [198]), i.e., the kagome lattice (in Section 6.2.2), via
crystallographic lattice theory. This formulation for examining the mechanics of origami tessellations can bridge origami and
physics. To truly consider origami structures as a class of materials, methods are applied that are akin to solid mechanics. We
can borrow from geometric crystallography knowledge of the Bravais crystal lattice, Miller indices, and even preferred crys-
tallographic orientation, i.e., microtexture in Euler space represented by three Eulerian angles in Bunge notation [199], to
provide a theoretical underpinning for the structural design of multistable mechanical metamaterials.

Almost all proposed origami-inspired mechanical metamaterial designs so far are based on the Miura-ori folding pattern
[200], which has a single degree of freedom. There are many other origami-like structures with multiple degrees of freedom
that can be used to design highly flexible and deformable three-dimensional structures [201]. Cellular origami coupled with
the shapes of micro-/nanolattices and the theoretical instability of pattern transformation, will be addressed individually in
Section 5.1.4. Various other shapes of origami structures (Fig. 11), such as kaleidocycles coming from continuously rotating
n-jointed linkages [202], suggest that this type of structural design can offer potential to mechanical metamaterials. We will
delve further into the details of folding mechanics in combination of other similar mechanical metamaterials in Section 5.2.3.
5.1.4. Cellular origami metamaterials
Extending origami design principles to three-dimensional cellular materials is now shaping foldable cellular metamate-

rials (Fig. 15). This type of mechanical metamaterials can be considered as a combination of structural design in micro-/
nanolattices and newly developed origami patterns. The mechanics behind these are the same as the origami building blocks,
i.e., instability mechanics, even in pattern transformation.

Two ways to combine them are stacked [79,157,193,203], or interleaved relations [204,205] (Fig. 15). Stacking origami
was initially inspired by snapology, a type of modular unit-based origami where paper ribbons are used to create complex
geometries, such as extruded polyhedra (Fig. 15c) [201]. We find that by stacking individual folded layers the symmetry of
Miura-ori has been constructed [157]. The resulting rigid origami has been shown experimentally to be flat-foldable, accord-
ing to deployment mechanisms. Additional freedom in the design of a metamaterial can be achieved by varying the fold pat-
tern within each layer [157]. Nonetheless, one challenge for stacked cellular origami is to quantify a specific scaling value to
assess effective density. This is primarily because a constructive relationship for relative density is not sufficient for the
specific customer-responsive design of foldable cellular metamaterials. One important thing to consider is how to solve
dynamic variation in the height of a stacking layer.

Another possibility for cellular origami is to interweave the origami tessellations into the given lattice pattern (Fig. 15).
Interwoven cellular origami metamaterials may be derived from the assembly of rigidly folded origami tubes, tessellated to
fill space through periodic and affine transformations [205,206]. For example, the anisotropic tube geometry consists of two
orthogonal axes of interwoven tubes with high interfacial surface area, which is relatively stiff in the third orthogonal direc-
tion. These explorations suggest that the approximate closed-cell structures could yield the desired scaling factor with
respect to low density and concurrently sufficient strength. For instance, the relative modulus can follow a power scaling
law with a relative density of E � q1.5 in its stiff (z-axis) orientation [204]. The power exponent increases to a value of 2
3

Fig. 14. Origami building blocks: 16 types of special four-vertices. Six codimension-1 special types arise if two sector angles are equal (A). Three more arise
when sums of pairs are equal (B). Codimension-2 vertices include ones with three sector angles equal (C) and also those with two equal and sums of pairs
equal (D). Note here this last type, CFF, is the base vertex for the classical Miura-ori pattern. The only codimension-3 vertex has all sector angles equal to p/2
(E). 2NS, 2NL, 2NM, 2OS, 2OL, and 2OM, where the ‘‘2, 3” stands for two or three angles being equal, ‘‘N” and ‘‘O” distinguish he whether the equal angles are
arranged Next to or Opposite each other, and ‘‘S,” ‘‘L,” and ‘‘M” identify them as the Smallest, Largest or Middle, GFF denoting General Flat-Foldable ones, CY
and CZ, with ‘‘C” denoting that they have Collinear folds and ‘‘Y” and ‘‘Z” signifying the parent generic type. The relative sizes of adjacent sector angles are
indicated both by letters (a < b < c < d), and also by equal, less-than and greater-than signs. In addition, the dominant pair is indicated by the thick blue rim.
(F) Geometry of a four-vertex that above-mentioned 16 special vertex types based on. (a) Illustration of flat four vertex geometry with sector angles ai; (b)
rendering in 3D of vertex in a partially folded state; (c) the vertex edges make a polygon on the unit sphere, where we use the vertex orientation (arrows) to
define the folding angles qi as the out-of-plane deviation angle from one plate to the next. (G) Generic four-vertices. The three types of generic vertices, X, Y,
and Z, are determined by the arrangement of the ordered sector angles, a < b < c < d, around the vertex centre [196]. (H) A triangulated lattice theory for
examining the mechanics of origami tessellations. (a) Miura-ori, without the assignment of mountain and valley folds, has a simple directed graph structure
with a unit cell composed of four vertices. By tessellating these four vertices, the entire pattern emerges. Note that the tessellation is rectangular, with
lattice vectors a1 = ax̂ and a2 = bŷ. (b) Each vertex has six folds, labelled in the fashion shown here. (c) In Fourier space, translations associated with
connecting these folds together throughout the tessellation merely amounts to a phase factor associated with the appropriate wave number and lattice
vector. Shown on the left is translating in the x direction. The middle shows translating in the y direction. The right shows that connecting the extra folds
involves a diagonal translation across the unit cell. Note that the five internal folds have a phase factor identically equal to one. (I) Graph for a single vertex.
This degree-6 vertex has its graph determined by the six sector angles ai. Each crease has a dihedral angle fi associated with it. In the flat case every fi = p or,
equivalently, every fold angle is identically zero, since the fold angle is defined as the supplement of the dihedral angle. (b) By assigning fold angles to each
crease, a three-dimensional embedding of the vertex (i.e., the folded form of the origami) is fully determined. Every face must rotate rigidly about the
defined creases and the sector angles must remain constant. There is a limited set of fold angles that will solve these conditions [198].



Fig. 15. Cellular origami metamaterials. (a) A unit cell of the interleaved tube cellular structure. Left: the white nodes have four incident edges while the
black nodes have eight incident edges. The thick lines indicate edges with four incident facets while thin lines indicate edges with two incident facets.
Middle: tubular deletions from the theoretical solid, to obtain the structure. Right: thickened cellular structure [204]. (b) Example of a rigid-foldable cellular
structure constructed from a zonogon tiling (Penrose tiling) [205]. (c) Configurations obtained by actuating the unit cell (with 3 actuators). (e) Improved
actuation strategy to reach state #4, where all six extruded rhombi are folded flat. As expected state #4 does not fold completely flat, but instead deforms
into the state with lowest strain energy [201].
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in the flexible orientations (x- and y-axes). These result are similar to the values in reversibly assembled cellular composite
materials [207].

Extruded cube cellular origami structures have recast tessellated origami into the language of conventional lattice
mechanics. Simultaneously, these attempts form a connection between more conventional materials and mechanical meta-
materials constructed using an origami-based design. It is therefore possible to pattern creases, hinges, or folds into an other-
wise flat sheet. If the mechanical properties of cells and patterns are not rigid, the coupled origami can exhibit temperature-
dependent swelling. Thus these can produce other cellular origami mechanical metamaterials with temperature-dependent
properties.

In brief, the geometry of origami provides a facile experimental platform to explore the various desired mechanical prop-
erties of a wide class of constraint-based metamaterials. These geometries and additional hidden degrees of freedom, such as
facet stretching, facet shearing and crease torquing [166], offer great incentive to develop modern ultra-light and specific
configurations with rich deformation modes (e.g., self-locking). The idea behind coupling geometry and physical properties
for wrinkled membranes [208] and programmable metamaterials [78], is to tailor the bending and stretching energy barriers
in thin shells [209,210], and thereby to obtain a broad range of multistable behaviours over a wide range of scale length
[211]. For instance, in an analogy with the secondary structures of polymers that provide hidden lengths [183,212], the resis-
tance to a predetermined force threshold can be achieved to make materials with extremely high toughness. The major chal-
lenge is now to delve further into the black box of how geometrical configurations and material properties are related, for
instance how a folded sheet contributes to an overall mechanical response [162,213–215].
5.1.5. Pattern transformation: controllable stiffness
The definition of pattern transformation, a type of mechanical metamaterial, derives from a sort of tunable effective stiff-

ness E in a given holy pattern under deformation. Specifically, this switchable metamaterial is similar to most examples of
phase transition between microstructures. Here pattern transformation is from a form of matter with a defined periodic pat-
tern to another on a larger scale. To be precise, it is a macroscopic phase change in the stress-strain properties when the
metamaterial is compressed beyond a certain threshold. The underlying concept is a kind of cooperative buckling to make
the metaproperties occur. These patterns are analogous to the equivalent crystal structures in different orientations, e.g. a
tetragonal unit cell where the long axis points in different directions [67]. A macroscopic external stress can induce switch-
ing between patterns throughout the metamaterial.
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Before starting, we need to make a clear distinction between pattern transformation and other mechanical metamaterials,
particularly with emphasis on negative Poisson’s ratio, i.e., the auxetic metamaterials in Section 7. In pattern transformation,
the stiffness can change in the axial and normal directions under compression. This can lead to a variation in the correspond-
ing Poisson’s ratio in the duration of loading. That is to say, the incremental Poisson’s ratio can be obtained, but the associ-
ated positive or negative sign may also change. Under some conditions, Poisson’s ratio can be a large negative value, while
under others it cannot be. This is different from the conventional fixed negative Poisson’s ratio. This variable Poisson’s ratio
phenomenon also occurred in other mechanical metamaterials. Sometimes, this behaviour is called programmable Poisson’s
ratio or tunable Poisson’s ratio, which is discussed further in Section 7.3. Another distinction is chiral metamaterials. These
truly exist when the topology of the pattern is optimised in a chiral pattern [23]. Some overlapping between the sections
occurs, see Section 5.1.2 for reference.

Two factors, with similar motif and tiling in the crystal structural construction, can determine one pattern transformation.
In doing so, the pattern can be combined with pore shape (i.e. motif) and arrays of pores (i.e. tilings) in topology (Fig. 16).
According to the geometric constraints of the tessellating Euclidean plane, various shapes of holes can be set in different tes-
sellations. The shapes of holes can be regular circles, elliptical holes, or even irregular ones [216]. The tessellation of these
hole settings can be one of four choices: square tiling, triangular tiling, trihexagonal tiling and rhombitrihexagonal tiling
[23]. The geometry of the hole patterns plays an important role in mechanical metamaterials. Therefore, this subsection will
discuss pattern transformation from these two perspectives: pore shape and pore arrays.

Firstly, the pore shape is relatively sensitive to both the onset of instability and the post-buckling behaviour. The effect
can also be striking for square and triangular shapes, suddenly transforming into a periodic configuration of alternating,
Fig. 16. Pattern transformation. (A) Patterns combined with the pore shape and the arrays of pores. Photo of an uncompressed (a) holy sheet [26], and (c)
biholar sheet [221]. Force extension curves of (b) holy sheet, and (d) biholar sheet [81]. (B) Effect of pore shape [216]. Evolution of the macroscopic (a)
incremental stiffness EV/E and (b) Poisson’s ratio with respect to the deformed configuration mdef as a function of the macroscopic strain e for four
representative pore shapes in pattern transformation [220]. (C) A rigid kagome network. The basic unit cell for each folding mechanism is outlined in black.
The colour of the triangles corresponds to their rotation. (a) Mode with a basic cell of size 1 � 1; (b) Mode with a basic cell of size 2 � 1; (c) Mode with a
basic cell of size 4 � 1; (d) Mode with a basic cell of size 2 � 2; (e) Mode with a basic cell of size 2 � 2 [82].
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mutually orthogonal ellipses with high-aspect ratios [24,81,216,217]. Computer analysis, known as shape and topological
optimisation [218], has been routinely performed in an effort to identify the optimal shapes. This is expected to improve
a certain performance under some constraints. Topological optimisation suggests that the response of mechanical metama-
terials can be easily tuned by simply changing the shape of the holes with optimal compaction [219]. Overvelde et al. initially
started to identify the effect of shape on material response by selecting three different hole shape [216]. After relating pore
shape to a non-linear response, the initial response, elastic instability and post-buckling have been systematically explored
to optimise the shape in periodic elastomeric structures [220].

To characterise the optimal pore shape, one generally can assess the effect of pore shape on the stress-strain response, on
the incremental modulus of the structures, and on the evolution of the lateral strain (Fig. 16B) [216,220]. These observations
demonstrate that there are three regimes in the stress-strain response that reflect the evolution of incremental stiffness and
Poisson’s ratio. Namely, the first region corresponds to the initial linear elastic stiffness. The second region plateaus when E is
approximately equal to 0, after a sharp transition induced by instability. Finally, a sharp transition at E > 0 occurs when the
pores collapse. These elegant findings provide compelling evidence that the pore shape can be used effectively to design
material with desired properties. Therefore, it is also expected that attractive mechanical properties can be tailored, includ-
ing Poisson’s ratio, critical strain, but especially tunable stiffness.

Pore arrays combining different pore sizes can also be considered for topological optimisation of pattern transformation.
For comparison, two patterns, holey sheets and biholar sheets (Fig. 16A [26,221]), are discussed in detail. In previous reports
[26,80,81], holey sheets refer to quasi-2D slabs perforated with square arrays of holes having the same pore size. If the sheet
have circular holes of two different sizes then they are known as biholar sheets [221].

The holey sheets can theoretically be approximated as a special lattice structure consisting of rigid regions connected by
beams. The mechanics and structural properties of these cellular structures have rapidly been integrated into promising
material designs for high energy absorption. When deformed beyond the initial linear elastic regime, significant energy
absorption can be achieved in elastic metamaterials through large deformations and the collapse of cellular structures.
Under compression a transition is made from linear elastic behaviour to either a yield or plateau stress or, in some instances,
a yield with some subsequent strain hardening [80]. This nonlinear stress-strain behaviour usually comes from a member or
a wall in the cell microstructure buckling. Then this can lead to localised deformation via collapsed bands, progressing
through the structure at a relatively constant stress [222].

The biholar sheets have a negative Poisson ratio, while experimental results show that the strange peak in the force-
compression curve is absent (Fig. 16A(d) [81]), instead of the completely regular pattern in the initial holey sheet
[26,78,81]. A numerical simulation [223] reveals that an applied prestrain in uniaxial tension can delay the onset of the pat-
tern transformation. Moreover, equilibrium dilation can interrupt the progress of the transitional states into elliptical pat-
terns. Intrinsically, this effect originates from a broken rotational symmetry. By breaking the symmetry, highly nonlinear
deformation coupling occurs along the two primary axes of biholar mechanical metamaterials [221]. Breaking the rotational
symmetry can lead to buckling and snapping effects, as hysteresis corresponds to instability [224]. These findings suggest
that the response of biholar sheets to uniaxial compression can be programmed by lateral confinement, allowing monotonic,
nonmonotonic, and hysteretic behaviour [221]. This is similar to a sort of programmable mechanical metamaterial.

Finally, we need to talk a little about the mechanics of this type of mechanical metamaterials, mainly elastic material
instabilities. Elastic instabilities originate from a softening in the material response (decay of tangent moduli) induced by
a dilating mechanical deformation. Because of this, elastic instabilities traditionally can be viewed as a mode of failure. Pat-
tern transformation here aims to achieve an appropriate failure mode, where one of its intrinsic characteristics is a sort of
tunable stiffness (springiness). It is this reversible elastic instability that can trigger pattern changing. This pattern transfor-
mation can therefore be used to tailor material properties, such as tunable negative Poisson’s ratio (switchable auxetics)
[26,216,225,226], chiral patterns [74,152], phononic and photonic switches [224], and other reprogrammable colour displays
[227,228]. It is worth mentioning that a reversible chiral symmetry-breaking mechanism, or rigid kagome folding lattice
(Fig. 16C [82]), can be introduced to pattern transformation. Nonetheless, only a few systems have shown to be capable
of reversibly switching between non-chiral and chiral configurations [23]. In any case, porous structures can possibly enable
the reversible switching between the initial non-chiral and the buckled chiral pattern.

Finally we introduce the comprehensive studies from Bertoldi’s group [18,23,26,80–82,135,216,217,220,226,228] in pat-
tern transformation. Current results [229] demonstrate that a structure having holes of the same size cannot switch to
another variant by using an external mechanical force. If an elastic structure is comprise of a slab of elastomers having a reg-
ular hole array of two sizes (Fig. 17b) [229], it is technically possible to realise pattern transformation, or even more evoca-
tively, a shape memory effect. This is possibly by simply changing the external pressure, for instance, by using a pressure-
controlled chamber. In other words, when exerting compressive stress isotropically to the structure, these holes can either
stay open and form a square lattice, or collapse and twist the lattice into a rectangular shape, depending on the differential
pressure between the exterior atmosphere and the pressure inside the sealed holes. This therefore allows us to achieve a
snap through [52,230] of stress, similar to the switching behaviour in chiral and phononic properties [18], as the strain e
increased during compression (Fig. 17c) [229].

In a word, mechanical instabilities in periodic porous elastic structures can open avenues for a wide range of applications
in smart materials. Their architectures can be dramatically changed in response to diverse external stimuli [216,231,232].
For instance, a purely mechanical metamaterial can stand alone, in contrast to conventional piezoelectric materials [233]
that require an electric field. The major challenge of this type of mechanical metamaterials is to extend them to the other
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parent materials (e.g. metals or alloys), not including soft materials. Current studies [185,226,234,235] indicate that totally
different pattern transformations for sheets into a wide range of desired shapes and patterns can be introduced through a set
of simple cuts, generating a multilevel hierarchy and different motifs. Each choice of hierarchical cut motif and cut level
allows the material to expand into a unique structure with a unique set of properties. This can reveal an intriguing new
insight into engineering the mechanical properties that define mechanical metamaterials.

5.2. Design principles behind structures

The purpose of this subsection is to describe the mechanism behind design principles. These include, (i) Maxwell’s crite-
rion and material mechanics for micro-/nanolattice metamaterials, (ii) topological optimisation of chiral/anti chiral metama-
terials, and other pattern arrays, (iii) folding theory suitable for origami or kirigami, and cellular origami metamaterials, (iv)
geometrical frustration involving nearly all mechanical metamaterials, pattern transformation, origami, and even cellular
metamaterials. The reason this subsection is independent of Section 5.1 is that some mechanisms are independent of the
various structural system. For example, the theory of elastic instability in geometrical frustration can be fundamental for
the origami-inspired design. Also, it can be a pattern design for pattern transformation. It can be applied to the topographical
optimisation of chiral/anti-chiral frameworks. Finally, it can be used for the analysis of failure mode in micro-/nanolattice
metamaterials. That is why we organise this subsection to discuss some essential mechanisms behind the fabulous structural
frameworks. Additionally, we believe that any complexities must be based on the simplest elements or attributes. Here we
are as concerned as possible with the essentials.
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5.2.1. Maxwell’s criterion and material mechanics
Maxwell’s criterion is essential for the design the micro-/nanolattice metamaterials. The basic structure that Maxwell

analysed was a pin-jointed frame made of b struts and j frictionless joints. These frames can be hinged at their corners
(Fig. 4). If a two-dimensional framework is barely rigid and cannot fold when loaded, at that time one of the properties of
this structure is,
b� 2jþ 3 ¼ 0 ð8Þ

Extending to a three-dimensional framework, the equation will be,
b� 3jþ 6 ¼ 0 ð9Þ

Later on, Calladine et al. [236] generalised this to the widely accepted Maxwell rule in three-dimensional space,
b� 3jþ 6 ¼ s�m ð10Þ

where s and m count the states of self-stress and mechanisms, respectively. Each of these can be determined by finding the
rank of the equilibrium matrix. The corresponding matrix formalism describes the frame in a full structural analysis [236].
Maxwell’s criterion suggests that the number of self-stresses and mechanisms can determine the nature of the engineered
metamaterial. Based on this criterion, a stretch-dominated structure will be defined in Section 5.1.1.2. For further detailed
mechanics, refer to the referenced literature [84,86,236].

Material mechanics involves two main laws, the Hall and Petch hardening law for plastic flow in metals, and Griffith’s law
for the lack of plastic flow in ceramics [237]. Firstly, plastic flow in metals generally occurs by motion of dislocations along a
preferential slip system. As dislocation motion is hindered by grain boundaries, the yield strength of a polycrystalline metal
increases with reducing grain size. This hardening law was formalised by Hall and Petch as follows [238,239]:
rY ¼ r0 þ kffiffiffi
d

p ð11Þ
where r0 expresses the resistance to dislocation motion through the lattice, k is a material parameter, and d is the average
grain size.

This equation predicts enormous strengthening as the grain size is reduced to the atomic scale (and the microstructure
becomes amorphous). In practice, once the grain size drops below 10 nm, plasticity is controlled by other mechanisms (pri-
marily grain boundary sliding [240] and shear banding [241]). For most metals, these mechanisms induce softening as the
grain size reduce, with the implication that optimal yield strength is achieved at a grain size of �10–20 nm. Nevertheless, the
large surface energy associated with extensive grain boundaries makes the architecture much more challenging.

Secondly, the lack of plastic flow at the crack tip results in low toughness, and causes failure at applied stresses much
lower than the yield strength of the material. According to Griffith’s law [242], the fracture strength of a material, rf, can
be expressed by the following relation:
rf ¼ Kc

Y
ffiffiffi
a

p ð12Þ
where a denotes the size of the largest crack in the material (assuming that cracks are uniformly distributed in all directions),
Y is a numerical constant, and Kc is the fracture toughness (a material property that expresses resistance to crack growth).

Finally, Ashby charts (Fig. 5) are typically used for material selection considering multiple requirements. This chart can be
established by means of basic engineering analysis that reveals the material indices (a combination of properties) corre-
sponding to each performance metric. Any two indices can be cross-plotted in a log-log chart that encompasses the realm
of existing materials [237]. For example, in terms of an Ashby-chart, a universal scaling law is therefore characterised for
effective stiffness and for strength as a function of the density (Fig. 5). By contrast, when ceramic octet-truss nanolattice
structures were created with wall thicknesses of 5–60 nm and densities of 6.3–258 kg per cubic metre, their strength and
Young’s modulus follow a power law scaling with the relative density as E � q1.76 and E � q1.61 [106,243]. This implies that
the size difference (micro- or nanoscale here) between the smallest and largest structural features will determine the degree
of hierarchy that can be achieved. In any case, these micro-structured lattices enable the exploration of the potential nanos-
cale mechanical effects, such as size effects in plasticity and fracturing, thereby enhancing the desired mechanical properties
of metamaterials.

5.2.2. Topological optimisation
The topological optimisation for structured metamaterials can be determined from theory and, reducing the design prob-

lem to scale [237]. Some types of pattern transformation can be simplified to a classical Euler-Bernoulli beam, which can
further be modified to incorporate non-uniform elastic beams, similar to the classical structures of auxetic metamaterials
addressed in Section 7. Various lattice structures can be reduce to a single beam subject and the action to a set of linear
and torsional springs, thereby the problem can be solved through a transfer matrix method [244]. Thus, we are at present
using previous and elegant theoretical studies, and thus can benefit from brainstorming before realising myriad fabrication
techniques.
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Mathematically, the optimisation goal is defined as minimising the error between the actual and the pre-defined values of
parameters over a discrete range [245]. Generally, to ensure scalable fabrication of certain architectures, several geometric
constraints are imposed on the topological optimisation design problem. A requirement of uniform structural features can be
implemented as a combination of imposing a minimum and a maximum length scale. In micro-/nanolattice metamaterials,
the topological optimisation step can lead to a beam-like layout. The lattice framework may be converted into a simplified
design composed of a set of parameterised unit cells [245]. The solution to this problem is typically plotted on a log-log scale.
In the case of pattern transformation, the kink in the optimal design curve delineates the transition between buckling-
dominated and yield-dominated designs [113,246].

Computer analysis to optimise the shape and topology [218] has been performed routinely in an effort to identify the
optimal shapes and to improve performance under some constraints. In pattern transformation, the response of mechanical
metamaterials can be easily tuned by simply changing the shape of the holes under optimal compaction [219]. Therefore, it is
possible topological optimisation will play an increasingly significant role in the design of mechanical metamaterials, par-
ticularly as computer techniques advance.

5.2.3. Folding features
The folding of origami structures involves bending deformations that are not explicit in the crease patterns [182]. Silver-

berg et al. [78,166,198] have elegantly explored the assembly. Simultaneously, recent studies from Overvelde et al. [201]
extended snapology to cellular origami metamaterials.

To truly consider and understand the folding theory behind origami-inspired metamaterials, methods akin to solid
mechanics must be developed. Particularly, the study of mechanically frustrated origami leading to multistable metamate-
rials should be conducted [194,196]. Generally, the origami-based design can be subdivided into two major branches, the
origami-inspired design and origami-adapted design. The former is extracted from the concept of origami to obtain stiff
and lightweight structures that are manufactured by folding flat sheets, such as self-folding membranes [247], sandwich
panels with origami cores [168] (called chevron folded paper [248]), cellular metamaterials [157,204], and also molecular
origami with precision lighting [21,164]. The latter draws directly from classical origami models to obtain flexible, deploy-
able devices [249–251], particularly for engineering the aspects of origami [170], such as micro/mesoscale folded stents
[252], and macroscale solar panels for space missions [169,253–255]. These prototype origami models created by various
origami artists can be found in books by Lang [163] and Shafer [167], as well as an elegant review in origami-inspired active
structures [164,212]. This brief summary primarily focuses on the former origami-inspired mechanical metamaterials asso-
ciated with the deformation kinematics. If required, these models can be easily extended to include simple constitutive
behaviour at the fold lines [213,256], for instance, for elastic or plastic behaviour [163].

The origami idea can be found ubiquitously in micro- and nanofabrication. An example of capillary origami is shown in
Fig. 18a [257], the interaction between elasticity and capillarity can be used to produce three-dimensional structures
through spontaneously wrapping a liquid droplet in a planar sheet. These experiments suggest that a wide variety of result-
ing encapsulated shapes, whether spherical, cubic, or triangular (Fig. 18a), can be achieved by tailoring the initial sheet
Fig. 18. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet [257]. (A) Tuning of the initial flat shape to obtain (a) a spherical
encapsulation, (b) a cubic encapsulation, or (c) a triangular mode-2 fold. (B) Microassembly based on hands free origami with bidirectional curvature [258].
Bidirectional origami used to spontaneously assemble complex microscale cubic cores with varying r ratios, where r refers to the ratio of rigid panel length
and hinge length. (a) Optical image of a core with r = 1. (b) SEMmicrograph of a core with r = 3. (c) SEMmicrograph of a lithographically patterned core with
r = 3 featuring square pores on horizontal faces and triangular pores on vertical faces. (d) Optical image of the entire structure shown in (c) with 224 hinges,
magnified view inset. (e) Optical image of a core with r = 5 featuring triangular pores on horizontal faces and square pores on vertical faces, magnified view
inset. (f) SEM micrograph of a torn portion of a core with r = 10.
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geometry. In addition to liquid droplets, thin films of patterned metallic, semiconducting, and polymeric materials can also
be used to create a variety of functional structures. A brilliant idea [258] to obtain spontaneous bidirectional folds of any
desired angle consists of using a sacrificial layer. This layer can be dissolved causing the sheet to assemble while being lifted
off the substrate (Fig. 18b [258]). The folding and unfolding of complex origami structures (Fig. 18) offers a promising insight
to the fields of tissue culture, deployable medical devices, robotics, sensors, auxetic materials, and 3D circuitry.

The extension of origami design principles to three-dimensional cellular materials is now shaping foldable cellular meta-
materials, as discussed in Section 5.1.4. Two such structures can be used in combination by assembling them into stacks
[79,157] or interwoven structures [204], or other architectures currently residing in the imagination [204,205]. For example,
a periodic structure can consist of extruded cubes [201]. A family of prismatic structures include all the possible prismatic
deployable frameworks consisting of quadrilateral facets and four-crease vertices [193].
5.2.4. Geometrical frustration and elastic instability
Geometrical frustration refers to a theoretical system that cannot simultaneously minimise all interactions because of

geometric constraints [135,259]. This phenomenon plays a major role in many systems leading to disordered state config-
urations. For instance, we can find geometrical frustration in the kagome lattice in pattern transformation, in the Miura-ori
pattern in origami-inspired metamaterials, and in the chiral/anti-chiral arrangement of mechanical metamaterials. The ori-
gin of this phenomenon can be the arrangement of spins with antiferromagnetic interactions on a triangle. In contrast to the
case of a square, each spin on a triangle cannot be anti-aligned with both of its neighbours (Fig. 19 [135]). As such, the system
is frustrated and is characterised by degenerate ground states. This suggests that geometrical frustration typically gives rise
to disordered configurations. In mechanical metamaterials, this mechanism becomes significant in generating order in frus-
trated systems, e.g., buckling-induced geometrically frustrated triangular cellular structures [135]. Therefore, a potential
research route couples elasticity and geometrical frustration in continuum structures.

The interaction between structure and elastic instability is becoming an efficient method for the rational design of
mechanical metamaterials. Elastic instability can be used as a route to uni-directional, planar, and auxetic behaviour
[244]. In an example of holy sheets in pattern transformation, mechanical instability plays a significant role in complex
ordered patterns [135]. Indeed, elastic material instabilities originate from a softening of the material response and a decay
of tangent moduli induced by a dilating mechanical deformation. That is why tunable stiffness can be achieved by elastic
instabilities that are traditionally viewed as a failure mode. Furthermore, the number of constraints, struts in the case of
the Maxwell frames, can also lead to a special isostatic state. Additionally, temperature can also influence the mechanical
instability of mechanical metamaterials [260]. In origami-inspired metamaterials, the geometry of the Miura-ori can be con-
sidered as a decoration of the folds with torsional springs, and thereby revealing nonlinear rigidity and bending responses
[196]. It is also worth mentioning the work of Hecke et al. [39,159,196,221,261–265]. These studies range from an initial
jamming system [39,261–264], to pattern transformation [221,265], to currently the origami structure [159,196]. As we
can see from these previous studies, the only constant is the buckling instability of structures, which is theoretical funda-
mental to all of these findings.

In the case of one pattern transformation, the collapsed surfaces of periodically buckled patterns in perfect cellular mate-
rials are essential to the onset of failure in the corresponding real materials that contain inevitable imperfections in their
underlying microstructures. Buckling stress can be quantified to obtain an upper boundary for the initial failure in some
two-dimensional cellular structures, including square/triangular grids, chiral and hierarchical honeycombs (Fig. 20
Fig. 19. Mechanical instability induced geometrically frustrated triangular structures [135]. Geometrical frustration. (a) In antiferromagnetic systems
nearest neighbour spins want to align in opposite directions. This rule can be easily satisfied on a square. However, due to geometrical frustration it is not
possible to satisfy it on a triangle. (b) Similarly, buckled beams on frames want to preserve angles at joints to minimize the deformation energy. Again this
can be realized for square frames, but not for frustrated triangular frames.
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[74,244]). Specifically, we need to be careful of the effect of cell wall lateral loads (i.e. the non-axial components of the cell
wall reaction force) suppressing the instability of periodic structures. For instance, the lateral reaction forces in cell walls are
essentially zero in a triangular grid with a stretching dominated behaviour. As a result, the cell walls in the structure do not
undergo a pre-buckling bending deformation. Bifurcation of the macroscopic load–displacement curve can be observed
under all stress states. Thus, although we have followed the fundamental buckling rules, buckling of different period patterns
carries various failure modes, such as secondary modes of buckling in hexagonal and triangular honeycombs. Additionally,
the amount of theoretical work needs to be quantified in periodic patterns with distinct shapes, to combine plastic-collapse
criteria [266]. It will then be possible to construct comprehensive multi-axial, multi-failure surfaces for cellular structures.

5.3. Enhanced mechanical properties

This subsection will deal with some enhanced mechanical properties that are shared by all mechanical metamaterials
associated with stiffness. These intriguing properties include ultra-stiffness and lightweight, tunable stiffness, and some
other failure modes. Specifically, the significant mechanical properties that these micro-/nanolattice mechanical metamate-
rials share is a high strength/stiffness at low density, while other properties can also be found, such as a high stiffness and a
high damping coefficient in acoustics metamaterials, a negative Poisson’s ratio in auxetics, as discussed in Section 7, a neg-
ative coefficient of thermal expansion, as discussed in Section 6.3.3, and other tunable functional properties. Some related
properties can be found in Section 5.1.

5.3.1. Ultra-stiffness and low density
In micro-/nanolattice metamaterials, a decrease in density can bring about a drastic degradation in the corresponding

mechanical properties. This is because the structural elements will experience a bending deformation at the ligament level
under a macroscopically applied load [89]. In the cellular materials found in nature, the scaling factor is usually a power of
two (quadratic) or three (cubic) or higher, leading to deleterious nonlinear effects that result in a dramatic loss of stiffness
with decreasing density. Natural materials tend to have more random variation in pore size and distributions that lead to
bending under stress. The strength-to-density ratio of the relative compressive stiffness and yield strength of these struc-
tures theoretically show a linear scaling relationship.

The stiffness and density scale linearly over this range of magnitudes.
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where the power n is the scaling relationship between relative material density and the relative mechanical property. The
related metallic micro-/nanolattice can be found in work presented by Jacobsen et al. [66,89,108,118,134,267–269].

5.3.2. Tunable stiffness
Tunable stiffness can be achieved by pattern transformation and chiral/anti-chiral metamaterials. In pattern transforma-

tion, as some extensive studies [216,220] have reported, the pore shape has a strong effect on both the onset of instability
and on the post-buckling behaviour. This is particularly true when square or triangular arrays of circular hole patterns are
suddenly transformed into a periodic configuration of alternating, mutually orthogonal ellipses with a high-aspect ratio
[24,81,216,217]. An elastic metamaterial with dynamically controllable stiffness emerged that can be employed using a
remote magnetic force to adjust its vibration absorption properties in acoustic applications [270].

A sufficiently large amount of prestrain can prevent pattern transformation, leading to the monotonous pattern of ellipses
[223]. These deformed configurations suggest that the appearance of transitional states in the presence of prestraining is a
consequence of the particular combination of the selected polymer and solvent. In other words, there might exist competi-
tion between tensile stress due to prestraining and compressive stress due to solvent swelling [24]. This would allow us to
create and design a richer variety of periodic patterns from one polymeric film with a square lattice of circular holes.

It is noted that here negative stiffness in acoustic metamaterials has a slightly different meaning than in mechanical
metamaterials. Both are denoted as the general stiffness, referring to the ratio of the generalised force to the generalised
displacement. In acoustic metamaterials [270,271], negative stiffness and negative density are limited to the stiffness of
Buckling of some two-dimensional cellular structures including square/triangular grids, chiral and hierarchical honeycombs under a general
pic stress state [74]. (A). Types of lattice structures analysed by the beam-column matrix method: (i) square grid, (ii) triangular grid, (iii)
al honeycomb, (iv) hierarchical hexagonal honeycomb, and (v) tri-chiral honeycomb. The angle h gives the orientation of straight walls in the tri-
tice. Buckling of (B) square honeycomb according to swaying, non-swaying and long-wave modes of buckling, (C) The response of a square system
vertical and horizontal beams discontinuity in second moment of area described by parameters rv and rh respectively. All other parameters are
the two sets of beams. For each pair of values (rð1ÞI ; rð2ÞI ), two calculations are performed: rv = rð1ÞI ; rh = rð2ÞI and rv = rð2ÞI ; rh = rð1ÞI . Region (a) depicts the
arameter space where long wavelength instability is the active mode in both orientations, (d) shows where short wavelength mode will be active
while (b) and (c) show where the two orientations will give different modes [244]. (D) the triangular grid according to modes I and II of buckling,
y biaxial loading. (E) Biaxial buckling collapse of regular hexagonal honeycomb under biaxial loading along x (the so-called armchair or ribbon
) and y (the so-called zigzag or transverse direction) according to uniaxial, biaxial and flower-like modes of buckling [74].
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the matrix in the effective governing equations of design structure via the boundary conditions of wave propagation [272]. In
mechanical metamaterials, stiffness is defined as the mechanical properties without acoustic boundary conditions. Mechan-
ical metamaterials could perhaps be used to independently tune the bulk modulus (permittivity) and density (permeability
in electromagnetic or acoustic metamaterials. Elastic metamaterials that independently realise negative density and stiffness
are emerging constantly [273,274].

5.3.3. Failure mode
Here failure mode can be triggered by a state of stress in the micro-/nanolattice metamaterials, rather than the material

mechanics themselves, as discussed in Section 5.2.1. Generally in hollow-tube lattice structures, the failure modes are asso-
ciated with a combination of three competing mechanisms: fractures in the tube walls, Euler (beam) buckling of a truss
member or local (shell) buckling [134]. In the nanolattice structures, however, two sets of failure modes dominate: yielding
(or elastic buckling) versus shell buckling, and yielding versus Euler buckling [106].

In most cases, yielding in the tubes will occur under a state of tension, whereas, Euler and shell buckling will occur under
a state of compression [41,97]. For instance, in an idealised pin-jointed stretch-dominated structure, the stretching of the
horizontal members under tension (tube yielding) will govern the strength and stiffness of the lattice [97]. In this case,
the beams in these lattices are assumed to only experience uniaxial tensile or compressive stresses. In the case of a hollow
lattice, shell wall bending can occur at constrained nodes during the load transfer, thereby having a detrimental effect on the
strength and stiffness. As such, a large concentration of stress in the vicinity of the nodes can cause large deflections and
ovalisation at the nodes, and vice versa [106,108]. A study of a stainless steel microlattice structure under states of tensile
and compressive stress indicates that the distribution of this localised stress in the strut members is responsible for a macro-
scopic cracking mode, such as tensile opening and shear cracking, and a ductile fracture for a transgranular form [275].

Here we can take the example of a failure mode in metallic microlattice structures via an emerging selective laser melting
(SLM) technology. The investigation of the localised stress field near the joint [275] reveals the nature and evolution of
stress: the tensile stress mainly concentrates on the top and bottom surfaces of a nodal joint, while the compressive stress
largely on the lateral surface of the joint. Accordingly, this development of localised stress states (tension or compression)
would lead to different crack separation modes (Fig. 21 [275]) inside the material components of the microlattice during the
fracture process.
Fig. 21. Failure behaviour in selective laser melted stainless steel for micro-lattice structures [275]. SEM images (left and middle) of the fracture surfaces in
two different zones near an nodal joint in an SLM316L micro-lattice structure and the corresponding schematics (right) showing the dominant fracture
modes: (a) in the tension zone, and (b) in the compression zone. (Note: the middle figure is the high magnification SEM image in the boxed-in area of the
left figure).
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States of self-stress refer to tension and compression of the structural elements that result in zero net forces. Self-stress
also plays an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with
tunable mechanical properties [276]. This state is analogous to topological quantum states that sculpt localised buckling
regions in the interior of periodic cellular metamaterials.

6. Structure and properties of mechanical metamaterials associated with shear/bulk moduli

6.1. Mathematical classification

Mathematically speaking, the mechanical metamaterials associated with shear/bulk moduli include three regions of the
Milton map (Fig. 3): the first is the G (x) axis, i.e., the auxetic metamaterials of Section 7; the second is the K (y) axis, i.e.,
vanishing shear modulus; and the third is located in the lower right quadrant, E > 0 and �4G/3 < K < 0, i.e., negative com-
pressibility. The first case, auxetic metamaterials, encompasses the original aspiration for mechanical metamaterials, and
thus is a relatively mature research field for this subject. Thus auxetic metamaterials alone will be described in detail in Sec-
tion 7. Therefore, this section is devoted to the emerging vanishing shear modulus and negative compressibility. With
respect to this Milton map, the upper right quadrant was previously discussed by Milton [55] to elucidate the role of a neg-
ative Poisson’s ratio in relation to the moduli. Later, Lakes et al. [67,68] located other metamaterials in the corresponding
position on this map.

Two main groups can be found in the Milton map, i.e., K-G map (Fig. 3). The subsection here will just focus on the K (y)
axis and the lower right quadrant. Firstly, on the K axis, the shear modulus G is equal zero, like it is for ideal fluids. If a three-
dimensional structure is on this K axis, its shear modulus has vanished. In other words, we can obtain a sort of nondetectabil-
ity in two dimensions, but seemingly not in three-dimensional structured materials. The first part of this section will intro-
duce two types of mechanical metamaterials that are located on the K axis: the influential pentamode metamaterials and the
varied kagome lattice. Secondly, we will treat the lower right quadrant of the Milton map representing the range of elastic
moduli, G, E > 0 and �4G/3 < K < 0. Negative bulk modulus K < 0 is shown to be possible in selected unit cells. In isotropic
solids, the bulk modulus K < 0 can be attained when a negative Poisson’s ratio is sufficiently small, below the stability limit
(for stress control). Such a material is unstable with respect to global deformation. It can be stabilised by constraining its
boundaries. In analogy to crystalline metal-organic frameworks (MOFs) in materials chemistry, we can say that this type
of mechanical metamaterial has negative compressibility. This involves contraction in one direction of a crystal under ten-
sion, which is termed negative linear compressibility (NLC), and the contraction in two directions, termed negative area com-
pressibility (NAC). With regard to negative thermal expansion (NTE) behaviour, we can introduce its design concept.
Micro/nanosize inclusions can be inserted into the interior of bulk materials, thereby obtaining NTE or NLC/NAC properties.
The ideas in these domains are not new, but the challenge for the experimentalist to fabricate these structure still exists.
With rapid development in micro-/nanofabrication techniques, it is expected that design concepts will take shape, and many
more ideas will appear. We introduce negative compressibility as a current vision for future materials.

6.2. Vanishing shear modulus (G � K)

This type of three-dimensional metamaterial can be defined as an ideal fluid, where the shear modulus G approaches zero
compared to the bulk modulus K, i.e., G � K [20,277]. Two subclasses will be addressed, the influential pentamode metama-
terials [63,278], and the mechanical metamaterials with a kagome lattice. The functional characteristic that both types of
mechanical metamaterials share is their three-dimensional structural shape which displays two-dimensional properties,
similar to the behaviour of liquids. In other word, these types of metamaterials are difficult to compress but flow easily
[63,265]. We say vanishing shear modulus due to the shear modulus G approaching zero, but they can be called a metafluid
or an anti-auxetic metamaterial [20,277].

6.2.1. Pentamode structural design
The name pentamode metamaterial is derived from its material properties which easily support five modes of

infinitesimal strain, and only one single stress. Such a structure was independently theoretically conceived and predicted
by Milton [55,63,279] and Sigmund [278] in 1995, and further improved since then [114,115]. Pentamode extremal
materials are considered to be a diamond-type structure in which four linkages meet at a point [63,115,278]. This is
distinguished from the conventional two-dimensional honeycomb or inverted honeycomb where three linkages meet
a point [30,141]. Hence, this structure supports a stress having Eigenvalues of the same sign. By moving the meeting
point to the other side of the unit cell, another structure can be obtained to support a stress having Eigenvalues of
mixed signs (Fig. 22A(a) [63]).

Mathematically, in the material 5 (penta) of the 6 diagonal elements in the 6 � 6 elasticity tensor approach zero, and one
is a non-zero [33,55]. Suppose the forces F1, F2, F3 and F0 are directed along the linkages outwards from the meeting point p,
and the corresponding elastic constants are k1, k2, k3, and k0, then,
F1 ¼ k1ða1 � pÞ; F2 ¼ k2ða2 � pÞ; F3 ¼ k3ða3 � pÞ; F0 ¼ �k0p ð14Þ
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Fig. 22. (A) Pentamode metamaterials. (a) Ideal model suggested by Milton and Cherkaev in 1995 [63]. The artificial crystal with lattice constant a has
diamond symmetry. (b) A pentamode structure proposed by Wegener et al. in 2012 [33,283], consisting of elements made by two connected truncated
cones. In contrast to (a), the connection regions of touching cones have a finite diameter d. The diameter of the thick end of the cones, D, and the total
double-cone length, h, are also indicated. (c) Fabricated elasto-mechanical structures for the unfeelability cloaking [20,280], rigid hollow cylinder and
cloaking shell (the ‘cloak’), and (d) magnified views of the cloak in (c) are depicted. (e) Oblique-view electron micrograph of another polymer pentamode
mechanical metamaterial with 7 � 7 � 6 face-centred-cubic unit cells (hence total size 261 mm � 261 mm � 224 mm) and with h = 16:15 mm, D = 3 mm, and
d = 1 mm fabricated by dip-in direct-laser-writing (DLW) optical lithography [33]. (f) The magnified view for unfeelability cloak reveals the details of the
pentamode metamaterial the cloak is composed of. The local bulk modulus K is tuned via the diameter d of the double-cone connections with respect to the
fixed lattice constant a. For the surrounding, d0/a = 5.3% (white), for the cloaking shell, d2/a = 2.4% (red) for the choice R2/R1 = 4/3. The fixed diameter D/a =
8% at the thick ends is also depicted [20]. (B) Another structural Pentamode metamaterials. (a) The cross-section shape of primary unit includes regular
triangle, square, pentagon, hexagon and circle [284]. (b) Metamaterial structure [286], the diameters d1 and D2, the lattice constant a of the fcc lattice. The
ratio d1/a determines the effective bulk modulus K/K0, and the ratio D2/a determines the effective relative static mass density q/q0, which is equal to the
volume-filling fraction f. (c) Electron micrographs of selected fabricated metamaterial with fcc lattice constant a = 40 mm, s/h = 0.05, D1/a = 0.12, and d2/a =
0.04. These polymer structures have been made by three-dimensional dip-in galvo-scanner-based laser lithography and demonstrate the feasibility of the
concept of pentamode metamaterials [286].
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According to the balance of these forces,
kp ¼
X3
i¼1

kiai; k ¼
X3
i¼0

ki ð15Þ
Following that the meeting point p lies within the unit cell if and only if,
0 <
ki
k
< 1 for i ¼ 1;2;3 ð16Þ
Then the integral of the stress within the unit cell is,
rl ¼
X3
i¼1

kiai � ai � kp� p ð17Þ
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Hence, there are many possible strategies to obtain a specific stress rl proportional to a prescribed supporting stress r, via
selecting the elastic constants k1, k2, k3, and k0 to satisfy Eq. (16), and selecting vectors a1, a2, a3 in the unit cell. This is the
principal idea of the pentamodemetamaterials: when the ratio of the integral stress and a prescribed stress is constant, there
is only the normal stress without shear elements in the stress tensors. According to this theory, we can fabricate pentamode
metamaterials using building blocks for materials with completely arbitrary elastic properties [63].

The pioneering fabrication of pentamode metamaterials did not occur until early 2012. The Wegener group
[20,103,277,280–283] proposed a metamaterial structure, consisting of elements made by two connected truncated cones
(Fig. 22A(b) [33,283]), and further fabricated by current state-of the-art lithography [33,283]. In doing so, the finite connec-
tion to replace the strictly theoretical point-like tips was achieved to obtain stability under certain conditions, for instance,
the dependence of the bulk and shear modulus on the finite connection diameter [33]. The asymmetric double-cone element
has been presented for a pentamode metamaterial consisting of two connected truncated cones with differing and thin
diameters [265]. Of the different cross-sectional shapes, including regular triangles, squares, pentagons, hexagons and circles
(Fig. 22B(a) [284]), it was found that the triangular case has particularly nice acoustic properties [284]. In general, the unit-
cell of pentamode metamaterials is composed by 16 double-cone elements [20,33,44,277,283,285]. It is also possible to mod-
ify the diameters d1 and D2 (Fig. 22B(b–c) [286]), to thereby obtain various structural pentamode metamaterials.

Of the pentamodes implementing a three-dimensional transformation of elastodynamics, similar to the transformation
optics, current studies mainly focus on the application of acoustic free-space cloaks [20], such as layered pentamode acoustic
metamaterials. The team of Wegener has extensively and systematically investigated on this subject, from an initial attempt
in 2012 [33], the verification and implement of the previous proposed theory [33,283], then the examination of the related
geometric parameters [277,282], and finally the application of the acoustic cloaks (Fig. 22A(c–f) [20,280]).

Specifically, three-dimensional polymer microstructures were fabricated by dip-in direct laser writing optical lithogra-
phy, and the resulting ratio of the bulk modulus to shear modulus was as large as about 1000 [33]. In the static-dynamic
transition, Martin et al. [283] have calculated the phonon band structures of 3D pentamode metamaterials for phase veloc-
ities of the compression and shear waves. The mechanical properties of the 3D anisotropic pentamode metamaterials were
studied and its large anisotropy ratio may be desirable for implementing 3D free-space cloaks [277]. Direct measurements of
the static shear modulus and the Young’s modulus reveal that their ratios is approximately 1000 when the smallest acces-
sible values of d/a � 1.5% [282]. Subsequently, inspired by invisible core-shell nanoparticles in optics, an approximate elasto-
mechanical core-shell non-detectability cloak has been designed and manufactured based on pentamode metamaterials
[20,285]. Studies from other teams also concern pentamode acoustic cloaks, including two dimensional (2D) plain strain
space [287], transformation methods and other theoretical research [285]. These investigations suggest that pentamode
metamaterials have potential in some applications of nonlinear optical transformation, e.g., acoustic invisible cloaking.

In addition to applications for acoustic metamaterials, pentamode metamaterials with five easy modes of deformation
can be developed for strong and ultra-light metamaterials, as mentioned in Section 5.1.1. In general, the lamination of a pen-
tamode leads to metamaterials with effectively anisotropic uniaxial dynamic mass density tensors [286]. The effective mass
density, in addition to the bulk and shear moduli, can be modified by introducing geometric perturbations to pentamode
metamaterials. The effective properties of pentamode metamaterials, both isotropic and anisotropic, are obtained from
the general formulation in the stretch-dominated limit of Z = d + 1, when considering a periodic lattice structure in d = 2
or 3 dimensions with a unit cell comprising Z thin elastic members emanating from a similarly situated central node
[115]. The stiffest lattice proposed is based on these analytical simulations [114]. These anisotropic pentamode metamate-
rials can be translated to a zero Poisson’s ratio and even auxetic behaviour. This type of mechanical metamaterial has poten-
tial for growth extending beyond mechanical metamaterials by tailoring the symmetry of the pentamode diamond lattice.

6.2.2. Kagome lattice
The second system possessing a vanishing shear modulus is associated with the kagome lattice (Fig. 23), i.e. rotating tri-

angles in the geometry of auxetics metamaterials [288–291]. Torquato’s group identified the kagome structure [292] as an
ideal stiff and statically determinate lattice [93,293], initiating dozens of studies on its mechanical properties and its tech-
nological importance on the macroscale [294–296]. A revival of the kagome lattice has recently emerged due to both exper-
imental measurements and computational simulations. The concept of a kagome lattice is in essence derived from a cellular
lattice [93], where study of the various mechanical properties focus on the shear/bulk moduli. Some stacked kagome lattices,
also called the cellular kagome lattice [276], have been addressed in Section 5.1.1.

The C3v twisted kagome lattice (Fig. 23A) is relatively simple, and can be formed from the kagome [293] and other peri-
odic isostatic lattices [41,260,297]. This kagome lattice is isotropic with a vanishing bulk modulus. This unusual behaviour,
i.e., the vanishingly small bulk modulus, can cause the speed of acoustic surface waves to vanish [298,299]. Distorting the
kagome lattice, characterised by vanishing bulk moduli and negative Poisson ratios, depends with high sensitive on the
boundary conditions and on the nature of the kagome distortions [298]. Alternatively, a kagome lattice in periodic elas-
tomeric structures comprises a triangular array of circular holes having multiple folding mechanisms [82,292]. A geometrical
analysis of two-dimensional rigid periodic networks yielded highly tunable phononic crystals.

Recently, Paulose et al. [41] fabricated the topological modes of prototypic kagome lattices from rigid triangular plates
(Fig. 23). Square lattices with primitive vectors introduce a single point and thereby produce a deformed kagome lattice
which contains only four-coordinated points, exhibiting a specific region of the triangle or pentagon. This implies the exis-
tence of a dislocation. Consequently, the topological soft modes can be positioned at desired locations in a metamaterial



Fig. 23. Kagome mechanical metamaterials. (A) Isostatic kagome lattice. (a) (left) The macro kagome plane and tetrahedral core of the kagome plate
structure [292,296]; (middle) The kagome lattice and its floppy modes, with the reference state in grey and deformed state in red. Two of its floppy modes
are shown in this figure marked by the yellow ribbons [297]; (right) Superposed snapshots of the twisted lattice showing decreasing areas with increasing
an angle [298]. (B) Dislocations in polarised isostatic lattices: (a) Hexagonal lattice with primitive vectors {a1, a2}. (b) Deformed kagome lattice obtained by
decorating the triangular lattice in a. (c) The topological polarisation. (d) Decorating each point in c with the four-point unit cell (yellow points and magenta
bonds) gives a distorted square lattice which incorporates a dislocation of the same dipole moment, and has a non-zero topological polarisation [41]. (C)
Stacked kagome lattices. (a) A 3Dprinted realisation of the design made of flexible plastic: a unit cell size of 25 mm and beams with circular cross-section of
2 mm diameter. The stacking creates a pile-up of states of self-stress in a quasi-2D region, highlighted by dotted lines [276]. (b–d) Stretching, shear, and
bending contributions to the linear in-plane response of the cellular metamaterial, subject to a vertical compressive force F (solid arrows) at each point
highlighted along the top and bottom edges. The structure is modelled as a network of flexible beams connected by rigid joints at the nodes, and with each
beam providing torsional stiffness in addition to axial stiffness. The beams are coloured according to (b) axial compression; (c) shear load; and (d) bending
moment [276]. (D) Mechanical instability induced geometrically frustrated triangular cellular structures [135]. (a) Representative critical eigenmodes for a
single triangular frame in the symmetric pattern. The dotted line indicates the mirror plane, (middle) a schematic showing how spins define a buckled
pattern when all of the beams buckle into a half sinusoid, and (right) ordered symmetric configurations predicted. (b) A single chiral triangular frame, the
spinlike model under bulking, and the chiral ordered state emerges when two spins are assigned to each beam.
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while being insensitive to a wide range of structural deformations or changes in material parameters [40,299,300]. These
protected modes, localised at dislocations in the deformed kagome and square lattices, are therefore the mechanical ana-
logue of the topological states bound to defects in electronic systems. Some advanced studies of atomically resolved nanos-
tructures using three-dimensional characterisation techniques enable the placement of dislocations of crystal defects.

Vanishing shear modulus aims to make the effective shear modulus approach approximately zero in comparison to the
bulk modulus. Pentamode metamaterials can be employed for acoustic metamaterials, and also extended to ultra-
lightweight, ultra-stiff pentamode cellular lattices. Study of the fundamental mechanics of planar kagome lattices need to
be continued because two-dimensional geometric frustration can springboard the exploration of three-dimensional materi-
als. Concurrently, three-dimensional kagome lattices can be translated to stacked cellular metamaterials, and other twist tri-
angle pattern transformations. Various applications are encouraging the development of mechanical metamaterials because
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of their three-dimensional configuration and shape, and because their intrinsic properties resemble a sort of ideal fluid.
This really does accord with the aspirations of mankind. We always want to envision beyond what our eyes see.
Mechanical metamaterials associated with vanishing shear modulus are not confined to only these two types, the
pentamode and kagome lattice. Fabulous structures for metamaterials are appearing unexpectedly from the seemly silent
sea of possibilities.

6.3. Negative compressibility (�4G/3<K < 0)

Compressibility is the inverse of the bulk modulus K, and is a measure of the relative volume change of a solid or
fluid as a response to a pressure change [64]. Hence, normally the compressibility is positive sign, only in the regime
of strong ellipticity [67] it may be negative in few natural materials. The negative compressibility, i.e., the negative bulk
modulus K here, is refer to a material undergoes expansion when pressured, or contraction when tensioned [37,301].
Representing in the K-G map, the range of elastic moduli, K, G, corresponds to the lower right quadrant (Fig. 3) hence
to E > 0 and �4G/3 < K < 0.

This type of mechanical metamaterials are those where the effective elastic moduli of these manmade structures requires
that �4G/3 < K < 0 when E > 0. This special effect can only occur if the system under force moves from one stable state to
another metastable state, termed the negative/inverted compressibility transition [37,70]. In mechanics, this condition is sim-
ilar to bistability [302], where energy is stored in [303] or supplied to [304] a deformed object, including post-buckled ele-
ments [52,67,69]. In most case, buckled tubes also exhibit negative incremental stiffness, similar to perturbations of a
deformed configuration. Similarly, the snap through phenomenon occurs in sufficiently small particles, serving as con-
strained inclusions. This snap through phenomenon is mainly due to surface energy effects in a composite that achieve large
mechanical damping and anomalies in the modulus [36,305].

This subsection will introduce three types of negative compressibility and one implication from recent chemistry
research in the field. Negative linear compressibility (NLC) is the one-directional contraction in a crystal under tension
[73]. Negative area compressibility (NAC) is contraction in two directions [306] (Fig. 24). Both categories of negative com-
pressibility can be identified by uniaxial or biaxial negative thermal expansion (NTE), i.e., contraction upon warming in
natural candidates [307,308]. This accessible approach to investigate anisotropic NTE behaviour is the last this section will
address.

6.3.1. Negative linear compressibility
NLC involves expansion in one direction upon uniform compression, and is closely related to auxetic behaviour (Fig. 24d).

The latter entails lateral contraction under axial compression, as occurs in materials with a negative Poisson’s ratio (NPR in
Section 7). Compressibility normally denotes the relative volume change of a material as a response to a pressure change. As
such, NLC metamaterials are distinct from NPR, i.e. auxetic metamaterials [28,62,309,310], in that they respond differently to
different external stimuli. For instance, plastically deformed foams and honeycombs are known [28,29,311] to provide either
negative Poisson’s ratios or a Poisson’s ratios whose sum exceeds unity along a stretch direction. However, NLC behaviour is
only displayed by honeycomb structures [301].

Currently, four types of NLC materials have been proposed on the basis of the microscopic mechanisms responsible for
NLC behaviour [35,301] in natural materials. These four NLC materials include: (a) compounds with NLC derived from certain
quasi-ferroelastic phase transitions; (b) the network solids with NLC driven by correlated polyhedral tilts; (c) helical sys-
tems; and (d) a framework material with either wine-rack [301,312], honeycomb [312,313], or a related topology
[308,314,315], where the NLC behaviour arises from the framework hinging [71]. A variety of new families of natural mate-
rials has therefore been distinguished in an extensive current review [71] and a benchmark review of NLC [301]. Since the
former three types are natural materials rather than manmade materials, the last type of NLC metamaterials serves as the
underpinning of negative compressibility in artificial materials in this review.

Natural NLC materials are generally much weaker than the ordinary materials that typically display positive compress-
ibility. This is because a linear magnitude of compressibility usually reflects bond strengths in conventional engineered crys-
talline materials. The typical value of positive linear compressibility normally lies between 5 TPa�1, in the stiffer and
compact materials such as metals, alloys and ceramics, and 100 TPa�1 in softer materials such as polymers and foams
[56]. In the case of steel and concrete, contraction in the length is only approximately 0.5% when applied pressure increases
by 1 GPa, corresponding to a linear compressibility of K � 5 TPa�1 [54]. Only a dozen or so NLC compounds had been iden-
tified [301]. The most negative values observed have been just �2, �1.2 and �12 TPa�1 for R-cristobalite structured BAsO4

[316], trigonal Se [317], and KMn[Ag(CN)2]3 [318], respectively. In most of these, the NLC effect is relatively weak.
How can NLC metamaterials be designed to reach a much higher value of NLC than observed in natural materials? NLC

behaviour is just emerging, and the field of materials chemistry is currently limited to crystalline metal-organic frameworks
(MOFs). The reason for this is that on the macroscopic scale the phenomenon of NLC is not counterintuitive, both trellis fenc-
ing and wine racks can be packed away by pulling in one direction [318]. The challenge for material design is to engineer this
same functionality on the atomic scale such that it becomes an intrinsic material property to be exploited. On a fundamental
level, there are strong implications associated with understanding the mechanism of negative compressibility from the
molecular framework. We will retrace these innovations and explorations in Section 9.1 for future fabrication methods of
micro/nanolattice mechanical metamaterials.
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Fig. 24. Diagrammatic representation of anomalous mechanics for materials exhibiting negative linear compressibility (NLC), negative area compressibility
(NAC), negative thermal expansion (NTE) and negative Poisson’s ratio (NPR). (a) Mechanical responses to hydrostatic pressure, (i) positive compressibility
showing the contraction in all directions, (ii) NLC: linear expansion in one direction under the pressure-transmitting media (blue circles) [71]. The system
volume (represented here by the solid red area) is reduced in all cases. (b) A typical layer-rippling mechanism for NAC: densification of layered structures
lead to collapse in the stacking direction, while the variation of the parameter y in the two perpendicular directions within the layer with increasing
pressure [313]. (c) Uniaxial NTE: contraction in one direction upon heating [315]. (d) Auxetic response upon axial compression (indicated by the arrows),
whereby a NPR is observed for comparison [315].
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6.3.2. Negative area compressibility
Negative area compressibility, an extremely rare property, refers to the two-directional contraction when under one

directional structural tension [306]. In analogy to a typical mechanism (Fig. 24b), the densification of layered materials usu-
ally proceeds via collapse in the stacking direction, which in turn results in an expansion in the two perpendicular directions
within the layer. From a structural viewpoint, the phenomenon can be understood in terms of pressure-driven damping
through layer rippling, which acts to increase the cross-sectional area of the layer at larger hydrostatic pressures [313].

Compared to the rigorously and extensively studied NLC, modest effects of NAC have been observed or predicted to occur
in a handful of layered materials such as silver (I) tricyanomethanide [313], and sodium vanadate [319]. The reason for this
effect occurring in layered structures is that a layered material is usually more compressible along the stacking axis than it is
along a perpendicular direction [307]. By choosing a plane with a negative area compressibility as the predominant crystal
face, a crystal can be obtained with NAC effects where the total surface area increases under hydrostatic (uniform) pressure
[301]. Thus, NAC materials rather than NLC can be used as substrates to provide an order of magnitude increase in the ampli-
tude of piezoelectric response in ferroelectric sensors [301], artificial muscles and actuators.

The four types of mechanisms are responsible for NLC, which are discussed in this last subsection. Densification under
area expansion will be identified [320], in conjunction with the specific geometries of the various wine-rack and
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honeycomb-like topologies [312,315]. It is unlikely that NAC will ever be as strong an effect as NLC. This is mainly due to the
mechanical stability criterion of positive volume compressibility. This stability criterion implies that positive linear com-
pressibility (PLC) along the axis perpendicular to the plane of negative compressibility must be at least twice as large as KNAC.
That means that NAC can only ever be half as strong as PLC [71]. NAC materials are much less common and their magnitudes
are even weaker than NLC [306].

This NAC behaviour is identified upon flattening honeycomb-like layers during a rapid pressure-driven collapse of sepa-
rated interlayers [313]. Specifically, a soft porous material [Zn(L)2(OH)2]n�Guest (where L is 4-(1H-naphtho [2,3-d] imidazol-
1-yl) benzoate, and Guest is water or methanol), exhibits the strongest observable NAC behaviour [306]. Similar to NLC
exploration, the same thing happens here in the research field of NAC. Only a handful of materials displaying NAC properties
has been identified, and engineered metal–organic frameworks (MOFs) [321] are also limited. We need to start from the fun-
damental level to find how to characterise NLC/NAC properties.
6.3.3. Negative thermal expansion metamaterials
To identify negative compressibility, an accessible approach is to investigate anisotropic negative thermal expansion

(NTE) behaviour [322], i.e., contraction upon warming [307,308]. Dynamic instabilities result from NTE [73], which is fre-
quently indicative of NLC behaviour in natural candidates [72,306,312,323]. NTE is often associated with a structure that
contracts in one or more direction upon heating [313,308] (Fig. 24c).

First of all, we need to clarify the subtle meanings of related terms. The property of negative specific heat is rare, but it
does exist in nature. This counterintuitive effect indicates that the temperature, energy or entropy of a system decreases
when heat is supplied [69], such as by rapidly cooling amorphous materials near the glass transition temperature [324].
NTE is clearly different from negative specific heat. NTE does follow the law of conservation of energy, but the whole effec-
tive structure when heated will contract in one or more directions, rather than expanding as is normally the case. Another is
negative Poisson’s ratio, where several newly developed NTE structures have initially come from the frameworks designed
for NPR. Current topological optimisation has revealed that there is no mechanistic relationship between NTE and NPR
[325,326]. Contrary to NPR, there is empirical evidence of a specific link between anisotropic NTE and NLC/NAC in framework
materials [318]. Indeed, it is the similarity in compression mechanisms under cooling and compression [307] that originally
indicated the existence of the relationship between NTE and NLC/NAC properties.

From a material chemist perspective, some specific molecular framework materials [73,314,318,327] can fit this similar-
ity. In a topical example using elemental Se, the mechanism responsible for NTE along the Se spiral axis probably accounts
for NLC along the same direction [317]. Furthermore, in most other anisotropic materials, the mechanisms of buckling and
bond compression are almost always more effective at reducing crystal volume than is uniaxial or biaxial lattice expansion
[313]. Thus, it is possible to realise a dynamic transition from discontinuous negative compressibility to continuous negative
volume compressibility behaviour in a chemical system. A feasible approach might employ inhomogeneous chemical doping
to remove the transition pressure. This concept has been used elsewhere to convert discontinuous thermal volume collapse
to NTE [328], and NLC in molecular co-crystals [320,327]. But these are beyond the scope of this review.

Alternatively, from the perspective of thermodynamic formalisms, when omitting shear terms, the thermal expansion to
compressibility in anisotropic materials is [307],
ai ¼ CT

V

X
j

Sijcj ð18Þ
where CT is the isothermal specific heat, V is the unit cell volume, Sij is the elastic compliances, and cj is the components of
the anisotropic Gruneisen function (weighted sums over the anisotropic mode of Gruneisen parameters [73]). If substituting
Ki ¼

P
jSij when Sij is negative for the anisotropic materials and ci is positive for uniaxial NTE [307],
ai ¼ CT

V
Kici þ

X
j–i

Sijcji

 !
ð19Þ
where cji ¼ cj � ci. For flexible framework materials, the Gruneisen function is relatively isotropic i.e., cij � ci, hence the
cross-linking term of Eq. (18) becomes a second-order correction. This means negative values for the coefficient of thermal
expansion, ai are likely to correspond to negative Ki values whenever the material as a whole exhibits positive thermal
expansion.

In any case, the link between NTE and NAC is deduced from the variation in the framework geometry during heating. For
instance, the established model of NTE in layered materials predicts coupling between NTE and the extent of layer rippling,
as quantified by the inter-network torsion angle [313]. Similarly, the NAC is driven by the same layer-rippling mechanism as
NTE, which is evident by varying the parameter y (Fig. 24) with increasing pressure. Therefore, these investigations suggest
that NTE behaviour, whereby a material contracts upon heating, can be used to produce mechanical metamaterials with tun-
able thermal expansion based on existing topologically optimised architectures.

If extending planar honeycomb chiral lattices from auxetics [30] to NTE metamaterials, a controllable thermal expansion
of large magnitude can be achieved in chiral negative Poisson’s ratio lattices (Fig. 25). Specifically, the effective thermal



Fig. 25. (a) Geometry of planar chiral honeycomb lattice structure with Poisson’s ratio approaching �1 [30], (b) NTE (negative thermal expansion) modified
chiral lattice structure with bi-material ribs with alternating orientation. Two materials indicated as light and dark, differ in their thermal expansion [329],
and (lower) kinematics of the deformation (bending) in a ligament (rib) in a chiral honeycomb lattice structure. In the chiral lattice, strain is geometrically
linked to rotation / (h or b in Fig. 25a), node outer radius r and the spacing R of nodes between centres, the rib length Lrib (or L). A temperature change causes
bending of the bi-material rib segments which produces curvature with radius q [30,329]. (c) Geometry of the modified chiral structure made up of bi-
material ligaments of thickness t1 + t2 connected to a square node. Note that the squares and part of the ligament thickness (thickness t1) are made from
Material 1 (in orange colour) which has a Young’s modulus ES1, while the other part of the ligament is made from Material 2 (in blue colour) which has
thickness t2 and Young’s modulus ES2 [35]. (d) Tetrakaidecahedral foam cellular metamaterials (two dimensional hexagonal lattice) with curved bi-material
ribs inverted hexagonal cell for large NTE [326]. (e) Negative thermal expansion from disc, cylindrical, and needle shaped inclusions. (i) A cross-section of a
possible composite where the highly expanding and hard needle shaped inclusions are moulded inside the matrix in a random but aligned manner [331].
(ii) The modified and (iii) initial cylindrical structure (orange) consisting of an inclusion of material B embedded in a matrix (green) of material A, and a
cross-section showing its dimensions [331,332].
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expansion coefficient a of the lattice is about �3.5 � 10�4 K�1 [329]. The thermal expansion a is expressed in terms of speci-
fic curvature qs,
a ¼ r
4qs

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2r=LribÞ2

q ð20Þ
In the chiral lattice (Fig. 25), of nodal outer radius r, and rib length Lrib, a temperature change causes the bi-material rib
segments to bend, producing curvature of a radius q [30,329].

From this case, we see that the investigation of NTE metamaterials is in its early stages of development. The basic con-
cepts for their structural fabrication can be traced largely to other common mechanical metamaterials, specifically auxetic
metamaterials. A variety of NTE metamaterials (Fig. 25) have been fabricated where their topologies ranging from chiral
metamaterials [329,35], to cellular metamaterials [326], to rotating triangles or squares [322,330], and to needle shaped
inclusions [331,332]. The principles behind these critical framework geometries is that NTE can be easily achieved in the lat-
tices by placing a material of higher expansion on the outer portion of the curve [326]. In other words, when two materials
have different coefficients of thermal expansion and are glued together, they will curve when subjected to a change in tem-
perature, as is the case of a bi-metallic strip in a thermostat mechanism [35]. These analyses suggest that the framework
geometry plays a crucial role in determining the mechanical response of framework materials which show anisotropic
responses via hinging. It is therefore expected that bi-material ligaments may be used as structural components in the con-
struction of mechanical metamaterials which may exhibit negative compressibility and particularly negative thermal
expansion.

6.3.4. Recently proposed mechanisms behind negative compressibility
Various mechanisms have been proposed to explain the occurrence of negative compressibility. These range from the use

of bi-material strips, whose components have different properties [35], to systems that exhibit this property due to their
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particular geometry [333] or due to constraints [69]. A currently proposed metamaterial with a negative-compressibility
transition is derived from a force potential mechanism [37]. The potential principle is similar to the MOFs mechanisms that
attribute electronic and magnetic transitions to transverse atomic and molecular vibrations [334]. These conjectures indicate
that bistability is both a necessary condition and an indication of negative compressibility [302] in terms of a strong ellip-
ticity condition [69].

Compared to finding natural negative compressibility [70], few previous studies focus on artificial NLC/NAC though
mechanical metamaterials. The major challenge is that negative compressibility may disappear in realistic dynamical sys-
tems, unless strongly coupled to an external loading, which stabilises a metastable state in an open thermodynamical system
[302]. Currently, an influential concept [37] for negative compressibility transitions offers a possible design for metamate-
rials effective negative volume compressibility by judiciously selecting pairwise force potentials. These destabilisations give
rise to a stress-induced solid-solid phase transition associated with a twisted hysteresis curve for the stress-strain relation-
ship. Thus strain-driven metamaterials having negative compressibility transitions have promising application in actuators,
force amplifiers, micromechanical controls, and protective devices [37]. Moreover, structures made up from bi-material ele-
ments can also exhibit negative properties, in particular negative compressibility [35].

A bi-directional evolutionary structural optimisation method [64] in topology is used to design materials, covering var-
ious properties such as stiffness. A statistical physics theory for negative compressibility transitions exists. In an experimen-
tal attempt, geometric transformation of the two-dimensional materials into extended three-dimensional layouts by
compressive buckling has been presented by more than 40 representative frameworks, from single and multiple helices,
to toroids and even to flowers [186,187].

When taken together these various pioneering studies clearly reveal a number of design laws for maximising NLC/NAC:
(a) the compressibility in an orthogonal direction remains positive if the volume compressibility is positive; (b) the desired
bonds, ribs or fibres can be used to extend the stability range; (c) the network topology is likely related to a wine-rack or
honeycomb motif; (d) if volume compressibility is also negative, the stiffness gradient of the elements in bi-material or high
level structural hierarchy is supposed to be sufficiently large to result in negative compressibility within the entire system.
Finally, mechanical metamaterials with negative compressibility behaviour are of strong practical interest for the develop-
ment of highly sensitive pressure detectors and other various smart materials in bioengineering and biomedical engineering,
particularly over a large possible pressure range.
7. Recent advances in mechanical metamaterials associated with Poisson’s ratio

By definition, Poisson’s ratio is the negative ratio of transverse to axial strain [53]. In view of most solids, when a natural
object is stretched axially, it will contract laterally. Poisson’s ratio is normally a positive value ranging between 0.25 and 0.33
[61,62]. In nature, just a few types of materials have negative Poisson’s ratio t < 0 or the relatively infinite K/G � 1 and t �
�1, thereby they can exhibit a counterintuitive dilatational behaviour, expanding laterally when stretched and contracting
laterally when compressed [62,309,335]. That is why more materials in this class have been made, and named.

The currently accepted term auxetics introduced by Evans [336], refers to an exceptional mechanical property, negative
Poisson’s ratio (NPR). This term is derived from the Greek word auxetikos, meaning ‘‘that which tends to increase.” Auxetic
geometries with hierarchical laminar structure were introduced by Milton [29], and thereafter Grima et al. [138,234,288,2
89,291,337–346] have done an amount of elegant work varying structure to achieve a negative or zero Poisson’s ratio. There
are two approaches pursued in the design of auxetic metamaterials. One is to chemically synthesise a highly modular net-
work, and another is to mechanically manufacture a hierarchical lattice structure on the meso- or macroscale. The latter
approach is mainly applied to the mechanical metamaterials addressed in this review.
7.1. Classification of cubic auxetic metamaterials

Currently an amount of micromechanical models exist that seek to predict and explain auxetic behaviour. Four subclasses
of auxetic metamaterials have been defined, based on the structural design leading to the various mechanical properties: (i)
the original re-entrant structure (Fig. 26), similar to the folded-in cells fabricated from polyurethane foam, including various
re-entrant open-cell microstructures [76,339,347], rotating squares [138,337,341,348] or triangles [288,289,291,344]; (ii)
NPR induced by an elastic instability, particularly the missing rib models [339,349] to pattern transformation
[26,226,308] (Section 5.1.5); (iii) NPR using chiral building blocks, chiral [30,142,150,153] or anti-chiral lattices
[141,329,350] (Section 5.1.2); (iv) a portion of origami metamaterials (Section 5.1.3), inspired by the egg rack structure
[351]. Much interest has centred on the first type of auxetics discovered, i.e., the re-entrant structure for NPR
[62,225,289,337,340,352]. The other three types are also a hot topic that we have addressed in previous sections. These stud-
ies may lead into much more exotic auxetic metamaterials. Consequently, a number of comprehensive reviews
[32,62,309,335,353–355] and books have been written concerning auxetic metamaterials. This section intends to describe
auxetic metamaterials from the perspective of their mechanical properties, zero or negative Poisson’s ratio, and negative/-
positive programmable Poisson’s ratio, rather than their various structures.

In analogy to negative Poisson’s ratio for cubic crystals and micro/nanotubes [356], it is entirely feasible to divide auxetics
metamaterials into two types: complete auxetics and partial (semi-) auxetics. In complete auxetics, the Poisson’s ratio is
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always negative, or zero. Partial auxetics share both positive and negative Poisson’s ratio depending on the orientation of the
meta-atoms subjected to a deformation, e.g., uniaxial tension. If this orientation is represented by three Eulerian angles u, h,
w, as is the case in crystallographic theory, then the Poisson’s ratio depends on these three Eulerian angles and on two
dimensionless complexes, G, d (Fig. 26B, some theoretical details can be found in Ref. [356]). That is why this section here
will address the auxetics metamaterials from these two perspective: complete auxetics with Poisson’s ratio being zero or
negative irrespective of orientation, and particle auxetics where the Poisson’s ratio changes sign as a function of the orien-
tation and the applied conditions.
7.2. Zero or negative Poisson’s ratio (G� K)

Natural cork serves as a well-known example of a material displaying a zero Poisson’s ratio (Fig. 26). With regard
to some advances on auxetic metamaterials, Fig. 26 schematically shows the wide range of negative Poisson’s ratios
measured experimentally for various materials. These auxetic metamaterials include re-entrant or hinged honeycombs
and foams [28,30,76,339,347], similar to another directional semi-auxetic solid based on combining or rotating units.
Similar levels of auxeticity consist of microporous polymers [357], pattern transformation [26,226,235], nanotube
metamaterials [225], and chirality [142,329]. Auxetic effects have also been observed in fibre composites involving
the use of auxetic constituents or a selection of suitable stacking sequences of unidirectional laminae [358]. Never-
theless, high levels of auxeticity in fibre composites have only been achieved by incorporating metallic fibre networks
[85,359], which exhibit a high negative Poisson’s ratio ranging from �20 to �4. Such fibre assemblies are highly ori-
ented (fibres oriented mostly in-plane) and are produced by sintering fibres together at crossover points. These inves-
tigations suggest that nanostructures having metallic, ceramic, and polymeric constituents have potential for the
development of auxetic metamaterials. In addition to the metamaterials presented above from pattern transformation,
chirality and origami, here we provide a simple description of the concept and advances in the classical re-entrant
structure, and some specific metamaterials such as 3D Buckliballs [310,360,361], fibre networks [85,359] and other
crystalline rolled tubes.

The geometry of the 3D Buckliball (Fig. 26A(c) [310,360]), derived from a geometry reminiscent of a Buckyball, comprises
a spherical shell patterned with a regular array of circular voids. Below a critical internal pressure, the narrow ligaments
between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads
to closure of the voids and a reduction of the total volume of the shell by up to 54%. The auxetic metamaterials using Buck-
liballs as a building cell can extend the strain range further to 0.3.

Alternatively, mats of metallic fibre networks (Fig. 26A(h) [85,359]) are expected to develop relatively high, negative Pois-
son’s ratios. A measured value of an out-of-plane Poisson’s ratio was as negative as �18 [359]. The auxetic effect is attributed
to fibre straightening (i.e. outward bending) in response to in-plane tensile testing, particularly fibre kinking induced by an
applied pressure during processing. Such large out-of-plane auxeticity in fibre networks can be enhanced by weak inter-
layer bonding, high fibre content and low network thickness.

Finally, many crystalline rolled tubes, inspired by the carbon micro- and nanotubes are also auxetic materials [362].
Depending on the orientation of the crystalline structure relative to the axis of the tubes, these metamaterials can be
obtained by rolling plates of cubic, hexagonal, and rhombohedral crystals, using the elasticity theory to classify and group
these structures together [356]. As such, when independent elastic constants are achieved for anisotropic materials, strong
auxetic effects are theoretically permissible [359]. These observations suggest that the Poisson’s ratio can be designed to
reach much higher negative values for anisotropic auxetic metamaterials [363].
7.3. Negative/positive programmable Poisson’s ratio

This subsection covers mechanical metamaterials having both positive and negative Poisson’s ratios, i.e., the so-called
partial or semi-auxetics, depending on the structural orientation under tension [356]. Some natural materials behave as
directional semi-auxetic solids [32], such as certain cubic metals when stretched in the [110] direction [364,365]. It is noted
here that this classification is based on materials having cubic symmetry. The cubic structure is essential to other types of
symmetry, for instance hexagonal symmetry [363]. With regard to most preferred crystallographic orientation, the cubic
symmetry frequently appears as the mesostructured of self-assembled materials. Similar to the crystallography of natural
materials, it is probable that various mechanical metamaterials, particularly in auxetics, can also conveniently be repre-
sented by three Eulerian angles in Bunge notation [199]. In an example of auxetic metamaterials with randomly oriented
cuts, the highly ordered pattern of slits in traditional auxetic perforated systems can be replaced by an arrangement where
each slit is oriented in a quasi-random manner [226,234,235].

The purpose is to design mechanical metamaterials with negative/positive programmable Poisson’s ratio to: (i)
obtain a desired response over a broad range of strains, and (ii) manufacture materials in a scalable manner
[71]. A complete series of topologically optimised architectures can exhibit nearly constant values of Poisson’s ratio
over large deformations across nine equally dispersed values ranging between �0.8 and 0.8 (Fig. 27). This investi-
gation suggests that it is at least technically feasible to combine topological optimisation with additive manufactur-
ing, further to create mechanical metamaterials with programmable negative/positive Poisson’s ratios. Alternatively,
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if connecting square-shaped meta-atoms of a re-entrant structure (Fig. 27C), a spatially tunable mechanical metama-
terial can be achieved with simultaneous negative and positive Poisson’s ratio behaviour [366,367]. Scaffolds pos-
sessing a dual Poisson’s ratio may be suitable for emulating the mechanical behaviour of native tissue for a
variety of biomedical applications.

In summary, some Poisson’s ratios in mechanical metamaterials can be greater than 1 [311], and some can be negative, or
even be zero [367]. In advanced modern materials, the achievable Poisson’s ratio can be any desired value. Some investiga-
tions [368] suggest that whole mechanical metamaterials are sensitive to hierarchical sub-structures, particularly the frac-
tion of mass shared between the super-and sub-structures. Mechanical metamaterials having both positive and negative
Poisson’s ratios are especially significant to bioengineering and biomedical engineering [369,370]. This design concept is
expected to extend into other fields, particularly for metallic and ceramic based materials.
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8. Research translation and potential applications

The aim of this section is to describe various fabrication approaches to mechanical metamaterials, to research the trans-
lation of mechanical to optical or acoustic metamaterials, and to highlight some promising potential applications. Firstly,
only the three main processing techniques are discussed, owing to restricted space. They are additive manufacturing via
3D printing for topological optimisation, interlocking assembly for auxetic metamaterials, and melt-electrospinning for
micro-/nanolattice cellular metamaterials. Secondly, research translation can meet the application needs of optical, acoustic
and thermal metamaterials. Finally, the application conditions associated with the application surroundings are discussed.
Some specific applications are introduced, particularly bioengineering and biomedical engineering. This systematic analyse
of application suggests that the combination of different types of lattice structures and existing metamaterials could be influ-
ential in the design of mechanical metamaterials.

8.1. Established fabrication techniques

Many advanced processing techniques have been used to fabricate various types of micro/nano mechanical metamateri-
als. They include additive manufacturing, i.e., 3D printing, for topological optimisation, folding/cutting approaches for ori-
gami/kirigami metamaterials, some interlocking assembly for auxetic metamaterials, and melt-electrospinning for micro-/
nanolattice cellular metamaterials that are ultra-stiff and lightweight.

A general design route can be found in an example of pattern transformation [229]. For example, an elastomeric structure
was fabricated that was capable of phase transition and of switching its state [229]. These structures can be fabricated by
casting elastomers or using a 3D printer. A given programme can be created using computer aided design (CAD) software,
and then the CAD file can be placed in a 3D printer to generate the required structure. This is a general fabrication approach.
Different mechanical metamaterials have different steps in the fabrication and assembly. A blueprint is needed before pro-
cessing and then an appropriate manufacturing techniques is applied to obtain the metamaterial. Folding or cutting
approaches for origami-inspired metamaterials can consist of a series of design principles, which are described in detail
in some referenced books [163]. Therefore, this subsection will concisely introduce additive manufacturing, interlocking
assembly for auxetic metamaterials, and promising melt-electrospinning techniques.

8.1.1. Additive manufacturing
Additive manufacturing (AM) are commercially available fabrication techniques that allow nearly unlimited topological

complexity [237]. These techniques include stereolithography (SLA), selective laser sintering (SLS), binder jetting, electron
beam melting (EBM), and direct metal laser sintering (DMLS) [371]. Two significant benefits achieved from these techniques
are that: (i) they allow the investigation and exploitation of beneficial size effects on plasticity and fracturing, with potential
to dramatically increase the effective mechanical properties of the cellular material [106,372]; (ii) they allow interaction of
the periodic structure with visible light, vastly simplifying the development of optical, acoustic, thermal and mechanical
metamaterials.

Recent advances in additive manufacturing and topological optimisation techniques make it possible to design periodic
lattice structures with controlled anisotropy (Fig. 6 [94,119]). In other words, 3D printing can be used to fabricate cellular
metamaterials. For instance, selective laser melting (SLM) can be used to fabricate TiNi-based auxetic metamaterials [373].
A shortcoming of SLM is that the thermal footprint of the laser is usually large than the optical footprint, that is the laser spot
size. The laser spot size must therefore be considered when calculating the tool path. Variations in heat transfer rate can lead
to inhomogeneous distribution of solid metals in the conventional structures. It is therefore essential to tailor the NPR struc-
ture to be processable using the AM techniques, as shown in Fig. 28 [373]. Electron beam melting (EBM), one of the additive
manufacturing processes, has been used to fabricate a 3D re-entrant NPR structure made from Ti-6Al-4V [374].

8.1.2. Interlocking assembly
Compared with the additive manufacturing methods, an alternative concept based on geometric interlocking assembly

[207,375,376] has allowed the fabrication of periodic auxetic cellular structures. A two-dimensional auxetic model, shown
in Fig. 29A, has been proposed by Ravirala et al. [375]. The assembly of interlocking hexagons deforms by particle translation
to display auxetic behaviour. The geometric calculation of a hexagonally interlocked structure has shown an analytic solu-
tion for Young’s moduli and Poisson’s ratio,
Ex ¼ kh
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Fig. 28. (A) Re-entrant NPR (negative Poisson’s ratio) unit cells (a) conventional unit cell, (b) modified AM (additive manufacturing) unit cell. (B) The
morphology of TiNi-based NPR structures showing SEM micrographs for the (a) conventional re-entrant design, where the thickness of the struts changes
due to the powder particles at its vicinity, (b) tailoring AM re-entrant design with relatively homogenous structures, and (c) a section through the struts
showing the lack of cracks [373].
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where Ex and Ey are the Young’s modulus in the x- and y-directions, respectively, kh, is connected to the stiffness of a spring of
stiffness, l1 and l2 are the edge lengths of each hexagon, a is the angle between l1 and l2 aligned with the x-axis in Fig. 29A, a is
the gap between adjoining hexagonal faces, and txy and tyx are the Poisson’s ratios for loading in the x- and y-directions,
respectively [375].

Consequently, the fabrication of three-dimensional re-entrant auxetic structures [374] is emerging based on this inter-
locking assembly method. Auxeticity is attributed to the folding and unfolding of umbrella shaped elements in the 3D aux-
etic cellular structures, shown in Fig. 29B [376]. As seen in Fig. 29C, the Poisson’s ratio tyx for a 3D interlocked structure is
strongly dependent on the strut thickness, t [376].

8.1.3. Melt-electrospinning techniques
Melt-electrospinning is a direct writing mode [377], also considered by some to be a 3D printing method, which can be

used to fabricate scaffold structures with honeycomb-like patterns for tissue engineering applications [378]. After nearly a
decade of exploration, melt-electrospinning can be considered as initially coming from fused deposition modelling (FDM)
[95,96,377–381]. This rapid prototyping (RP) technology (Fig. 30), also known as solid freeform fabrication (SFF), can make
metamaterial structures much smaller and stronger. Tailoring the porosity of reinforced scaffolds can achieve a strong elastic
component that can recover after physiological axial strains. Such structures are therefore expected to be a significant step
towards developing biomechanically functional tissue constructs. A highly ordered arrangement of ultrafine fibres with dis-
tinctive surface topology can be used for encapsulating and sensing properties, opening new fields of application in areas
such as textiles, filtration, environment, energy and biomedicine [378]. Currently, the melt electrospinning technique has
been extended to an increasing range of synthetic polymers, composite systems, and other various materials including
ceramics [377,381].

8.2. Research translation

Materials, both organic and inorganic, are found everywhere in nature. Material-parameter transformations have become
an intuitive and powerful engineering tool in the design of inhomogeneous and anisotropic material distributions that per-
form desirable functions, e.g., invisibility cloaking. For example, a lattice of points from a discrete 2D lattice composed of a
single constituent material can be transformed while keeping the properties of the elements connecting the lattice points the
same [382]. A direct lattice-transformation approach can significantly alleviate and redistribute stress peaks in practical
applications, such as tunnel walls in civil engineering. It is probable that we can obtain the materials we need, particularly
by combining optical, acoustic and thermal metamaterials.



Fig. 29. (A) Interlocking two-dimensional hexagon structure for auxetic behaviour, (a) fully densified; (b) partially expanded [375]. The variable parameter
is the gap parameter, a; a change in the interlock gap perpendicular to the adjoining hexagonal faces b1, b2, and each hexagon has edge lengths l1 and l2. The
edges of length l1 are aligned parallel to the x axis, and the edges of length l2 are at an angle a to the x axis. (B) Interlocking assembled three-dimensional
auxetic cellular structures [376]. (a) 2D re-entrant auxetic structure, (b) 3D re-entrant auxetic structure, and umbrella shaped elements, (c) the unit cell of
the 3D auxetic structure and its dimensions, (d) in-plane parameters needed for describing 2D re-entrant auxetic structure, (e) more parameters needed for
describing 3D re-entrant auxetic structure, the depth of the vertical strut t3 and oblique strut t4; where the length of the vertical struts (H), length of the
oblique struts (L), the re-entrant angle (h), width of the vertical struts (t1) and width of the oblique struts (t2). (C) The dependence of the (a) normalised
compression Young’s modulus, and (b) Poisson’s ratio tyx, on the relative density of the structure in (B) [376].
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8.3. Potential applications

Various applications can be found for mechanical metamaterials. First we will address the conditions associated with the
application surroundings. Subsequently, one example from bioengineering and biomedical engineering will be introduced.
Finally, some implications from the application are presented to solve conventional technical limitations. Combining differ-
ent types of lattice metamaterials is proposed based upon the analysis of potential applications.

The elastic response of various mechanical metamaterials or biomaterials should be optimised for the intended applica-
tion. Incorporating advanced lattice structures into mechanical metamaterials and non-Euclidean (fractal) geometries pro-
motes novel methods to control the properties and performance of synthetic biomaterials for the biomedical field. The
porous metamaterial obtained can be intersected with the geometry of a solid prosthesis to obtain a porous implant. These
can also be specifically developed to promote the application of metamaterials to product development. A typical limitation
of these applications is how to bridge their different conditions. The ideal application conditions are often constant and pre-
dictable, but sometimes the real conditions could be beyond what we predicted. Therefore, it is significant to clarify that var-
ious mechanical metamaterials, not only consequence of their special geometries, but also of interactions with external
condition and constraints. That is to say, we need to know how conditions to entail in mechanical metamaterials. Sometimes
they could be negative pressure or living tissues and their surroundings, and other possibilities describe the related research
field.

In the case of bioengineering and biomedical engineering, auxetic metamaterials are expected to be designed with molec-
ular scale control [370]. As such, this type of mechanical metamaterials can also be used in tissue engineering, with inter-
actions at a cellular or even molecular level. The uniaxial excitations of an auxetic scaffold may lead to biaxial expansions
and compressions of the growing tissue. This can promote growth and potentially control cell differentiation and tissue via-
bility [366,369].
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as visualised with stereomicroscopy (scale bar, 1 mm). (d) Detailed image of the fibres that fused at the cross-sections (fibre spacing 1.0 mm, scale bar, 200
mm). (e) The porosity of the scaffolds varied between 93 and 98% depending on the set fibre spacing. (b) Moduli of scaffolds and scaffold/gel composites as a
function of porosity, showing the synergistic increase in stiffness was only observed for thin-fibre scaffolds with a high porosity (polymer fraction 2–7%
porosity 98–93% (highlighted in red)), fabricated with melt electrospinning writing (MEW). Fused deposition modelling (FDM) scaffolds were fabricated
from 10-fold thicker fibres, resulting in a higher stiffness; however, no synergistic reinforcement was observed.

X. Yu et al. / Progress in Materials Science 94 (2018) 114–173 163



164 X. Yu et al. / Progress in Materials Science 94 (2018) 114–173
There is both a challenge and an opportunity for conventional photolithography or stereolithography techniques to fab-
ricate two-dimensional auxetics. Generally, conventional techniques can yield a distance between lattices of around 50–100
mm. This range leaves significant clearances between the cells and prevents them from interacting at the single cellular level.

One complementary approach could be used to obtain novel metamaterials [321,383], such as pentamode mechanical
metamaterials [33]. These mechanical metamaterials can be gradually tuned to provide fluid-like behaviour in spite of being
a solid structure. They are expected to provide desired radial variations of mechanical properties within a scaffolding struc-
ture composed of a single material. In pentamode lattice metamaterials there are almost punctual contacts between trusses,
thereby providing a remarkable flexibility. It is possible to combine pentamode metamaterials with micro-/nanolattices. The
incorporation of geometrical gradients at contacts between trusses can lead to very rigid lattices in some parts of the scaffold
and to very flexible lattices in other regions. Designable dual-material auxetic metamaterials can be fabricated using three-
dimensional printing [384,385]. In addition, the combination of different types of lattice metamaterials and the use of con-
ventional lattices, together with pentamode-based structures, can be used to control the mechanical properties of a single
scaffold over a range of several orders of magnitude.

9. Conclusions and future directions

In this present work, mechanical metamaterials have been clearly recognised and systematically classified based on the
fundamental material mechanics, i.e., the relationships among three elastic moduli and the Poisson’s ratio. From the perspec-
tive of structure-fabrication-property relationships, this critical review covers the recent and rapidly advancing subject of
mechanical metamaterials. Various counterintuitive mechanical properties can be achieved, providing a number of benefits
which include: (i) a new variety of mechanical metamaterials that are ultra-lightweight and ultra-stiff, consisting of micro-/
nanolattices, chiral/anti-chiral hierarchical, origami-inspired, and coupled cellular origami metamaterials; (ii) controllable
and variable stiffness in various pattern transformations composed of various hole shapes set in different tessellations, con-
fined by geometric constraints; (iii) vanishing shear modulus over a three-dimensional profile, metamaterials displaying
two-dimensional properties similar to the behaviour of liquids, such as pentamode metamaterials; (iv) negative compress-
ibility or negative thermal expansion, meaning metamaterial expansion under pressure, contraction under tension, and con-
traction upon warming; and (v) auxetics or negative Poisson’s ratio materials yielding counterintuitive dilatational
behaviour, that is, the occurrence of lateral expansion (negative transversal response) upon stretching. These anomalous
mechanical responses are highly desired targets in the design of new modern materials with advanced properties.

Four current challenges dominate the design of mechanical metamaterials, based on the design principle, fabrication
techniques and the application conditions of the mechanical metamaterials. First, combinations of various properties, such
as a single mechanical metamaterial possessing ultra-stiffness, ultra-lightweight, and vanishing shear modulus, or combin-
ing tunable stiffness and positive/negative Poisson’s ratio. Secondly, a combination of different motifs or structures, e.g. cel-
lular origami, or cellular with chiral patterns [386], that can aid the topological optimisation of sophisticated, state-of-the-art
geometrical configurations. The third challenge to extend to other parent materials, particularly metals or alloys, and thereby
reduce the size effects of plasticity, fracture and large concentrations of stress. Finally, due to advanced research in nanos-
tructures, particularly the dislocation of crystal defects with atomic scale resolution by virtue of three-dimensional charac-
terisation techniques, it is widely expected that soon we can build intriguing structures atom by atom. These will not be
limited to crystal defects as we move forward. Some implications from metal-organic frameworks (MOFs), and some tech-
nical hints for structural optimisation, will be shared.

9.1. Implications of metal-organic frameworks

Crystalline metal-organic frameworks can inspire future designs of mechanical metamaterials. MOFs are formed by retic-
ular synthesis, which creates strong bonds between inorganic and organic units [321,387]. These materials are constructed
by joining metal-containing units [secondary building units (SBUs)] with organic linkers, using strong bonds (reticular syn-
thesis) to create open crystalline frameworks with permanent porosity [387]. MOFs have exceptional porosity and a wide
range of potential uses, including gas storage, separations, catalysis, and applications in energy technologies such as fuel
cells, supercapacitors, and catalytic converters [321]. The design concept of MOFs can be applied to new, advanced mechan-
ical metamaterials, particularly to feasibly obtain the elegant properties of NLC/NAC, or NTE. If the natural MOF crystal struc-
ture can be simplified into struts and hinges, as shown in Fig. 31 [308,312,388], we can create new manmade structures, i.e.,
mechanical metamaterials, based on these frameworks. MOFs have various attractive mechanical behaviours, especially
giant NLC/NAC and NTE effects [314,315,334]. By extending this analysis to other mechanical metamaterial topologies, it
is possible to establish a generic predictive approach for the dimensionality of NTE or negative compressibility for a large
range of different framework. The framework geometry can play a crucial role in determining the properties of metamate-
rials showing anisotropic responses via hinging.

9.2. Structural optimisation

In burgeoning negative compressibility, the range of the ratio of shear/bulk moduli, �4/3G < K < 0, can be another future
direction. Ten years ago, Lakes et al. [67] proposed a range of negative compressibility, �4/3G < K < 0. This range setting
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relationship between the XBU parameters dAg. . .Ag, r, h and the unitcell dimensions a, b, c. (C) Giant negative linear compression positively coupled to
massive thermal expansion in [Ag(en)]NO3-I [314]. (a) The framework of Ag+ cations linked by NH2(CH2)2NH2 (en) ligands viewed approximately along the
channels filled with anions NO3

�. The NH� � �O and CH� � �O hydrogen bonds are indicated as red dashed lines. (b) The framework of CdSO4
� type topology. (c)

The schematic illustration exaggerating the ‘wine-rack’ motif responses to temperature and pressure. Colour code: green balls and sticks represent Ag� � �Ag
bonds, orange struts –en–Ag–en–, grey atoms C, red O, blue N, light grey H.
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originated partly from the allowable range of Poisson’s ratios for isotropic elastic solids, �1 < t < 0.5, and was further
deduced by the strong ellipticity requirement. We then wondered how we can achieve-and even possibly extend-this focus
range.

In emerging origami-inspired metamaterials, the next step is to continue to emulate the principles of paper fold-
ing and translating them into the design of new DNA origami metamaterials and advanced applications [389]. For-
malising the rules of origami for use in computer modelling and simulation has been challenging [182]. This is
because theoretical models tend to oversimplify, often erroneously classifying a foldable origami structure as unfold-
able. Modelling or simulation is a simplified formalisation for the natural world. We can see the world use these
tools, but not nature itself. If we believe some currently impossible thing can be derived by modelling or simulation,
and if we provide some totally different boundary conditions, or use new fabrication methods, we can see the impos-
sible made possible. This is what research is currently doing. This is the case for the square-twist crease pattern
[179]. To achieve heuristic developments in constructing patterns with desirable qualities, the bridge between origami
and physics is established. Following this route, we have sound reason to believe that geometric crystallography, for
instance, the Bravais crystal lattice, Miller indices, and even preferred crystallographic orientation, i.e., microtexture in
Euler space represented by three Eulerian angles in Bunge notation [199], can give the necessary theoretical under-
pinning to the structural design of mechanical metamaterials. Simultaneously, it is necessary for us to consider how
to establish a new periodic of table physical properties [390] or gene engineering of materials, analogous to the peri-
odic table of elements. Hence, it will be possible to design materials on demand, and thereby predict the mechanical
properties of various materials.
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One challenge is how to deal with substantial geometric complexity when studying three-dimensional mechanical meta-
materials, such as three-dimensional pentamode structures [44,285] or plane pantographic metamaterials [391]. The meta-
material concept combined with such fabrication technologies might further enable interesting mechanical metamaterials in
future studies. For example, even lighter metamaterials than the micro-/nanolattice cellular materials presented, with much
smaller unit cells. Another interesting possibility could couple different types of metamaterials, e.g., Mechano-optical,
mechano-acoustic, and mechano-thermal metamaterials. These explorations are coming into reach and no longer seem
far off.

In conclusion, the integration of metamaterials and topological optimisation into customer-responsive microstructures
allow for the development of novel cutting-edge and technologically relevant manmade materials. Mechanical metamateri-
als have various counterintuitive mechanical properties, some of which cannot be found in nature, and thereby have broad
potential in applications across multiple areas of material research. Particularly recently, rapid advances have been made in
fabrication technique. Different modes of additive manufacturing are reducing the structural size scale of the fabricated
materials, the range of usable metamaterials, and most importantly, the unit cost. A relatively cheap additive process with
nanometre resolution will emerge, and will thereby open the possibility of various truss-type nanolattices through a net-
shape manufacturing process, to achieve negative thermal expansion. The broader the vision for metamaterials, the larger
will be the number of opportunities for materials science. Therefore, mechanical metamaterials are expected to begin a
new era of materials which are much lighter, stronger, tougher, and more durable. What we want new metamaterials to
be, or to do, or to think, will be achieved through the design of new crystal-like structures, new constituents or new
properties.
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