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Preface  

Interest in studying the phenomena of convective heat and mass transfer between 
an ambient fluid and a body which is immersed in it stems both from fundamental 
considerations, such as the development of better insights into the nature of the 
underlying physical processes which take place, and from practical considerations, 
such as the fact that these idealised configurations serve as a launching pad for 
modelling the analogous transfer processes in more realistic physical systems. Such 
idealised geometries also provide a test ground for checking the validity of theoretical 
analyses. Consequently, an immense research effort has been expended in exploring 
and understanding the convective heat and mass transfer processes between a fluid 
and submerged objects of various shapes. Among several geometries which have 
received considerable attention are flat plates, circular and elliptical cylinders and 
spheres, although much information is also available for some other bodies, such as 
corrugated surfaces or bodies of relatively complicated shapes. 

It is readily recognised that a wealth of information is now available on con- 
vective heat and mass transfer operations for viscous (Newtonian) fluids and for 
fluid-saturated porous media under most general boundary conditions of practi- 
cal interest. The number of excellent review articles, books and monographs, which 
summarise the state-of-the-art of convective heat and mass transfer, which are avail- 
able in in the literature testify to the considerable importance of this field to many 
practical applications in modern industries. 

Given the great practical importance and physical complexity of buoyancy flows, 
they have been very actively investigated as part of the effort to fully understand, 
calculate and use them in many engineering problems. No doubt, these flows have 
been invaluable tools for the designers in a variety of engineering situations. How- 
ever, it is well recognised that this has been possible only via appropriate heuristic 
assumptions, see for example the Boussinesq (1903) and Prandtl  (1904) boundary- 
layer approximations. Today it is widely accepted that viscous effects, although very 
often confined in small regions, control and regulate the basic features of the flow 
and heat transfer characteristics, as for example, boundary-layer separation and flow 
circulation. As a result, these characteristics depend on the development of the vis- 
cous layer and its downstream fate, which may or may not experience transition to 
turbulence and separation to a wake. Numerous numerical schemes have been devel- 
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oped and these have proved to be fairly reliable when compared with experimental 
results. However, applications to real situations sometimes brings difficulties. 

As mentioned before, it is only in the last two decades that various authors have 
prepared excellent review articles, books and monographs on the topic of convective 
heat and mass transfer. However, to the best of our knowledge, the last monograph 
on this topic is that  published by Gebhart et  al. (1988). Therefore, it is pertinent 
now to emphasise some of the important contributions which have been published 
since then, and, indeed, these are very numerous. On studying the published books 
and monographs on convective heat and mass transfer, we have noticed that  much 
emphasis is given to the traditional analytical and numerical techniques commonly 
employed in the classical boundary-layer theory, most of which have been known 
for several decades. In contrast, rather little attention has been directed towards 
the mathematical  description of the asymptotic behaviours, such as singularities. 
With  the rapid development of computers then these asymptotic solutions have been 
widely recognised. In fact, in the last few years a large number of such contributions 
have appeared in the literature, especially those concerning the mixed convection 
flows and conjugate heat transfer problems. Therefore, we decided to include in the 
present monograph more on the asymptotic and numerical techniques than what has 
been published in the previous books on convective heat and mass transfer. This 
book is certainly concerned with very efficient numerical techniques, but the methods 
p e r  se are not the focus of the discussion. Rather, we concentrate on the physical 
conclusions which can be drawn from the analytical and mlmerical solutions. The 
selection of the papers reviewed is, of course, inevitably biased. Yet we feel that 
we may have over-emphasised some contributions in favour of others and that we 
have not been as objective as we should. However, the perspective outlined in the 
book comes out of the external flow situations with which we are most personally 
familiar. In fact, we have knowingly excluded certain areas, such as, convective 
compressible flows and stability either because we felt there was not sufficient new 
material to report on, or because we did not feel sufficiently competent to review 
them. However, we have made it clear that the boundary-layer technique may still be 
a very powerful tool and can be successfully used in the future to solve problems that 
involve singularities, such as separation, partially reversed flow and reattachment. It 
should be mentioned again, to this end, that the main objective of the present book 
is to examine those problems and solution methods which heat transfer researchers 
need to follow in order to solve their problems. 

The book is a unified progress report which captures the spirit of the work in 
progress in boundary-layer heat transfer research and also identifies the potential 
difficulties and future needs. In addition, this work provides new material on con- 
vective heat and mass transfer, as well as a fresh look at basic methods in heat 
transfer. We have complemented the book with extensive references in order to 
stimulate further studies of the problems considered. We have presented a picture 
of the state-of-the-art of boundary-layer heat transfer today by listing and com- 
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menting also upon the most recent successful efforts and identifying the needs for 
further research. The tremendous amount of information and number of publica- 
tions now makes it necessary for us to resort to such monographs. It is evident, from 
the number of citations in previous review articles, books and monographs on the 
topic of heat transfer that these publications have played a significant role in the 
development of convective heat flows. 

The book will be of interest to postgraduate students and researchers in the 
field of applied mathematics, fluid mechanics, heat transfer, physics, geophysics, 
chemical and mechanical engineering, etc. and the book can also be recommended 
as an advanced graduate-level supplementary textbook. Also the wide range of 
methods described to solve practical problems makes this volume a valuable asset 
to practising engineers. 
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A body which is introduced into a fluid which is at a different temperature 
forms a source of equilibrium disturbance due to the thermal interaction between the 
body and the fluid. The reason for this process is that  there are thermal interactions 
between the body and the medium. The fluid elements near the body surface assume 
the temperature of the body and then begins the propagation of heat into the fluid 
by heat conduction. This variation of the fluid temperature  is accompanied by a 
density variation which brings about a distortion in its distribution corresponding to 
the theory of hydrostatic equilibrium. This leads to the process of the redistribution 
of the density which takes on the character of a continuous mutual substitution of 
fluid elements. The particular case when the density variation is caused by the non- 
uniformity of the temperatures is called thermal gravitational convection. When the 
motion and heat transfer occur in an enclosed or infinite space then this process is 
called buoyancy convective flow. 

Ever since the publication of the first text book on heat transfer by GrSber 
(1921), the discussion of buoyancy-induced heat transfer follows directly that of 
forced convection flow. This emphasises that a common feature for these flows is 
the heat transfer of a fluid moving at different velocities. For example, buoyancy 
convective flow is considered as a forced flow in the case of very small fluid velocities 
or small Mach numbers. In many circumstances when the fluid arises due to only 
buoyancy then the governing momentum equation contains a term which is propor- 
tional to the temperature difference. This is a direct reflection of the fact that the 
main driving force for thermal convection is the difference in the temperature be- 
tween the body and the fluid. The motion originates due to the interaction between 
the thermal and hydrodynamic fields in a region with a variable temperature. How- 
ever, in nature and in many industrial and chemical engineering situations there are 
many transport  processes which are governed by the joint action of the buoyancy 
forces from both thermal and mass diffusion that develop due to the coexistence of 
temperature gradients and concentration differences of dissimilar chemical species. 
When heat and mass transfer occur simultaneously in a moving fluid, the relation 
between the fluxes and the driving potentials is of a more intricate nature. It has 
been found that  an energy flux can be generated not only by temperature gradi- 
ents but also by a composition gradient. The energy flux caused by a composition 
gradient is called the Dufour or diffusion-thermal effect. On the other hand, mass 
fluxes can also be created by temperature  gradients and this is the Soret or thermal- 
diffusion effect. In general, the thermal-diffusion and the diffusion-thermal effects 
are of a smaller order of magnitude than are the effects described by the Fourier or 
Fick laws and are often neglected in heat and mass transfer processes. 

The convective mode of heat transfer is generally divided into two basic pro- 
cesses. If the motion of the fluid arises from an external agent then the process is 
termed forced convection. If, on the other hand, no such externally induced flow is 
provided and the flow arises from the effect of a density difference, resulting from 
a temperature or concentration difference, in a body force field such as the grav- 
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itational field, then the process is termed natural or free convection. The density 
difference gives rise to buoyancy forces which drive the flow and the main difference 
between free and forced convection lies in the nature of the fluid flow generation. In 
forced convection, the externally imposed flow is generally known, whereas in free 
convection it results from an interaction between the density difference and the grav- 
Rational field (or some other body force) and is therefore invariably linked with, and 
is dependent on, the temperature field. Thus, the motion that arises is not known 
at the onset and has to be determined from a consideration of the heat (or mass) 
transfer process coupled with a fluid flow mechanism. If, however, the effect of the 
buoyancy force in forced convection, or the effect of forced flow in free convection, 
becomes significant then the process is called mixed convection flows, or combined 
forced and free convection flows. The effect is especially pronounced in situations 
where the forced fluid flow velocity is low and/or the temperature difference is large. 
In mixed convection flows, the forced convection effects and the free convection ef- 
fects are of comparable magnitude. Both the free and mixed convection processes 
may be divided into external flows over immersed bodies (such as flat plates, cylin- 
ders and wires, spheres or other bodies), free boundary flow (such as plumes, jets 
and wakes), and internal flow in ducts (such as pipes, channels and enclosures). 

The basically nonlinear character of the problems in buoyancy convective flows 
does not allow the use of the superposition principle for solving more complex prob- 
lems on the basis of solutions obtained for simple idealised cases. For example, the 
problems of free and mixed convection flows can be divided into categories depend- 
ing on the direction of the temperature gradient relative to that of the gravitational 
effect. 

It is only over the last three decades that buoyancy convective flows have been 
isolated as a self-sustained area of research and there has been a continuous need 
to develop new mathematical methods and advanced equipment for solving modern 
practical problems. For a detailed presentation of the subject of buoyancy con- 
vective flows over heated or cooled bodies several books and review articles may 
be consulted, such as ~k~rner (1973), Gebhart (1973), Jaluria (1980, 1987), Marty- 
nenko and Sokovishin (1982, 1989), Aziz and Na (1984), Shih (1984), Bejan (1984, 
1995), Afzal (1986), Kaka(~ (1987), Chen and Armaly (1987), Gebhart et al. (1988), 
Joshi (1990), Gersten and Herwig (1992), Leal (1992), Nakayama (1995), Schneider 
(1995), Goldstein and Volino (1995) and Pop et al. (1998a). 

Buoyancy induced convective flow is of great importance in many heat removal 
processes in engineering technology and has attracted the attention of many re- 
searchers in the last few decades due to the fact that both science and technology 
are being interested in passive energy storage systems, such as the cooling of spent 
fuel rods in nuclear power applications and the design of solar collectors. In particu- 
lar, for low power level devices it may be a significant cooling mechanism and in such 
cases the heat transfer surface area may be increased for the augmentation of heat 
transfer rates. It also arises in the design of thermal insulation, material processing 
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and geothermal systems. In particular, it has been ascertained that free convection 
can induce the thermal stresses which lead to critical structural damage in the pip- 
ing systems of nuclear reactors. The buoyant flow arising from heat rejection to the 
atmosphere, heating of rooms, fires, and many other such heat transfer processes, 
both natural and artificial, are other examples of natural convection flows. 

In the ensuing chapters of this book, a uniform format is adopted to present 
theoretical (analytical and numerical) results for the most important situations of 
the buoyancy convective flows obtained over the last few years. Most of these results 
refer to cases which have never, or only partially, been presented in review articles or 
handbooks. The most important fluid flow and heat transfer results are presented 
in terms of mathematical expressions as well as in tabular and graphical form to 
display the general trends. We believe that such tables are very important since 
they can serve as reference tests against which other exact or approximate solutions 
can be compared in the future. Due to the vastness of the results presented in this 
book, computer codes are not presented. However, frequent references are made 
to papers and/or  books which contain extensive numerical methods collected from 
worldwide sources. 

We begin by considering a heated (or cooled) body which has, in general, a 
variable surface temperature or variable surface heat flux immersed in a fluid which 
has a uniform or variable (stratified) temperature. Apart from any motion that 
is generated by density gradients, we suppose that the fluid is motionless. The 
complete dimensional form of the continuity, momentum, thermal energy and mass 
diffusion (concentration) equations for a viscous and incompressible fluid, simplified 
only to the extent that we assume that all the fluid properties, except the density, are 
constant and neglect viscous dissipation, diffusion-thermal (Dufour) and thermal- 
diffusion (Soret) effects, are given by, see Gebhart et al. (1988) or eejan (1995), 

v .  v - 0 ( i . a )  
I 

OV l _  
o-T + ( V .  V) V - + + 

Poo 
OT 
- -  + ( v .  - 

OC 

o~ 
- -  + ( V .  V)  -C - DV2-C 

P ~  Poo ~ g  (I.2) 
Pc~ 

(I.3) 

(I.4) 

where V is the velocity vector, T is the fluid temperature, C is the concentration, 
is the pressure, t is the time, g is the gravitation acceleration vector, u is the 

kinematic viscosity, p is the fluid density, p~ is the constant local density, cff is the 

thermal diffusivity, D is the chemical diffusivity and ~2 is the Laplacian operator. 
For many actual fluids and flow conditions a simple and convenient way to express 

the density difference (p-poo) in the buoyancy term of the momentum Equation (I.2) 
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is given by, see Gebhart et al. (1988), 

(I.5) 

when the thermal gradient dominates over the concentration (mass diffusion) gradi- 
ent and 

p - - ( T -  - ( V -  ( I .6)  

when both the thermal and concentration (mass diffusion) gradients are important. 
Here fl and fl* are the thermal and concentration expansion coefficients and Too and 
C~  are the temperature and concentration of the ambient medium. If the density 
varies linearly with T over the range of values of the physical quantities encountered 

~ and if the in the transport process, ~ in Equation (I.5) is simply ~ - p o~ ~ 

density varies linearly with both T and C then p and ~* in Equation (I.6) are given 

by r176176 ~,U and r 0l(a-~~ ~ , ' " b ~  the expansion coefficients ~ a n d  

~* may be evaluated anywhere in the ranges (To - Too) and (Co - Coo), where To 
and Co are the other bounding conditions on the flow. 

Equations (I.5) and (I.6) are good approximations for the variation of the density, 
especially when (To-Too) and (Co-Coo) are small, and they are known as Boussinesq 
(1903) approximations. The interested reader should also consult Oberbeck (1879). 
Other recent considerations of these approximations can be found in the book by 
Gebhart et al. (1988). Itowever, if the density variation is substantially nonlinear 
in T or both in T and C over the ranges of their values in the buoyancy region, 
then the expressions for r and ~* must in general be much more complicated to 
yield an accurate representation in .Equations (I.5) and (I.6). This occurs for large 
temperature differences in any fluid and it also may arise, for example, in thermally 
driven motion in cold water, see Gebhart et al. (1988). 



Chapter 1 

Free  c o n v e c t i o n  b o u n d a r y - l a y e r  
f low over  a v e r t i c a l  flat p l a t e  

1.1 In troduct ion  

The problem of free convection due to a heated or cooled vertical flat plate provides 
one of the most basic scenarios for heat transfer theory and thus is of considerable 
theoretical and practical interest. The free convection boundary-layer over a vertical 
flat plate is probably the first buoyancy convective problem which has been studied 
and it has been a very popular research topic for many years. Since the pioneering 
work of Schmidt and Beckmann (1930) and Ostrach (1952), both the analytical so- 
lution and the experimental data of Eichhorn (1961) have been continuously refined 
and improved. A very long list would be required to exhaust the published litera- 
ture for this famous problem. However, we shall review in this chapter some of the 
most recent and novel results which have been recently published on the problem of 
steady boundary-layer free and mixed convection over a vertical flat plate. 

We consider a heated vertical flat plate of temperature Tw, or which has a heat 
flux ~ ,  oriented parallel to the direction of the gravitational acceleration and placed 
in an extensive quiescent medium at a temperature Too, as shown in Figure 1.1. If 
Tw :> Too, or qw > 0, the fluid adjacent to the vertical surface receives heat and 
becomes hot and therefore rises. Fluid from the neighbouring areas rushes in to take 
the place of this rising fluid. On the other hand, if T < Too, or ~ < 0, the plate 
is cooled and the fluid flows downward. It is the analysis and study of this steady 
state flow that  yields the desired information on heat transfer rates, flow rates, 
temperature fields, etc. In practice the temperature of the ambient fluid far away 
from the plate, Too, may be taken as constant (isothermal) or variable (stratified). 
Special attention will be given in this chapter to both these cases because they 
occur frequently in the natural environment and also in association with numerous 
industrial processes. 
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(a) (b) 

r y  

m 

Figure 1.1" Physical model and coordinate systems for (a) Tw > Too, qw > 0 and 
(b) T~ <Too,-~w <O. 

1.2  Basic equations 

The schematic diagram and coordinate system for this problem is shown in Fig- 
ure 1.1(a). Both the temperature of the plate, Tw(.~), and the heat flux at the 
plate, ~ ( g ) ,  denoted as VWT and VHF, respectively, are assumed variable with 
~, the distance along the plate from the leading edge, while the temperature Too of 
the ambient fluid is assumed constant. Additionally, it is assumed that  the flow is 

0 _ 0) and that the Boussinesq approximation (I.5) holds. Under these steady ( 
assumptions, Equations (I.1) - (I.3) can be written in a Cartesian coordinate system 
as follows: 

0g 0g 
+ = = 0 (1.1) 

0--~ oy 

O~ ~ _ l o p  F u + 

0~ 0~ 10~ (c9:~ oq2~) 
+ gp ( T -  ~/~) (1.2) 

(1.3) 

These equations have to be solved subject to the following boundary conditions" 
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m w 

T -  T~(~) 
~ - + 0 ,  

~ - 0 ,  T - T c ~  on ~ - 0 ,  y: / :O 
~ - 0 ,  ~ -  ~ ( ~ )  } 
(VWT) o~ _ _ ~ ( ~ )  (VHF) on y = 0, 5 > 0 

O ~  - -  k f 

--+0, ~ - - + p ~ ,  T--+Too as y--+c~z, ~ > 0  
(1.5) 

Here (~, ~) are the components of the fluid velocity along the (5, y)-axes, T is the 
fluid temperature,  ~ is the pressure, kI is the thermal conductivity of the fluid and 
Pr is the Prandt l  number. 

Let us now define the following non-dimensional variables 

~ ^ Y-- U ~ u ~ v A p ~ p oo 
x - T ,  Y -  l, ~ ,  v -  ~ ,  P - -  pU~ 

T^ - -  T-TOOT. , T *  - -  T r e  f - Too (VWT) 

_ o~ 1~-%o T* - q~fz (VHF) 
T *  : - -  k f 

(1.6) 

~' for v for the VWT case and Uc - Gr] i where Uc is a reference speed with Uc - Gr~ i 
the VHF case. Substi tuting expression (1.6) into Equations (1.1) -(1.4), we obtain 

O~ OY 
o-~ + @ - o 

O~ AO~ 

~ ~  + ~0~ - 

O~ ...0~ ~-~ + v-~ = 

A071 ..OT 

' ~  + ~ o--f = 

o~ 
O~ 

(1.7) 

A 

+ T  (1.8) 

O~ + Gr-a ~ + O~ 2 ] (1.9) 

P~ 0~  + o~,1 (~.~o) 

where a -  �89 for the VWT case and a - ~ for the VHF case, and Gr is the Grashof 
number which is based on the length 1 and is defined as follows: 

Gr - gilT* l 3 
u2 (1.11) 

with T* being defined according to the case of VWT or VHF. The boundary condi- 
tions (1.5) also become, in non-dimensional form, 

~ ' - 0 ,  T - O  
~ - o ,  v -  v% (~) 

- ~ (~) (VWT), ~ = - a ~  ~ (~) 
~ - + 0 ,  ~ - + 0 ,  ~ - + 0 ,  T---~0 

(VHF) 

on ~ - 0 ,  ~ ' # 0  

on ~ ' = 0 ,  ~ > 0  

(1.12) 
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The boundary-layer equations are obtained by introducing the following scalings: 

A 

X ~ X :  

~ - G r - -  

~ -  G r - -  

A 

~ - - u ,  ~ - - p ,  T - T  
1 ~ 1 

4 y, v - G r - ~  v (VWT) 
1 

5 y, v - G r - ~  v (VHF) 

(1.13) 

into Equations (1.7) - (1.10) and letting Gr become asymptotically large, i.e. Gr -+ 

c~, and retaining only the leading order terms. Thus, we obtain 

Ou Ov 
0-;  + - 0 (1.14) 

Ou Ou 02u 
u ~  x + v O--y = Oy 2 + T (1.15) 

OT OT 1 02T 
u -ff ff  x + v O---ff = P r O y 2 (1.16) 

and, clearly, as Gr -+ oo, we have 

op 
Oy ' cox 

However, the second relation results from the argument that  the pressure p is 
constant across the boundary-layer (c.f. the first relation (1.17)) so that  o_~p _ 

Ox (~  oz + 0 Gr  ~ , where poo = constant in the outer inviscid flow region and thus 

0p~ = 0 a s G r _ + e ~  
0 x  " 

As the Equations (1.14) - (1.16) are two-dimensional, we define a non- 
dimensional stream function, r  in the usual way, as follows: 

0r 0r 
u -  Oy' v -  Ox (1.18) 

and therefore Equation (1.14) is satisfied automatically. Equations (1.15) and (1.16) 
can then be written as follows: 

0r 0 2 r 0r 0 2r 0 3 r 
-Oy OxOy - Ox coy2 = Oy3 + T (1.19) 

(9r OT O~b OT 1 02T  
= - (1.20) 

Oy Ox Ox Oy P r  cgy 2 

which have to be solved subject to the boundary conditions (1.12), which in non- 
dimensional form become: 

o~=0, or ] 
Oy Oz -- f on ~ = 0 ,  x > 0  

T =  T w ( x ) ( V W T ) ,  0T0__~ = - - q ~ ( x ) ( V H F )  

Or -+0 ,  T - + 0  as y - ~ c ~ ,  x > 0  

(1.21) 
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We now introduce the variables 

r  x-} (T~(x)) �88 f (x ,~) ,  T =  Zw(X)O(x, r?), rl - (Tw(x)) �88 

for the VWT case. Equations (1.19) and (1.20) then become 

Y 
1 

X4 
(1.22) 

1 f f , , 1  f,2 ( f ,  Of' f , , O f )  f ' "  + ~ (3 + P(x)) - ~ (1 + P(x)) + 0 - x Ox 

1 O' ( f ,  O0 ~ )  1 0"+ ( 3 + P ( x ) ) f  - P ( x ) f " O - x  - 0 '  
P-7 -d 

along with the boundary conditions (1.21), which become 

Of (X O) + 1 (3 + P(x)) f (x, O) - - M ( x )  x-o-- ~ , 

i f  (x, O) -- O, O(x, O) - i 
f ' ~ O ,  0- -+0 as r/--+co 

(1.23) 

(1.24) 

(1.25) 

for x > O. Here primes denote differentiation with respect to r]. In the VHF case we 
have 

4 1 1 4 

r - x-~ (qw(x))-~ f (x ,  ~), T -  x-~ (qw(x))-~ O(x, r]), 

In this case Equations (1.19) and (1.20) become 

~7-  (qw(X))t y (1.26) 
Xg 

l (4 + Q(x)) f f .  1 f,2 (f, Of' f.Of ) f ' "  + ~ - ~ (3 + 2Q(x)) - x ~ 

1 1 ( 
0 " +  ( 4 + Q ( x ) ) f O ' -  ( l + 4 Q ( x ) ) f ' O - x  f ,  O0 i O f  '~ 

P---r -5 -5 Ox -0 --~x ] 

along with the boundary conditions (1.21), which become 

x-~ (x, 0) + 1 (4 + Q(x)) f (x, O) - - N ( x )  
f '  (x, O) -- O, O' (x, O) - -1  

f ' - + 0 ,  0 - -+0  as ~ - + o c  

(1.27) 

(1.28) 

(1.29) 

for x > 0. The wall temperature functions P(x) and Q(x) and the mass transfer 
functions M(x) and N(x) are defined as follows- 

X 

1 

T~,(x) , 

x dqw 
Q ( x ) -  qw(x) dx 

1 

N(x) - Vw(X) qj,(Z) 
(1.30) 

The system of Equations (1.23) - (1.29) are in a very general form. However, for the 
special case in which all the functions P(x),  Q(x), M(x) and N(x) are constant, the 
problem reduces to the solution of a fifth-order ordinary differential equation with 
five boundary conditions, i.e. a similarity solution may be obtained. 
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1.3 Similarity  so lut ions  for an impermeab le  fiat plate  
with  a variable wall t e m p e r a t u r e  

We now consider the case of an impermeable flat plate (vw(x) - 0) with a wall 
temperature  distribution of the form 

Tw(x) = x m (1.31) 

where rn is a given constant. In this situation when P(x )  =_ rn and M ( x )  = 0, 
Equations (1.23) and (1.24) reduce to the similarity form 

1 
f "  + ~ (3 + m) f f "  1 ,2 - ~ ( l + m )  f + 0 - - 0  (1.32) 

1 _ 10 1 0 " +  ( 3 + m )  fO' m f  - 0  (1.33) P-7 

along with the boundary conditions (1.25) which become 

f(0) - 0, f '(0) - 0, 0(0) - 1 (1.34) 
f ' - -+O, 0 - + 0  as 77-+oo 

These equations were first considered by Sparrow and Gregg (1958), who gave 
results for values of m between -0 .8  and 3. The case rn = 0 corresponds to a 
uniform plate temperature and has been, as is well-known, considered by Schmidt 
and Beckmann (1930) and Ostrach (1952). It is worth mentioning that  interest in 
similarity solutions stems from the fact that they provide intermediate asymptotic 
solutions which are related to more complex non-similar solutions. It is in this 
context that  in this book we give great attention to the possibility of similarity 
solutions to several problems. 

The similarity solutions of Equations (1.32) - (1.34) were simultaneously studied 
in more detail by Ingham (1985) and Merkin (1985a) for several values of m, positive 
or negative, and for different values of Pr.  Their numerical results for f"(0) and 
0'(0) are shown, for P r  = 1, in Figure 1.2 by the solid lines. The exact solution 
0'(0) - 0 for rn - _3  is also included in this figure. These quantities are related to 
the skin friction ~w at the plate and the heat transfer rate ~w from the plate through 
the relations 

- .  

q-w -- - k I  (~yr---)~=0 

-- ~UcGr~ x�88 f't(O ) 
l 

= ~T*a~�88 [-0'(011 
(1.35) 

We shall further present results for some special values of m. 
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(~) 

4 

3 .31938 (m - me)-�88 

0.90819 - 0.28530m + 0.21603m 2 

~~i ~'-''" """ t 0.85147m- ~ 
"=. . . . . .  . . . . . . . . . . . .  

. . . . . . .  ---~O.90819 - 0.28530m 
f u ' 

mc = -0.9790 m 

(b) 

e ' ( o )  

2- 

rnc = -0.9790 

0.11534 (m - me) -~ 

-0.40103 - 0.31640m + 0.23431m 2 
-0.58233 m ~ ] 

I . . . .  i'  

"'-" =-:.1L . . . .  2 m 
, .  

----~'25.4OlOa - o.a164om 

Figure 1.2: Variation of (a) f "  (0), and (b) 0' (0), with m as obtained from numer- 
ical integration (solid lines) and asymptotic solutions for Pr  = 1. The symbol �9 
shows the position of the exact solution 0 ~(0) = 0 for m = 3 

5" 
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1 . 3 . 1  m ,-,~0 

An approximate solution of Equations (1.32) - (1.34) near m - 0 can be obtained 
by expanding f(~/) and 0(7/) in a power series in m of the form 

f ( r l )  - f o ( r / )  + mfl(r/) + r n 2 f 2 ( r / )  + . . .  

0(?7) - -  O0(f]) -[- ~'t01 (?7) 4- T/%202(7]) -']- �9 �9 . 
(1.36) 

Substituting the expansions (1.36) into Equations (1.32) and (1.33) leads to three 
sets of ordinary differential equations which are to be solved subject to the appropri- 
ate boundary conditions, which are obtained from the boundary conditions (1.34). 
Ingham (1985) has solved these equations numerically and found, for Pr = 1, 

f"(0) - 0.90819 - 0.28530m + 0.21603m 2 + . . .  
(1.37) 

0'(0) - -0.40103 - 0.31640m + 0.23431 m 2 + . . .  

for m ..o 0. This solution is also shown in Figure 1.2. 

1 . 3 . 2  m >> 1 

In this case it is appropriate to make the following transformation 
3 1 

f - m - Z F ( ~ ) ,  0 - 0 ( ~ ) ,  ~ - m Z ~  (1.38) 

This leads to the equations 

1 ( 3 ) F F ,  1 (  1 )  F,2 F ' " + ~  l+- -m - ~  1 +  + 0 - 0  (1.39) 

1( 3) 1 0"+ 1+--  FO' -OF' -O (1.40) 
PW ~ 

where primes now denote differentiation with respect to f and the boundary condi- 
tions to be satisfied by these equations are still those given by (1.34). A solution of 
Equations (1.39) and (1.40) subject to the boundary conditions (1.34) is sought of 
the form 

F - Fo (f) + m -  1 F1 (f) + . . .  (1.41) 
0 -- O0 (~) -1- / r t -101 (~)  -}- �9 . .  

where Fo, 0o and F1,01 are given by the equations 

Fg' + �88 Fo f g  - �89 f g  + 0o - 0, ~-~1 e~ + ~ Vo 0; - V~ eo - 0 

F0(0) - 0, Fg(0) - 0, 00(0) - 1 (1.42) 
F~-+O,  0 o - + 0  as ~--+cr  

F~" + �88 Zo F~' - Vd Z~ + �88 Fd' F~ + 3 Vo Vg - ~ o1~'~ +01 - 0  
1r ~ ~ + ~ Fo O l - F; O ~ + ~ Fo O 'o + �88 F, O 'o O o F { - 0  

F, (0) - 0, F{(0) = 0, 0, (0) - 0 (1.43) 

F{ - + 0 ,  01 - ' + 0  as  ~ - - }  oo 
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It is of some interest to note that Equations (1.42) are the same as those which are 
appropriate for a constant plate temperature, the solution of which is well docu- 
mented in the papers by Ostrach (1952) and Sparrow and Gregg (1958). 

The first set of Equations (1.42) has been solved numerically, for P r  = 1, by 
Ingham (1985), whilst Merkin (19853) has solved both sets of Equations (1.42) and 
(1.43) for both P r  = 1 and P r  # 1. Thus, Merkin (19853) found, for P r  = 1, 

1 

f " ( O ) - - m  ~ ( 0 . 8 5 1 5 - 0 . 1 5 7 9 m - 1 + . . . )  

0 ' ( 0 ) -  -m�88 (0 .5823-  0.0009m-1 + . . . )  
(1.44) 

for m >> 1. 
The large asymptotic values of f"(0) and 0'(0), as given by expressions (1.44), 

are compared in Table 1.1 with the values obtained by solving Equations (1.32) - 
(1.34) numerically. It is observed that the two values are in good agreement, even 
at relatively small values of m. 

Table 1.1- Comparison of f"(O) and 0'(0) for P r  - 1 as obtained by an exact 
solution of Equations (1.32) - (1.3~) and the asymptotic solution (1.4~). 

m 

1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.0O 
3.25 
3.50 
3.75 
4.00 

"[[ Exact 

0.7395 
0.7155 
0.6949 
0.6769 
0.6611 
0.6469 
0.6341 
0.6225 
0.6119 
0.6021 
0.5931 
0.5847 

0.576,8 

f"(o) 
Series (1.44) 

0.6936 
0.6858 
0.6743 
0.6619 
0.6496 
0.6379 
0.6269 
0.6166 
0.6070 
0.5980 
0.5895 
0.5816 
0.5742 
. . . .  

Exact 

0.5951 
0.6251 
0.6516 
0.6754 
0.6970 
0.7169 
0.7354 
0.7526 
0.7687 
0.7839 
0.7982 
0.8119 
0.8249 

-o'(o) 
Series (1.44) 

0.5814 
0.6150 
0.6438 
0.6692 
0.6920 
0.7132 
0.7318 
0.7495 
0.7660 
0.7815 
0.7961 
0.8100 
0.8232 

1 . 3 . 3  m < 0 

From the numerical solution of Equations (1.32) - (1.34) it was observed that as m 
decreases below m = 0, the thickness of the boundary-layer decreases, whilst f"(0) 

_ 3 These increases and 0t(0) changes sign (from being negative to positive) at m = g. 
effects become more pronounced, as rn decreases further and the solution becomes 
singular as m approaches a critical value m c ( P r ) ,  say. This can be clearly seen in 
Figure 1.2 and also in Figure 1.3 where the temperature profiles 007 ) are shown for 
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- . - -  _ _  , 

0 1 2 '7 3 

Figure 1.3: Temperature profiles, O(rl), for P r -  1 near mc - -0.9790. 

values of m close to mc - -0.9790 when P r  - 1. To determine the behaviour of 
the solution near mc it is convenient to introduce the transformation 

1 - - I  I 
f - e - + G ( z ) ,  0 - c  r z - e - ~ r / ,  e - m - m ~  (1.45) 

where e << 1. Equations (1.32) and (1.33) are thus transformed into the form 

1 GG" 1 G,2 G ' " + - ~ ( 3 + m c + e )  - ~ ( l + m ~ + e )  + r  

1 r I 
P r  + ~ ( 3 + m c + e )  G r 1 6 2  0 

(1.46) 

(1.47) 

with the boundary conditions (1.34) becoming 

G ( 0 ) -  0, G'(0) =0 ,  r  (1.48) 
G'--+0, r  as z - + ~  

where primes denote differentiation with respect to z. 
(1.48) suggest an expansion of the form 

The boundary conditions 

G - G o ( z ) - t - e G l ( z ) - - } -  . . .  (1 .49)  

r - r  + ~ r  + . . .  

where (Go, r and (G1, r are given by the following equations: 

1 (3 + m ~ ) G o G g  G'o 2 Gg' +fiCg - �89 (1+ me) + r = 0 
p--~ + �88 (3 + , ~ ) a o r  - m ~ a ~ r  = o 

a o ( 0 )  = 0, a ~ ( 0 )  = 0, r  - 0 
a ~ - + 0 ,  r  as z - - + ~  

(1.50) 
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V ! __ 1y2!2 __ } G o G g  G~ !' ~- �88 (3 + mc)(GoG~ -~- G g G 1 )  - (1 ~- mc)GoG 1 -~- q~l ~'-~0 

p---~ -+- �88 (3 -f- m c ) ( G o r  -I- G1r  - mc (G~r  -~- G~r  - G~r  - } G o r  

G I ( 0 ) - 0 ,  G ~ ( 0 ) - 0 ,  r  
G~ --+0, q~l ---)" 0 aS Z---~ OO 

(1.51) 
The homogeneous system of Equations (1.50) is an eigenvalue problem for inc. 

This system was solved numerically by Ingham (1985) for Pr = 1, whilst Merkin 
(1985a) solved it for different values of Pr. Values of mc for various values of 
Pr are given in Table 1.2. However, this solution is not unique and will have 
G~(O) - Ca, say, for some unknown constant Ca yet to be determined. The value of 
Ca is determined from the system (1.51) by writing 

1 4 1 

G o ( 5 ) - C 2 G o ,  r  3r G I ( g ) - C a G 1 ,  - 2 - G  3az (1.52) 

where the funct ions G1 and r satisfy 

~tvv ( - - - - .  ) --l --! ( - -  - - v  t 4 1 -~t 2 1 --~ -~l  t ~ 
(J1 -~- 1 (3 + me) GoG1 + G1Go - (1 + mc) GoG 1 + r - C~z ~u 0 - ~t~ot~o) 

( - , )  ( 1--,) 
--Pr -F �88 (3 + mc) (Gor + G 1 r  - mc ator -t- GIr --  C-~a --t-aor ~Gor  

GI(O) --  O, G 1(0) --  O, r  --  1 

G 1 ---+ O, (~1 ---~0 aS Z ---~ O0 

(1.53) 
and  primes now denote differentiat ion wi th  respect to ~. 

Table 1.2" Values of mc and r given by Equation (1.50) for several values of 
Pr. 

II mo 
0.2 -1.1690 
0.4 -1.0606 
0.6 -1.0204 
0.7 -1.0070 
0.8 -0.9960 
1.0 -0.9790 
1.2 -0.9664 
1.4 -0.9566 
1.6 -0.9487 

0.3044 
0.4747 
0.5930 
0.6433 
0.6895 
0.7729 
0.8476 
0.9160 
0.9794 

I gr 11 m~ 1 
1.8 -0'9422 1.0391 
2.0 -0.9368 1.0955 
2.5 -0.9263 1.2259 
3.0 -0.9188 1.3448 
4.0 -0.9086 1.5588 
5.0 -0.9019 1.7501 
6.0 -0.8971 1.9277 
8.0 -0.8907 2.2492 

10.0 0 .8865  2.5403 
, 

To solve Equat ions  (1.53) numerically,  Merkin (1985a) cons t ructed  four separate  
solutions, namely  two complementa ry  functions (Ga, Ca) and (Gb, Cb) with  G~ (0) - 

1, r - 0 and G~(0) = 0, r - 1 and two par t icu lar  integrals (Go, r which 
is a solut ion of the sys tem (1.53) wi th  the r ight -hand sides set to zero but  wi th  
G~(0) - 0, r - 1 and r = 0 and (Cd, Cd), which is a solution of the full 
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4 

Equat ions  (1.53) with C2 replaced by 1 and G~(0) - Cd(0) -- r -- 0. 
complete solution is then given by 

The 

4 

G1 - o~aGa + o~bGb + Gc + Ca 3 Gd 
4 

~)1 - -  Ot a ~) a ~- Ol b ~) b -~- ~P c -Jr 6 a  3 (~ d 

(1.54) 

with aa  and O~ b being addit ional  constants.  

After some manipula t ions ,  Merkin (1985a) found tha t  Ca is given by 

4 A b B c -  AcBb 

C~ = A d B b -  AbBd 
(1.55) 

where Ai and Bi (i - a, b, c, d) are constants,  which are obtained from the system 
(1.53) if we note tha t  r --+ Ai and G~ ~ - A i - z  + Bi  as ~ -+ co. 

Finally, we have 

3 
f"(O) - Ca ( m -  me) -~  + . . .  

0'(0) - 0.7729 Ca (m - m e ) - -  
5 
4 .-~- . . . 

(1.56) 

as m -+ m c ( P r ) .  For P r  - 1 it was found by Merkin (1985a) tha t  Ca - 0.31943 

and mc - -0 .9790,  so tha t  the expressions (1.56) become 

3 

f"(O) - 0 . 3 1 9 4 3 ( r n -  me) 4 + . . .  
5 

0'(0) -- 0.24688 (m  -- mc) -~  + . . .  
(1.57) 

as m --+ m c -  -0.9790.  However, Ingham (1985) found, for P r -  1, 

f"(0)  = 0.31938 (m - m ~ ) - -  

0'(0) - 0.11534 (m - m ~ ) - -  

3 
4 ~ - . . .  

(1.58) 
4 ~ - . . .  

as rn -~ mc - -0 .9790 and this solution is also shown in Figure 1.2. We note 
tha t  there is a very good agreement  between the asymptot ic  solution (1.58) and the 

numerical  solution of Equat ions  (1.32) - (1.34). 

1.4 Simi lar i ty  so lut ions  for an i m p e r m e a b l e  fiat plate  
wi th  a variable surface heat  f lux 

In this case, from Equat ion  (1.30), we have N ( x )  = 0 and assume tha t  the heat  flux 
qw(X) at the plate is of the form 

qw(X) = x TM (1.59) 
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which gives Q ( x )  - m .  The non-dimensional variables (1.26) now take the form 

x(4+m ) 1 l ( m _ l  ) 
r - -  X5 f ( r ] ) ,  T - -  x s ( l + 4 m ) o ( r ] ) ,  ?7 - -  y x g  (1.60) 

so that  Equations (1.27) and (1.28) become 

1 f,, 1 (3 + 2m)f  '2 + 0 - 0 f '"  + ~(4 + m ) f  - -~ 

1 1 
1 0 " +  ( 4 + m ) f O ' -  ( l + 4 m ) f ' O - O  

P--7 g g 

which have to be solved subject to the boundary conditions 

(1.61) 

(1.62) 

f ( 0 ) - 0 ,  f'(0)--0, 0 ' ( 0 ) - - 1  (163) 
f '  --+ O, 0 - - + 0  as r / -~c~  

It should be noted that the case m - 0 (uniform surface heat flux) was considered 
by Sparrow and Gregg (1956). 

Equations (1.61) - (1.63) can be integrated in a similar way to those given by 
Equations (1.32) - (1.34) for the prescribed surface temperature case. Thus, a 
solution is first obtained for m >> 1 by using the transformation 

4 - -  1 - -  1 
f - m  5 f ( ~ ) ,  0 - m  50(~),  ~ - m ~ r /  (1.64) 

The transformed equations for f (~) and 0 (~) were solved numerically by Merkin 
(1985a), again for P r  - 1. Thus, the asymptotic expressions for the reduced skin 
friction f"(0) and reduced wall temperature 0(0) are given by 

2 
f " ( 0 ) -  m -~  (1 .2878-  0.4257m-1 ~-...) 

0 ( 0 ) -  m - ~  (1 .6116-  0.0780m-1 + . . . )  

as rn --+ cx). Values of f"(0) and 0(0), as given by expressions (1.65), as a function of 
m are presented in Table 1.3, together with their values obtained from a numerical 
integration of Equations (1.61) - (1.63). It is seen again that  the two sets of values 
are in good agreement, even for moderate values of m. 

The situation for m < 0 is slightly different to the prescribed temperature case. 
Again, as m decreases from m - 0, the thickness of the boundary-layer decreases 
and both f"(0) and 0(0) increase, and approach a singularity as m tends to minus 
unity, as can be seen in Figure 1.4. However, we can show that  Equations (1.61) and 
(1.62) cannot have a solution when m = -1 .  Indeed, with m - - 1 ,  Equation (1.62) 
can be integrated once to give 

1 0  , + 5f0- constant (1.66) 
P r  

where this constant cannot be chosen to be compatible with the boundary conditions 
(1.63) on both 77 - 0 and as r/ -~ co. In fact, Equations (1.61) and (1.62) cannot 



Table 1.3: Comparison of f"(O) and 0(0) for P r -  1. 

m 

1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.5O 
4.75 
5.00 

]0.9597 
[ 0.9174 
10.8809 
I 0.8491 

0.8209 
[ 0.7957 
I 0.7729 
10.7524 
10.7336 
'0.7164, 

0.7005 
[0.6858 
I 
10.6721 
10.6594 

0.6474 
]0-636 ! 

s"(o) [[ 
Exact Series (i,.65) Exact 

1.0097 '0.8621 1.5148 

-1  

0.8663 
0.8536 
0.8350 
0.8146 
0.7942 
0.7746 
0.7559 
0.7384 
0.7219 
0.7065 
0.6921 
0.6785 
0.6657 
0.6537 
0.6424 
0.6317 

1.4671 
1.4268 
1.3920 
1.3617 
1.3347 
1.3106 
1.2897 
1.2699 
1.2517 
1.2349 
1.2194 
1.2050 
1.1915 
1.1789 
1.1670 
1.1558 

e(o) 
Series (1.65) 

. . . . .  

.... 1.5335 
1.4815 
1.4380 
1.4010 
1.3690 
1.3408 
1.3157 
1.2932 
1.2728 
1.2541 
1.2370 
1.2212 
1.2065 
1.1929 
1.1801 
1.1680 
1.1567 

25 
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Figure 1.4" Variation of f"(O) and 0(0) with m near m - - 1 .  The numerical 
solutions are indicated by the solid lines and the asymptotic solutions (1.76) are 
indicated by the broken lines. 
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have a solution when m < -1 .  This can be seen by integrating Equation (1.62) 
once, and using the boundary conditions (1.63) results in the relation 

j~0 C~ Pr (1 + m) f'O dr/-- 1 (1.67) 

This relation clearly shows that there can be no solution in which f '  > 0 and 0 > 0 
for all values of r /when m < -1 .  

The nature of the singularity near m - - 1  was also discussed by Merkin (1985a) 
and the mathematical analysis is straightforward and follows closely the prescribed 
temperature case presented in Section 1.3. Thus, we replace f ,  0 and ~ by 

4 ..v 1 
f - - e - i x ( ~ ,  O - e - ~ Y ( ~ ,  r / - e - ~ r / ,  e - l + m  (1.68) 

where e << 1. This transformation is substituted into Equations (1.61) - (1.63) and 
a solution of the resulting equations is then sought of the form 

X - X o  (~--") --[- EX1 (~-") -J-- . . .  (1 69)  
Y - Yo (~  4- cY1 (~  + . . .  

The equations for the leading-order terms are given by 

X t t t 3 v v t ' 1X~)2 _ 1 3 X o Y o  _ 0 o + ~ A O A o  -- -~ + Yo O, ~Y(~ + P r  

Xo(O)  - o, x ~ ( o )  - o, Yd(O)  - o 

X~)-~O, ]Io--+0 as ~ ' ~ c ~  
(1.70) 

where primes denote differentiation with respect to ~. The second Equation (1.70) 
was obtained by integrating the equation for ]To corresponding to Equation (1.62) 
once and using the boundary conditions (1.63). 

The problem given by Equations (1.70) was solved numerically by Merkin 
(1985a). Since this solution is not unique he used the transformation 

1 4 
x 0  (g) - c~  x0,  Y0 (~) - c~  Y0 

/ 1  1"-21~ 
~ ~ ~,. , ,~ 

x ~ ( ~) - c ~  x ~ , z ~ ( ~) - c ~  Y~ , ,7 - c ~  g 

where the constant Cb is determined from the equations 

' x ' = '  - -5 
- ~  0 X l + Y 1  C~ (2-v'2 I - - - - " ~  g-"o - gXoXo) 

1 - .  ( - '  - '  ) 1 - - , )  prY1 + ~ -XoY1 -t- -t- 1Yo -t- XlY 0 - C :  - ~ X o Y  0 - - ~ X o Y  0 (1.72) 

X 1 (0) - -  O, X 1 (0)  - -  O, Y l  ( 0 )  - -  - 1  

X 1--~0, Y1 --+0 as 7/--+oo 

where primes now denote differentiation with respect to ~. As in Section 1.3, it can 
be shown that 

5 
Y1-'+Cc+C~Cd--~O as r/----~cx:) (1.73) 
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and this gives 
5- 

Cb 

with Cc and Cd being constants. Thus we have 

(1.74) 

3 

f"(O) -- Cb (m-t-  1)-~ + . . .  
4_ 4 

0(0) -- 0.7389Cb 3 (m + 1)-~ + 
(1.75) 

as m -~ -1 .  The numerical integration, for P r  - 1, gives Cb -- 1.0899 so that 
expressions (1.75) become 

f"(0) - 1.0899 (m + 1) - -  

0(0) - 1.1216 (m + 1 ) - -  

3 
5 --~- . . . 

3 - - [ -  . . . 

as m -+ -1 .  Values of f"(0) and 0(0), as given by expression (1.76), are also shown 
(by the broken lines) in Figure 1.4 and we can see that  there is very good agreement 
between the asymptotic and numerical solutions. 

1.5 F lat  p la te  w i t h  a var iable  
s trat i f i ed  e n v i r o n m e n t  

wall  t e m p e r a t u r e  in a 

In the previous sections we have seen that if the ambient fluid is isothermal and 
stagnant then the boundary-layer equations which describe the steady free convec- 
tion flow on a vertical flat plate possess a similarity solution, which becomes singular 
if a critical value of the parameter m, which describes the wall temperature or wall 
heat flux, is exceeded. However, if the plate is part of an enclosure, the environ- 
ment of the plate (the core of the enclosure) will not be isothermal, but stratified. 
This stratification is stable when the temperature increases with height. In contrast, 
unstable stratification is only of theoretical interest; since unsteady effects cause a 
transition to a steady solution in which the stratification is broken up. 

Cheesewright (1967), Yang et el. (1972), Semenov (1984), Kulkarni et al. (1987) 
and Angirasa and Srinivasan (1992) have studied the similarity solutions of the 
laminar free convection boundary-layer equations for a fixed wall temperature and 
a linear, stably stratified environment. Thereafter, Henkes and Hoogendoorn (1989) 
have determined a new class of similarity solutions corresponding to the case of a 
fixed wall and variable environment temperature distributions. In order to do this 
we have to solve the boundary-layer equations 

Ou Ov 
o---; + - o 

Ou Ou 02u 
+ v - x -  - u~----~ + gfl ( T -  Too) U --~X 

oy  (~y~ 

(1.77) 

(1.78) 
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OT OT t/ 02T 
U -~x + v O--y = P r O y 2 

(1.79) 

along with the boundary conditions 

u = O, v = O, T = T w ( x )  on 
u ~ O, T ~ Too(x)  a s  

u and T profiles specified on 

y = 0 ,  x > 0  
y --+ oc, x > 0 (1.80) 
x = 0  

We assume now that  Tw(x) and Too(x) have the following forms, see Semenov 
(1984): 

Tw(x) - (n + 1)T* ( M x  + N )  TM + Tc (1 81) 
Too(x) -- nT* ( M x  + N)  m + Tc 

where n is the parameter  describing whether the ambient temperature (n = 0) or 
the wall temperature  (n = - 1 )  is fixed; M , N ,  Tc and T* = T w ( O ) -  Tc~(O) are 
constant. The environment is stably stratified if dd~ > 0, hence m M n  > O. 

Further, we introduce the new variables 

1 IM,)  m ,  
~ - M x + N ,  7?-  u2 ~ 4 y 

1 (g/3T.tp2 '~ ~ m+_._..._~3 
7]) - -  [M[3-] [ f(rl), T - (n + 0(rl) ) T*[ TM + Tc 

(1.82) 

Substitution of these variables into Equations (1.77) - (1.79) leads to the following 
ordinary differential equations for f(r/) and 0(rl) 

f'" + sgn (M)[1 (m+3)ff" 1 (m + 1)f,2] -~. + 0  - o  

O"+Prsgn (M)[4 (m+3)fO'-m (O+n)f'] - 0  

(1.83) 

(1.8a) 

and the boundary conditions (1.80) become 

f ( 0 )  = 0, f ' ( 0 )  = 0, 0(0) = 1 
f~--+0, 0 - + 0  as 77-+ec 

(1.85) 

Solutions of these equations have been determined for the following cases: 

(i) m = n = 0, sgn (M) = 1 by Ostrach (1952); 

(ii) n = 0, sgn (M) = 1 and for a limited m-range by Sparrow and Gregg (1958); 

(iii) n = - 1 ,  sgn (M) = 1 and a limited m-range by Cheesewright (1967) and Yang 
et al. (1972); 

(iv) n = 0, sgn (M) = 1 and the complete m-range by Merkin (1985a); and 
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(v) n -- - 1 ,  sgn (M) - - 1  and the complete m-range by Henkes and Hoogendoorn 
(1989). 

We next present some of the results reported by Henkes and Hoogendoorn (1989) 
for a variable wall temperature and a stratified environment with sgn (M) - +1. 
Analogous to the analysis of Merkin (1985a) for n - 0 in the limit Im I -+ oc, the 
behaviour for n - - 1  in tile limit Iml -+ cr can be found by using the transformation 

3 1 

f - I m l - Z  F ( ~ ,  0 - -  G ( ~ ,  ~ - I m l  -~ ~ (1.86) 

On substituting expressions (1.86) into Equations (1.83) and (1.84) we obtain 

[ l (  3 ) F F ,  1 (  1 ) ] F'" + sgn (M) sgn (m) + ~ - ~ ~gn (m) + ~ - [  F '~ + a - 0 (1.S7) 

[ 4 (  3 )  " ] G" + Prsgn (M) s g n ( m ) + ~  FG' s g n ( m ) ( G + n ) F '  - 0(1.88) 

with boundary conditions 

F ( 0 ) - 0 ,  F ' ( 0 ) - 0 ,  G ( 0 ) = I  
(1 89) 

F ' - + 0 ,  G ~ 0  as ~?-+cc 

where primes denote differentiation with respect to ~. 
The transformation (1.86) gives the following relations for the reduced skin fric- 

tion and wall heat flux 

f"(O) -- Iml-4 F"(O), 0'(0)  - lml 1 G'(0)  (1.90) 

~s I-~l ~ ~ .  

The two sets of Equations (1.83) - (1.85) and (1.87) - (1.89) have been solved 
numerically by Henkes and Hoogendoorn (1989) for Pr = 0.72 and different com- 
binations of sgn (M) and n. The variation of f"(0) and 0'(0) with m for n -- - 1  
and sgn (M) - 1 is shown in Figure 1.5. Also, some fluid velocity and temperature 
profiles are given in Figure 1.6 and it can be seen from these figures that the com- 
plete m-range is free of singularities. However, a region with a small backflow and 
a temperature deficit is found in the outer part of the boundary-layer in a stably 
stratified environment (m < 0) but there is no backflow or temperature deficit in an 
unstably stratified environment (m > 0). 

The values of f"(0) and 0'(0) for n = - 1  and sgn(M) = - 1  are given in 
Figure 1.7 which shows in the limit Ira] -+ c~ that the solution with sgn (m) = :t:1 
is identical to the solution for sgn (M) = 1 with sgn (m) = T1. Increasing m from 
- c ~  to 0 (unstable stratification) gives a zero wall heat flux with a temperature 
identical to unity everywhere, except in a small region at the outer edge, where the 
temperature rapidly falls to zero. The zero boundary condition for the fluid velocity 
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Figure 1.5- Variation of (a) f "  (0), and (b) O' (0), with m for  n - - 1 and sgn (M)  - 
1 when P r  - 0.72. 

is also satisfied in a small  region at  the outer  edge of the boundary- layer ,  as can be 

seen from Figure  1.8. Al though  the negat ive m - b r a n c h  for sgn (M)  - - 1  describes 
the s imilar i ty  solut ions of the  boundary- layer  equat ions ,  they  cannot  be pa r t  of the  

(a) (b) 

1.2 

1.0 
f'(~) 

0.8 

0.6 ' ~  ~ t=  1 

0.4 

0.2 m = --r,~ 

~176 i 
0 5 10 77 

1.0 

�9 772, -- 
0(~) O(~.c~ ! i 

O0 " > ' - - -  

0 5 10 77 

Figure 1.6: (a) The fluid velocity, f ' ( y ) ,  and (b) the temperature, 0(~), profiles for  
n - - 1  and sgn (M)  - 1 when P r -  0.72. 
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Figure 1.7: Variation of (a) f"(O),  and (b) O'(O), with m f o r n  - - 1  and s g n ( M )  - 
- 1  when P r  - 0.72. 

flow along the heated plate: f'(~7) and 0'(r/) do not vanish if r/increases to infinity. 
This is required for the matching of the boundary-layer solution (inner solution) 
with the solution in the ambient fluid (outer solution) within the Navier-Stokes 
description. On the other hand, the fluid velocity and the temperature profiles, see 
Figure 1.9, show that this matching condition is satisfied for the solutions on the 
positive m-branch (stable stratification). 

Further, Henkes and Hoogendoorn (1989) have solved the full boundary-layer 

t / 
i / 

/ 
/ 

/ 
/ /  

/ /  

I 
/ 

~ ! _ , ,  / 
! 
f 

. ,, ! 

0 5 

\ 
\ 

\ \  

\ 
l 
l 
l 
l 
I 

i ,, 

][1 14.9 15.0 
1 4.8 

Figure 1.8" Fluid velocity,  f ' (r l ) ,  (broken line) and temperature,  0(77), (solid line) 
profiles for  m -  - 1 ,  n - - 1  and s g n ( M )  - - l  when P r  - 0.72. 
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-1 

~/I "-\\ 
I/~ \\\\ 

o ~ .... 1'o , 15 

Figure 1.9: F l u i d  veloci ty ,  f ' ( r l )  , (broken  l ine)  and  t empera tu re ,  0 (~) ,  (sol id  l ine)  

prof i les  f o r  m - 1, n - - 1 a n d  sgn ( M )  - - 1 w h e n  P r  = 0.72.  

Equat ions  (1.77) - (1.80) for the stable stratif ication 

Too(x) _ 1  1 for 0~< x - - < o c  ( 1 . 9 1 )  
T *  ~ t- 1 xo  

Xo 

where xo is a length scale and have calculated the local Nusselt number  which is 
defined as 

" T* ) 
i u  - - ( 1 . 9 2 )  

X The variat ion of N u  with ~ is i l lustrated (by solid lines) in Figure 1.10 for n - - 1 ,  
sgn (M) - 1 and P r  - 0.72. It is observed tha t  the asymptot ic  similarity solution 

X z is a good approximat ion  for ~ as small as 3 whereas the for large values of 
x is only a good approximat ion  up to about  0.2. Thus  solution for small  values of 

z in the range 0.2 < z < 3 the full equat ions have to be solved. The  for values of ~ ~ zo 
similari ty solutions give 

1 

(;o) �9 G r � 8 8  - 0.3571 as --xo -~ (1.92a) 

for m -  0 and 
3 

G r ~  - 0.5592 --xo + 1 as --xo -~ c~ (1.92b) 

for m -  - 1  (using M -  ~1 and N - 1) are also included in Figure 1.10 (shown by 
the broken lines). This figure shows tha t  the non-similar  solution smoothly  matches  
bo th  asympto t i c  limits given by Equat ions  (1.92a) and (1.92b). 
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1.0 
~I~ 

+ 

0.5 

i i  i / 
I 

! 
! 

I 
I 

I 

o i 5 
XO 

Figure I 10: Variation of the local Nusselt number with z__ for Pr  - 0.72 and Too(Z) 
" Xo T *  

given by Equation (1.91). The numerical solution for sgn(M)  - 1 is indicated by 
the solid line and the similarity solutions (1.92a) and (1.92b), using n -  - 1  and 
sgn (M)  - 1, are indicated by the broken and dotted lines, respectively. 

Henkes and Hoogendoorn (1989) have also solved Equat ions  (1.77) - (1.80) for 
a linear, stable stratification 

= - -  for 0 ~  ~ 1  (1.93) 
T* xo xo 

They  have shown tha t  in the limit x -+ x0, the similarity solution sgn (M) - - 1  
and m -  1 (using M -  1 and N -  1) gives the following asymptot ic  expression 

for the local Nusselt number  

= 0.7313 1 - ~ as -~ 1-  (1.94) 
Gr~ xo xo 

However for ~ -+ 0 + the asymptot ic  value of the local Nusselt number  is given by 
X 0  

expression (1.92a). The calculated local Nusselt number,  fluid velocity max imum 
and m i n i m u m  profiles along with the corresponding similarity solutions given by 
Equat ions  (1.83) - (1.85) are presented in Figure 1.11. These figures clearly show 
tha t  the numerical  solution smoothly  matches the similarity solution for small values 

x since in the limit x -~ x0 the wall x but  does not do so for large values of of ~ ,  
heat transfer does not follow the similarity relation (1.94). 
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Figure 1.11: Variation of (a) the local Nusselt number, (b) the fluid velocity mini- 
mum, and (c) the fluid velocity maximum, with ~ for Pr  - 0.72 and Tc~!z) given 
by Equation (1.93). The numerical solution is indicated by the solid lines and the 
similarity solutions for m = O, s g n ( M ) =  1 (Equation (1.92a) in (a)) and m - -  1, 
sgn(M) = - 1  (Equation (1.94) in (a)), when n = - 1 ,  are indicated by the broken 
and dotted lines, respectively. 
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1.6 Flat  p late  w i t h  a s inusoidal  wall t e m p e r a t u r e  

Early work on steady free convection boundary-layer flow over a vertical semi-infinite 
flat plate has been confined almost entirely to the case of a constant wall temper- 
ature or constant wall heat flux. For the case of a variable wall temperature, or 
variable wall heat flux, there are, as we have seen previously, only a few papers 
available in the literature which are concerned with similarity solutions. Of equal 
importance is another class of free convection problems which deal with the case 
of sinusoidal surface temperature variations. Kao (1976), Kao et al. (1977), Na 
(1978) and "gang et al. (1982) appear to be the first who have considered this class 
of problems. Very recently, Rees (1999a) has dealt with the case of sinusoidal wall 
temperature variations about a constant mean value, Tw, which is above the ambient 

fluid temperature,  Too, of the form 

T - T ~  + (Tw - Too)(1 + Asin  (Trx)) (1.95) 

where A is the relative amplitude of the surface temperature variations. In what 
follows we shall present some very interesting results as obtained by Rees (1999a) 

for this problem. 
Starting from the non-dimensional Equations (1.19) and (1.20), we use the trans- 

formation 
1 

42 -- x -~ f ( x , rl ) , T - 0 ( x , rl ) , 77 - y x - ~ (1.96) 

and then f and 0 arc given by the equations 

,,, 3 1 f ,2 
f + - 4 . f f " - - ~  + 0  

3 O' 1 0"+ f p--; 

- -  X 

- - X  

f ,O . f '  f , , O f  ) (1.97) 

( f ' O O  _ o ' O f  ) 

which have to be solved subject to the boundary conditions 

f ' ( x ,  O) -- O, O(x, O) - l + A s i n  (Trx) for x > O  
f ( x , O ) - O ,  f ' - + O ,  0 - + 0  as r / - - ,oc ,  x > O  (1.99) 

The parabolic Equations (1.97) and (1.98) were solved numerically by Rees 
(1999a) using the Keller-box method and this is described in detail in the book 
by Cebeci and Bradshaw (1984). This scheme has the advantage over the other 
methods in that it is unconditionally stable and it allows the Richardson extrapola- 
tion technique to be used, which enables a high accuracy to be obtained when using 
a relatively crude grid. The results were reported for three values of the Prandtl  
number, namely P r -  0.01 (liquid metals), 0.7 (air) and 7 (water). 

The variation with x of the reduced skin friction, f " ( x ,  0), and the reduced heat 
transfer, O'(x, 0), for some values of the parameter ,4 are shown in Figures 1.12 and 
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1.13. Some aspects of the overall behaviour of these curves may be explained by 
observing that  the boundary-layer is thinner when the surface temperature is rela- 
tively high and thicker when it is low. This arises because the relatively high surface 
temperature induces relatively large upward fluid velocities, with the consequent in- 
crease in the rate of fluid entrainment into the boundary-layer. This causes, in turn, 
a thinning of the boundary-layer. Thus, we should expect high shear stresses and 
rates of heat transfer at locations just beyond where the surface temperature attains 
its maximum value. However, there is an obvious qualitative difference between the 
curves shown in Figure 1.12 and those in Figure 1.13. As x increases, the amplitude 
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Figure 1.12: Variation of f " (x ,  O) with x for A - O, 0.2, 0.4, 0.6, 0.8 and 1, 
where the amplitude increases as the value of A increases, when (a) P r -  0.01, 
(b) P r -  0.7 and (c) P r -  7. 



of the oscillation of f " ( x ,  0) decays slowly, whereas the amplitude of O'(x, 0) increases 
with increasing values of x. Indeed, the curves in Figure 1.13 suggest that, whatever 
the value of A, there will always be a value of x beyond which some part of the 
function O'(x, 0) between successive surface temperature maxima will be positive. 
This somewhat unusual phenomena for boundary-layer flow may be explained by 
noting that when relatively hot fluid encounters a relatively cold part of the heated 
surface, the overall heat transfer will be from the fluid into the surface, rather than 
the other way around. However, these arguments are insufficient to explain why 
the amplitude of the oscillations shown in Figure 1.12 decay, or to give the rate of 
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Figure 1.13: Variation of O'(x, O) with x for A - O, 0.2, 0.4, 0.6, 0.8 and 1, where 
the amplitude increases as the value of A increases, when (a) Pr  - 0.01, (b) 
P r -  0.7 and (c) P r -  7. 
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decay. A very detailed asymptotic analysis was presented by Rees (1999a) in order 
to explain all these observations from his numerical calculations. 

In order to do this, the first task is to determine the thickness of the developing 
inner (near-wall) layer in terms of 77. Thus, we set f - f0(r]) and 0 - 00(7/) in 
Equations (1.97) and (1.98), where f0 and 00 are given by 

f o"' 3 1 .,2 + - ~ f o f ; ' -  -~J6 + Oo -- 0 (1.100) 

1 . 3 
prOo +-~foO' o - 0 (1.101) 

along with the boundary conditions 

f0 (0 ) - -0 ,  f ; ( 0 ) - 0 ,  0 0 ( 0 ) - 1  
f~ --+0, 00--+0 as ~--+cr (1.102) 

The solution of Equations (1.100) - (1.102) can be expressed, for small values of 
r/(<< 1, inner layer), in the power series 

fo "0 lao~2 - 17] 3 -  150/]4 + 4~oao2r/5 + . . .  
(1.103) 

00 ~ 1 + b o y -  ~ P r  a0b0@ + i~-6Pr b0@ + . . .  

where a0 - f~'(0) and b0 - 0~(0) are numerically determined from Equations (1.100) 
- (1.102) and they are both functions of Pr .  Guided by the expansions (1.103), it 

( ) can be shown that f is O x-~  and rl is O x-�89 in the inner layer for large values 

of x (>> 1). Thus, denoting f and 0 by F and G, respectively, in this layer and 
defining a new pseudo-similarity variable ~, according to 

1 
- rlx ~ (1.104) 

then Equations (1.97) and (1.98) are transformed into the form 

) ( ) F'"  + x--~ F F "  -- 5 FI2  x -  1 _~ F,  OF I F , , O F  
-~ + G = x Ox -~x (1.105) 

- -  (F'  OG _ G' OF) 1 G"+  3 x - ~ F e '  - -~ \ -~x -~x.  (1 1 0 6 )  P r  x . 

where primes now denote derivatives with respect to ~'. These equations are supple- 
mented by the boundary conditions at the wall 

F ( x ,  O) -- O, F ' ( x ,  O) - O, G(x ,  0) - 1 + J[sin (~rx) (1.107) 

but the boundary conditions as ~ -+ cxD have to be obtained by matching with the 
outer flow solutions of Equations (1.97) and (1.98). Now, we expand the solution of 
Equations (1.105) and (1.106) in the form 

2 --1 ( 4 )  
F - x--~Fo(~)  + x F I ( ( )  + O x 

(1.108) 
a - ao( ) + + o 

k / 
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and the solution of Equations (1.97) and (1.98) are expressed in the form 

f - fo(~) + x - l s 1 ( ~ )  + o ( ~ - ~ )  
(1.109) 

for x >> 1. 
Rees (1999a) has determined, after a long and rather complicated analysis, both 

the analytical and numerical expressions for F0, Go, F1 and G1 and also that fl  - 
01 = 0. Thus, the asymptotic expressions for the reduced skin friction and reduced 
heat transfer are given by 

f ' ( x ,  O) -- Fg'(O) + x--~ (0) + 0 x 
1 

= ao - x ~A [A~(0) ~os ( ~ )  + Bf(0) sin ( ~ ) ]  + O ~-~ 

0'(~, 0) - ~ a ~ ( 0 ) +  a~(0) + O (~-~) 
i 1 

= bo - x~  ( a o P r  ~r)~ A [0.36451 cos (~rx) + o.6ala5 sin (Trx)] 

+Aaron(o) ~os ( ~ x ) +  A ~ a i ~  (0) sin (27rx)+ O (x- �89 
(1.110) 

for x >> 1, where the values of A~(0), Bf(0), aIi~(o) and G~2s(0 ) can be found in 
Rees (1999a). 

Figure 1.14 illustrates the comparison between expressions (1.110) and the full 
numerical results as obtained from Equations (1.97) and (1.98) for P r  = 0.7 and 

1 

0 

-1 

-2 

~ o) I 

0 2 4 6 8 10 
X 

Figure 1.14: CompaTison between the numerical solution (solid lines) and the 
asymptotic solution (1.110) (broken lines) for A -  1 and Pr  - 0.7. 
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,4 -- 1. The solid lines represent the numerical solution and the dashed lines the 
asymptotic solution, respectively, and it is seen that  the results are in excellent 
agreement. This confirms the existence of a thinning near-wall layer. 

Finally, Figures 1.15 and 1.16 show the isotherms for ,4 -- 0.2, 0.5 and 1 with 
P r  - -  0.7. It is seen from Figure 1.15 that  the boundary-layer remains at its overall 
thickness in terms of r] when x is large, although variations in the thickness are 
clearly present when x is small. The thickness of the region in which strong surface 
induced temperature  variations are present reduces slowly in size as the value of 
x increases. The development of a near-wall layer is clearly evident in Figure 1.16 

(~) 

(b) 

(c) 

Figure 1.15: I s o t h e r m s  ] o r  P r  - 0.7 w h e n  (a )  ,4  - 0.2, (b )  r - 0.5 a n d  ( c )  J t  - 1.  
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/ 

Figure 1.16: Perturbation i so therms/or  .4 = 1 and Pr  = 0.7. 

where the perturbation of the temperature field from that given by .A = 0 (isothermal 
flat plate) is presented. 

It is also worth mentioning that Rees (1999a) has numerically found that no 
separation, i.e. there is no location where the skin friction is zero, occurs in this 
problem when j t  ~ 1 for the range of values of the Prandtl  numbers considered. 
However, when .4 > 1 it is possible to obtain a negative skin friction and when 
P r  = 0.7 incipient separation first occurs when A ~ 1.915. When P r  = 7, the 
critical value of Jt is 2.005 and this means that the minimum temperature of the 
'heated'  surface needs to be well below that of the ambient medium before separation 
can occur. 

1.7 Free  c o n v e c t i o n  b o u n d a r y - l a y e r  flow over a vert ica l  
p e r m e a b l e  flat p la te  

Since Griffith and Meredith (1936) reported what is now referred to as the asymp- 
totic suction profile for viscous adiabatic flow along a flat plate with uniform suc- 
tion, interest in flows with transpiration (blowing or suction) at solid boundaries 
has continued to attract the interest of engineers and scientists. Transpiration at 
solid boundaries has application to boundary-layer control of fluid flow over wings 
and turbine blades, the cooling of electronic components, the flow past permeable 
moving-belt surfaces with mass transfer as found in industrial manufacturing devices, 
sundry chemical engineering processes, etc. (see Weidman and Amberg, 1996). 

Research work on the effects of blowing and suction on steady free convection 
boundary layers has been confined almost entirely to the case of a heated vertical 
plate. Eichhorn (1960) considered the power law variation in the plate temperature 
and transpiration velocity which enables a similarity solution of the boundary-layer 
equations to be found. Sparrow and Cess (1961) discussed the case of constant plate 
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temperature and constant transpiration velocity. They obtained series expansions 
1 

for the temperature and the fluid velocity in powers of xZ. Merkin (1972) extended 
this work by obtaining asymptotic expansions for large values of x in both the cases 
of blowing and suction. Then, Clarke (1973) extended the problem discussed by 
Eichhorn (1960) by obtaining the next approximation to the solution of the full 
Navier-Stokes equations for large, but finite, values of the Grashof number. The 
effects of blowing and suction on steady free convection boundary layers on bodies 
of general shape was also considered by Merkin (1975) and other papers which deal 
with the effects of blowing and suction on free convection boundary-layer flows over 
a vertical plate are those by Parikh et al. (1974), Na (1978), Vedhanayagam et al. 
(1980), Kao (1982), Pop and Watanabe (1992), Chaudhary and Merkin (1993) and 
Merkin (1994a). The last two papers consider the cases when the wall temperature, 
wall heat flux and transpiration velocity are proportional to some power of x, such 
that the governing equations reduce to similarity form. The range of existence of 
solutions, as well as the asymptotic solutions for strong blowing and suction, were 
discussed and compared with numerical solutions of the similarity equations. These 
asymptotic solutions assist us in obtaining a fundamental understanding of many 
complicated fluid flows of practical interest. In this section, we present some of the 
results reported by Merkin (1994a) and in order to do this we assume that Tw(x) is 
given by expression (1.31) and Vw(X) has the form 

1 (m-~) 
Vw(X) -- ---~fw (3 + m)x  4 (1.111) 

where fw is a non-dimensional constant which determines the transpiration rate, 
with fw > 0 for blowing or injection and fw < 0 for suction. Equations (1.23) and 
(1.24) then reduce to the ordinary differential Equations (1.32) and (1.33) which 
have to be solved subject to the appropriate boundary conditions which come from 
Equation (1.25). In order to write these equations in the form given by Merkin 
(1994a), we take 

1 
f -  2v~F(~),  0 -  r ~ = ~ ~  (1.112) 

Equations (1.32) and (1.33) now become 

F ' " + ( 3 + m ) F F " - 2 ( I + m ) F  ' 2 + r  0 
I r 

Pr + (3 + m ) F r  4mF'r = 0 

(1.113) 

(1.114) 

together with the boundary conditions (1.25) which become 

F ( 0 )  = F ' ( 0 )  = 0, r  = 

F ' - + O ,  r  as ~--+c~ 
(1.115) 

Equations (1.113) - (1.115) were solved numerically by Merkin (1994a) for 
fw = i 0.5, Pr = 1 and for several values of m. The results for F"(0) and r 
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Figure 1.17: Variation of (a) F"(O), and (b) -r with m for fw - 0.5 (solid 
lines) and fw - -0.5 (broken lines) when P r -  1. 

are presented in Figure 1.17 which shows that the solution becomes singular as m 

approaches a lower bound m = m c ( P r ) ,  say, where mc = -0.9790 for fw = 0.5 and 
P r  = 1. The nature of the singularity in the solution as m -9 mc was also studied 
by Merkin (1994a). Since this analysis closely follows that of Section 1.3 for an 
impermeable plate (fw = 0) problem, we do not describe it here and merely present 
some of the results obtained. Thus, it was found for blowing ( fw > 0) and P r  = 1, 

that  F"  (0) and r behave as 

F"(0)  ~ 0 . 3 0 0 2 0 / ~  (,~ - , ,~) -3  
r ~ 0.26214 f 5  w ( m  - me)  -5  

+ " "  (1.116) 
o o o 

for m --+ m c ( P r ) .  In contrast, for suction (fw < 0) solutions exist only for m > m0, 
where 

4 

mo -- -0.9790 - 0.5361 If~l~ + . . .  (1.117) 

as Ifw] -+ 0 and P r  = 1. 
Further, Merkin (1994a) has studied solutions of Equations (1.113) and (1.114) 

for strong suction and strong blowing, respectively. For strong suction F"(0) and 
r have the asymptotic forms 

1 
F"(0) ~ + . . . ,  r ~ - (m + 3) P r  Ifw[ + . . .  (1.118) 

(~n 3) + P r  

as ]fwl -+ c~. Variation of F"(0) and - r  with [fw[, obtained by numerically 
integrating Equations (1.113) - (1.115) for P r  = 1 and m = 0 and 1, are illustrated 
(by solid lines) in Figure 1.18 and also shown are the asymptotic expressions (1.118) 
(by broken lines). It can be seen that these asymptotic forms are rapidly attained 
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Figure 1.18: Variation of (a) F"(O), and (b) - r  with Ifw! for m - 0 and 
m = 1 when Pr  - 1. The numerical solutions are indicated by the solid lines and 
the asymptotic expressions (1.118) are indicated by the broken lines. 

as lfw] increases and there is very good agreement between the two results beyond 
fw ~ -1 .4 .  However, the asymptot ic  solution is approached even more rapidly as 
the Prand t l  number  increases. 

In contrast,  Merkin (1994a) has shown that  for fw (> 0) large (strong blowing) 
there are two cases to be considered, namely mc < m < 3 and m > 3. In both  

cases there is an inner inviscid region, of thickness O ( fw),  made up of fluid blown 
through the wall. In the case me < m < 3, there is then a thin shear layer, of 

thickness O fw ~ , centred on the outer edge of the inner region. For m > 3 there 

is still an outer region of thickness O , which is thicker relative to the inner 

region. It was found by Merkin (1994a), after some algebra, that  for mc < m < 3 

we have the following: 

1 r 4m 
F"(0)  ~ (m + 3) fw + ' " '  (0) ~ - ( m  + 3) 3 P r  f 3  + " "  (1.119) 

as ]w --+ c~. These relations show tha t  F"(O) is independent  of Pr ,  whilst r 
does depend on P r  and r = 0 when m = 0 in which case r - 1. As a check of 
this analysis, F "  (0) and - r  (0) were obtained numerically from Equations (1.113) - 
(1.115) and are presented (by solid lines) in Figure 1.19 for m = 0 and m = 1 with 
P r  = 1 and in Figure 1.20 for m = 0 and m = 1 wi th  P r  = 1 and for m = 0 with 
P r  -- 7. The asymptot ic  expressions (1.119) are also included in these figures and are 
indicated by the broken lines. I t  can readily be seen tha t  the asymptotic  solutions 
(1.119) are approached rapidly as fw increases and the  difference is negligible for 
values of ]w beyond fw ~ 1. Graphs  of the tempera ture  profiles r for P r  = 1, and 
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Figure 1.19: Variation of F"(O) with fw for  m - 0 and m - 1 when P r  - 1. The 
numerical  solutions are indicated by the solid lines and the asymptotic expression 

(1.119) is indicated by the broken lines. 
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Figure 1.20: Variation o f - r  with fw for  m -  0 and m -  1 when P r -  1, and 
for  m - 0 when P r  - 7. The numerical solutions are indicated by the solid lines 

and the asymptot ic  expression (1.119) is indicated by the broken line. 

m = - 0 . 5  and m = 0, and fw  ranging from 0 to 2.5 are also shown in Figure 1.21. 
It can be seen that  for m = -0 .5  there is a large tempera ture  excess as f~ increases, 
whilst the tempera ture  remains in the range 0 ~< r ~< 1 throughout for m = 0. 

In another  paper by Chaudhary  and Merkin (1993), the case of a vertical per- 
meable flat plate with a prescribed surface heat  flux distribution qw(X) = x m and 
variable t ranspira t ion velocity has also been studied. Similarity equations were de- 
rived and they depend on the parameters m ,  fw  and P r .  It was shown tha t  solutions 
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Figure 1.21: Temperature profiles, r162 for Pr = 1 when ( a ) m - - 0 . 5  and (b) 
m = O .  

exist only for m > - 1  for injection, whereas they exist for all m > mc (fw) for suc- 
tion, where mc < -1 .  The solutions for strong suction and injection were also 
derived. In the later case (injection), the asymptotic structure was found to be 

1 1 different for m in the three ranges, - 1  < m < - ~ ,  - ~  < m < 7 and m > 7. 
Results were also obtained by Chaudhary and Merkin (1993) for the problem 

of a vertical permeable flat plate with a constant heat flux distribution qw(x) and 
constant transpiration velocity. This case reduces to the solution of Equations (1.14) 
- (1.16) with the boundary (transformed) conditions 

0o - 1  on y 0, u - 0 ,  v = 4 - 1 ,  - - - _  - x > 0  
Oy (1.120) 

u - + 0 ,  0--+0 as y--+c~,  x > 0  

where + denotes injection and - suction. This problem is non-similar and in order 
to obtain a solution which is valid for all x > 0, the governing equations have to be 
solved numerically. This was performed by Chaudhary and Merkin (1993) in two 
steps. The first step is to obtain a solution for x small by using the transformation 

4 1 1 

r  3=x + xg f (x ,r / ) ,  O-- xgh(x,7?), 77 = y x - g  (1.121) 

Using these expressions, Equations (1.14) - (1.16) become 

( 4  ) f , ,  3 . ,2  (f, Of'f.cgfl f ' "  + g f  3:: x-~ - ~-.t + h - x Ox ~ (1.122) 

p---~ --~ h - x  ~ ~x (1.123) 
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along with the boundary conditions 

f ( x , 0 ) - 0 ,  f ' ( x , 0 ) - 0 ,  h'(x, 0 ) - - 1  for x > 0  
f ' - + 0 ,  h - + 0  as r / - - + ~ ,  x > 0  (1.124) 

It is worth noting that equations of such a form have been solved very efficiently 
by Watanabe and his co-workers in a series of papers on forced, free and mixed con- 
vection flows past flat plates, cones and cylinders, see for example, Watanabe et al. 

(1996). In order to do this they have used the difference-differential method pro- 
posed by Hartree and Womersley (1937) in combination with a four-point backward 
difference formula of the Gregory-Newton type. 

Returning now to the problem governed by the two sets of Equations (1.14) - 
(1.16), subject to the boundary conditions (1.120) and Equations (1.122) - (1.124), 
Chaudhary and Merkin (1993) have solved them numerically by a very efficient 
finite-difference method as described by Mahmood and Merkin (1988). The solution 
starts at x = 0 using Equations (1.122) - (1.124) and continues until x = 1 and the 
fluid velocity and temperature profiles calculated at x = 1. These solutions are then 
used as the starting profiles for the solution of Equations (1.14) - (1.16) subject 
to the boundary conditions (1.120) for x > 1. Thus a smooth transition from one 
solution regime to the other was achieved. The non-dimensional skin friction, ~-w(x), 
and the non-dimensional wall temperature, 0w(x), have been obtained and they are 
presented in Figures 1.22 and 1.23 for P r =  1. 
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Figure 1.22: Variation of (a) Tw(X), and (b) Ow(x), with x for Pr  - 1 in the case 
of uniform suction. The numerical solutions are indicated by the solid lines and 
the asymptotic solutions (1.125) are indicated by the broken lines. 

Figure 1.22 is for the case of suction, while Figure 1.23 is for the case of injection. 
Chaudhary and Merkin (1993) also obtained asymptotic solutions for x :>> 1 showing 
that  

1 1 
Tw(x) ..~ p r  2 ~ . . . ,  Ow(x) ~ -~r + . . .  (1.125) 
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Figure 1.23: Variation of (a) Tw(X), and (b) Ow(x), with x for Pr  - 1 in the case 
o] uniform injection. The numerical solutions are indicated by the solid lines and 
the asymptotic solutions (1.126) are indicated by the broken lines. 

for suction, and 
1 1 1 1 

~-w(X) ~ (2Pr)~ x~ + . . . ,  Ow(x) ~ (2Pr)~ x~ + . . .  (1.126) 

for injection. These solutions are also shown in Figures 1.22 and 1.23 (by broken 
lines), and we can see that the agreement between the numerical and asymptotic 
solutions is reasonably good over a large range of values of x. 

The results reviewed in this chapter have been for the free convective boundary 
layers adjacent to vertical flat plates with thermal conditions that are continuous 
and well defined. However, practical problems often involve wall conditions that 
are arbitrary and unknown a priori ,  and are to be found. A simple model has been 
proposed by Lee and Yovanovich (1991, 1992) to predict the heat transfer character- 
istics due to a vertical plate which is subject to a step change in the wall temperature 
and also when the surface heat flux variation is discretised into a number of step 
changes. The problem imposes a mathematical singularity and severe non-similar 
conditions at the wall. The analysis is based on the linearised approximations to the 
boundary-layer equations. The linearisation is performed by introducing an effec- 
tive boundary-layer velocity, which is subsequently determined by relating the total 
thermal energy dissipated into the fluid to the effective kinetic energy of the fluid 
flow. The effective fluid velocity determined in this manner becomes analogous to 
an externally induced free stream velocity, thereby allowing the analysis to proceed 
in a way that  is similar to a forced convection analysis. The validity and accuracy 
of the model proposed by Lee and Yovanovich (1991, 1992) was demonstrated by 
comparison with the known results from the open literature. 
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It was recognised from the outset by the pioneering workers in heat transfer that 
a characteristic common to most analytical studies on convective flow has been the 
neglect of all fluid property variations, except for the essential density difference 
which, in the absence of mass transfer, are a consequence of temperature gradients 
in the fluid. This greatly simplifies the analytical and experimental studies, since 
the number of variables are greatly reduced. However, in practice, experimental 
data usually exhibit considerable deviations from the analytical predictions due to, 
partially, the inadequacy of the constant fluid properties assumptions. Due to the 
importance of buoyancy convective flows with variable fluid properties in industrial 
applications, there has been much analytical and experimental work directed towards 
determining the effects of variable properties which are cited in the review paper by 
Kaka~ (1987) and in the book by Gersten and Herwig (1992). 



Chapter 2 

Mixed  convect ion 
boundary- layer  flow along a 
vertical  flat plate 

2.1 In troduc t ion  

Mixed convection flows, or combined forced and free convection flows, arise in many 
transport  processes in engineering devices and in nature. These flows are charac- 
terised by the buoyancy parameter  ~ -  Gr where Re is the Reynolds number, Gr R e  n 

is the Grashof number and n (> O) is a constant which depends on the flow configu- 
ration and the surface heating conditions. The mixed convection regime is generally 
defined as the range of/kmin ~ A ~ ~max, where )~min and )~max are the lower and 
the upper bounds of the regime of mixed convection flow, respectively. The param- 
eter A provides a measure of the influence of the free convection in comparison with 
that of forced convection on the fluid flow. Outside the mixed convection region, 
~min ~ ~ ~ ~max, either the pure forced convection or the pure free convection 
analysis can be used to describe accurately the flow or the temperature field. Forced 
convection is the dominant mode of transport  of heat when Gr ~-~ -~ 0, whereas free 
convection is the dominant mode when Gr -+ c~ or alternatively R e n  , -07- --~0. Buoy- 
ancy forces can enhance the surface heat transfer rate when they assist the forced 
flow, and vice versa. Buoyancy forces also play a significant role in the incipience of 
flow instabilities and they can be responsible for either delaying or speeding up the 
transition from laminar to turbulent flow. 

2.2 Basic  equat ions  

Consider an undisturbed uniform free stream of velocity Uoo at large distances flow- 
ing along a semi-infinite vertical fiat plate, which is placed in a viscous incompressible 
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Figure 2.1: Physical models and coordinate systems. 

fluid of ambient temperature T~,  see Figure 2.1. We assume that  the plate is heated 
to a constant temperature Tw, or to a constant heat flux qw, where T~ > Too and 
qw > 0. Heat is supplied to the fluid by diffusion and convection from the plate 
and this heating gives rise to a buoyant body force. There are two cases to be 
considered, namely one when the plate extends vertically upwards and the other 
when it extends vertically downwards. In the first case the buoyancy force acts in 
the direction of the free stream (assisting flow), and in the second case, it acts in 
the opposite direction of the free stream (opposing flow). In both cases, near the 
leading edge, there is little chance for the heat from the plate to be taken into the 
fluid and a boundary-layer is formed chiefly by the retardation of the free stream, 
but the effect of the buoyancy force increases as the boundary-layer develops. In the 
absence of heat generation and viscous dissipation, the boundary-layer equations, 
under the Boussinesq approximation and for steady state flow conditions, are given 
by 

Ou i)v 
+ - o ( 2 . 1 )  

Ou Ou 02u 
u~-~x + V~yy - V ~ y  2 =t= gZ (T - Too/ (2.2) 

OT 07' v O~T 
U -~x + v O--y = P r O y 2 (2.3) 
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where in Equation (2.2) the + sign is taken when the plate is vertically upwards 
(assisting flow) and the - sign when the plate is vertically downwards (opposing 
flow). Equations (2.1) - (2.3) have to be solved subject to the boundary conditions" 

u -  Uc~, T - -  Too 
u - O ,  v - O  

T--  Tw (CWT) a T  qw , o---g-- ks (CHF) 

u ~ U c ~ ,  T-+Too  

on x -- 0, y # 0 

on y = 0, x > 0 (2.4) 

as y - + c o ,  x > 0  

2.2.1 F l a t  p l a t e  w i t h  a c o n s t a n t  wa l l  t e m p e r a t u r e  

S m a l l  v a l u e s  o f  x (<< 1) 

Near the leading edge the boundary-layer is formed mainly by the retardation of the 
free stream velocity by the effects of viscosity and the effect of the buoyancy force 
increases as the boundary-layer develops from the leading edge. This suggests the 
following transformation: 

1 

~-- u2-X, 77- ~ x  Y' f(-~'7?)-(2vUccx)�89 ' - T* 

where T* - Tw 
and (2.3) we obtain 

-Too. On introducing the transformation (2.5) into Equations (2.2) 

03 f 
0~] 3 + f b-~ + 2~ =L0 ~ 0~ 0~ 0~ 0v0~] 

1 0 2 0  O0 ( c 3 f O O O f _ ~ )  
PrOwl 2 F f - ~  + 2( 0( 0~ 0~700 

and the boundary conditions (2.4) reduce to 

f (~,0) - 0 ,  ~ (~,0) - 0 ,  0 ( ( ,0)  - 1 for 
of on ~1, 0--+0 as r l ~ ~ ,  ( > 0  

-- 0 (2.6) 

- o (2.7) 

~ > o  
(2.8) 

The method of solution of Equations (2.6) and (2.7) is to expand the functions 
f and 0 in a series of small values of ~ (<< 1) of the form 

f -- fo (r/) -4- ( f l  (r/) + ~2 f2 (77) + . . .  

o - Oo( ,7 ) i  ( o 1 ( , 7 ) +  ( ~ o ~ ( , 1 ) + . . .  
(2.9) 

where fi and Oi (i - 0, 1, 2) are given by the following sets of ordinary differential 
equations 

1 0,1 f~" + fofD--0, -P7 o + foO~o--0 
f0(0) = 0, f~(0) -- 0, 00(0) -- 1 (2.10) 

f ~ - ~ l ,  0 0 ~ 0  as r / - + c r  
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f[" + fof~' -- 2 f~ f{  + 3 f~  f l + 200 -- O, o f l  I ? 
P r  1 nt- fool  - 2f~01 + 3flO 0 -- 0 

fl(O) -- O, f~(O) -- O, 01(0) -- 0 
f{-+O, 0 i - + 0  as V-+oc 

f '" " ' '  " fI' 2 +/o12 + 5fo f2 + 3fl 2f{ 2 201 - 4 f o f  2 + - 0 
1 O" -P--i 2 + foO~ - 4 f D 0 2  + 3faO~ - 2f~01 + 50to f2 - 0  

f2(O)-O,  f~(O)-O,  0 2 ( 0 ) - 0  
f~--+O, 02 --+0 as rl--+ec 

(2.11) 

(2.12) 

These equations were solved numerically by Merkin (1969) for P r  - 1 and from 
these results the non-dimensional skin friction and heat transfer on the plate can be 
obtained from the expressions 

7w (~) - (2~) -~ f (~, 0) 
0rl2 

Thus we have 

1 O0 
- N o) (2.13) 

"rw (~) - (2~) -1 (0.4696 + 1.6216 ~ -  1.2699~ 2 

q~ (~) - (2~) -�89 (0.4696 :k 0.3834 ~- - 0.6544~2 
+ ' "  ") (2 .14)  
+ . . . )  

for ~ << 1. 

Large  values of x (>> 1) 

Far from the leading edge, the boundary-layer is formed mainly due to the assisting 
buoyancy force and this suggests the following transformation" 

r - 4- 4u 2 ] x�88 (~, ~ ) ,  T - T ~  - T*O (-~, ~ ) ,  77 - ~ ]  4 
x~ 

(2.15) 
Equations (2.2) and (2.3) now become 

037 .-702f - ( 0 / )  2 -  --(Oq? 02f Of" 027) 
O---g -t- d ] ~ 2  - 2 ~ + 0 - 4~ O~ 0~0~ O~ O~ 2 (2.16) 

1 020 O0 _ 4 ~ ( O f O 0 0 f O 0 )  
P~ o~ ~ ~ a fN  o~ o~ o~ o~ (2.17) 

and the boundary conditions (2.4) may be expressed in the form 

- oj' ( ~ , 0 ) = 0  O(~,0) = 1 for f ( L 0 )  - 0, 

o]  2 ~ - � 8 9  - - ~ > 0 o~ -~  0 - - + 0  as ~ ? - ~ ,  

{ > 0  
(2.18) 
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The form of these boundary conditions suggests expansions for f and 0 in a series 
for large values of ~ (>> 1) in the form 

f - 70 (~) + ~- �89  (~) + ~-1 [F2 (~)ln~ + f-2 (~)] + - - -  

- ~0 (~) + ~ - � 8 9  (~) + ~-~ [G2 (~)~1~ + ~ (~)] + . . .  
(2.19) 

The terms which are O / -  \ ( ~ - 1 )  have been included due to the leading edge shift effect 
% ]  

and the necessity for including logarithmic terms (eigenfunctions) in asymptotic 
expansions in boundary-layer theory was discussed by Stewartson (1957). 

On substituting the expansions (2.19) into Equations (2.16) - (2.18) we obtain 

-•lll 0 
- -  - - i v  - - l  2 

+ 3 f 0 f o - 2 f o  + 0 0 = 0 ,  

f o ( 0 ) - 0 ,  f o ( 0 ) - 0 ,  

fo -+0,  0 o - + 0  as 

1 - - I I  - -  "=_l 

p-u 0 -a t- 3fo0 o -- 0 

0 o ( 0 ) -  1 (2.20) 

" f  I l l  

1 
- - I f - - '  - -  1 --'_H - - I  

+ 3fo?~ + foY~ + e~ - o, -~o~ + 3-fo-O'~ + 2-f'o-~ + YloO - 0 

f l(0)  -- 0, f l  (0) -- 0, 01 (0) -- 0 
f l  --+2, 01 --+0 as r/--+cr 

(2.21) 

F~" + 3 f o F~ ' frog2 + G2 - O, --prl G ~ + 370G[ + 4foG2-' - 0'0F2 - 0 

F2(0) - 0, F~(0) - 0, c2(0) - 0 
F~-+0 ,  G 2 - + 0  as ~ - + c ~  

(2.22) 

It should be noted that the solution (eigensolution) of the system of Equations (2.22) 
is given by, see Hieber (1974), 

F2 - Ao (~--]'o- 3-fo) - AoFc (~), G 2 -  Ao ~-0'o - AoGc (~) (2.23) 

where A0 is, as yet, an undetermined constant. The equations for ]2 (~) and 02 (~) 
now become 

:,,, _ , , _ , , _  ( -,, ;2) 
, f f2  - fo f2 + 3 f-o fo  2 f f l  ---:tt + 3 f o 02 -- 4Ao - - f l 

~--;02 + 3 fo 02 + 4 fo 02 - 0 o f2 -- - f l  01 -- 2 f'l ~1 -]-" 12Ao0o fo 

f 2 ( 0 ) - 0 ,  f 2 ( 0 ) - 0 ,  0 2 ( 0 ) - 0  
f 2 ~ O ,  0 2 - ~ 0  as ~ o e  

(2.24) 

The method of determining the constant A0 was described by Merkin (1969), who 
found A0 = -0.015643 for Pr - 1. We can still add arbitrary multiples A1Fc (~) 
and AIGc (~) (A1 being another arbitrary constant) to any solution of the system 
of Equations (2.24) and this will still satisfy the required boundary conditions. The 
constant A1 can be determined if the fluid velocity and temperature profiles obtained 
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from the series (2.19) are compared with those obtained from the numerical solution 
of Equations (2.16) - (2.18) and Merkin (1969) obtained A1 - 0.03+0.01 for P r  - 1. 

The sets of Equations (2.20) - (2.24) were solved numerically by Merkin (1969), 
who found 

1 1 [ 1 _ _  

- o .6422 + o.osao -  + o.o o5 

+ (0.0974 - 0.6422 A1) ~-1 

11[ 
q~ (~) - 2 - ~ (  - z  0.56 

__! --I 
71 + 0.0712 ~ 2 __ 0.0089 In ~ + 0.5671 A1 ~-I 

for ~ >> 1. 

" " "] 

+ . - . ]  

Further, Merkin (1969) has matched the series (2.14) and (2.25) for small and 
large values of ~ by performing a numerical integration of the full boundary-layer 
Equations (2.1) - (2.4) using a method first proposed by Terrill (1960). Since the 
details of this method are well described by Merkin (1969, 1972) we do not repeat 
them here. 

On the other hand, Merkin (1969) has shown that  in the case of opposing flow, 
the boundary-layer separates from the plate at the point ~ - ~s - 0.192357 for 
P r  = 1, where 

7-~ (() -+ O, q~ (() -+ 0.428 (2.26) 

but 

d'rw dqw 
_ ~ co, _ ~ co (2.27) 

d~ d~ 

which shows that the flow is singular at ( =  (s- The behaviour of rw (() and qw (~) 

near the separation point ( - ~s - 0.192357 is illustrated in Figure 2.2. We note 
that  the structure of the boundary-layer in the vicinity of the fluid separation from 
the plate has been studied in detail both analytically and numerically by ttunt and 
Wilks (1980) and this discussion is presented in Section 2.3. 

2 .2 .2  F l a t  p l a t e  w i t h  a c o n s t a n t  s u r f a c e  h e a t  f lux  

We consider now the situation when the heat is supplied to the fluid flow by diffusion 
and convection due to a uniform heat flux qw at the plate. This heating, relative to 
the ambient temperature Too, gives rise to a buoyant body force which again aids or 
opposes the free stream. The boundary-layer equations which govern this problem 
are given by the Equations (2.1) - (2.3), along with the boundary conditions (2.4) 
for the CHF case. A dimensional analysis of Equations (2.1) - (2.3) leads naturally 
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(a) (b) 

0.12- 0.55- 
~(~ ~ ~(~ 

0.08 - ~ 0.51 - 

0.04 - �9 

0.00 
0.184 0.186 0.188 0.190 0.192 

0.47 - 

0.43 . 
0.184 0.186 0.188 0.190 0.192 

Figure 2.2: Variation of (a) Tw (~, and (b) qw (~), with ~ for Pr = 1 near the 
w 

separation point ~ -- ~s -- 0.192357. 

to the following transformation: 

1 N (2392 2q  )  
~ - -  9 2rT5 5-kf , . ,c~ 

1 

�9 , ,7- ~, ( ~ )  ~ 
- 

(2 .28)  

1 
for small values of ~ (<< 1) where T* is now defined as T* - (kg-~/) ( 2u ) "~ , ~ . A s a  

result of this transformation,  the boundary-layer Equations (2.1) - (2.3) now become 

03 f ~- "02 f ~"~ 0 + 2 (  ( 0 f  0 2 f 
o~-  s ~ *  ~ o ~  

1 020 O0 Of 0 -!- 2"( (Of  00 
Pr O~ 2 ~- f O~ 077 O~ O~ 

Of 02f ) 
Or/OgOr/ -- 0 (2.29) 

Of O )  
ov - 0 (2 .3o)  

which have to be solved subject to the boundary conditions (2.4), which take the 
form 

) o, ) oo ) - 

f 0 - -0 ,  0-~ 0 = 0 ,  0-~ 0 --_1 for ~r  (2.31) 

of ~1 0 - + 0  as r/--+oo, ~r  
Or/ 

N 

On the other hand, for large values of ~ (>> 1), we introduce the transformation 

T -  Too - -T*xg-O ~ , --  C2 ~ (2 ,32)  
X5 
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where 

T .  __. qw 

kiCk' 

1 
C1 - (2454g~qwU3kf ) 

Equations (2.1) - (2.3) then become 

1 

C2- ( gflqw 
lOkfu 2)  

(2.33) 

o--- x + ~ : ~  - 6 N - o + lO~ o(o~ 2 

l O  20 o~ o ~  - ( o 7 o ~  
PrO~ 2 t - 8 f N - 2  N + 10~ 0-~0-~ 

07 o~7 ) 
0~ 0~-0~ - 0 (2.34) 

Of -- 0 (2.35) 
0~ 

with the boundary conditions (2.4) becoming 

0)-  o, i - o,  

0__/./ , - o~ -~ ~g-~ o - + o  

00 0-~ 0 - - 1  for ~ > 0  
(2.36) 

as ~ - + c c ,  ~ > 0  

Ass i s t ing  flow 

In this case we have to take the minus sign in Equation (2.29). This problem has been 
studied by Wilks (1974) who followed closely the method as described by Merkin 
(1969), and results were obtained again for Pr = 1. Thus, Wilks (1974) obtained 
results for the non-dimensional skin friction and heat transfer parameters, which are 
given by 

1 1 

~ 1 0.46960 + 5.14956~: - 19.23852( 3 + . . . )  

Qw (~) -- --(2~") -~ 1 -- (2~) -~ ) o(g,0) 1.54064 - 2.68850 ~"~ + 20.89185 g3 + . . .  

(2.37) 
f o r ~ < < l ,  and 

.547 + + . 
2~ ] 

) Qw ~ - ~  1 1i~-~ 1 18168 0.13634~ ~ 0.00995~ -6 _ _ _  . - - _ g + . . .  

(2.38) 
for ~ >> 1. 

It is worth mentioning that  in this problem the precise contribution of the leading 
edge shift (eigensolutions) is identically zero, see Wilks (1974), and therefore the 

series (2.38)is exact up to terms which are O "- "(~--]). 

Equations (2.29) - (2.31) and (2.34) - (2.36) were also solved numerically by 
Wilks (1974) using a technique which is an adaptation of the method employed by 

Terrill (1960) and Merkin (1969). Results for Tw and Qw were obtained 
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from the numerical integration of these equations for the case of aiding flow and 
they are presented as solid lines in Figure 2.3. The results given by the series 
(2.37) and (2.38) are also included (shown by the broken lines) in this figure. The 
velocity profiles at various stations along the plate are also given in Figure 2.4 for 
the case of assisting flow. A high degree of agreement between the three-term series 
representations and the exact numerical solutions is noted from these figures. It is 

also seen that  the Tw (~') and Qw (~-) estimates can be employed over almost the 
f A  F A  

N 2" 

whole range of values of ~. Furthermore, the points at which the series (2.37) and 
(2.38) diverge from the correct solutions are such as to give us some confidence that 
straightforward extrapolations linking these two asymptotic series representations 
may well be sufficient for most practical purposes. 

(b) 

100 I . . . . . . . . . . .  

1~ 1 

0.1 ! ,, , , , ,, 
0 .01  0 . i  1 .- I 0  I 0 0  

100 [ . . . . . . . . . . . . .  

1 

0.1 
0.01 0.1 1 : 10 100 

Figure 2.3: Variation of (a) Tw ( ~ ,  and (b) Qw (~), with ~ for Pr - - l  in the 
case of assisting flow. The numerical solutions are indicated by the solid lines and 
the series solutions (2.37), for ~ << 1, and (2.38), for ~ >> 1, are indicated by the 
broken and dotted lines, respectively. 

O p p o s i n g  flow 

In this case Equations (2.29) - (2.31), with the sign + in Equation (2.29), were 
solved numerically by Wilks (1974) using the same method as that described by 
Merkin (1969) and the results reported are again for Pr  - 1. The fluid velocity and 
the temperature profiles at ~ = 0 (initial point) and at ( = {s (separation point) are 

shown in Figure 2.5 and the behaviour of rw (~) and Qw @~) in the vicinity of the 
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(~) 

1.2 

1.o 

0.8 

0.6 

0.4 

0.2 

0.0 i . . . . .  i 

0 1 2 3 ~l 5 

(b) 

0.20 

e~ 0.16- 

0.12- 

0.08- 

0.04 - 

0.00 
0 1 2 3 _ 4 5 

9 

-(~. ) Figure 2.4" Velocity profiles, o: ~ , f rom  the numer ica l  solut ion fo r  P r  - 1 in 

the case of  assist ing f low for  (a) smal l  values of  ~ and (b) large values of  ~. 

9 
4 3 2 1 0 

1.0 i , .' .... ' ' 1.0 

0.8- ~ j - 0 . 8  

o: (~,~) //, ,,7 
o o // , ,7  o o 

o,//, ,? 
/ / , , ' /  

11 // o ~ . / / ,  ,,U t ~ 

0.0 , . - -  ., .. , . , ..... .0.0 
0 1 2 3 4 5 

9 

, (~.,) 

o, (~,)  oo, tem, ero,,re. O (~ . , )  .ro~,e, ~ m  ~he o,- Figure 2.5" Velocity, ~ , 

mer ica l  solut ion for  P r  - 1 in the case of  opposing f low at ~ - 0 (solid l ines)  and 

= G (broken lines).  
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separation point is also shown in Figure 2.6. It is thus concluded that 

v~ --+ 0, Qw -+ 0.951, d (  ~ c~, d (  -+ o0 (2.39) 

as ~ --+ ~s, where ~s - 0.141955. Following the same procedure as that proposed 
by Terrill (1960), Wilks (1974) has analysed numerically the behaviour of the skin 
friction and the heat transfer in the vicinity of the separation point ~s on a log-log 
scale and he concluded that both the skin friction and the heat transfer behave as 

3 

( ~ s -  ~)5 close to the separation point ~ -  ~ .  However, there is a discrepancy 

between this behaviour and the numerical results in the immediate vicinity of the 
separation point which may be attributed to accuracy limitations of the numerical 
solution. 

(~) (b) 

0.2 

0.1 

0.0 
0.135 0.i37 0.i39 0.i41 

1.05 

1.oo 

01.'43 0.95 - ,, 0.135 0.137 0.139 0.141 0.143 

Figure  2.6: Variation of (a) Tw ( ~  
case of opposing flow. 

, and (b) Q~ ( ~ ,  with ~ for Pr  = 1 in the 

A detailed analysis of the boundary-layer behaviour near the point of separation 
has been performed by Hunt and Wilks (1980) and this analysis is presented in the 
next section. 

2.3 B e h a v i o u r  near  s e p a r a t i o n  in m i x e d  c o n v e c t i o n  

In order to analyse the nature of the opposing fluid flow near the point of separation 
we introduce the following new variables, see Hunt and Wilks (1980), 

t , y = R e ~  , r  

u - -  u ~ ,  v - R e � 8 9  ~, O= T-Too 
, T* 

(2.40) 
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where 

T* - Tw - Too (CWT), 

Equations (2.1) - (2.3) then become 

T*- (q~) -' - ~ Re ~ (CHF) (2.41) 

0~ 0~ 
-o-~ + ~ - o (2.42) 

-u~-~ + v O-~ = O~ 2 =[= 0 (2.43) 

^og og 1 o~g 
-U-~x + 90-~ = Pr O~ (2.44) 

where the T signs correspond to the cases of CWT and CHF, respectively. The 
transformations appropriate to an initial profile displaying a doUble zero at the 
origin are defined as follows: 

A 

1 y A 3 ~'- 

- ( x ) Z ,  r / -  r  0 - 0 ( [ , 7 7 )  (2.45) 
2�89 

On substituting the scalings defined by the expressions (2.45) into Equations (2.42) 
- (2.44) gives rise to the governing equations 

f , , ,_3 f f ,+2f~2TO_ ~(f,,Ofo~ f-~'Of') (2.46) 

1 0 , _ 3 f 0 , _  ~(o, Of _ f ,  O0) (2.47) 

which have to be solved subject to the boundary conditions (2.4) which become 

f ( ~ , 0 ) - - 0 ,  f ' ( [ , 0 ) - - 0  ]( 
0(~,0) -- 1 (CWT), 0'([,0) - 1 ( C H F ) )  for 

f ' ~ l ,  0 ~ 0  as r/-->cx~, ~ > 0  

~ > 0  
(2.48) 

These equations were studied by Hunt and Wilks (1980) who obtained, for the skin 
friction and the heat transfer parameters, near the separation point ~ = ~s(Pr) the 
following expressions: 
for the CWT case: 

r~({) -- 25 ({, 0) = 2~ 2a10 ln{ + 2all + 2a12 In Iln{I + 2ala-in~=: + . . .  

~o' (~, o) q~(~) - 2~ 
[ ( ,n,,n<, )] = 1-1 bl - ~K~(O)bl 2alo ln~ + 2all + 2a12 In Iln~i + 2ala--r~ + . . .  

2 ~  

(2.49) 
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1 

where ~ - (~s - ~)z with ~ being the variable defined in Equation (2.5) and 

2~�89 ( - 1 ) [  b 1 a~2 , 
alo = - a12 -- (1 -- 21n2) alo, a 1 3  = K2(0) - - ~  

64 (�88 ' a l0 '  

1 3 
2~7r~ 

(2.50) 

for the CHF case: 

Tw(~) -- 5~f"  (~,0) = 5~ ( 2 a ~  2 + 2 a ~  3 + . . . )  

_ ( ~2 ~ ) (2.51 5~ 1 5~ 2~< 2 ~  ~3 ) Q~(~) -2�89176176 - 2~i- bo+ a2 + .... a2 ~ + " "  

where ~ -  5_~ (~s - ~ ~  with ~ being the variable defined in Equation (2.28)and 

3 
, 2�88 ~ 

2a2 + b0 - 0, a2 = (2.52) 
5 

The knowledge of Tw(~), qw(~) and Qw(~) from the left-hand sides of Equations (2.49) 
and (2.51) are determined by solving the equations 

s'"§ ''~ - - 0  (2.53) 

P---rlO"+fO'-qf'O+ 2~(O'Of-f'O-~~)O--~ - 0 (2.54) 

along with the boundary conditions (2.48). Here ~ - ~, p - -2~,  q = 0 for the 
A 

CWT case, and ~ = ~, p - 5 ~ ,  q - 1 for the CHF case. Further the constants b0 
A A 

and bl at the separation point ~ = ~s are evaluated by the numerical integration of 
Equations (2.53) and (2.54), whilst al l  and a~ are chosen to match the analytical 

A 

and the numerical solutions near ~ -- ~s- 
The numerical procedure used by Hunt and Wilks (1980) is the Keller-box 

scheme, which has the advantage over the method used by Terrill (1960) in that  
the solution at ~ - 0 is readily calculated. Thus, Hunt and Wilks (1980) have 
found, for P r -  1, 

~s - 0.192217, 
bl - -0.598, 

G = 0.14157699, 

b0 - -1.270010, 

q~ (~) -+ 0.423 
all  = 0.436 J 

0.   008 } 
a~ - 0.4652 

for CWT 

for CHF 
(2.55) 

Tables 2.1 and 2.2 show the values of Tw (~),qw (~') and Qw (~') for values of ~'up 
A 

to the separation point ~ = (s for both the CWT and CHF cases. The values given 
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Table 2.1- Values of T~ (~ and q~ (~ for the CWT case when Pr - 1. 

0.040000 
0.085005 
0.152162 
0.171917 
0.188662 
0.190920 
0.191956 
0.192168 
0.192208 
0.192212 

. . . . . . .  

Tw 

Numerical 
. . . . .  

1.422990 
0.776127 
0.309331 
0.190889 
0.O64194 
0.035533 
O.O14206 
0.005577 
0.002166 
0.001577 

. .  

. . . . . . .  ii1 . . . . . . . . .  qi( ) 
Series (2.49).I] Numerical Series (2.49) 

. . . . . .  . :  . . . .  , . .  

0.48471 
0.39484 
0.22583 
0.15461 
0.05901 
0.03384 
0.01395 
0.00554 
0.00218 
0.00160 

1.601885 
1.044480 
0.690355 
0.606334 
0.510424 
0.483929 
0.459030 
0.444737 
0.436562 
0.434765 

. 

0.6808 
0.6522 

0.5906 

0.5590 

0.5032 
0.4821 

0.4593 

0.4448 

0.4360 

0.4339 
. . . .  

Table 2.2: Values of ~-w (~) and Q~ (~) for the CHF case when Pr - 1. 

"g ] .Numerical 

0.04000000 1.509968 
0.08891891 0.746687 
0.12592894 0.328306 
0.14051340 0.072307 
0.14140701 0.027402 
0.14157356 0.003685 
0.14157693 0.000472 
0.14157698 0.000241 
0.14157699 0.000123 

. . . . . . . .  

Series (2.51) 

0.876311 
0.602242 
0.305360 
0.071353 
0.027258 
0.003681 
0.000466 
0.000239 
0.000122 

Q W  

Numerical 
. . . . . .  

2.261140 
1.452104 
1.135105 
0.988274 
0.965566 
0.953870 
0.952299 
0.952186 
0.952128. 

Series (2.51) 
. . . .  

1.728940 
1.377421 
1.128812 
0.988224 
0.965564 
0.953868 
0.952296 
0.952].85 
0.952128 

, .  

by the series (2.49) and (2.51) are also included in these tables and we observe very 

good agreement  between these results near to the separat ion points.  

It is seen from expressions (2.55) tha t  bl < 0, which is consistent  wi th  the 

t e m p e r a t u r e  decreasing away from the wall. Moreover, if the present  analysis is 

repea ted  for the case of a cold wall (Tw < Tee) in a heated stream, exactly the same 

equat ions  and results are obtained.  However, in this case, the value of bl < 0 is 

not inconsis tent  with the t empera tu re  far away from the wall since the t empe ra tu r e  

decreases or increases in accordance with  the posit ive or negative na tu re  of T* - 

T~ - Too- 
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2.4 M i x e d  convect ion  along a flat plate with  a constant  
wall t e m p e r a t u r e  in parabol ic  coordinates  

It should be mentioned that the solutions which were reported in Section 2.2.1 were 
based on boundary-layer theory and therefore they are not applicable at moderate 
values of the Reynolds number. In this respect, Afzal and Banthiya (1977) have 
studied the solution for mixed convection flows past an isothermal semi-infinite flat 
plate for small as well as moderate values of the Reynolds number using the method 
of series truncation. This method is especially suitable for elliptic partial differential 
equations, see Davis (1967), who regarded them as if they were parabolic. The 
equations obtained from the first truncation studied by Afzal and Banthiya (1977) 
are valid from the leading edge to far downstream. The results are extremely good 
in the flow domain, spanning from pure forced convection to strong free convection 
effects. Thus, as we will see from Afzal and Banthiya's formulation, we can obtain 
the results in the intermediate Reynolds number region of Merkin (1969) without 
resorting to a full numerical integration of the boundary-layer Equations (2.1) - 
(2.3). 

In order to do this, Afzal and Banthiya (1977) have used the non-dimensional 
parabolic coordinates ~ and U, see Figure 2.7, as follows: 

x + iy  - 2Uoo ' x -  2Uoo ' Y -  Uc~ (2.56a) 

' ( ~  7 B~oyant Force Vectors 

/ 
~ x ~  -.~ Assisting Flow 
lira / / r=>r= 

a t i t  
z Uoo, T~ 

Opposing Flow 
T~<Too 

Figure 2.7: Physical model and parabolic coordinates. 



60 CONVECTIVE FLOWS 

where i = v/Z-l, and they also introduced the variables 

T - Too 

'r - -  .f(~r r/), 0(~, v )  - IATI (2.56b) 

If we now eliminate the pressure p from Equations (1.2) and (1.3), we obtain the fol- 
lowing equations for the functions f and 0 in non-dimensional parabolic coordinates 

and 77 

02 02 Of 0 

-~ + -~ ~ o~ o~ 
Of 0 1 

( oo oo) 

0 2 0 0 2 0  ( O f OO O f O0 ) 
O~-- ~ + ~ + Pr Or O~l Or I O~ 

= 0  

(2.57) 

= 0 (2.58) 

along with the boundary conditions (2.4) which become 

of f(~, O) - O, 0--6(~, O) - O, 0(~, O) - 1 for ~ > 0 
f ~ 7 + O ( 1 ) ,  0 - + 0  as U-+c~, ~ > 0  (2.59) 

Here A (= constant) is the mixed convection parameter which is defined by 

Grx 
A - Re 3 (2.60) 

and the =t= signs in Equation (2.57) are, as before, for the situation when the buoyancy 
forces assist the main flow and when they oppose the main fluid flow, respectively; 
Grz -- 9/3[ATIx3t,~. and Rez = u~z, are the local Grashof and local Reynolds numbers, 
respectively. 

The boundary conditions (2.59) suggest an expansion of the functions f and 0 
1 

about an arbitrary point on the surface ~0 = (2Rex)~ of the form 

f = ~ [fo(r/) + (~r - ~to) fa (~7) + - . . ]  
0 = 0o(V) + ( ~ -  ~o)0~ ('7) + . - .  

(2.61) 

Substituting these expansions into Equations (2.57) and (2.58), we obtain for the 
leading order terms (f0, 00), the following ordinary differential equations: 

f0'"' ( 4~ )., ,  1 + f 0 - ~ + r / 2  J0 + ~ + r / 2  [(~2 _ ,7 ~) y~ 

o~ + P~foO'o - o 

2,7yo] f~' i ~ (~o ~ + ,7 =) o~, - o 

(2.62) 
(2.63) 
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with the boundary conditions 

fo(0) - 0, f~(0) - 0, 0o(0) - 1 (2.64) 
fo~ v+o(1), 0o-- o as 

It is interesting to note that Equations (2.62) and (2.63) are valid throughout the 
fluid, including at the leading edge ~ - {0 = 0. At this edge, Equation (2.63) remains 
the same, whilst Equation (2.62) reduces to 

,, ( 4),,  
J0 + f o -  77 J0 + f;'=t=Au20; 0 (2.65) 

For boundary-layer flow ~o -+ c~, Equation (2.62) becomes 

f o l l l l  !1 + fof;" + f ; fo  =t= 2AxO; -- 0 (2.66) 

which has previously been found by Lloyd and Sparrow (1970) and they integrated 
it numerically for 0 ~< Az <~ 4, where the parameter Ax is called the Richardson 
number and is defined as 

Grx 
= ( 2 . 6 7 )  

However, for computations at large values of Rez it is more convenient to express 
Equation (2.62) in terms of Ax rather than A in the form 

+ f 0 - ~ 2 + 7 7 2  J0 + ~ + ~ 2  [( ~02-772) f 0 - 2 y f ~  +2Ax 1 +  0 ~ - 0  

(2.68) 
It should be noted that the parameter Ax takes the value 0 in the pure forced 
convection limit (Grz - 0) and c~ in the pure free convection limit (Rex - 0). For 
the pure forced convection case, Equation (2.68) reduces to that considered by Davis 
(1967). 

The local skin friction coefficient, C/, and the local Nusselt number, Nu, ax.e 
defined as follows- 

2~'w Xqw 
C / =  pU~ '  N u  = k f l A T i  (2.69a) 

where Tw and qw are given by Equation (1.35) and can be written, on using Equations 
(2.56), as follows: 

1 1 

C/ - f;'(O), g u  2-  = -0~(0) (2.69b) 

The system of Equations (2.62) - (2.64) has been integrated numerically by 
Afzal and Banthiya (1977) using a quasi-linearisation and the iteration technique as 
described by Bellman and Kalaba (1965). The results were obtained for Pr  - 0.7, 
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0 < Rex < 1000 and 0 ~< Az ~< 40, thus spanning the domain from pure forced 
convection to strongly buoyant (free convection) flow. 

The skin friction coefficient and the local Nusselt number, given by expressions 
(2.69b), are shown as a function of Rex in Figures 2.8 and 2.9 for P r  = 0.7 and 
for several values of Az. In the case of assisting flow the results for Az = 0 (forced 
convection), 0.04, 0.1, 0.4 and 1 are displayed in Figure 2.8, whilst for Az - 4, 10 
and 40 the results are shown in Figure 2.9. These curves show that at a fixed value 
of Re~, as the value of Az increases, C I and N u  increase due to the increased free 
convection interaction. However, for forced convection (Az = 0) CI and N u  increase 
slightly as Rez  increases before decreasing to at tain the boundary-layer regime a t  
large values of Rex (> 1000). For small values of ,~z (< 0.1), CI and N u  decrease 
monotonically to a constant value, whilst for intermediate and large values of Az 
(0.4 - 40) they decrease to a minimum value at some value of Rex as Az increases. 

2.4 
fg(o) 

2.0 

1.6 

],,,.. A~ : 0 (Forced Convection) 

0 . 4  . ~ ,,', , 

0.1 1 10 100 1000 
Rex 

0.7 

0.6 

0.5 

O'4 t 

0.1 

�9 ~ r -  1 

A~: = 0.4 

A~ =0.1 

,\~ = 0 (Forced Convection) 

i 1'0 1()0 1000 
Rex 

Figure 2.8" Variation of (a) f~'(O), and (b) -Oto(O), with nez for Pr - 0.7 and 
Az - 0  - 1 in the case of assisting flow. 

The variation of Cf and N u  in the case of opposing flow is shown in Figure 2.10 
for some small values of Az. It is seen that when Ax increases the curves for both 
Cf and N u  show a maxima before decreasing to the boundary-layer values at large 
values of Rex. 

It should be noted that when using this theory, Afzal and Banthiya (1977) have 
obtained for the case of pure free convection flow (,kz -+ oc) and in the boundary- 
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(~) 
28 

24 
f~'(o) 

20 

16 

12 

A~ = 40 

A.-- 10 

~ = 4  
4 ' ' 
0.1 i 10 16o' I000 1"0 I{}0 

(b) 
1.36 ] .  

l k  1.281 \ 
-o~(o~.2o ~ 

1.~176 k 
0.92 t ~_~ 

o 

o .1  i 
R e  x R e x  

A~ = 40 

A~ - 10 

A ~ = 4  

1000 

F igu re  2.9: Variation of (a) f~'(O), and (b) -fro(O), with Re~ for Pr - 0.7 and 
Ax - 4 - 4 0  in the case of assisting flow. 

(~) 

0.6 

0.5 

f~'(O) 

0.4 

0.3 

0.2 

~ ~ ~  = o 

~ x  = 0.04 

~ A ~  = 0.1 

(b) 
0.46 

0.44 

-o~(o) 
0.42 

0.40 

0.38 

A~ = 0 

" ' " - ~  = 0.1 

0.1 ' 0.36 ~ . . . . . .  io 1oo 1ooo 1 lo 16o 
Re~: Rex 

i000 

Figure  2.10: Variation of (a) f~'(O), and (b) -0~o(0), with Re ,  for Pr - 0.7 and 
Ax = 0 - 0.1 in the case of opposing flow. 
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layer regime (~0 -+ 0) the asymptotic values, 

C f  Re~ - 2.3476 A 4, , = 0.3394 s (2.70a) 
Re~ 

for P r  - 0.7, while the exact values obtained by Oosthuizen and Hart (1973) are 
given by 

C / R e ~  - 1.9195 A 4, ~ = 0.3532 A 4 (2.705) 
Re~ 

However, for pure forced convection flow (s - 0) we have, see Schlichting (1968), 

N u  
C I Re~ - 0.6641, ~ = 0.2927 (2.70c) 

Re~ 

It is clearly seen that the two sets of numerical results (2.70a,c) are different. 
The result for the heat transfer is underestimated by about 4% and that for the 
skin friction is overestimated by about 22%. However, the analysis by Afzal and 
Banthiya (1977) predicts the heat transfer very accurately over the entire range of 
values of Ax, spanning from pure forced convection to pure free convection, while 
the skin friction is predicted accurately for values of Ax beginning from pure forced 
convection to moderately large free convection flows. When the buoyancy effects 
are sufficiently strong, the skin friction is overestimated. Afzal and Banthiya (1977) 
claimed that this discrepancy may be attributed to the fact that the leading term 
for f in Equation (2.61) should be ~ for the buoyancy dominated (free convection) 
limit rather than ~. 

It is worth pointing out the existence of an excellent paper by Hussain and Afzal 
(1988) on mixed convection boundary-layer on a vertical flat plate for both the 
cases of buoyancy assisting and buoyancy opposing flow situations using a computer 
extension of a perturbation series. The first thirteen terms for the uniform wall tem- 
perature case and the first ten terms for the uniform heat flux case were computed. 
It was shown that the results of the direct coordinate expansion when transformed 
suitably by the Euler transformation and an extrapolation of the Domb-Sykes plots 
predict the exact results which are correct to three-digit accuracy for all values of 
the streamwise coordinate, ~, along the plate. 

2.5 Effect  of  P r a n d t l  n u m b e r  on t h e  m i x e d  c o n v e c t i o n  
b o u n d a r y - l a y e r  flow a long  a vert ica l  p la te  w i t h  a 
c o n s t a n t  wall  t e m p e r a t u r e  

Consider a vertical semi-infinite flat plate at a constant temperature T~ which is 
placed in a viscous and incompressible fluid at the ambient temperature Too flowing 
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vertically upward with the uniform velocity U~. It is assumed that  Tw > Too (heated 
plate) or Tw < Too (cold plate). 

This problem has been studied by Lin and Chen (1987, 1988) who obtained nu- 
merical solutions that  are uniformly valid over the entire region of mixed convection 
flows for fluids with Prandt l  numbers in the range 0.001 ~ Pr ~ 10000 using a new 
mixed convection parameter r which replaces the tradit ional Richardson number, 
Ax. Both the cases of buoyancy assisting and opposing flow conditions were treated. 
Thus, the new mixed convection parameter  proposed is given by 

1 

-- ~ (2.71) 
(a2Re ) 

with 
Pr Pr 

al - 1 + P r '  a2 - (1 + Pr)�89 (2.72) 

where Rax is the local Rayleigh number defined as 

I T! 
Ra~: -- (2.73) 

c~fv 

The non-dimensional parameter  ~ not only serves as an index of the relative contri- 
butions of forced convection and free convection flows but also represents a stretched 

1 
streamwise coordinate x since ~ is proportional to x Z. It is also of some importance 

1 1 

to note that  the parameter ~ can readily be reduced to Re~Ra~pr~ and (Ra~Pr)~(Re~Pr)�89 for 

very large and very small values of Pr, respectively. These two non-dimensional 
groups were defined by Bejan (1984) using a scale analysis to indicate the relative 
importance of the forced and the free convection flows, the former for large and the 
latter for small values of the Prandt l  number. 

Additionally, to facilitate the solution procedure, Lin and Chen (1987, 1988) 
introduced the following new variable: 

r 
~(x) -- (2.74) 

1 + ~  

which maps the entire mixed convection domain from 0 ~ ~ < cx) to 0 ~ ( ~ 1. 
Further, they also defined the variables: 

( y ) T - Too (2.75) 
77-  A1 x ' r - ~f)~lf(~,~7), 0(~,r]) - IATI 

where 
1 

1-( 
1 (alRax)~ 

= (1 + r = 
(2.76) 



66 CONVECTIVE FLOWS 

Using these variables, Equations (2.1) - (2 .3)  can be written as 

1 f f , ,  1 ,2 1 ( f ,  Of' . , , 0 f )  (277) P ~ I ' "  + -i (2 + ~) - ~ f  J: (1 + P~)r - ~ (1 - ~) o~ ~ ~ " 

1 (2 +~)fO,  1 ( f ,  OO_o, O f )  0" + ~ - ~ (1 - () ~ (2.78) 

where again the J: signs in Equation (2.77) apply for the cases of assisting and op- 
posing flows. Equations (2.77) and (2.78) have to be solved subject to the boundary 
conditions (2.4) which become 

ol f ' ( ~ , O ) - O ,  ( 2 + ~ ) f ( ~ , O ) - ~ ( 1 - ~ ) O - ( ( ~ , O ) ,  0 ( ~ , 0 ) - 1  for ~ > 0  
1 

f ' - + ( l + P r ) ~ ( 1 - ~ )  2, 0--+0 as 7/-+oc, ~>~0 
(2.79) 

It should be noted that for the special case of pure forced convection flow ~ = 0 
(Rax = 0), Equations (2.77) - (2.79) reduce to the following similarity form 

1 ,, 0 "  1 , Pr fm + ~f f _ 0 ,  + ~fO - 0  

f ( 0 ) = 0 ,  f ' ( 0 ) = 0 ,  0 ( 0 ) = 1  
1 

f ' -+ ( l + P r ) ~ ,  0--+0 as rl -+ oo 

(2.80) 

whilst for the case of pure free convection limit (Rex = 0) where ~ = 1, Equa- 
tions (2.77) -(2.79) become 

3 ! Pr f'" + 3f  f , , _  �89 + (1 + Pr)O -- O, 0" + gfO -- 0 

f (o) = o, f ' ( o )  = o, o(o) : 1 
f ' ~ O ,  0 ~ 0  as 77~ 

(2.81) 

The local skin friction coefficient and the local Nusselt number, as given by 
Equation (2.69a), can now be expressed as 

1 2 

C f Re~ - 2 al (1 -~)  3 
Nu 1 

f"(~, 0), = - ~ 0 ' ( ~ ,  O) (2.82a) 
(o2n~)~- 1 - ~  

for forced convection dominated regime (0 ~ ~ < 1) and 

Nu 1 , 
= - - ;0  (~, O) (2.82b) 

(ol Rax) 

for free convection dominated regime (0 < ~ ~ 1). 
1 

Tile variations of C I Re~ and Nu. i with the mixed convection parameter 
(a2 Rex ) 

are shown in Figure 2.11 for both assisting and opposing flow conditions and different 
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1 

CiRd 
Assisting . ~  

F l o ~  Pr = 0.001 - 10000 

Opposin~g ~ .  Pr = 0.001, 
Flow 0.01, 1, 10 

0 . 1  �9 , ' ,  �9 �9 -' , ' , [ "  , . . . . . . .  

0.1 r 10 
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10 . . . . . . . . . . . . . . .  
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F l o ~  

Pr = 0.001, 0.01, 0.1, / ~ . ~  1 1,1  

0 . 1 '  . . . . . . .  .... ' '  �9 �9 

0.1 1 r 5 

Figure 2.11- Variation of (a) the skin friction coefficient, and (b) the local Nusselt 
number, with ~ for different values of Pr and in the cases of assisting flow and 
opposing flow. 

values of Pr.  As expected, the skin friction increases as the value of r increases for 
1 

assisting flows. For ~ ~< 0.2, the value of Cf Re~ for all values of Pr  are very close to 
a constant 0.6641 for pure forced convection flow (~ - 0), see transformations (2.71). 

1 w 

For opposing flows, the value of C:f Re~ for each value of Pr  decreases from 0.6641 
to a small positive value as the value of ~ increases from 0 to a critical value near 
which the wall skin friction rapidly decreases and the numerical solution diverges. 
The boundary-layer approximation breaks down at this critical point. Further, we 
see from Figure 2.11(b) that  the rate of heat transfer increases as ~ increases for 
buoyancy assisting flow and decreases for buoyancy opposing flow, this decrease 
being very sharp when the point of breakdown of the boundary-layer approximation 
is reached. Also, the variation of N.____~_ with Pr over the range 0.001 ~< Pr  ~ 10000 

Ra~ 
for the buoyancy assisting flow case is depicted in Figure 2.12 for some values of the 
variable ~. The figure shows that, for each value of ~, - ~  increases approximately 

Ra~ 
linearly with Pr  for Pr <~ 0.1 and it increases slowly with Pr  as Pr  increases from 
0.1 to 100 and then it is almost constant for Pr  >~ 100. 

Finally, Tables 2.3 and 2.4 compare the numerical results for the local heat 
transfer rate in both the cases of pure free convection (~ - 1 ) a n d  pure forced 
convection (~ - 0) limits. Further, Table 2.4 contains results given from the following 
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N---uru~ 2 ___ ~ = 0 . 2  

Ra~ 1. ~. ~ = 0.3 
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Pr 

Figure 2.12: Variation of the local Nusselt number with Pr in the case of assisting 
J~OW. 

Table 2.3: Values of ~ for pure free convection (~ - 1) as obtained by different 
Ra2 

authors. 

100 
1000 

10000 

Ostrach Ede Kuiken Lin and Chen 
(1952) (1967) (1968) (1988) 

i 

0,162 

0.4010 

0.4650 
0.4899 , 
0.4987 

0.180209 

0.401029 
0.458276 
0.464 
0.490012 
0.499 
0.501431 

0.4185 

0.4658 
0.49O04 
0.49863 

0.10494 
0.18017 
0.28925 
0,40087 
0,45793 
0.46425 
0.48985 
0.49854 
0.50125 

cor re la t ion  equat ion,  as p roposed  by Lin and  Chen  (1988), 

1 
N u  0.33872 P r  ~- 

1 1 

Re5 (0.05 + Pr)~  
(2.83) 

It  can  be seen tha t  the numer ica l  resul ts  and  those given by re la t ion  (2.83) are in 

excellent  agreement  and t h a t  the  corre la ted resul ts  are wi th in  a b o u t  5% error  for 

values of the  P r a n d t l  n u m b e r  in the  range  0.001 ~ P r  <~ 10000. Since the  numerical  
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Table 2.4: Values of ~ for pure forced convection (~ - O) as obtained by different 
R e  2 

authors. 

0.0001 

Evans 
(1962) 

_ . .  

0.00558773 

Lin and chen 
(1988) 

0.0055877 

Equation (2.83) 
Lin and Chen 

(1988) 
o oo55787 

% Error in ' " 
Equation (2.83) 

0.001 0.0173156 
0.01 0.0515884 
0.1 0.140029 
1 0.332057 

10 0.728136 
100 1.57183 
1000 3.38707 

10000 7.29734 
. . . . . . . . . .  

0.017313 
0.051587 
0.14000 
0.33204 
0.72895 
1.5715 
3.3842 
7.2974 

. 

0.017589 
0.054136 
0.14695 
0.33598 
0.72914 
1.5721 
3.3872 
7.2975 

, ,  

-0.16 
+ 1.58 
+ 4.93 
+ 4.94 
+ 1.18 
+0.14 
+0.017 
+ 0.004 
+ 0.002 

solutions have been obtained step-by-step from ~ = 0 to ~ = 1 using the Keller-box 

method,  the accuracy of the solution at ~ = 1, compared wi th  those of Kuiken (1968) 

in Table 2.3, confirms tha t  Lin and Chen 's  results are uniformly valid over the whole 
range of values of ~ from 0 to 1. Fur thermore ,  it can be seen from Table 2.4 tha t  in 

the case of pure  forced convection flow (~ = 0) the results obta ined by Lin and Chen 

(1988) are in excellent agreement  with those of Evans (1962) and this confirms again 

the accuracy of the finite-difference me thod  employed by Lin and Chen (1988). 

2.6  M i x e d  c o n v e c t i o n  b o u n d a r y - l a y e r  f low a l o n g  a ver-  
t i c a l  f lat  p l a t e  w i t h  a v a r i a b l e  h e a t  f lux  for a l arge  
r a n g e  o f  v a l u e s  o f  t h e  P r a n d t l  n u m b e r  

Consider the s teady mixed convection flow of an u n p e r t u r b e d  free s t ream velocity 
U (~) along a vertical semi-infinite flat plate which is hea ted  or cooled by a variable 
wall heat  flux qw (x) in a viscous incompressible fluid of ambient  t empera tu re  Too. 
Since in this case the pressure gradient  term in Equa t ion  (1.2) can be obtained 

from Bernoulli 's  equation, i.e. - o~ --dV ~-~ -- U h-~, the basic boundary- layer  equations 

governing this problem can be wr i t t en  in non-dimensional  form as, see Merkin et al. 
(1991), 

Ou Ov 
+~-~ - 0 (2.84) 

Ox 
Ou Ou dU 02u 

+ = + + U~x 
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OT 07' 1 02T 
u--~x + v O---y = Pr  Oy 2 (2.86) 

where the mixed convection parameter A is now defined as 

G r  
,X = 5 (2.87) 

Re~- 

with A > 0 (assisting flow) or A < 0 (oppos ing  flow). 
solved subject to the boundary conditions 

These equations have to be 

u - - 0 ,  v - - O ,  OT _ 0--~ - -qw(X)  on y - O, x > 0 (2 88) 
u ~ U ( x ) ,  T - + O  as y - + c o ,  x > 0  " 

Equations (2.84) -(2.86),  subject to the boundary conditions (2.88), admit a 
similarity solution if U(x) and qw(X) take the following forms: 

U ( x )  - X TM, qw(X) - x 1(5m-3) (2.89a) 

and then we have 

1 (m-~-l) x2m--1 1 (m--l) r  f(r/), T -  O(r/), ~7-YX~- (2.89b) 

Using the transformations (2.89), Equations (2.84) -(2.86) become 

1 (m + 1) f f "  f,2 f ' " + ~  + r e ( l -  ) + A 0 - 0  (2.90) 

1 Ot _ 1 0 " +  ( m + l ) f  + (1  2m) f ' O -  0 (2.91) p--; 

and the boundary conditions (2.88) reduce to 

e f(0), 0, f '(0) 0, 0 ' ( 0 ) - - 1  
(2.92) 

f -+1, 0--+0 as ~ - + ~  

Equations (2.90) - (2.92) were studied by Merkin and Mahmood (1989) for the 
Prandtl number unity, i.e. Pr  = 1. In the following paper by Merkin et al. (1991) 
they extended this study to include the behaviour of the similarity solution of these 
equations for both very small and very large values of Pr.  They found, by integrating 
once Equation (2.91) subject to the boundary conditions (2.92), 

f0  ~ 
(5m - 1) f 'Od~ - 2 (2.93) 

P r  

which shows that Equations (2.90) and (2.91) possess a solution if only if rn > 51- and 
therefore we assume throughout the remainder of this section that this condition is 
satisfied. 
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2.6.1 L a r g e  v a l u e s  of  P r  (>> 1) 

The problem of free convection boundary-layer over a vertical flat plate at very large 
and very small values of P r  has been studied by Kuiken (1968). In that problem he 
found that the boundary-layer divides into two distinct regions, namely a very thin 
inner thermal region and an outer region which is at the same temperature as the 
ambient fluid. This concept applies also to the present problem. A balance of the 
terms in Equations (2.90) and (2.91) suggests that in the inner layer we must scale 
the equations as follows: 

2 1 1 

f - P r - ~ F ( ~ ) ,  0 -  P r - ~ g ( ~ ) ,  ~ - Pr~rl  (2.94) 

where F and H are given by the equations 

F'"  + P r  -1 ( 1  (m  
\ 

1 2 

+ 1) F F "  - m F  '2 + P r - ~ m  + P r - ~ A H  - 0 (2.95) 

1 (m + 1 ) F H '  + (1 - 2 m ) F ' H  - 0 (2.96) H" + -~ 

and primes now denote differentiation with respect to ~. These equations have to 
be solved subject to the boundary conditions (2.92) which become 

F ( 0 ) - 0 ,  F ' ( 0 ) - 0 ,  H ' ( 0 ) - - 1  (2.97) 

and the remaining conditions which are valid as ~ --+ oo are to be found through a 
matching with the solution in the outer region. 

Equations (2.95) and (2.96) suggest that we seek a solution, when P r  >> 1, of 
the following form: 

F -- Fo(~) + P r - � 8 9  + . . .  (2.98) 
H = H o ( ( )  + P r - � 8 9  + . . .  

where Fo, F1 and Ho are given by the equations 

F o  I t !  ~1 i l l !  = 0 ,  11 + m = 0  (2.99) 

Ho,, +21 (m + 1)FoH~ + (1 - 2m)F~Ho - 0 

The boundary conditions (2.97) then become 

(2.100) 

Fo(0) - 0, F~(0) - 0, FI(0) = 0, F~(0) - 0, H~(0) = - 1  (2.101) 

The functions F0 and F1 are easily seen to be given by 

al ~2 _ 6~3  (2.102) Fo = 2 FI  = 
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where a0 and al are arbitrary constants which have to be determined by matching 
the solution (2.98) to the solution in the outer region. Using expressions (2.102), 
Equation (2.100) becomes 

1 
H~' + ~ (rn + 1)ao~2H~ + (1 - 2rn)ao~Ho - 0 (2.103) 

Since in the outer region of the boundary-layer the fluid is isothermal, then 0 = 
0 in this outer region and the matching temperature yields H0(oo) = 0. Then 
Equation (2.103) has a solution which can be expressed in terms of the confluent 
hypergeometric function, b/, as follows: 

( 12 ) - } F [ ~ ( 5 m - : ) ] e _ S l / l [  ( ) ]s m+i 2 5 m -  1 2 
Ho (2.104) 

a0 (m + 1) 3F (2) 3 rn + 1 ;3; 

where F is the gamma function and s - - ~ a o ( m  + 1)~ 3. It should be noted that 
Equation (2.103) requires a0 to be positive, which we will show to be necessary when 

1 m > g .  
On the other hand, the governing Equation (2.90) in the outer boundary-layer 

region, where 0 -- 0, reduces to the well-known Falkner-Skan equation, see Falkner 
and Skan ( 1931 ), 

, , 1  f f,, (f,2) f + ~ ( m + l )  + m  1 -  - 0  (2.105a) 

and the boundary condition (2.92) requires that 

f '  --+ 1 as 77 --+ co (2.105b) 

Thus in order to match with the solution in the inner region, we require that 

f ~ ( _ ~ r / 2  m 3 -'~ rl "at-...) -t- P r -  -g (air/2 + . . . )  (2.:0Sc) 

for small values of ~ (<< 1). Hence, the solution of Equation (2.105a) in the outer 
region is of the form 

f - fo(rl) + P r - � 8 9  f: (rl) + . . .  (2.106) 

where fo(r/) is given by equation 

So,,,' + ~ (m + 1) for; '  + rn 1 - - 0 (2.107a) 

which has to be solved subject to the boundary conditions 

ao r/2 f o'~ 2 + . . .  for 
f ~ l  as 

<< 1 (2.107b) 
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This equation determines, for a given value of m, the constant a0. It should be noted 
that  for the values of m being considered in this section, i.e. m > ~, the solution of 
Equations (2.107) will have a0 > 0 as required. 

From Equations (2.94), (2.102) and (2.104), we have for P r  >> 1, 

f"(O) - ao + O ( P r - � 8 9  

3(re+l) ) 12 
0 ( 0 ) -  P r  - 1  3Y'(g) 1-'( llrn--1 2 3(m--I- 1) ) ao(m+l) + O ( P r - � 8 9  

(2. os) 

For m - 3 (uniform wall heat flux), Merkin et al. (1991) have found that  a0 = 
0.97532 and hence expressions (2.108) become 

f"(O) -- 0.9753 + . . . ,  
1 

0 ( 0 ) -  1.5835 P r - ~  + . . .  (2.109) 

for Pr  >> 1. 
The variations of f "  (0) and 0(0) as a function of P r  obtained from the numerical 

solution of Equations (2.90) - (2.92) and from the asymptotic solution (2.109) are 
illustrated in Figure 2.13 for m - 53- and A - -0 .4,  1 and 5, where the full numerical 
solution is shown by the solid lines, whereas the asymptotic solution (2.109) is shown 
by the broken lines. Figure 2.13 shows that the asymptotic  solutions approach the 
exact numerical solutions for large values of Pr.  We also note that  f "  (0) approaches 

4 

f"(O) 

3 

. .  , . , . , . ,, 

A=5 

1 ~A = -0.4 

| ,, 
0.0 0.4 0:s 

(b) 

2.0 

o(o) 

1.5 

1.0 

0.5 

'1.2" 1. 2.0 0.0 
'" t~' 

Pr 

\ 

A 

,k = - 0 . 4  

.,. m , �9 , . . . , 

0:4 0.8 1.2 1.6 2.0 
Pr 

Figure 2.13: Variation of (a) f"(O), and (b) 0(0), with Pr for m - ~ (uniform 
wall heat flux). The numerical solution is indicated by the solid lines and the 
asymptotic solution (2.109) is indicated by the broken lines. 
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its asymptotic value for large values of P r  from above for )~ positive and from 
below for A negative. This is to be expected, since for A > 0 the free convection 
is assisting the boundary-layer development with the consequence that it increases 
the skin friction above the purely forced convection value. In contrast, for ~ < 0 
the buoyancy forces oppose the boundary-layer development and hence reduces the 
skin friction below the forced convection value. The opposite is the case for the 
constant wall temperature situation. The increased flow rate close to the wall for 
,k > 0 has the effect of reducing the temperature of the fluid near the wall and 
hence the asymptotic value is approached from below. While, for A < 0, the fluid 
velocity near the wall decreases, giving rise to an increase in the wall temperature 
and consequently the asymptotic (forced convection) limit is approached from above. 

2 .6 .2  S m a l l  va lue s  o f  P r  ( ~  1) 

When P r  ~ 1, the boundary-layer again divides up into two regions, with there 
being an inner isothermal region next to the wall and an outer inviscid region. 
Merkin et al. (1991) obtained the scalings for these regions, namely in the inner 
region, .f and 0 can be scaled as 

1 2 1 

f = P r - ~ h ( z ) ,  O = P r - ~ r  z = Pr  ~orl (2.110) 

Thus, Equations (2.90) and (2.91) become in the inner region 

1 hh" m h  p2 2 h"' + ~ (m + 1) - + m P r ~  + Ar - 0 (2.111) 

[1 (m + 1 ) h r  ( 1 -  2m)h'r  - 0 (2 112) r + P r  -~ 

and the boundary conditions (2.92) give 

1 

h(0) = 0, h'(0) = 0, r = - P r ~  (2.113) 

along with the required matching conditions in the outer region; here primes denote 
differentiation with respect to z. The form of Equations (2.111) - (2.113) suggests 
that we look for a solution, when P r  << 1, of the form 

2 1 

h - ho(z) + P r ~ h l ( z )  + pr~_h2(z) + . . .  

r - r  + + + . . .  
(2.114) 

where h0, r r r -.. are given by 

h~'+~l  (m + 1)hoh~ - mh'o 2 + )~r = 0 (2.115) 

r  r  r  (2.116) 
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and these equations have to be solved subject to the boundary conditions 

h0(0) - 0, h~(0) - 0, r - 0, r - 0, r - - 1  (2.117) 

The solution of Equations (2.116) is given by 

r = b0, q~l - -  bl, r - - z  + b2 (2.118) 

where b0, bl and b2 a r e  constants which are to be determined by matching with the 
outer region solution and Equation (2.115) then becomes 

h,. 1 (m + 1) hoh~ - mh~o 2 + s - 0 (2.119) o+~ 
Assuming that  A > 0, i.e. we have assisting flow, and applying the transformation 

1 

h 0 -  ~--~] h0(~),  
1 

-2--()~bom)~ z (2.120) 

to Equation (2.119) gives, see Merkin (1989), 

~m 1 , _-I 2 
o + ~ m ( m + l )  hoh o - h  o + 1 - 0  (2.121a) 

which has to be solved subject to the first two boundary conditions from (2.117), 
namely 

ho(O) - O, h'(O) - 0 (2.1215) 

It can easily be seen from Equation (2.121a) that the outer boundary condition on 
h0 must be 

h0 .-~ 5 + Co as ~ -+ c~ (2.122) 

where Co is an unknown constant. Equation (2.121) has been integrated numerically 
_-=--tl 

by Merkin (1989) who has found, for m = 3, that  the reduced skin friction h 0 (0) and 

the constant Co have the values h0(0 ) - 1.25913 and Co - -0.61782. These results 
show that  the mixed convection flow over a vertical flat plate with a uniform heat 
flux for small P r  can be obtained, wholly independently of the mixed convection 
parameter  A. 

For the outer region the scalings are as follows: 

3 2 2 

f = P r - ~ H ( Y ) ,  0 - P r - ~ G ( Y ) ,  Y - Pr~r] (2.123) 

with Equations (2.90) and (2.91) becoming 

I ( m + I )  H H , , _ m H  ' 2 + m P r ~ + A G = O  P r H " '  + -~ 

1 
G" + ~ (m + 1 )HG '  + (1 - 2m) H ' G  = 0 

(2.124) 

(2.125) 
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and primes now denote differentiation with respect to Y. From the boundary condi- 
tions (2.92) as r/--+ c~ and the scalings (2.123), we obtain that  the outer boundary 
conditions for H and G are given by 

1 

H ' - + P r ~ ,  G ~ O  as Y ~ o c  (2.126a) 

The behaviour of the solution of Equations (2.124) and (2.125) for small values of 
Y is obtained from matching it with the solution of Equations (2.95) and (2.96) in 
the inner region (as ~ -+ oc). This can be done in a similar way as that  described 
by Merkin (1989). Thus, after some algebra, we obtain 

1 / 
. 

2 

G ~ bo - Y + . . .  + P r ~  (bl + . . . )  + . . .  
for Y << 1 (2.126b) 

where b0 and bl are, as yet, unknown constants. 
The leading-order terms (H0, Go) in an expansion of the functions H and G in 

powers of P r  (<< 1) then satisfy the equations 

1 
-: (m + 1 ) H o H ~ ' -  m H ~  2 + AGo - 0 (2 127) 
2 

If 1 ! I 
G O + ~ (m + 1) HoG o + (1 - 2m) HoG o = 0 (2.128) 

along with the boundary conditions 

1 

Ho ~ ~ Y + . . . ,  

G 0 ~ 0  as Y - - + ~  

Go ~ b 0 -  Y + . . .  for Y < < I  
(2.129) 

Equations (2.127) - (2.129) have been integrated numerically for m - ~ and A - 1 by 
Merkin (1989), who found b0 - 1.31411 and H0(oc) - 1.37056. From this solution, 
we have 

f"(O) -- (Abo) ~ m - � 8 8  + . . . -  1.7559Pr-~o + . . .  
2 2 

0(0) -- boPr--~ + . . . -  1.3141Pr-~ + . . .  
(2.130) 

for P r  ~ 1. 

The quantities f"(0) and 0(0), as obtained from the numerical solution of Equa- 
tions (2.90) - (2.92) for small values of Pr ,  with m - 53- and A - 1, are shown in 
Figure 2.14 (by the solid lines) together with the corresponding asymptotic solution 
(2.130) (shown by the broken lines). These figures show a good agreement between 
the expansions (2.130) and the numerically determined values of f"(O) and 0'(0) for 
P r  ~ 1 and this confirms the present theory. 

It is worth pointing out that  the situation for mixed convection at small values of 
the Prandt l  number is quite different to that at large values of the Prandt l  number. 
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Figure 2.14: Variation 4 (a) f"(O), and (b) 0(0), with Pr  for m = 3 (uniform 
wall heat flux) and )~ - 1. The numerical solution is indicated by the solid lines 
and the asymptotic series solutions (2.130) are indicated by the broken lines. 

In the latter case the basic (leading order) solution is the purely forced convection 
solution, whilst in the former case, the leading-order solution is the purely free 

convection solution. The effect of the outer flow first appears at O ( P r ~ )  
J ~ 

through 
k J 

the outer boundary conditions (2.126a), giving rise to a velocity 'overshoot' at small 

values of the Prandtl  number, namely O "  "(Pr-~}, as can be seen from Figure 5 of 
k ~ 

the paper by Merkin et al. (1991). 
Further, Merkin et al. (1991) have applied this theory to the particular case 

of mixed convection flow along a vertical flat plate with a uniform surface heat 
flux, qw - 1, and a uniform free stream velocity, U _ 1 (m -- 0), and in these 
cases the governing equations become non-similar. This problem is governed by the 
boundary-layer equations 

03r I 0 r 1 6 2  0r 02r 4 - T = 0  (2.131) 
Oy 3 Ox Oy 2 Oy OxOy 

02T ( 0 r  0 r  
Oy---- ff + P r  Ox Oy Oy Ox - 0  (2.132) 

which have to be solved subject to the boundary conditions 

a~b OT r  ~-~=0, ~ = - 1  on y = O ,  x > O  
0r _+ 1 T --+ 0 as y --4 co x > 0 (2.133) 
Oy ~ 
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where the =t= signs again refer to the assisting and opposing fluid flow cases, respec- 
tively. These equations have been solved numerically by Merkin et al. (1991) for 
both large and small values of Pr.  It was found again that for large values of Pr  
the solution approaches the forced convection limit, whereas for small values of Pr  
the free convection dominates the flow. This manifests itself for the opposing flow 
case by delaying the onset of the separation of the boundary-layer from the plate, 
as can be seen from Figure 2.15, where the plot of the location of the separation 
point, Xs, as a function of Pr  (xs is the point where the skin friction becomes zero) 
is represented by the dots. Merkin et al. (1991) have shown analytically that the 
separation point Xs moves towards the leading edge of the plate with 

1 

xs (Pr)  ~ 0 . 2 1 P r ~  for P r  << 1 (2.134) 

The expression (2.134) is also shown, by the solid line, in Figure 2.15 indicating a 
reasonable agreement with the numerical solution of Equations (2.131) - (2.133) to 
moderately large values of Pr,  i.e. up to Pr  ~ 1.5. 

0.3 

xs(Pr) ! 

0.2! 

0.1 

J 

0 . 0  ' ,,., i 
0.0 0:5 1.5 210 2:5 

P r  

Figure 2.15" Variation of the location of the separation point, xs(Pr), with Pr in 
the case of opposing flow. The numerical solutions are indicated by the symbols �9 
and the series solution (2.13~) is indicated by the solid line. 

2 .7  T h r e e - d i m e n s i o n a l  m i x e d  c o n v e c t i o n  b o u n d a r y -  
l ayer  f low n e a r  a p l a n e  o f  s y m m e t r y  

Three-dimensional mixed convection boundary-layer flows appear to have received 
relatively little attention in the literature so far. Such flows could arise where buoy- 
ancy introduces significant cross-flow into an otherwise two-dimensional flow, or in 
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three-dimensional flow configuration to which there is a complementary buoyancy 
driven flow. Earlier examples of three-dimensional mixed convection boundary-layer 
flows are those due to Yao and his associates, see Yao (1980) for a detailed list of 
references, in which they considered the laminar boundary-layer over a heated hor- 
izontal or vertical cylinder with its axis aligned parallel or normal to a uniform free 
stream and normal or parallel to the direction of gravity. Another example of a 
three-dimensional flow is that considered by Eichhorn and Hasan (1980) where the 
buoyancy force acts in a direction which is perpendicular to that  of the free stream 
flowing past a wedge. More recently, Ridha (1996, 1997) has discovered a very in- 
teresting class of convective boundary-layer flows which falls into the category of 
three-dimensional flows. It refers to the steady three-dimensional mixed convection 
boundary-layer flow in the vicinity of the median plane of symmetry of a finite span 
wedge where one of the wedge surfaces is kept vertical or horizontal. Similarity solu- 
tions were obtained for this geometry for both the cases of uniform wall temperature 
and uniform wall heat flux distributions and also for the mixed convection flow near 
the stagnation point of a three-dimensional body. 

In what follows, we report on some of the results obtained by Ridha (1996) for 
the case when one of the wedge surfaces is kept vertical and its temperature, Tw, or 
heat flux, qw, is assumed variable, while the ambient temperature T~ is constant. 
This physical configuration and the Cartesian coordinates (x, y, z) are shown in Fig- 
ure 2.16, where z is in the vertical upwards direction, the wedge leading edge is given 
by z = y = 0 and the median plane of symmetry is at x = 0. It can be shown that 
the fluid velocity components of the inviscid flow associated with the coordinates 

To(z) or q,o(~) 

Figure 2.16: Physical model and coordinate system. 
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(x, y, z) may be written as (U, V, W) - U~ (~)m ( - m  (~z) , - m  ( Y ) ,  1). This sug- 
gests that it is possible to look for a boundary-layer solution in the vicinity of the 
median plane of symmetry in the form: 

~(~, v, z) - ~ 0 ( z ,  y) + ~a~  (z, y) +. . .  
V(X, y, Z) -- Vo(Z, y) + X2Vl (Z, y) + . . .  
~(~, v, ~) - wo(z, v) + ~ 2 ~  (z, v) +. . .  
T(x ,  y, z) -- To(z, y) + X2Tl (z, y) + . . .  
p(~, y, z) - po(z, v) + �89 v) + . . .  

(2.135) 

z X with (~) ~ O(1), (T) << 1, where (u ,v ,w)  are the velocity components along 
the ( x , y , z )  axes. Using expressions (2.135), along with the Boussinesq and the 
boundary-layer approximations, Equations (I.1) - (I.3) can be written, to the lowest 
order in x, as follows: 

Ov Ow 
~ + G  + Oz = o 

Ow Ow 1 019o 
V-~y+W 0--2 = p Oz 

Ou Ou Pl + u ~  
~2 + v ~  + W O z  _ p 

OT OT u 02T 
v-~y + w O--z = Pr Oy 2 

02w 
~- u-O--~y2 =t=.qfl ( T -  Too) 

02u 

Oy 2 

and these equations have to be solved subject to the boundary conditions 

(2.136) 

(2.137) 

(2.138) 

(2.139) 

OT 
o~i 

u - O ,  v - O ,  w - O  

Tw - Too + T* ( ~ ) 2m-1 (VWT) on 

- - T * ( ~  )~ ~-~ -- ~i+m)L~ (}) 2 (VHF) 

u ~ U(z) - m } ___~_ (zf )m-1 
aS 

w ~ W ( z ) -  u~  (~)m, T -+ T~ 

y = 0 ,  x > 0  

y -+ oo, x > 0  

(2.140) 

where the subscript index 0 for the flow variables (u, v, w ,T )  has been dropped 
for convenience, T* > 0 and the 4- signs in Equation (2.137) again designate the 
assisting or opposing flow cases, respectively. The pressure terms P0 and pl are 
determined from the free stream conditions and on using Equations (2.137) and 
(2.138) are given by 

d W  Pl _ U 2 + w dU 1 0 p o  = W ~  - ~ (2.141) 
p Oz d z '  p dz 

Next, Ridha (1996) has shown that Equations (2.136) - (2.140) admit a similarity 
solution on introducing the stream functions r and r as well as an appropriate 
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transformation of the variables, namely 

0r (0r ) 0r 
u - N ,  v - -  ~ - ~ + r  , w - ~ - ~  

1 
1 

r - l+m r = 
1 m - - 1  

T -  Too - T* (})2m-1 0(77/, 77 = y (12-~v~U~)~ (}) 2 

(2.142) 

With these variables, Equations (2.136) - (2.139) reduce to the form: 

S'" + [(2 - /~)  h + S]S" +/~ "[1 - S '2)" + (2 Z) 0 0 

h'" + [(2 - ~) h + S] h" + [2 (1 - /~ )  f ' -  (2 - /~ )  h'] h' = fl (3~ - 4) 
4 ( 2 -  fl) 

1 0" 0 I Pr  + [(2 - fl) h + s] - ( 3 f ~ - 2 )  S ' 0 - 0  

(2.143) 

(2.144) 

(2.145) 

and the boundary conditions (2.140) become: 

f ( 0 ) = 0 ,  h ( 0 ) = 0 ,  f ' ( 0 ) = 0 ,  h ' ( 0 ) = 0  
0 ( 0 ) = 1  (VWT), 0 ' ( 0 ) = - 1  (VHF) 

h ~  - 2 ~ - 0--+0 as ~--+c~ f '  --+ 1, 2( f~), 

(2.146) 

where fl is the Falkner-Skan parameter  and A is the mixed convection parameter, 
and these quantities are defined as 

2m Gr 
- ~ ~ - (2.147) 

1 + m '  Re 2 

It should be noted that the free convection results may be obtained when considering 
;~ --+ c~. To obtain this asymptotic case, we may use the following transformation: 

S -  A�88 h - -  A�88 0 = 0"(~), ~?-  A-�88 (2.148) 

which is similar to the one used by Mahmood and Merkin (1988) for the axisym- 
metric mixed convection boundary-layer along a vertical circular cylinder. 

Equations (2.143) - (2.146) were solved numerically by Ridha (1996) for Pr  - 1, 
f~ _ 2 (uniform wall temperature),  ~ - 3 (uniform wall heat flux) and fl = 1 
(three-dimensional stagnation point). However, the results presented here are only 
for the case of a prescribed wall temperature distribution (~ - ]).  Before presenting 
these results, it is interesting to note that Equations (2.143) - (2.146) possess dual 
solutions for both the parameters fl and A, which are referred to as the upper (U) and 
the lower (L) branch solutions according to whether the skin friction S"(O) has, for a 
given value of fl or A, the higher or lower value, respectively. Therefore, according to 
the terminology used by Ridha (1996) it is denoted, for a given fl the upper branch 
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(U) solution, the upper branch solution obtained when varying A by (UU) and the 
corresponding lower branch solution by (UL), with the first letter referring to the 
/~ upper branch solution. Likewise, for a given /~ the lower branch (L) solution, 
it is denoted by the upper and lower branch solutions on varying A by (LU) and 
(LL), respectively. However, it is worth mentioning that Ridha (1996) has shown 
for a number of two-dimensional mixed convection examples that dual solutions are 
associated not only with opposing flow situations, but they exist also for assisting 
flow regimes. He also showed that dual solutions do not always terminate in the 
singularity as A --+ 0- and a similar tendency was also observed for the present 
three-dimensional fluid flow case as described by Equations (2.143) - (2.146). Some 
characteristic results are given in Table 2.5 for Pr  - 1 when A - As, the values 
of A where f"(0) - 0 and the boundary-layer separates, location of the bifurcation 
point A - Ac or the critical point, where the dual solutions branch out and beyond 
which no solutions are obtained, for the singularity point A - At, where the (UL, 
LL) lower branch solutions may terminate and also for A - A0, where the wall heat 
flux 0~(0) becomes zero. We notice from this table that separation takes place for 
smaller values of A on the (LU) branch solutions than for the (UU) branch solutions. 
Also, the values of A ( -  Ac) are smaller for the (L) branch solutions than for the 
(U) branch solutions. The same applies for values of A (= A0) on the (LL) and the 
(UL) branch solutions. 

Table 2.5: Characteristic results for the separation, bifurcation, zero wall heat flux 
and terminal singularity points for the case of the three wall temperature distribu- 
tions. 

UU, A~ LU, A~ 

Separation 1 Bifurcation I I rmina, .... 
Point, f" (0) = 0 or Critical Point Singularity Point 

U, A~ L, A~ UL, A~ LL, At 

2i i -1.1589 
-1.3589 

1 -2.1386 

-0.9804 I -1 .5356 
-0.1904 1.7510 
-1.9924 2.5640 

-1.2620 I -0 .0390 
-1.4875 2.1230 
-2.3260, - 

-0.0145 
2.5155 

Zero Wall Heat 
Flux, O' (0) = 0 

UL, Ao LL, Ao 

-0.9950 
-1.9427 

--0.9639 
--1.8297 

Variations of the main and secondary skin friction coefficients, f"(0) and h"(0), 
as well as for the heat transfer parameter, 0'(0), are shown in Figure 2.17 for the 
case of a prescribed wall temperature distribution and Pr  = 1. It can be seen from 
Figure 2.17(a) that, in the assisting flow case, there exists a value of the buoyancy 
parameter A = Ab, say, in the vicinity of which the (UU) and (LU) curves of f"(0) 
cross each other. For A > Ab, f"(0) pertaining to the former solutions has a lower 
value than that belonging to latter solutions; in the case of the prescribed surface 
temperature this value is Ab ~ 0.3 at /~ -- 32- which increases up to Ab "-~ 1.25 for 
fl = 1. Of course, the reverse situation takes place for A < ~b but the significance of 
such a point is not clear yet. 
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Figure 2.17: Variation of (a) f"(O), (b) h"(O), and (c) 0'(0), with )~ for Pr  - 1 in 
the case of a prescribed wall temperature. The upper and lower branch solutions 
are indicated by the solid and broken lines, respectively. 

Further,  Figure 2.17(b) shows that  the secondary skin friction h"(0), i.e. the 
skin friction in the x direction, takes larger values for the (UL, LL) solutions. This 
should not be taken to have a stabilising effect on the boundary-layer since the 
secondary velocity profile hi07) undergoes a reversal in the flow direction. This is 
expected to influence the flow stability, which depends through a three-dimensional 
boundary-layer upon the secondary as well as on the main flow. As regards the heat 
transfer rate,  we see from Figure 2.17(c) that  it decreases towards its zero value after 
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bypassing the critical point Ac as )~ increases within the opposing flow regime and 
always for the (UL, LL) branch solutions. Therefore, the solutions have no longer 
any physical meaning. 

Finally, Figure 2.18 shows the fluid velocities and the temperature profiles for 
fl - 32- and P r  - 1 in the case of a prescribed surface temperature. Both the upper 
branch (left) and the lower branch (right) solutions are given. It is seen that the 
main fluid velocity ft(u ) and temperature 0(r/) profiles display similar trends for 
both branches, with the lower branch giving rise to a thicker boundary-layer. In 
contrast, the secondary ht(~/) fluid velocity profiles undergo a single reversal in the 
(U) solutions, while a double reversal is observed in the (L) solutions. Furthermore, 
we see that the main fluid velocity undergoes a double reversal of direction for both 
the (UL,LL) solutions, with the reversal flow undershooting the value of - 1  for some 
values of A < 0. Then, as we proceed from the wall out into the boundary-layer it 
is observed that the secondary flow undergoes a complex sequence of flow reversals 
for both the upper and the lower branch solutions which are characterised by a twin 
positive peak profile. Other very interesting flows properties have been described by 
Ridha (1996, 1997) and the interested reader should consult these papers for further 
details. 
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2 Figure 2.18" Velocity, f ' ( y )  and h'(~), and temperature, 0(~), profiles for ~ - 
and Pr  = 1 with A = 0, -1 .2 ,  -1.5356, -1 .3 ,  - 1 ,  -0 .8 ,  -0 .6 ,  -0.5,  -0.4,  -0.3,  
-0 .2,  -0 .07,  -0.056 pertaining to the upper branch solutions (left) and A -- O, 
-1 ,  -1.262,  - 1 ,  -0.8,  -0 .6 ,  -0 .4 ,  -0 .2,  -0 .1,  -0.05,  -0.03,  -0.024, -0.021 
pertaining to the lower branch solutions (right). Values of A corresponding to the 
respective profiles are as per order of numbering. 



Chapter 3 

Free and mixed convection 
boundary-layer flow past 
inclined and horizontal plates 

3.1 I n t r o d u c t i o n  

Free and mixed convection flow adjacent to inclined and horizontal surfaces bounded 
by an extensive body of fluid are of considerable importance in micrometeorological 
and industrial applications. Stewartson (1958) and Gill et al. (1965) were the first 
to give a theoretical description of the boundary-layer flow over a horizontal surface 
under the action of the buoyancy force. Since there is no component of the buoyancy 
force along the surface, the accelerating flow must be driven indirectly by a buoyancy 
induced pressure gradient. Qualitative confirmation of this model is proved by the 
experiments of Rotem and Claassen (1969). The flow below the heated plate cannot 
be described on the basis of boundary-layer theory. Stewartson's theory stipulates 
that the boundary-layer solution is not applicable to the region near the central line 
of the plate where the flow will turn and proceed to feed a 'theoretical jet '  above 
the plate if the plate is not too wide. On the other hand, if the experimental plate 
is sufficiently wide, it has been observed by Rotem and Claassen (1969) that the 
gravitationally unstable layer will separate from the heated plate and give rise to 
typical eddying convection well ahead of this axis of symmetry. 

Another type of important convective heat transfer problem is the free and mixed 
convection boundary-layer flow near a flat plate which is inclined at a small arbi- 
trary angle to the horizontal or vertical. Jones (1973) appears to be the first who has 
theoretically studied the free convection boundary-layer near a flat plate at small 
inclinations to the horizontal by taking into account both the parallel and the nor- 
mal to the plate temperature gradients which drive the fluid flow and both positive 
and negative inclinations of the plate were considered. When the inclination of the 
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plate is positive, both of the mechanisms which drive the flow produce favourable 
effective pressure gradients, so that the fluid continues to be accelerated along the 
plate to a final state, far from the leading edge, which is described by the classi- 
cal free convection boundary-layer solution over a vertical flat plate. For negative 
inclinations, although the pressure gradient associated with the processes remains 
favourable, separation of the boundary-layer from the plate eventually occurs, since 
the buoyancy force now opposes the motion. 

Important contributions to these convective flow configurations have also been 
made by several authors, but notably by Yu and Lin (1988), Schneider (1995), 
Vmemura and Law (1990), Weidman and Amberg (1996), etc. 

0~ 0v 
+ - o 

0--~ 

0~ 0~ 
= 

Basic equations 

Consider the steady free convection flow of a viscous incompressible fluid over a semi- 
infinite flat plate which is inclined at an angle ~ to the horizontal, see Figure 3.1. We 
assume that the plate is maintained at the constant temperature Tw and the ambient 
fluid has the uniform temperature Too, where Tw > Too. For this configuration, with 
the assumption that the Boussinesq approximation is valid, the basic conservation 
Equations (I.1) - (I.3) can be written as follows: 

(~) . Too / 

(3.1) 

(02~ 02~) 
10~ Jr u + + gfl ( T -  Too)sin 9~ (3.2) 

3 . 2  

(b) ~ g 

T~ 

Figure 3.1: Physical models and coordinate systems for (a) positive inclination and 
(b) negative inclination. 
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c3~ OV 10p (c32V 02V) 
+ - + + 

o~ o~ ~, (o~-~ o~'~ 
~b-~ +~0--~ = P /  0~ ~ + ov ~ ) 

+ gfl (T - Too)cos ~o (3.3) 

(3.4) 

where Cartesian coordinates 5 and y are taken along and normal to the plate, 
respectively, with the origin at the leading edge, and g and ~ are the fluid velocity 
components along the 5- and y-axes, respectively. When the inclination of the plate 
is positive then 99 > 0, while qo < 0 for a negative inclination of the plate. 

Equations (3.1) - (3.4) have to be solved subject to the boundary conditions: 

- 0 ,  g - 0 ,  T - T o o  on 5 - 0 ,  ~ r  
- 0 ,  g - 0 ,  T - T w  on ~ - 0 ,  5 > 0  

~ 0 ,  g--+0,  T--+Tcr P ~ P c r  as ~--+c~, ~ > 0  
(3.5) 

3 . 3  F r e e  c o n v e c t i o n  o v e r  a n  i s o t h e r m a l  f l a t  

s m a l l  i n c l i n a t i o n s  
p l a t e  a t  

To solve this problem we introduce the non-dimensional variables 

x - - T ,  y - - ~ ,  u - -~ - ,  v---~- 
A / 2  A 

P - ~ [ P -  Poo + pgl (~sin ~o + ~'cos 99)], 0 - T-ToOzXT 
(3.6) 

Equations (3.1) -(3.4)  then become 

O~ O~ 

+ N 
O~ O~ 

~~ +~o~ 
0~ A0~ 

A A 

.. O0 O0 
~~ + Vo~ 

- 0  

0~" 02~ 02~ 
-- -0--~ + ~ + - ~  + ( Grtan~o) O 

Off 02~ 02~ A 
- o~ + ~-~ + g-~ + c ~ o  

= 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

and the boundary conditions (3.5) are now given by 

A A 

- 0 ,  ~ - 0 ,  0 - 0  on ~ - 0 ,  y r  
A 

- 0 ,  9 - 0 ,  0 - 1  on y - 0 ,  ~ > 0  
--+0, 9--+0, 0--+0, p - ~ 0  as y--+c~, x > 0  

(3.11) 

Further, we define the following boundary-layer variables 

A A ~ 1 

x = x, y - G r a y ,  u -  G r - ~ u ,  v - Gr -g~ ,  0 - 0 ,  p -- G r - ~  (3.12) 
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Subst i tut ing expressions (3.12) into Equations (3.7) - (3.10), and ignoring terms 

which are O G r - g  relative to those retained in the limit Gr --+ oo, we obtain the 

following boundary-layer equations for the problem under consideration: 

0r  0 2 ~2 0~2 0 2 @ Op 0 3 ~/) 

Oy OzOy Ox Oy 2 = -O--x + 
op 

0 =  + 0  
Oy 

0 r  0 r  1 020 

Oy Ox Ox Oy Pr  Oy 2 

+ AO (3.13) 

(3.14) 

(3.15) 

where r is the non-dimensional stream function defined by Equation (1.18), A is the 
inclination parameter which is defined as 

1 

A = Gr-~ tan 7) (3.16) 

and A > 0 for positive inclinations and A < 0 for negative inclinations. Also, the 
boundary conditions (3.11) become 

r  0~ = 0  0 - 1  on y - 0 ,  x > 0  
Oy , (3.17) 

~  0--+0, p--+O as y--+oo, x > O  Oy 

It should be noted that  the range of the inclination angle ~v considered here 

is such that  ~o - O Gr--~ with Gr >> 1 and therefore A is O(1). This implies 

that  the buoyancy force term in Equation (3.13) is formally comparable with the 
induced pressure gradient along the plate. Also, we see that the horizontal flat 
plate problem corresponds to A = 0, while the vertical plate problem corresponds to 
A ~ cxD, in which case the scalings used in expressions (3.12) are inappropriate. It is 
also important  to point out that  it was originally established by Stewartson (1958), 
and later corrected by Gill et al. (1965), that  a boundary-layer solution does not 
exist for the fluid flow below a heated, or above a cooled, isothermal horizontal flat 
plate. Therefore, we present here results only for the case of an inclined flat plate 
which is heated on the upper surface. 

Equations (3.13) - (3.15),  which are subject to the boundary conditions (3.17) 
were first studied by Jones (1973), who obtained solutions which are valid near to 
the leading edge of the plate, small values of x, and far downstream, large values 
of x. These solutions were then matched by solving the full boundary-layer Equa- 
tions (3.13) - (3.15) numerically using the Chebyshev polynomial method. 

3 .3 .1  S m a l l  v a l u e s  o f  x (<< 1) 

Close to the leading edge of the plate it is expected that the structure of the 
boundary-layer is similar to that  associated with the flow along a horizontal plate. 
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Consequently, we employ the following transformation which was first proposed by 
Stewartson (1958)" 

r = x-~ f (x, r/), p - x-~ h(x, 7/), 0--0(x,77), 77-- 2 \ . . -  . . . . . . .  ] 

x ~  

On substituting the transformations (3.18) into Equation (3.14) we then have 0 - Oh 
whilst Equations (3.13) and (3.15) take the following form: 

c33f +3fO2f-~2- -~(Of) 2 

( O h )  30h 
- 2  h-~/~-~ +5Ax~ 

0~ 
5 03h c39h 

Pr 0773 ~ 3 f 0772 

Of 0 2 f 0 2 f Of Oh) 
- 5x 077 0710x O~ 20x  t- O x  

( O f  02h 02h Of ) 
= 5x -~ O~OX 0~ 2 0z 

(3.19) 

(3.20) 

which have to be solved subject to the boundary conditions obtained from Equa- 
tion (3.17), namely 

Of(x 0 ) - 0 ,  Oh ,0) 1 for x > 0  f(x,O) - O ,  ~ , ~ ( x  - 
of ~ O, h --+ 0 Oh (3.21) 00 ' on ~0 as 77--+cx3, x > 0  

We now develop series solutions of the Equations (3.19) - (3.21) in the form 

f (~ , ,7)  - fo(,1) + ~ f ~ ( ~ ) +  ~ f ~ ( , 7 ) +  . . .  

3 6 
h(x,~) - ho(~) + x~hl(TI) + x~h2( r / )+ . . .  

(3.22) 

for x << 1, where the functions (fo, ho) and ( f l ,h l )  are given by the following 
ordinary differential equations: 

5 f~" + 3 fof~' -- f~2 _ 2 (ho - ~h~o) - 0, 

/0(0)  - 1, /~(0)  - 0, 
f~ -+0, h0 -+0, h~ --+0 

5h~' + 3Prfohg - 0 

h'o(O) = 1 

as rl--+ cx3 
(3.23) 

5fI" + 3 fof~' - 5 f~ f  I + 6 f~ f l  + 2rlh~l - 5hl + 5Ah~ - 0 
5h'{' + 3Pr (foh~ - f~h'l) + 6Prh~fl  - 0 

f l (0) --  O, f l  (0) -- O, h i (0) --  0 
f~--+O, hi-+O, h~-+O as ~7-+cr 

(3.24) 

with similar equations and boundary conditions for the higher-order terms in the 
expansions (3.22) and the primes denote differentiation with respect to ~/. It is worth 
mentioning that Equations (3.23) describe the free convection flow past a heated 
horizontal flat plate, which was first studied by Stewartson (1958) and subsequently 
by Rotem and Claassen (1969). 
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Since the values of f0(c~), f~r(0), h0(0) and hg(0) are used as initial values for 
some classical problems of free convection past a horizontal plate, we present them 
in Table 3.1 for some values of P r  as determined by Jones (1973). In fact, this 
author has corrected some of the numerical results reported by Rotem and Claassen 
(1969). 

Table 3.1" Values of f0(c~), f~'(0), h0(0) and h~(O) for various values of Pr. 

[ P r  

.... 0.i ' 7.04737 
0.3 3.76677 
0.5 2.83357 
0.72 2.33376 

1 1.97727 
2 1.44113 
5 1.00844 
10 0.79009 

fo (c~) f~' (0) ho(O) ' h~(O) 
, , 

2.02958 
1.35882 
1.12239 
0.97840 
0.86443 
0.66625 
O.47298 
0.36467 

3.37279 
2.29610 
1.94443 
1.73492 
1.57183 
1.29204 
1.01978 

-0.86362 

-0.19631 
-0.27805 
-0.32280 
-0.35741 
-0.39053 
-0.46690 
-0.58286 
-0.68365 

Further, Equations (3.24) and those for the functions (f2, h2) were solved nu- 
merically by Jones (1973) for P r  - 0.72, when A - • Thus, the following series 
expansions can be obtained for the non-dimensional skin friction and the wall heat 
transfer 

- 

q w ( Z )  - -  x - -  

[ ( 1 3 -~ 0 0.97840 4- 051835 x~ + 0.01026 x + x 

~ 0.35741 + 0.05555 x~ - 0.00530 x ~ + 0 x~ 
(3.25) 

for x << 1. 
If A < 0 (~o < 0) the boundary-layer eventually separates from the plate. How- 

ever, for A > 0 (99 > 0) the solution of Equations (3.13) - (3.15) ultimately ap- 
proaches the classical free convection boundary-layer solution for a vertical semi- 
infinite flat plate. 

3.3.2 Large values o f x  ( ~  1) w h e n A ~  0 

Guided by the above remarks, we assume that the asymptotic solution of Equa- 
tions (3.13) - (3.15) when the plate is at a positive angle of inclination is of the 
following form: 

r = xZ.'f ( x , ~ ,  p -  x ~ h ( x , ~ ,  0 =  0 ( x , ~ ,  r I -  k . ~  - - v !  

x ~  

Substitution of expressions (3.26) into Equation (3.14) gives 0 = O-~0h and therefore 
Equations (3.13) and (3.15) take the form 
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03f . ~ 0 2 /  (09/)  2 
~-~+~~ 2 N 

(o/o~/ o/o~/~ o~ 
+4x Ox O~ O~ OxO~] + 4 A N  - x 

4 03-~ _02~ ( o f O2"h O f O2"h ) 
Pr O~ 3 t- 3 f o~  - 4x O~ OgOx Ox O~ 2 - 0 

( Oh _Oh 
+ 4 x N -  r / N  

(3.27) 

(3.28) 

together with the boundary conditions (3.17) which now become 

"" Oh(x 0 ) = 1  for x > 0  f ( ~ ,  o) - o, ~ ( ~ ,  o) - o, ~ , 
0I-+0 h-+ O, Oh N o~ , o--~ - ~ 0  as r / ~ ~ ,  x > 0  

(3.29) 

We now develop series solutions of the problem defined by Equations (3.27) - (3.29) 
in the form 

f (x, ~ - fo (~ + x-~ f~ (~ + x-~ f2 (~ +. . .  (3 .30)  
(X, ~ -- no (~-~) -4- x-3hx (~--') -~- x-~h2 (~-") q-... 

forx>> 1, where (f0, 
tial equations: 

ho) and ( ~ , h l )  are given by the following ordinary differen- 

4~" + 3fo~' - 2~  2 + 4Ah~ - 0, 4h~' + 3Prfoh~ - 0 

fo(0)--0,  f~(0)--0,  h ~ ( 0 ) - I  
f ~ 0 ,  ho-~0 ,  h~-~0  as r j ~ ~  

(3.31) 

4f~" + 3 lo f t ' -  fDf~ + 4Ah~ = ho - ~h~ 

+ + - o  (3 
f l (0 ) - -0 ,  f~(0)--0,  h 1 ( 0 ) - 0  

f~ -+0, hi -+0; h~ -40 as r/--+cx:) 

However, an eigensolution in addition to the forced terms in the series (3.30) 
should be included and this appears in the term which is O (x -1). If we assume this 
to be the case here, then for Pr = 0.72 and A = 1, Jones (1973) found the following 
expressions: 

~(~) - ~ [0.95600 + 0.6516 ~-~ + o (x-l)] 
(3.33) 

q~(~) - ~ -~  [0.35682 + o (~-~) ]  

for x >> 1 since hi ~ 0, as can be seen from the system of Equations (3.32). 
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Figure 3.2: Variation of (a) the skin fr ict ion,  and (b) the wall heat f lux,  with x for  
P r  - 0.72 and A - 1 (positive incl ination).  The numerical  solution is indicated 
by the solid lines and the series solutions (3.25) and (3.33) are indicated by the 
broken and dotted lines, respectively. 

The series solutions (3.25) and (3.33), which are valid only in the region close to 
the leading edge of the plate and far downstream, respectively, can be matched by 
solving numerically the full boundary-layer Equations (3.13) - (3 .15) .  Jones (1973) 
has done this by using the selected points technique of Lanczos (1957) for which the 
solutions are represented by Chebyshev polynomials. The numerical results for the 
non-dimensional skin friction and the wall heat flux for P r  - 0.72 and A - +1 are 
presented in Figures 3.2 and 3.3. The values given by the series expansions (3.25) 
and (3.33) are also included in these figures for comparison. It was found that  
for A - - 1  the boundary-layer separates at x - x s - 3.704, where flow reversal 
has taken place, and that  the solution behaves in a regular manner at this point. 
This can also be seen from Figure 3.4, where the reduced fluid velocity and the 
tempera ture  profiles near this separation point are shown (by the solid lines). The 
velocity profiles at xs  - 3.704 (shown by the broken lines) are also included in these 
figures. It can be seen from Figure 3.4 that  no difficulty was encountered in obtaining 
solutions at values of x downstream from the point of separation. This result is in 
contrast to that  found by Merkin (1969) and Wilks (1974) for the opposing mixed 
convection flow over a vertical flat plate where the boundary-layer solution exhibits a 
singular behaviour near the separation point, x - xs ,  say, and that  the skin friction 

1 

behaves like ( X s -  x ) ~  near x~, see Section 2.2. Jones (1973) has noted that  his 
solution was continued as far as x - 4.5 with no obvious sign in the instability of 
the step-by-step numerical scheme used. Itowever, the calculations were terminated 
at x - 4.5 since in order to determine the solution further downstream satisfactorily 
the use of a large number of Chebyshev polynomials would have been needed and 
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Figure 3.3: Variation of (a) the skin friction, and (b) the wall heat flux, with x for 
P r  = 0.72 and A - - 1  (negative inclination). The numerical solution is indicated 
by the solid lines and the series solution (3.25) is indicated by the broken lines. 

large c o m p u t i n g  facilities would  be required .  

We m e n t i o n  to this  end t h a t  the  m e t h o d  used by Jones  (1973) involves a swi tch  

(a) (b) 

10 " 10 
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Figure 3.4- (a) The fluid velocity, -~o (x, r/), and (b) the temperature, O(x, rl) , pro- 

files near the separation point for  P r  - 0.72 and A - - 1  (negative inclination). 
The profiles at X s - 3.704 are indicated by the broken lines. 
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between the leading edge and the far downstream systems of Equations (3.19) - 
(3.21) and (3.27) - (3.29), respectively. However, the switch feature of the algorithm 
may be avoided by using a continuous transformation in the variable x, a technique 
proposed by Hunt and Wilks (1981), linking the two limiting solutions (3.18) and 
(3.26) as follows, see Hossain et al. (1996, 1998): 

3 3 

r  p - x ~ ( l + x ) - ~  g ( x , Y ) ,  Y - x - ~ ( l + x ) ~ y  
(3.34) 

Thus, Equations (3.13) - (3.15) transform into the following equations with 0 = OH 

03F 3 (4 + 5x) F ~  - + A x -~ OH 
OY 3 ! 2 0 ( 1 + x )  OY 2 1 0 ( 1 + x )  -flY l + x OY 
_ ( l + z ) _ ~ [  8 + 5 x  ( OH) OH] 

2 0 ( l + x )  H - Y -o-~ + x -ff ~ x 

1 03H 3 (4 + 5x) OH 
Pr OY 3 ~- 20 (1 + x) g 0---Y- 

with the boundary conditions (3.17) becoming 

OF 02F OF 02F)  (3.35) 

- x OYOxOY Ox OY 2 

(OF 02H OF 02H)(3.36 ) 
= x OYOxOY Ox OY 2 

F(x 0 ) - 0  OF(x 0 ) - 0 ,  og(x 0 ) - - 1  for x > 0  
, , ~-V , ~-Y , (3.37) 

OF OH aY ~0, H--+0,  oY ~0 as Y--+c~, x > 0  

It is seen that in the limits x --+ 0 and x -~ co, the Equations (3.19), (3.20), (3.27) 

and (3.28) for (f, h) and ( f ,  h) can easily be recovered from Equations (3.35) and 

(3.36). 
Using Equations (3.35) - (3.37) we have determined (by the courtesy of Hossain, 

1999) the values of the separation point x = xs(Pr) for A = - 1  and some values 
of Pr, and these values are given in Table 3.2. It can be seen from this table that 
the position of separation of the boundary-layer from the plate decreases with the 
increase of Pr. 

Table 3.2: Values of the separation point z~(Pr) for A = -1 (negative inclination). 

l Pr. il 0.1 ] 0.3 I 0"5 10"73 . .11  .1..2 I 5 I XO I 
[ ~,(Pr)II 7.671 ]5.26314.25613.64513.215 J 2.46311.76311.386] 

3.4 Free convec t ion  boundary- layer  flow above  an 
i so thermal  flat plate  of arbitrary inc l inat ion  

We consider now the free convection above a heated and arbitrary inclined isother- 
mal flat plate to fluids of any Prandtl number. The formulation is based on the new 
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variable introduced by Yu and Lin (1988) which permits rigorous solutions for the 
entire range of inclinations from the horizontal to the vertical and for any Prandtl 
number. Also negatively inclined plates at small angles to the horizontal are in- 
vestigated. The physical model and the coordinate system are those illustrated in 
Figure 3.1 and the governing boundary-layer equations for this problem are those 
given by Equations (3.13) - (3.151 subject to the boundary conditions (3.17). When 
they are expressed in physical (dimensional) variables we obtain 

or 2r or 2r lop 
Oy OxOy Ox Oy 2 p Ox 

1@ 
O -  

p Oy 
0r OT 0r 07' v 02T 
coy Ox Ox Oy Pr Oy 2 

03r 
. . . .  t- V -~y 3 + g fl ( T - Too)sin ~o 

. . . .  ~- gfl (T - Too) cos ~o 

(3.38) 

(3.39) 

(3.40) 

f (~,O)=O, f ' (~,O)=O, 0 ( ~ , 0 ) = 1  for ~ > 0  
f~-+O, 0 - + 0 ,  h -+O as r/--~cr ( > 0  (3.46) 

and (71 is defined as in expression (2.72). Substitution of expressions (3.411 and 
(3.42) into Equations (3.38) - (3.40), leads to the equations: 

a l f" '  if- 2~ ( 1 -  ira)[3 (4-4-~) f f " - - 2  (2 q-3~)f,2] 

1 
+~--~ [(8 - 3~1 r/h' - 4 (2 + 3~ r h] 4- ~40 (3.43/ 

= 2-~~ (I-~)[(l-(zl)(f, Of'_f,, 
h' -- (1 - ~)5/9 (3.44) 

O"-F ~ (4-F ~) fO' -- 3 ~ ( 1 - ~ ) ( f ' O O - o ' O f )  ~-~ ~ (3.45) 

along with the boundary conditions (3.17) which may be expressed in the form 

1 

(0"1Rax Isin ~VJ) ~ 
= 1 ' ~2 --  ( 0 l R a x  cos 99) ~ -4- (0 lRax Isin (p[) �88 (3.42) 

(alRax cos ~) 

where the bar superscripts have been omitted for convenience and for a clearer 
presentation. The boundary conditions appropriate to these equations are those 
given by Equations (3.5). 

To study this problem, Yu and Lin (19881 proposed the use of the following 
variables: 

~(~) -~- = ~+~, ~(~, y) - ~2 (~) ,  r = ~s~2 / (~ ,  ~) 
paf,~ h (~, ~/), 0 (~, ~/) T~T~ (3.41) 

P -  Pcr - -  " r  = 

where 
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where the + sign in Equation (3.43) pertains to the positive and negative inclination 
cases, respectively. These equations represent the universal formulation for the free 
convection above an isothermal flat plate which is inclined at an arbitrary angle 99 
from the horizontal for fluids of any Prandtl  number. The inclination angle is either 
positive (0 ~ < ~ ~ 90 ~ or takes small negative values (~ < 0 ~ since in this latter 
case the boundary-layer separates from the plate. The coordinate ~ measures the 
downstream distance along the plate from the leading edge for a specified inclination 
angle ~. It also represents a parameter of inclination since it varies from 0 to 1 when 
the inclined angle varies from 0 ~ to 90 ~ for fixed Rayleigh and Prandtl  numbers. 

Equations (3.43) - (3.45) are readily reduced to the following similarity equations 
for tile limiting cases of a horizontal fiat plate (~o - 0 and ~ - 0), namely 

1 f,2 2 a : f ' "  + g (1 - ~ r : ) ( 3 f f " -  ) + -~ (rlh'- h) - 0 
(3.47) 

3 h" h'" + ~ f  - 0 

and, for a vertical flat plate (qo = 90 ~ and ~ = 1), namely 

1 
crlf"' q- ~ ( 1-a l )  (3f f " -  f '2) + 0 - 0  

1 
o" + - 4 f o '  - o 

(3.48) 

tIaving determined the functions f and O, we can express the skin friction coef- 
ficient Cf and the local Nusselt number Nu as follows: 

Cf (cr:Rax cosqo)-~ - (1 + ~)3 f,, (~,0) 
i 

Nu(a:Razcoscp)-: = (1 + C) [ -0 '  (~,0)] 
(3.49) 

Equations (3.43) - (3.46) have been integrated numerically by Yu and Lin (1988) 
by using the Keller-box scheme for values of Pr between 0.001 and c<~. The numerical 
results for f "  (~, 0) and -0' (~, 0) in the case of positive inclination (~ > 0) are shown 
in Figure 3.5 where it is observed that the values of f" (~, 0) and - 0 '  (~, 0) decrease 
with increasing values of ~ from 0.5 to 1. All the curves exhibit the existence of 
a global minimum at ~ ~ 0.5. Further, the variation with ~ of the skin friction 
coefficient and the local Nusselt number is illustrated in Figures 3.6 and 3.7 for both 
the cases of positive (~ > 0) and negative (~ < 0) inclinations, respectively. It 
is seen from Figure 3.6 that as the plate is tilted from the horizontal, where there 
is no component of the buoyancy force, towards the vertical, where the buoyancy 
force acts parallel to the plate, these forces become stronger and the skin friction 
coefficient and the heat transfer rate are enhanced. It is also noticed that  the two 
physical quantities Cf and Nu vary smoothly from the solution for the horizontal 
plate (~ -- 0) to that  for the vertical plate (~ -- 1). The region of transition from the 
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Figure 3.5" Variation of (a) /"(~,0),  and ( b ) - 0 ' (  
positive inclinations. 
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Figure 3.6: Variation of (a) the skin friction coeffic~ 
number, with ~ for the case of positive inclination, 
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~e solutions for the case 
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(a) (b) 

1.2 Pr'= 0.0011 0.01, 0.1, 0.7, 1 
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Figure 3.7: Variation of (a) the skin friction coefficient, and (b) the local Nusselt 
number, with ~ for the case of negative inclinations. 

horizontal  to the vertical limits is around ~ = 1 (~ = 0.5) for all the curves, which 
indicates tha t  in the region around this limit the tangential  and normal  components  
of the buoyancy force are of comparable magni tude.  On the other hand,  for the case 
of negative inclination (99 < 0), both  the skin friction coefficient and the local Nusselt 
number  decrease with increasing ~ around ~ = 1, as can be seen from Figure 3.7. 
This t rend is to be expected physically because the buoyancy force re tards  the fluid 
flow when the plate is negatively inclined. 

Yu and Lin (1988) have also shown that  when the plate is inclined at a small neg- 
ative angle to the horizontal then separation, i.e. zero skin friction, of the boundary-  
layer flow occurs downstream from the leading edge at ~ = ~s, say, as the opposed 
buoyancy force and the induced pressure gradient  are of comparable  magni tude.  
Table 3.3 gives the values of the separat ion point ~ = ~s and the corresponding 
values o f - 0 '  (~, 0) as obtained by Yu and Lin (1988). It is observed tha t  the value 
of the separat ion point ~ = ~s increases slightly from 0.5049 to 0.5410 as the value 

Table 3.3: Values of the separation point ~ - ~s and -0 '  (~s, O) at ~ - ~s. 

Jl o.ool 

:0 '  (~, 0) 0.1908 

0.01 
0.5118 
0.1753 

0.1 
0.5235 
0.1453 

0.7 
0.5341 
0.1257 

7 
' 0.5410 

o.!i65 

lOO 
. , ,  

0.5408 
0.1191 

0.5410 [ 
0.1185 
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of Pr increases from 0.001 to infinity. Further, it was found that the solution of 
Equations (3.43) - (3.46) behaves in a regular manner at ( = ~s and even for ~ > (s 
there is no difficulty in computing the solutions of these equations. The singular 
behaviour of the solutions at ~ -- ~s confirms the results reported previously by 
Jones (1973). 

3.5 M i x e d  convect ion  
zontal  flat plate  

boundary- layer  flow from a hori- 

We consider now the mixed convection boundary-layer flow from a horizontal flat 
plate, as shown in Figure 3.8, where the free stream values of the fluid velocity 
and the temperature are Uoo and Too, respectively, and they are constant. This 
problem has been studied very intensively in the literature due to its fundamental 
importance both from a theoretical point of view and with respect to practical 
applications. Since, in this case, the tangential component of the buoyancy force is 
zero, the boundary-layer Equations (3.38) - (3.40) take the form: 

0r 0 2r 0r 2r 1 0p 0 3r 
: ~- ~ , ~  ( 3 . 5 0 )  

Oy OxOy Ox Oy 2 p Ox Oy 3 
lop 

0 . . . . .  ~ gfl ( T -  Too) (3.51) 
p Oy 

0~2 0T 0r OT u OZT 
= (3.52) 

Oy Ox Ox Oy Pr Oy 2 

and these equations can be solved subject to the following boundary conditions: 

T- T~(~)  

r  o__r162 = 0  Oy 
(VWT) OT _ _  qw(x_~) (VHF) ~ on y = 0, 

O y  m k 

Or ~ Uoo, T-+Too as y--+oc, x > 0  

x > O  
(3.53) 

U~,T~ 
r 

r i .~, ~x T~(~) or q~(~) 
~ "I. ~ ,  ~ .  "~ ~ . ~  - ~  ~ .~, - ~ '  x ~ . ,  

Figure 3.8" Physical model and coordinate system. 
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Depending on whether the horizontal plate is heated from above, or cooled from 
below, the hydrostatic pressure gradient acting on the flow is either favourable (as- 
sisting flow) or adverse (opposing flow). More specifically, in the boundary-layer 
above a heated horizontal plate the density is less than the ambient density, pro- 
vided that  the coefficient of thermal expansion is positive (Newtonian fluids). This 
gives rise to a decrease in the hydrostatic pressure at the surface with increasing 
distance from the leading edge, i.e. a favourable pressure gradient. On the other 
hand, above a cooled horizontal plate there is an adverse pressure gradient due to the 
buoyancy. Whilst no acceptable results have been found in the case of a favourable 
pressure gradient, it has been observed that an adverse hydrostatic pressure gradi- 
ent affects the fluid flow in a rather unusual way. These results were reviewed in 
an excellent paper by Schneider (1995) and so we give here only some of the results 
obtained for this problem in the cases when the wall temperature is variable and 
when it is constant. 

3 .5 .1  F l a t  p l a t e  w i t h  a v a r i a b l e  s u r f a c e  t e m p e r a t u r e  

It is known that Equations (3.50) - (3.52) admit similarity solutions when the tem- 
perature of the plate varies as a certain function of the distance along the plate, 
see Gill et al. (1965), and also when the plate is strongly heated or cooled near its 
leading edge, while it is thermally insulated everywhere else. In the latter case the 
adiabatic wall temperature T w ( x )  varies according to the relationship 

0~(x) - T~(x) - To~ �9 
T* = (~-) (3.54) 

where T* > 0 for a plate heated from above and T* < 0 for a plate cooled from 
below. In this case the similarity transformation 

X ~ x 1 1 1 1 

r, ,7- x - ~ R ~  (~), r - ~,R~-x~ f (,7) 
T - Too -- O w ( x ) T * O  (77), p - p ~  - p U I P  (~) 

(3.55) 

reduces Equations (3.50) - (3.52) to the following similarity equations: 

2 f'" + f f" + A~ 0 - 0 

20' + P r f O  - 0 

(3.56) 
(3.57) 

with the boundary conditions (3.53) becoming 

= ,  f ' ( o ) - o ,  o ( o ) - ~  (3.5s) 
f(0) f 0  1 as 77-+oo 

where A is the mixed convection parameter defined as in Equation (2.87) with A > 0 
for a heated plate and A < 0 for a cooled plate. 
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It has been shown by Schneider (1979) that  the problem defined by Equa- 
tions (3.56) - (3.58) has a unique solution for A > 0, whilst for A in the range 
%c < ), < 0, where Ac = Ac(Pr) is a critical value of A, there are two (dual) possible 
solutions. One of these solutions describe a region of reversed flow, i.e. with negative 
wall skin friction, f"(0),  as can be seen in Figure 3.9, whilst the second branch of 
the solution originates (bifurcates) at % = ~ .  A similarity solution ceases to exist 
for ), < Ac and at the separation point, A = As(Pr) ,  where f"(0) = 0. Schneider 
(1979) has found for P r  = 1 that  Ac = -0.0787 and As = -0.050. 

0.4- 

0.3" 

f"(0) 

0.2 

0.I 

0.0 

........... 
..,.~ f J ~  

~176176176 ! i 
..-~ i i  

.7  I I 

i ! 
"%"% \N 

. . . . . .  

-0.1 A~ A~ 0.0 0.05 
A 

Figure 3.9" Variation of f"(O) with )~. The solutions for Pr  - 0.5, 1 and 2 are 
indicated by the solid, broken and dotted lines, respectively. The symbols �9 refer to 
the results obtained by Schneider (1979). 

Subsequently, Dey (1982), Afzal and Hussain (1984), De Hong et at. (1984), 
Merkin and Ingham (1987), Daniels (1992), Steinriick (1994) and Rudischer and 
Steinriick (1997) have studied different aspects of mixed convection flow over a 
horizontal fiat plate. Thus, Merkin and Ingham (1987) showed that  dual solutions 
of Equations (3.56) - (3.58) exist if A is in the range A0 < %c < A < 0, where 
Ao = Ao(Pr)  is another constant. These solutions bifurcate at A = A0 with a square 
root singularity, where A0 = -0.081359 for P r  = 1 and at this value of %o then 
f"(0) = 0.106359. Merkin and Ingham (1987) have also studied the nature of the 
singularity of the similarity solutions of Equations (3.56) - (3.58) at A = A0 in terms 
of the parameter (A - A0) << 1 and showed that the lower branch solution terminates 
at A = 0, whilst the upper branch continues into A > 0. Thus, for P r  = 1 it was 
found that 

1 
f"(O) = 0.1064 4- 0.7093 (A - Ao)5 + . . .  (3.59) 

for ( A -  A0) << 1. The positive sign in expression (3.59) is the start of the upper 
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branch solution and the negative sign the start of the lower branch solution. Values 
of f"(0) near A - A0, as calculated from Equation (3.59), are in good agreement 
with values near A - Ac as found by Schneider (1979), De Hong et al. (1984) and 
Afzal and Hussain (1984), and also with the values obtained by solving numerically 
Equations (3.56) -(3.58).  

Further interesting behaviours appear in the solutions of Equations (3.56) - 
(3.58) in the limiting case P r  ~ O. In particular, four solutions for A0 < A < ~c < 0 
have been found by Rudischer and Steinriick (1997) using an asymptotic expansion 

1 

of f and 0 in terms of the small parameter P r - ~  << 1. However, the physical 
relevance of the additional two solutions is rather limited as they have been observed 
numerically only for P r  < 10 -5. Furthermore, Steinrfick (1994) has shown, by using 

1 

an asymptotic expansion with respect to the small parameter (A - Ac)~, that steady 
state (non-similar) solutions which connect the two similarity solutions described 
above exist. Near the leading edge this connecting solution agrees with the similarity 
solutions associated with the larger skin friction coefficient (upper solution), while 
the second similarity solution (lower solution) serves as a downstream asymptotic 
solution. Since the boundary-layer equations are invariant under the transformation 

x where a0 is an arbitrary constant, a one-parameter family of connecting x --+ ~ ,  
flows exist. The connecting flows were computed numerically by Steinriick (1994) 
by a marching-ahead technique and some of his results are given in Figure 3.10 for 

- -0 .04 and P r  - 1. It was also shown by Steinriick (1994) that for A > Ac 
the lower similarity solution has a reverse flow region and therefore the connecting 

1.0 

f'(u) 

0.5 

0.0 

l n X  : 0.2gl o. 

i / 
/ /  

4 0.75, 1, 2, 3 

/ 

o 2 u 10 

Figure 3.10" Fluid velocity profiles, f ' (~ ) ,  for  A - -0.04 and P r  - 1. The 
connecting solutions are indicated by the solid lines and the similarity solutions 
are indicated by the broken lines. 
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flow must separate. It turned out that this separation is regular and the connecting 
solution can be pursued numerically into the reverse flow region. A stability analysis 
was also performed by Steinriick (1994) for values of A close to Ac by considering 
solutions which vary slowly with respect to time and space to decide which steady 
flow is of physical relevance. A hyperbolic equation for such perturbations has been 
derived whose characteristics are pointing upstream and therefore perturbations 
can propagate upstream. It was considered that the lower self-similar solution is 
only stable if the initial perturbation decays sufficiently fast with increasing the 
coordinate x, but the upper solution is stable provided that the initial perturbation 
is sufficiently small. 

3 .5.2 F l a t  p l a t e  w i t h  c o n s t a n t  su r f ace  t e m p e r a t u r e  or  c o n s t a n t  su r -  
face h e a t  f lux  

To express the governing Equations (3.50) - (3.52) in a form which is amenable to 
a numerical solution, Chen et al. (1977) have introduced the new variables 

where 

1 

.4 '  ~)+ 
1 

' ' ' T *  

(3.60) 

1 

T* - Tw - Too (CWT) T* - • ( Iq~l ) + (CHF) (3.61) 
' \gflk I 

with the plus and minus signs being again associated with the cases of the heated 
plate (T* > 0) and the cooled plate (T* < 0), respectively. It should be noted that 
if T* < 0 then ~ < 0. 

Substitution of expressions (3.60) into Equations (3.50) - (3.52) leads to the 
following equations: 

[ ) 2 f "  + f f"  -- ~ frO/' f .  cg f ~-~ UO' (3.62) o~ o~ 
/ ,00 . ,Of 2-~--O"+Pr SO'-- ~ Lf ~ - v  ~ /  (3.63) 

with the boundary conditions (3.53) becoming 

] (~, 0) - 0, f ' ( ~ ,  0) - 0 
0(~,0)- -1  (CWT), 0 ' ( ~ , 0 ) - - I ~ 1  ( C H F ) )  for - 

] ' - -+1,  0--+0 as V--+c~, - c ~ < ~ < c ~  
(3.64) 

The last integral term in Equation (3.62) corresponds to the pressure gradient due 
to the buoyancy effects. If the right-hand side of Equations (3.62) and (3.63) vanish, 
e.g. for ~ --+ 0, the Blasius problem is recovered. 
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To solve Equations (3.62) - (3.64), Chen et al. (1977) applied a local similarity 
method and noted that  the convergence could not be obtained up to the point of 
separation and numerical difficulties were also reported by Grishin et al. (1980) and 
Raju  et al. (1984). It appears that  Schneider and Wasel (1985) were the first to 
observe that  difficulties arise when these equations are solved by a finite-difference 
method. A common forward marching technique was used with step lengths AT/-- 
5 x 10 -2 and A~ -- 5 x 10 -5, 2.5 x 10 -4, 6 x 10 -4 and 1 x 10 -3, s tart ing with 

the Blasius solution at ~ - 0. Rather  surprisingly, the point of vanishing skin 
friction (separation point) f"(~,0)  was not attained. However, it was found that  
at a certain critical distance from the leading edge of the plate a breakdown of the 
computat ions occurred, with f"(~, 0) still being non-zero, but the solution showed 
a rapid variation in ~, as can be seen from Figure 3.11. Later Wickern (1987, 
1991a) showed that  Schneider and Wasel's results depend on the step size A~ and 
he solved Equations (3.62) - (3.64) using the Keller-box method with A~ - 1 x 10 -3, 
1.2 • 10 -3, 1.8 x 10 -3 and 2 x 10 -3, and obtained results with f"(~,  0) tending to 
infinity at a critical value ~ - ~c(Pr), see Figure 3.11. Wickern (1987) also found 
an empirical relation between the step size A~ and ~c(Pr). It is worth mentioning 
that  Schneider and Wasel (1985) have also made an analysis of the breakdown of 
the boundary-layer approximation near ~ - ~c(Pr) by considering the integral form 
of the momentum Equations (3.50) and (3.51). 

0.4 A~ = 

1.8 x 10 -3. ~b'i 

0.2 I / 

l x 10 --3 > I'"-__~ 
0.1 6 x 10 -4 ~ - - -  

2.5 x 10 -4 

5 x 10-5 ---~ 

0.0 , , , 

0.0 0.02 0.04 0.06 ~ 0.08 0.1 

Figure 3.11" Variation of f"(~, 0) with ~. for Pr - 1 according to Schneider and 
Wasel (1985) (solid lines) and Wickern (1991a) (broken lines). The terminal point 
given by Schneider and Wasel (1985) is indicated by the symbol O. 
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Table 3.4: Values of the critical point ~ - ~c(Pr) ane 
Wang and Kleinstreuer (1990). 

II 007 f~, 0.1 I 
I ~ ll 0"350 l0"380 

0.379[0.460 

[ -0" !  l] 0.1 
1 0.391 II 0331 
[ 0.625 [[ 0.311 

- Tw (~c) as obtained by 

[ - o . i  
[8 [0.362 
:5 10.324 

Wang and Kleinstreuer (1990) generalised the bo 
convection flow over a heated or cooled horizontal 1 
injection or suction of fluid. They have shown that t 
(singular) point, which is characterised by the non,2 
and ~ -+ co (~ being the mixed convection paramet  
an earlier breakdown of the boundary-layer assumpti 
point ~ = ~c(Pr)  and Tw = ~-w (~c) as obtained by Wa: 
given in Table 3.4 for P r  = 0.7 and 7, and for the tra 
(injection), 0 (impermeable plate) a n d - 0 . 1  (sucti( 
this problem were added by Banthiya and Afzal (191 
Wickers (1991b), Andre (see Schneider, 1995) and~ 
Hussain and Afzal (1988) made an at tempt  to deterr 
behaviour of the solution of Equations (3.62) - (3.64) 
the functions f and 0 in a power series of the form: 

Lry-layer analysis of mixed 
~to take into account the 
suction delays the critical 
wall skin friction, Tw ~ 0, 
while fluid injection causes 
Some values of the critical 
nd Kleinstreuer (1990) are 
ration parameter fw = 0.1 

Further contributions to 
Hussain and Afzal (1988), 
eider et al. (1994). Thus, 
the nature of the singular 

r ~ = ~c(Pr) by expanding 

no  

f (5, r/) ,~ ~ 5'~f,, (77), 0 (~, r/)~ 
n - - O  

:~non (77) (3.65) 
9 

Using the Domb-Sykes plot for the reduced skin frict f " ( ( ,  0), namely 

no 

0)  ~ 

n - - 0  

(3.66) 

for P r  = 0.7 with no = 16, Hussain and Afzal (1 
convergence of this series. Schneider et al. (1994) exte 
expansion to 100 terms but it was found impossible 
radius of convergence from the Domb-Sykes plot, see 

established the radius of 
[ Hussain and Afzal's series 
~letermine a non-vanishing 
ure 3.12. 
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a n  
a~ - 1 
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n 

Figure 3.12: Domb-Sykes plot for f"(~,0) when Pr = 0.7 and no = 16. The 
solution of Schneider et al. (199~) is indicated by the solid line, the solutions of 
Hussain and A]zal (1988) are indicated by the symbols <> and an extrapolated result 
is indicated by the symbol [3. 

3 . 5 . 3  V a r i a b l e  f r ee  s t r e a m  v e l o c i t y  a n d  v a r i a b l e  w a l l  t e m p e r a t u r e  
o r  v a r i a b l e  w a l l  h e a t  f l ux  

Recently Ridha (1996) has obtained similarity solutions of Equations (3.50) - (3.52) 
subject to the boundary conditions 

u - 0, v - 0, | 
T - T w ( x )  (VWT) 0__T_T_ q~(z) (VHF) ~ on y - 0 ,  

Oy - -  k f 

u- -+U(x ) ,  T--~Too as y - + o c ,  x > 0  

x > 0  
(3.67) 

assuming that  the free stream velocity U(x)  and the wall temperature Tw(x), or the 
wall heat flux qw(x), have the following form: 

5m-- 1 1 

U(x)  _ Uoo (7) , Tw(x) -- Too + T* (T)z 2 , qw(x) - k fT*  ( - ~ ) ~  (T) 3m-lx 
(3.68) 

The similarity solutions of Equations (3.50) - (3.52) are then of the form: 

m + l  5m- - I  1 m - - I  
1 X - -  T *  x 

(3.69) 
with f (77) and 0 (77) given by the following ordinary differential equations 
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f ' "  + ~ (m -t- 1) + m 1 - f,2 c~ 1 (1 - m)~0 -- 0 

(3.70) 
1 1 1 

P r  o" + ~  (m + 1) fO' + -~ (1 - 5m)f 'O -- 0 

(3.71) 

along with the boundary conditions (3.68) which become 

f ( 0 ) - - 0 ,  f ' (O)f ,O,  0 ( 0 ) -  1 (VWT), 0 ' ( 0 ) - - 1  (VHF) 
(3.72) 

--+1, 0 - + 0  as 7?-+cx~ 

Here A is again the mixed convection parameter which is defined by Equation (2.87) 
with A > 0 for assisting flow or A < 0 for opposing flow. It should be noted 
that  m - 1 corresponds to the plane stagnation point flow, m = ~ to a constant 
wall temperature,  m -- �89 to a constant wall heat flux and m - 0 to Schneider's 
(1979) problem of mixed convection boundary-layer flow past a horizontal flat plate 
with a uniform free stream velocity and a wall temperature distribution given by 
Equation (3.54). 

Equations (3.70) - (3.72) have been solved numerically by Ridha (1996) for m = 
1, ~ and �89 corresponding to the situations mentioned above, and with Pr = 1 and 
for different values of A. Variations of f "  (0), 0' (0) or 0(0) as a function of A are shown 
in Figure 3.13. The striking feature of the solutions obtained is their non-uniqueness, 
as displayed by the existence of two more regular bifurcation (critical) points for 

> 0 in addition to those that  usually appear when ), < 0. Figures 3.13(a,b) for 
f"(0) and 0'(0) in the case of a uniform wall temperature (m = ~) show that  the 
critical point, where the solution branches out, occurs at )~ = ~c = -0.47118 and 
the lower branch terminates at )~ -- -0.019707. However, in the case of uniform wall 
heat flux (m - �89 with the results shown in Figures 3.13(c,d,e), the lower branch 
solution branches out first at ~ = -0.2866, then at A -- 0.0175 before terminating 
in a singularity at ,k -- )~s - 0.0041. Here, three solutions are obtained in the 
range 0.0041 < /k < 0.0175 for each value of A. The variation of 0(0) near ~ -- 0 
is also illustrated in Figure 3.13(e) and shows that  multiple solutions exist in this 
vicinity. It should be noted that  values of f"(0) for the lower branch when )~ -- 0 
are designated by the symbol �9 in Figures 3.13(a,c). 

The fluid velocity and the temperature profiles corresponding to the uniform 
wall temperature (m = 1) and uniform wall heat flux (m - �89 are depicted in 
Figure 3.14. Both the upper and lower branch solutions, as well as solutions near 
the critical bifurcation points, have been included in these figures. Figures 3.14(a,c) 
show that  a reversed flow (f~ < 0) exists on the lower branch solutions for ,k = -0 .1 ,  
-0 .2  and -0.035. However, on these branch solutions the temperature profiles 
remain positive, as can be seen from Figures 3.14(b,d). 
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Figure 3.13: Variation of f"(O), 0'(0) and 0(0) with A for Pr = 1. Figures 
(a,b) display prescribed wall temperature results, (c,d,e) represent results for the 
prescribed wall heat flux and (e) gives results for 0(0) near A = O. The solutions 
for m = ~, �89 and 1 are indicated by the broken, dotted and solid lines, respectively. 
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Figure 3.14- (a,c) The fluid velocity, f ' (~),  and (b,d) the temperature, 0(~), profiles 
1 for Pr = 1 with m -- ~ (case of variable wall temperature) in (a,b) and m - 3 

(case of variable wall heat flux) in (c,d). The upper branch, lower branch and 
critical point are indicated by the broken, solid and dotted lines, respectively. 

3.6  M i x e d  c o n v e c t i o n  b o u n d a r y - l a y e r  f low a l o n g  an  in-  

c l i n e d  p e r m e a b l e  p l a t e  w i t h  v a r i a b l e  wa l l  t e m p e r a -  
t u r e  

Consider the steady mixed convection flow of an incompressible fluid along a heated 
permeable fiat plate which is inclined at a positive angle ~o to the horizontal, see 
Figure 3.15, where U(x)  is the free s t ream velocity, Tw(x)  is the variable fiat plate 
tempera ture  distr ibution,  vw(x)  is the value of v at the plate and all these quantit ies 



112 CONVECTIVE FLOWS 

~5 

Figure 3.15" Physical model and coordinate system. 

are expressed in non-dimensional form. The basic equations which govern this flow 
configuration were given by Weidman and Amberg (1996) in the form: 

or 02r 
Ox Oy 2 - ~ • Gr 0 sin ~0 + cos ~ o ~  x 0 dy (3.73) 

0 r  1 020 
= (3.74) 

Ox Oy Pr  Oy 2 

Oy OxOy 

0r 0o 
Oy Ox 

where the :t: signs correspond to upward-facing and downward-facing heated plates, 
respectively, and the subscript x denotes differentiation with respect to x. Guided 
by a method proposed by Burde (1994) for determining the similarity solutions of 
partial differential equations, Weidman and Amberg (1996) assumed that  r 0 and 
7/take the forms 

. 

_ Y 
r  -- a(x) + #(x) f (~l), O(x, y) -- Tw(x)O (r/), U(x,y) /3(x) + 'y(x)  (3.75) 

The inclination X(X) of the streamlines which enter or leave the plate is determined 
from the equation 

t anx(x)  - Vw(X) 
uw(x) (3.76) 

where Uw(X) is the value of u along the plate. Blowing or injection occurs when the 
streamline inclination falls in the region 0 < X(X) < 7r, and when -~r < X(X) < 0 
there is a suction type of flow, which were only considered by Weidman and Amberg 
(1996). These latter flows are further divided into obtuse suction for which -Tr < 

and acute suction for which X < - ~  - ~  < X < 0; normal suction occurs when 
X - ~r2. According to the transformations (3.75), the fluid velocity components at 
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the plate are given by 

Uw(X) -- I t (x) f ,  (~(x)) Vw(X) = - [ax + lzxf (3'(x)) + #"Yxf' (',/(x))] ~(~) 

Substi tuting expressions (3.75) into Equations (3.73) and (3.74), we obtain 

(3.77) 

fl/zx ( f , 2 _  f f , , )  _ iZ/~xf,2 ~x f l f "  - f" '  

~3 { ~3Tw 
= ~ U U ~  :t: Gr 0 sin ~v 

# # 

- c o s cp [ fl-~~ ( /3 Tw ) z h - ~3~xTw rlo -f- ~3Tw (~'Y)x O] # 

(3.78) 

1---0" + fl#~fO' - fig (Tw)z f'O + flaxO' = 0 h' - 0 (3.79) 
Pr Tw ' 

which have to be solved with the boundary conditions 

f _ _ ~ o  0 - 1  #o ~ + T z o  + # z o f + o ~ z o - - O  on 77-7o  x > O  
~ 0  ~ ~ 

f ' ~ ~ U o ,  r /O~O,  h--+O as r/--+cr x > O  

(3.80) 
with h0 - tan X0 - ~v~ and the subscript zero denotes conditions at x - y - 
0. Equations (3.78) and (3.79) reduce to similarity equations when the following 
expressions take constant values- 

~ 3  B3T~ 
~ ~ ,  ~ 7uu~ 

_ _  . fl tt ( T ~  ) x f13 fl 3 fl z T w  fl 3 Tw  ( f l  ~l' ) , 
(3.Sl)  

Weidman and Amberg (1996) have systematically determined all possible solutions 
defined by Equation (3.81) and found that  these solutions fall into two distinct 
classes, namely: class I: problems which correspond to a radial source/sink, flows 
interior to a wedge for which # = 1; and class II: problems which pertain to uniform 
rectilinear flow over flat plates for which # = fl = 1. Except in special cases, the 
solutions of the class I equations must be obtained numerically, while all class II 
equations possess explicit analytical solutions involving natural,  mixed, or forced 
convection flows depending on the magnitude of the free stream velocity U(x). Nu- 
merical integration of the class I equations reveal single or dual solutions for radial 
inflow and an infinity of oscillatory solutions for radial outflow. 

As an example we consider here the class I solutions which correspond to radial 
_ f l0  source/sink flows of strength qs h-~U0. In this case with # - 1 we obtain from 

Equation (3.81) 

a(x)  = g ln(x  + 1), u(~)=  q~ (3.82) Z(~)  = z + 1, T~(x) -  (~ + 1)3' �9 + 1 
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where ~ is an arbitrary constant and 7(x), which appears in Equation (3.75), re- 
mains arbitrary. Equations (3.78) and (3.79) reduce now to the following ordinary 
differential equations: 

f,,, + ~ f , ,  + f,2 2 - qs 4- G r  0 sin cp 

O" +-~PrO' + 3Pr f'O - 0 

(3.83) 

(3.84) 

which have to be solved subject to the boundary conditions 

a 0 ( 0 ) -  1 f(O) - O, f'(O) - ho+7~o' 
f~ --+ qs, 0--+0 as 71--+oo 

( 3 . 8 5 )  

To solve Equations (3.83) - (3.85) numerically, Weidman and Amberg (1996) intro- 
duced the scaled variables 

- ^  , "" ~ ~-1  
f - bf  (~) 0 - 0 (~) 71 - (~ + 7o) 

qs--b2q,  ~--b~', , ) , 0 -  b - l ~ o ,  ho - b-lho 
(3.86) 

1 . ~  A 

where b -  (Gr sin ~o)~ and with f and 9 given by 

�9 ? "  + + - - ( 3 . 8 7 )  

! ~ ' +  3~ + 3 ] ~  " - 0 (3.88) 
P r  

where the minus sign has been taken in Equation (3.83). These equations have to 
be solved subject to the boundary conditions 

f (O)=O,  f ' ( 0 ) - - ~ 0 + %  0, 0 ( 0 ) - 1  
(3.89) 

f ' - + q ,  6 - + 0  as r / ~ ~  

Equations (3.87) - (3.89) have been solved numerically by Weidman and Amberg 
(1996) for ~ = 1, P r  - 0.71 and for different values of the parameter q. For 
convenience of integration f~ (0) - ~ was taken, which implies that h0 = - (Tx0 + ~) 
in Equation (3.89). The large ~ asymptotic solution of Equations (3.87) - (3.89) is 
characterised by two discriminants, namely A1 -- (~Pr) 2 - 1 2 P r  q and A2 -- 3 2 -  8q. 
This system of equations is undetermined when both A1 < 0 and A2 < 0, and only 
the most rapidly decaying roots are physically relevant when both A1 > 0 and 
A2 > 0. Thus, Weidman and Amberg (1996) have used the following asymptotic 
solution to implement integration from ~ -  oo to the plate, ~ -  0: 

0" ,-~ C] exp ( - 1  (~dPr + x / ~ ) ~ )  

f'3 ,,~ q + 62 exp ( - 1  (~ + x / ~ )  ~) _ b2+~+2qC~. exp (--1 (E + v/-~) ~) (3.90) 

for A 1 > 0 and A2 > 0, where b = -�89 ('dPr + x / ~ )  and C1 and (72 are unknown 
constants. 
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Figure 3.16: Variation of (a) f"(O), and (b) 0'(0), with q for Pr = 0.71. The 
value q - -0 .575  is indicated by the dotted line and the branch 1 and branch 2 
solutions are indicated by the solid and broken lines, respectively. 
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Figures 3.16 and 3.17. It is seen from Figure 3.16 that  two solution branches exist 
simultaneously in the region of non-oscillatory asymptotic decay. The branch 1 
solutions exhibit a singular behaviour as q approaches -0.575 + 0.005 and cannot 
be continued to higher values of q. In contrast, the branch 2 solutions can be traced 
smoothly up to the value of q = 0.0591667, very near the value for which A1 = 0, 
namely q -  ~Pr~d 2 -  0.0591667. 

Figure 3.17 clearly shows the difference between the branch 1 and branch 2 
boundary-layer profiles of f '  (~) and 0 (~) at selected values of the radial sink pa- 
rameter q (< 0). It is seen that  on both branch solutions there exists a reverse sink 
flow (f~ < 0) for admissible values of q. This reverse sink flow is stronger on the 
branch 1 solution than on the branch 2 solution. However, the temperature becomes 
negative on the branch 2 solution for the values of q considered, which does not have 
any physical sense. 



Chapter 4 

Double -d i f fus ive  convec t ion  

4.1 I n t r o d u c t i o n  

In many natural and technological processes, temperature and mass or concentra- 
tion diffusion act together to create a buoyancy force which drives the fluid and 
this is known as double-diffusive convection, or combined heat and mass concen- 
tration transfer convection. In oceanography, convection processes involve thermal 
and salinity gradients and this is referred to as thermohaline convection, whilst 
surface gradients of the temperature and the solute concentration are referred to as 
Marangoni convection. The term double-diffusive convection is now widely accepted 
for all processes which involve simultaneous thermal and concentration (solutal) gra- 
dients and provides an explanation for a number of natural phenomena. Because 
of the coupling between the fluid velocity field and the diffusive (thermal and con- 
centration) fields, double-diffusive convection is more complex than the convective 
flow which is associated with a single diffusive scalar, and many different behaviours 
may be expected. Such double-diffusive processes occur in many fields, including 
chemical engineering (drying, cleaning operations, evaporation, condensation, sub- 
limation, deposition of thin films, energy storage in solar ponds, roll-over in storage 
tanks containing liquefied natural gas, solution mining of salt caverns for crude oil 
storage, casting of metal alloys and photosynthesis), solid-state physics (solidifica- 
tion of binary alloy and crystal growth), oceanography (melting and cooling near ice 
surfaces, sea water intrusion into freshwater lakes and the formation of layered or 
columnar structures during crystallisation of igneous intrusions in the Earth's crust), 
geophysics (dispersion of dissolvent materials or particulate matter in flows), etc. A 
clear understanding of the nature of the interaction between thermal and mass or 
concentration buoyancy forces are necessary in order to control these processes. 

The parameters that determine the relative strength of the two buoyancy forces 
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are the buoyancy ratio parameters, N and R, which are defined as 

N = f l *AC I ~ A T  I 
R = (4.1) 

~ A T  ' [~*AC I 

It is important to note, for most fluids at normal pressures, that/~ is positive but/3* 
can be positive or negative depending on the contribution of the diffusing species to 
the density of the ambient medium. When N = 0 and N = oo, the case in which a 
single scalar is diffusing is recovered; when N < 0, thermal and concentration forces 
drive the flow in opposite directions and the flow field can reverse (opposing flow); 
when N > 0, buoyancy forces are cooperating and drive the flow in the same direc- 
tion (assisting flow). The character of a double-diffusive convective motion depends 
upon the orientation of the two density gradients with respect to the gravitational 
field. Three different cases can be distinguished. Firstly, if both gradients are verti- 
cal the configuration resembles the Rayleigh-B~nard stability problem, except that 
double-diffusive instabilities can develop even when the net density decreases up- 
wards and the system would appear to be statically stable. Secondly, if one density 
gradient, say concentration (solutal), is vertical and statically stable, the imposition 
of a horizontal temperature gradient at a vertical or inclined boundary will induce 
a multicellular intrusive motion along the boundary. Finally, both of the density 
gradients might be horizontal, resulting in a boundary-layer flow along a vertical or 
inclined boundary. 

A substantial literature survey on the subject of double-diffusive convection has 
been made by Ostrach (1980), Huppert and Turner (1981), Nilson and Baer (1982), 
Turner (1974, 1985), Nilson (1985), Gebhart et al. (1988), Napolitano et al. (1992), 
Angirasa and Srinivasan (1992), Mahajan and Angirasa (1993), Bejan (1995), Rah- 
man and Lampinen (1995) and Mongruel et al. (1996). 

Theoretically, the governing equations of double-diffusion convection are the clas- 
sical conservation equations (I.1) - (I.4) for mass, momentum, energy and mass (or 
concentration) species. While these are easy to formulate, the existence of two buoy- 
ancy forces results in a complicated nonlinear partial differential problem. Most of 
the methods developed in the field of boundary-layer theory have also been success- 
fully applied to double-diffusive situations. Among them the search for similarity 
solutions has attracted much attention, mainly because similarity formulation trans- 
form easily the transport equations into a set of ordinary differential equations which 
can be solved numerically for different values of the parameters involved. Other 
numerical investigations have solved the basic flow equations, i.e. the full partial 
differential equations, by the finite-difference techniques. Analytical methods, such 
as integral methods and asymptotic expansions, have also been used to obtain the 
transport properties as a function of the different parameters which are involved in 
the particular problem under investigation. The results contain evidence of many 
different and complicated fluid flows but, in general, the predictions are scarce and 
they are restricted to some specific cases. However, the scale analysis proposed by 
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Bejan (1984) has also been applied to some double-diffusive convection problems, 
see Khair and Bejan (1985) and Trevisan and Bejan (1987), with much success in 
order to determine the heat and mass transfer characteristics. This method is based 
on the fact that  different terms in the equations of motion are approximated from 
simple order of magnitude arguments and some dominant balances between them 
are then considered. Recently, Mongruel et al. (1996) have proposed a novel method 
to study the double-diffusive boundary-layer flow over a vertical flat plate which is 
immersed in a viscous fluid or in a fluid-saturated porous medium. This method 
combines the use of the integral boundary-layer equations and the scaling analysis 

approach. 
Three different diffusivities appear in the transport equations (I.1) - (I.4): chem- 

ical diffusivity D, thermal diffusivity ~ / a n d  viscous diffusivity v. Accordingly, there 
are three different length scales or boundary-layer thicknesses: concentration (solu- 
tal) boundary-layer thickness 5c, thermal boundary-layer thickness 5t and viscous 
(momentum) boundary-layer thickness (~v. In general, the aim of any double-diffusive 
study is to predict all the solutions of Equations (I.1) - (I.4) when N (or R) and 
the diffusion parameters are varied. It is convenient to use the Prandtl  number, Pr,  
the Schmidt number, Sc, and the Lewis number, Le, as diffusion parameters. Their 
values depend on the nature of the fluid and on the physical mechanisms governing 
the diffusion of the heat and chemical species. In gases, D ~ ( ~ / ~  v, which leads 
to Pr,  Sc and Le being of the order of unity. However, in most liquids Pr  > 1 
and Sc > 1, except in most molten metals where P r  < 1. Usually, heat diffusion 
is more efficient than mass diffusion, yielding a Lewis number which is greater than 
unity. Typical values of Le in common solutions are about 100; but Le can be very 
large in complex situations containing macromolecules or colloidal dispersion. Since 

sc it is concluded that only two physical Pr,  Sc and Le are related through Le = -P-i, 
cases fit the requirement Le > 1: P r  < 1 < Sc ( molten metals) and 1 < Pr  < Sc 
(solutions). When P r  = Sc, the governing equations (I.1) - (I.4) reduce to those for 
a single buoyancy effect. 

The case when N > 0 (assisting flow) and different combinations of the scales 
(~c, ~t and ~v, or equivalently of the parameters Pr,  Sc and Le, has been extensively 
studied in the literature (see Khair and Bejan, 1985; Bejan, 1995; and Mongruel 
et al., 1996) and therefore will not be presented here. However, we will discuss in 
more detail the case of opposing thermal and chemical buoyancy forces. 

4.2 Double -d i f fus ive  free convec t ion  boundary- layer  
flow over a vert ical  flat plate in the  case of oppos ing  
buoyancy  forces 

Consider a vertical impermeable flat plate of finite height, which is immersed in 
a binary fluid/solute flow, where the temperature and concentration at the wall, 
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Tw and Cw, respectively, and in the ambient field, Too and C~,  respectively, are 
constant. We assume that  the combination of the buoyancy forces tend to induce 
an upward motion near the wall and that the thermal buoyancy tends to induce 
a downward motion in the far field. It is also assumed that 6u >> 6t >> 5~, where 
/1 >> ~f >> D or equivalently 

Pr>>l  and L e > > l  (4.2) 

In this case the interaction between the chemical and thermal buoyancy mechanisms 
depends mainly on the parameters R (or N) and Le. As indicated schematically 
by Nilson (1985) in the flow-regime map of Figure 4.1, the following three different 
situations are possible: 

(i) uni-directional downflow occurs when R > 11 ," 
Le~ 

1 (ii) uni-directional upflow occurs when R < ~ ;  

(iii) bi-directionai counterflow occurs when ~ee ~< R <~ 
1 ~ 

Le3 

The nature of the motion depends upon which of the components is dominant. If the 
more-diffusive component (heat) is dominant it is referred to as the outer-dominated 
situation; if the less-diffusive component (solute) is dominant it is called the inner- 
dominated case. A somewhat arbitrary division between these two regimes is the 

] which cuts through the centre of the counterflow regime. There is line R -- ;-/ 

clearly a broad central region in which neither force is clearly dominant. 
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Figure 4.1" Flow-regime map showing regions of upflow, downflow and counterflow. 
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The basic equations for the double-diffusive free convection boundary-layer flow 
over a vertical flat plate are the conservation of mass, momentum, energy and con- 
centration, namely the Equations (I.1) - (I.4), along with the Boussinesq approx- 
imation (I.6) for the variation of the density with temperature and concentration. 
On making use of the boundary-layer approximations, these equations become for 
steady flow, see Gebhart and Pera (1971), 

Ou Ov 
0-~ + Oyy - 0 (4.3) 

Ou Ou 02u 
+ v - ~  = u-~v 2 + gfl (T  - Too) + gfl* (C - Coo) (4.4) U ~ X  x 

v . J  e . J  

OT OT v 02T 
u -~-~x + v O----y = P r O y 2 (4.5) 

OC OC v 02C 
U-~x + v O---y = Sc Oy 2 (4.6) 

where Sc is the Schmidt number. Equations (4.3) - (4.6) have to be solved subject 
to the boundary conditions 

u = O, v = O, T = Tw, C = Cw on y = 0 ,  x > 0  
u--+0,  T--+Too, C--+Coo as y--+c~, x > 0  (4.7) 

In taking v (x, 0) = 0 we suppress any mass flux across the wall, as might occur in a 
dissolution or melting process. Under this rather mild restriction the roles of T and 
C are entirely interchangeable. 

In inner-dominated fluid flows, Equations (4.3) - (4.6) can be reduced to a set 
of ordinary differential equations by the introduction of the similarity variables 

r l -  coSc[ Y-YT, r  4 ~ c o S c - ~ x ]  f (r/), O (77) = T - T ~ 1 7 6  q5 (~) - C - C o o  
x~ A T  A C  

(4.8) 
1 

where c o _ "  " (gt~*lzxcI) ~ 4 .  ~ . Substituting the transformation (4.8) into Equations (4.3) 
% ] 

- (4.6), and assuming that Sc is very large (Sc -4 c~), we obtain 

f"' + r  RO - 0 (4 .9)  
3 

0" + -~efO' - 0 (4 .10 )  

r  3 f r  0 (4.11) 

with the boundary conditions (4.7) becoming 

f (O)=O,  f ' ( O ) = O ,  0 ( 0 ) = 1 ,  r = 1  
f ' - + O ,  0--+0, r  as ~ c ~  

(4.12) 
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It should be noted that in this case, Equations (4.9) - (4.11) are restricted to the 
boundary layers close to the wall where the shear is in balance with the buoyancy. 
At the outer edge of this buoyant zone, the buoyancy becomes small and hence 
so must the shear. Therefore, the boundary condition f " (c~)  = 0 can replace the 
condition f '(c~) = 0, as it was rigorously justified by Kuiken (1968). Of course, the 
fluid velocity does fall back to zero, but only on the much broader length scale of 
the viscous boundary-layer, in which shear forces are balanced by inertial forces and 
buoyancy forces are absent. 

Equations (4.9) - (4.12) were solved numerically by Nilson (1985) for Le = 100 
and some values of the product parameter RLe.  The numerical solutions for the fluid 
velocity (shown by dotted lines), temperature and concentration (solutal) profiles 
are illustrated in Figures 4.2 and 4.3. It is seen that when R = 0 the thermal 
buoyancy is fully suppressed and the fluid velocity rises monotonically to a maximum 
of f '(c~) - 0.51, which is in agreement with the results of Kuiken (1968) for a single- 
diffusive situation. However, for R ~ 0 the fluid velocity rises to a local maximum 
at the outer edge of the viscous boundary-layer where r/ ..~ 1. However, further 
from the wall the opposing thermal buoyancy reduces the upward fluid velocity. For 
R L e  = 0.62 the thermal buoyancy is strong enough to cause a slight flow reversal, 
i.e. a negative fluid velocity, at the outer edge of the buoyancy region. However, 
the more significant flow reversal that occurs at even larger values of R L e  is not 
compatible with the assumed self-similar form of the solution (4.8). A negative fluid 
velocity at the outer edge of the buoyant region would imply that the stream function 
must eventually become negative at some distance from the wall. This would, in 

0.6 

0.5" 
f'(rl) 

0.4 

0.3 

0.2 

0.1 

0.0 
0.{ 

RLe=O ] 

11 0'.1 i 1'0 100 77 

Figure 4.2: Fluid velocity profiles, f'O?), for the inner-dominated flow of opposing 
buoyancy forces when Le - 100 and for several values of RLe. The exact numerical 
solutions are indicated by the solid lines and the matched asymptotic expansions 
are indicated by the dotted lines. 
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Figure 4.3: Temperature, 0(71), (broken lines) and concentration, r (solid lines) 
profiles for inner-dominated flow when Le - 100 and for several values of RLe. 

turn, imply that the temperature and concentration profiles increase exponentially 
rather than decrease as they must in order to satisfy the boundary conditions (4.12). 
Thus it will be necessary to consider non-similar flow structures as discussed by 
Nilson (1985). These non-similar solutions require the matching of an upward- 
flowing concentration boundary-layer with a downward-flowing thermal boundary- 
layer. In order to do this we consider further the case of very large values of Le, 
keeping in mind that Sc -~ (x~. 

At large values of Le (>> 1), the concentration boundary-layer is much thinner 
than the thermal boundary-layer, as illustrated in Figure 4.3. Thus, in the limit 
Le --+ c~, with RLe  held fixed, Equations (4.9) - (4.11) can be reduced to the 
following form: 

f " ' +  r  0 (4.13) 

0 -  1 (4.14) 

r  3 f r  0 (4.15) 

with the boundary conditions 

f(O) -- O, f'(O) -- O, r -- 1 (4.16a) 

f " - -+0 ,  r  as ~--+c~ (4.16b) 

Within this inner concentration layer the temperature is essentially uniform and 
the thermal buoyancy forces can be neglected for the inner-dominated conditions 
of interest, as, for example, in Figure 4.2 where R < 0.01. The thermal buoyancy 
effects will be later included in the outer equations. 
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The outer thermal boundary-layer can be described by introducing the new vari- 
ables, for both Le and Pr  large, 

A 1 y 3 3 

T] - -  C1 P r  ~ z, r - 4ucl P r -  ~ x ~ (4.17) 
x ~  

1 

w h e r e c l - -  (g~AT)  ~ 4v2 

to the following form- 

Under this transformation the Equations (4.3) - (4.6) reduce 

p " -  0 - 0 (4.18) 

0 " +  3 fO' - 0 (4.19) 

r  0 (4.20) 

where primes now denote differentiation with respect to ~. The inner/outer  matching 
conditions for these equations are as follows: 

A 

f(0) - 0, 0(0) -- 1 (4.21a) 

A 

df 
- 

1 df 0.51 
(co) - ~ (4.21b) 

(RLe)  ~ drl (RLe) ~- 

as well as the far-field boundary conditions 

]) ' - -+0,  0 - ~ 0  as ~ - + c c  (4.21c) 

The matching conditions between the inner (7] >> 1) and outer (~ << 1) boundary 
layers can be verified by writing the outer expansion of the inner solution as 

lim f - a0 + al r /+  a2r/2 + exponentially small terms 
r/--~oo 

(4.22) 

and the inner expansion of the outer solutions as 

lim f - -  b0 + bl~+ b2~ 2 + . . .  (4.23) 

A matching of the stream function between the boundary layers requires that  

lim f 07) = R�88 Le~ lim f(~') 
71-+oo fi~O 

(4.24) 

which can be also written as 

ao  -I- a i r ]  + a2r/2 - -  (RLe)~ bo + b~r/+ b2rl 2 ~e  (4.25) 
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By equating like powers of 77, and by letting Le tend to infinity with R L e  held fixed, 
results in the following matching conditions: 

A 

b o - O  =~ f (O) - -  0 

f~ f', al -- bl (RLe)  ~ =~ (0) - (~) 1 
(RLe)~ 

a2  - O f " ( o o )  - O 

(4.26) 

which are exactly the conditions noted in the conditions (4.21a,b) and (4.16b). 
The complete solution of the inner-dominated flow is obtained by solving the two 

sets of Equations (4.13) - (4.16) and (4.18) - (4.21) for some values of the parameter 
RLe.  Using the matching procedure, the composite solution is obtained by adding 
the inner solution to the o~ter solution and subtracting the common part. The 
common part is simply the fluid velocity, f ' ,  which was matched between the inner 
and outer layers and is shown in Figure 4.4. Also, the fluid velocity profiles, f ' ,  as 
obtained from this matchingtechnique, are shown by the full lines in Figure 4.2. This 
figure shows a good agreement between the matching (approximate) solutions and 
the exact numerical solutions of Equations (4.9) - (4.12). The agreement becomes 
even better when Le is larger, so that  the approximate and the exact solutions 
become virtually indistinguishable at Le .~ 104. Further, Figure 4.4 shows that 
when R L e  is small then the decrease in the upward fluid velocity f '  within the 
thermal boundary-layer is relatively small compared with the dominant upward 
fluid velocity that was established within the concentration boundary-layer near to 
the wall. However, for larger values of R L e  the upward fluid velocity is not so 
overwhelming, and the thermal boundary-layer becomes more important. Then, for 
R L e  - 0.66 the upward fluid velocity is entirely offset by the opposing thermal 
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Figure 4.4- Outer fluid velocity profiles, f '  (~), for Le - 100 and some values of 
RLe . 
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boundary-layer. 
It should be mentioned that all of the solutions described above are self-similar 

and they cannot be used to describe the counterflow regime in which the inner 
concentration boundary-layer is flowing upward and the outer thermal boundary- 
layer is flowing downward. 

The structure of the solutions in the other three flow regimes shown in Figure 4.1 
can be described in a similar manner to that presented above. However, these 
solutions are well described in Nilson (1985) and the interested reader should consult 
this paper for more details. In fact, the inner-dominated solutions described above 
serves mainly as a test of the asymptotic matching technique which is to be used to 
describe the flow structure in the upflow, downflow and counterflow regions. 

In the case when P r  is very large and Le is finite, Nilson and Baer (1982) have 
used the following similarity variables proposed by Gebhart and Pera (1971), 

1 y 
~* - c*PrZ-- i- ,  r - 4uc*Pr  ~ x ~ F  (7/*) (4.27) 

X4 

where 
1 

�9 [ /428  - (Z IZXTI +/3" I/',CI) 

Equations (4.3) - (4.6) for P r  --+ ~ then become 

R 1 

F '" -  Ti+ I+R R 0 • r (4.29) 

0 " +  3 F 0 ' =  0 (4.30) 

r + 3 L e F r  = 0 (4.31) 

which have to be solved subject to the wall boundary conditions 

F(0) = 0, F'(0) = 0, 0(0) = 1, r = 1 (4.32a) 

as well as the near/far matching conditions 

F " - ~ 0 ,  0--+0, r  as 7 / * ~ c ~  (4.32b) 

where primes now denote differentiation with respect to ~*. 
Outer-dominant flows occur when R is sufficiently large that the outer thermal 

buoyancy forces are dominant and then the upper signs are appropriate in Equa- 
tion (4.29). On the other hand, inner-dominant flows occur when R is sufficiently 
small that the inner concentration (solutal) buoyancy forces are dominant, and then 
the lower signs are appropriate in Equation (4.29). These signs must change because 
the primary flow direction and the direction of the boundary-layer growth must both 
be taken as positive in the direction of the dominant buoyancy forces. 

Equations (4.29) - (4.32) were solved numerically by Nilson and Baer (1982) us- 
ing three different methods, namely shooting, finite-difference and Picard's method, 
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for Le  = 4 and for a wide range of values of the buoyancy parameter R. The fluid 
velocity profiles, F r, and the reduced wall skin friction, F"(0),  are shown in Fig- 
ures 4.5 and 4.6. We notice from Figure 4.5 that  as R decreases from a very large 
value (R --+ c~ corresponds to the single-diffusive thermal convection), the counter- 
buoyant effect due to the concentration becomes progressively stronger, particularly 
near the wall (y < ~c), where the counter-buoyancy forces are active. The wall skin 
friction vanishes for R - 0.63, see Figures 4.5 and 4.6, and there is a reversed flow 
near the wall when R is slightly less than this value. However, there is a minimum 
value of R for which the outer-dominated self-similar solutions of Equations (4.29) 
- (4.32) can exist, and there are multiple solutions in that  neighbourhood. On the 
unexpected lower branch of the outer-dominated solutions, which can be reached by 
specifying the value of F"  (0) rather than the value of R, the inner counter-buoyancy 
forces exercise more influence (and hence there is more reversal flow) than is ob- 
served for the upper branch flows with identically the same values of the parameter 
R. 

0.5 

F, (77.) 04 
0.3 

0.2 

0.1 

0.0 
I ~ R=0.75, 1 
! 

o i " '  

Figure 4.5: Fluid velocity profiles, F' (~*), ]or the outer-dominated flow when 
Le = 4 and for some values o] R. 

Inner-dominated flows occur for small values of R, since the inner concentration 
buoyancy forces are then dominant. As R increases from zero (single-diffusive con- 
centration convection), the counter-buoyant effect of the thermal gradient becomes 
progressively stronger, particularly in the outer region (y > ~c), where only the 
counter-buoyant thermal forces are active. Further, Figure 4.6 shows that  in the 
outer-dominated flow a loop-like multiplicity of solutions is found to exist when R 
becomes sufficiently large in the neighbourhood of insipient reversed flow. Also, as 
before, there is an extremal value of R (here a maximum value) for which inner- 
dominated flows may exist. 
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Figure 4.6: Variation of F"(O) with R for Le = 4. The outer-dominated and 
inner-dominated flows are indicated by the solid and broken lines, respectively. 

Finally, it is worth pointing out tha t  Nilson and Baer (1982) have shown that  
some qual i ta t ive results exist for other values of P r  and Le. When P r  is finite, it 
is possible to have inner-dominated solutions with a reversed flow in the far field. 
However, as Pr  --+ oo, it is impossible, within the context of self-similar theory, for 
an inner-dominated  reverse flow to occur. This  argument  is based on the observation 
that  f'(c<~) cannot  be negative and tha t  F '  (r/*) cannot pass through negative values 

and then re turn  to zero as U* -+ ec. 
Double-diffusive free convection flow over a heated and isothermal vertical fiat 

plate, using the full unsteady Navier-Stokes, energy and concentrat ion (species) 
equations,  has been considered by Maha jan  and Angirasa (1993) and we shall now 
present some results of this study. 

Using the non-dimensional  variables 

~ t - -  t u v x - -  T, y - -  , - - ,  u - -  ~7' v - -  

T -  T-T~ C -  C-Coo U c -  (gflAT1)~ 
-- A T  ~ -- A C  

(4.33) 

Equat ions  (I.1) - (I.4) can be wri t ten as 

w - V 2 r  

Ow Ow Ow 

OT 07" OT 

o-7 + + 

OC OC OC 
0-7 + + v 

_ ~ OT OC 1 V 2 w +  + N - -  

1 

: x V2T 

Pr  Gr 7 

_ 1 V2 C 
1 

ScGr~  

(4.34) 

(4.35) 

(4.36) 

(4.37) 
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where the vorticity w is defined as 

Ou Ov 
= oy - 0x (4.38) 

These equations have to 
conditions" 

be solved subject to the following initial and boundary 

u = 0 ,  v = 0 ,  T = 0 ,  C = 0  at t = 0  for all x , y  

u - 0 ,  v - 0 ,  T - - l ,  C - 1  on y - 0  ~ for t > 0 ,  x > 0  
u ~ 0 ,  v - + 0 ,  T--+0,  C--~0  as y ~ c o  J 

(4.39) 
Finally, the average Nusselt number, N u ,  and the average Sherwood number, 

S h ,  can be evaluated from the expressions 

d x ,  S h  - - d x  (4.40) 
y--O "~Y y=0 

The time-dependent Equations (4.34) - (4.39) are marched step-by-step in time 
until a steady state solution is obtained, see Mahajan and Angirasa (1993) who have 
used the Alternating Direction Implicit (ADI) scheme as proposed by Peaceman and 
Rachford (1955) which is well described in the book by Roache (1982). The width 
of the computational domain in the y direction was chosen to be 0.4 after checking 
that larger values did not alter the solution and this value was estimated from the 
similarity solutions of Gebhart and Pera (1971). Also, the wall vorticities were 
evaluated from the values of the stream function at the adjacent grid points. Other 
details of the computation can be found in the paper by Mahajan and Angirasa 
(1993). 

The computed fluid velocity profiles u for P r  - 0.7, S c  - 5, G r  - 105 with 
N = - 1  and 2 are presented in Figure 4.7, while those for N -- -1 .6  to - 5  are 
shown in Figure 4.8. Further, the similarity solutions of Gebhart and Pera (1971) are 
also shown in these figures for comparison. It can be seen that  for N - 2 (assisting 
buoyancy forces) that the agreement between the two set8 of results are very good, 
while for N = - 1  (opposing buoyancy forces) there is a difference between the two 
solutions. The numerical results give a slightly smaller value of the peak vertical 
fluid velocity, and a flatter fluid velocity profile. This suggests, for N -- -1 ,  that 
although the numerical results for large value8 of G r ,  i.e. boundary-layer type flow, 
predict a reasonably accurate solution this solution does 8tart to depart from the 
8imilaxity boundary-layer 8olution. Further, for N = -1 .6  the difference between 
the numerical and similarity, i.e. the boundary-layer, solution8 is relatively high, 
see Figure 4.8. This figure shows that the similarity solution under-predicts the 
flow reversal near the surface but exaggerates the magnitude of the upward fluid 
velocity in the outer region of the boundary-layer. The flow reversal, with the 
upward and downward fluid velocities of the same order, cannot be accounted for by 
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Figure 4.7: Fluid velocity profiles, u(O.5, y), for both assisting and opposing buoy- 
ancy forces when Pr = 0.7, Sc = 5 and Gr = 105. The profiles o/Mahajan 
and Angirasa (1993) are indicated by the solid lines and the similarity solutions 
of Gebhart and Pera (1971) are indicated by the broken lines. 
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Figure 4.8: Fluid velocity profiles, u(O.5,y), for opposing buoyancy forces when 
Pr - 0.7, Sc - 5 and Gr - 105. The profiles of Mahajan and Angirasa (1993) 
are indicated by the solid lines and the similarity solution of Gebhart and Pera 
(1971) is indicated by the broken line. 

the boundary-layer equations. With increasing negative values of N, the magnitude 
of the downward fluid velocities increases, and that of the upward fluid velocities 
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away from the surface decreases. For P r  >~ Sc, and INI >> 1 (N < 0), no flow reversal 
(upward) appears, and v << u and then the boundary-layer analysis is expected to 

be valid. 
At N = -1 .6  and Gr = 107, for P r  = 0.7 and Sc = 5, the similarity solution 

of Gebhart  and Pera (1971) gave NU = 19.12 and Sh  = 35.42, while Wilcox (1961) 
reported the values N u  = 20.31 and Sh  - 54.28 using an integral analysis. The 
numerical results of Mahajan and Angirasa (1993) are N u  - 17.46 and S h -  30.92. 
These results clearly show for opposing flows that  the boundary-layer similarity and 
the integral analyses over-predict the average Nusselt number by 10 - 20%, and 
the average Sherwood number by as much as 80%. This result is supported by the 
experimental data of Adams and McFadden (1966) who found that  the measured 
heat and mass (concentration) transfer rates with opposing body forces were lower 
than that  predicted by the boundary-layer analysis. Most likely, this discrepancy 
arises because the theoretical analyses do not properly account for the fluid flow 
reversal near the surface and predicts a larger upward force. However, the results 
obtained by Mahajan and Angirasa (1993) for N u  and Sh are in very good agreement 
with the experimental findings of Adams and McFadden (1966), see Table 4.1. 

Table 4.1: Comparison of the numerical results with the experimental data for Nu  
and Sh. 

. . . . .  G r  

1:i5 • lO 
1.85 • 106 

Mahajan and 
Angirasa (1993) 

Numerical 

-0.414 15.,,:}..9 27.41 

Adams and 
McFadden (1966) 

Experimental 
Nu Sh 

24:3s 42.10 
14.27 26.2 

,, 

The contours of the stream function C m  - -  0 are shown in Figure 4.9 for Gr = 105, 
P r  = 0.7, Sc - 5 and N = - 5  and because of the large downward force near the 
surface, due to mass diffusion, the fluid flow near the surface is downwards, and 
consequently the u component of the fluid velocity is negative in this region, see 
Figure 4.8. The u component of the fluid velocity reverses direction at the end of 
the concentration layer due to the upward thermal buoyancy forces and in this latter 
region the only buoyancy force is the thermal buoyancy. Vertical fluid velocities reach 
zero again at the edge of the thermal boundary-layer. The stream function contours 
clearly show that  the nature of the fluid flow is not of the boundary-layer type. 
Furthermore, since the value of Sc (= 5) is much higher than that  of P r  (= 0.7), 
the concentration layer is much thinner than the thermal layer and this confines the 
downward flow to a thin region near the surface, as can be seen in Figure 4.8. As 
Sc decreases then the thickness of the concentration layer increases and the region 
of flow reversal extends further away from the wall. 
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F i g u r e  4.9" Streamlines,  r  - O, ]or Gr  - 105, P r  - 0.7, Sc  - 5 and N - - 5 .  

(a) (b) (c) 

/ 

F i g u r e  4.10: Contour  plots of  (a) streamlines,  Cw - 0, A r  - 0.1, (b) isotherms,  
0w - 1, A0  - 0.1, and (c) iso-concentrat ion lines, Cw - 1, A r  - 0.1, ]or Gr  - 107 
and N = - 3 .  The upper contour plots refer to P r  <~ Sc,  namely  P r  = 6 and 

Sc  - 150, whilst the lower contour  plots refer to P r  > Sc,  namely  P r  - 0.7 and 

Sc  = 0.22. 
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Several other flow situations can be found in the paper by Mahajan and Angirasa 
(1993) but we give here only those which refer to P r  << Sc (Pr  = 6 and Sc = 150) 
and P r  > Sc  (Pr  = 0.7 and Sc = 0.22), respectively. The contour plots for opposing 
flows are shown in Figure 4.10 and the fluid velocity profiles are given in Figure 4.11, 
respectively. It is seen from Figure 4.10(a) tha t  for opposing buoyancy forces with 
Sc < P r  the flow is entirely downward. This is to be expected since the thickness 
of the concentration layer is larger than that  of the thermal layer and the thicker 
concentration layer drives the flow entirely downward. However, for Sc >> Pr ,  a 

very thin concentration layer is formed near the wall, see Figure 4.10(c) for the 
concentration lines. The fluid flow in this thin layer is downward and the fluid 
velocities are weak. When Sc >> P r  then the thermal layer thickness is much 
larger in the region just away from the wall and the fluid flow is upward. This thin 
downward flow near the wall could not be captured in the stream function contour 
plotting but it is clearly seen in the u component of the fluid velocity profile, s e e  

Figure 4.11. 

1Off \ 

0.51] ~ ' N  -- 3 
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-1.0, , ,, 
0.0 0.1 b:2y 0:3 0.4 

Figure 4.11: Fluid velocity profiles, u(O.5, y), for Pr  << Sc (solid lines), namely 
Pr = 6 and Sc = 150, and Pr > Sc (broken lines), namely Pr = 0.7 and 
Sc = 0.22, when Gr = l0 T. 

4.3 Free convection boundary-layer flow driven by cat- 
alytic surface reactions 

There are many chemical reactions, with important  practical applications in the 
chemical, combustion and biochemical industries, which proceed only very slowly, 
or not at all, except in the presence of a catalyst. A common configuration for 
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such reactions is for the reactants to be made to flow over the solid catalyst, with 
the reaction taking place on the surface of the catalyst. The interaction between 
the reactions in the bulk of the fluid and the reactions occurring on some catalytic 
surface is generally very complex, involving the production and consumption of 
reactant species at different rates both within the fluid and on the catalytic surface 
as well as in the feedback on these reaction rates through temperature variations 
within the reactant fluid, which in turn modifies the fluid motion. A full discussion 
of catalysts and a description of many of its practical applications has been given 
by Bond (1987), Gray and Scott (1990), Scott (1991), etc. 

The early studies of this problem have assumed that the whole of the reaction 
occurs within a boundary-layer region on the catalytic surface and they have as- 
sumed that the heat transfer is by forced convection, the interaction between the 
fluid flow and heat transfer then being achieved via the temperature dependence of 
the fluid properties. However, from the experimental data it was found that large 
temperature differences can be generated within the boundary-layer on the catalytic 
surfaces. These temperature differences can set up substantial buoyancy-driven sec- 
ondary flows within the boundary-layer and thus can greatly modify the basic forced 
convection heat transfer mechanism. Thus, in a series of pioneering research papers, 
Merkin and his associates, see for example Merkin and Chaudhary (1994), Chaud- 
hary and Merkin (1994, 1996) and Chaudhary et al. (1995a), have proposed a model 
for free convection boundary layers which are generated purely by the heat supplied 
to the surrounding fluid by an exothermic surface reaction. It is assumed that on the 
surface of the catalyst the reaction is modelled by the single first-order Arrhenius 

kinetics 

A ~ B + heat, rate - k0Cexp - (4.41) 

where C is the concentration of reactant A, B is the product, species, k0 is a constant, 
E is the activation energy and R is the gas constant. It is also assumed that heat is 
released by the reaction at a rate QkoC exp (--~T),  where Q is the heat of reaction. 
This heat is taken from the body surface into the surrounding fluid by conduction 
and thus a free convection flow is set up. 

Under the boundary-layer and the Boussinesq approximations, the governing 
Equations (I.1) - (I.4) can be reduced to the following form: 

0~ 0~ 
0~ + 0-~ -- 0 (4.42) 

0~ 0~ 02~ 
+ ~0--~ -- r , ~  + gfl (T - Tc~)S (~) (4.43) 

OT OT ~, 02T 
- ~ = (4.44) �9 
U-~x + v O~ P r Oy 2 

OC OC ~' 02C 
- ~ = (4.45) 
u - ~  + ~ ~ S c O~ 2 



DOUBLE-DIFFUSIVE CONVECTION 135 

where S (5) is the body function form which is defined as 

e for a two-dimensional stagnation point T S (x) = 1 for a vertical flat plate 

The boundary conditions to be applied are as follows" 

g - 0 ,  ~ - - 0  
kf0T - -  -QkoC (-&) 

D oe - k0Cexp ( -  R~T) 

--0,  T - -Too ,  C - C c ~  
g ~ 0 ,  T--+ Too, C ~ C o o  

on ~ - 0 ,  5 > 0  

on 5 - - 0 ,  ~ > 0  
as ~ c ~ ,  ~ > 0  

(4.46) 

(4.47) 

Oy OxOy Ox Oy 2 

or oo or oo 
Oy Ox Ox Oy 

or or or or 
Oy Ox Ox Oy 

03r 
+OS(~) 

Oy 3 

1 020 

Pr  Oy 2 

1 02r 

Sc Oy 2 

and the boundary conditions (4.47) can also be written in the form 

O0 
Oy 

0 r  _ 0 r = 0, o-y - 

-- - - O l l C e x p  ( 1 0 0 )  04, : 0 ( 5 
r  o = o ,  r  

or ~0, 0 - + 0 ,  r  Oy 

on y - - 0 ,  x > 0  

on x - - 0 ,  y > 0  

as y --+ cx~, x > 0  

(4.52) 
where a is the energy activation parameter and c~1 and a2 are the reactant con- 
sumption parameters, which are defined as follows: 

RToo EQkolCoo ( E )  k f R T  2 
a -  E ' a l =  exp a 2 =  (4.53) 

k IRT~Gr �88  RToo ' CooQED 

Next, we present some results for the free convection near the lower two- 
dimensional stagnation point of a cylindrical surface and for a vertical flat plate. 
We then extend these results to the free convection near a three-dimensional stag- 
nation point of attachment. 

(4.49) 

(4.50) 

(4.51) 

0r 0 2r 0r 0 2r 

Further, we introduce the following non-dimensional variables 

( ) _ z _ u ~ O - - ( T - T e e )  RTs x -(, y Gr�88 , u -  U~, v = G r ~  gg , 
(4.48) 

cs U~- 

In terms of the non-dimensionM stream function r defined in expression (1.18), 
Equations (4.42) - (4.45) can then be written as follows: 
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4 .3 .1  T w o - d i m e n s i o n a l  s t a g n a t i o n  p o i n t  

Since in this case S (x) = x then Equations (4.49) - (4.51) become similar. 
transformation 

r  0 = 0 ( y ) ,  r 1 6 2  

reduces these equations to the form 

/ ' "  + / / " -  I '2 + o - o 

1 
~ 0 "  + f O t = 0 
P r  

1 r  I r  0 
S c  

The 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

and the boundary conditions (4.52) become 

} ( , ; ,  0 ( ) 
on y - O, 

0 ' - - - o ~ l C e x p  if~0 , --c~lol2r i+~ 

f = 0 ,  0 = 0 ,  r  on x = 0 ,  
f~--+0, 0 - + 0 ,  r  as y - + o o ,  

x > 0  

y > 0  
x > 0  

(4.5s) 
Equations (4.55) - (4.58) were solved numerically by Chaudhary and Merkin 

(1994) in two cases, namely c~2 - 0 (reactant consumption neglected) and c~2 r 
0 (reactant consumption included). Although these authors produced numerous 
results we only very briefly present some of their most important results. 

Reactant  consumpt ion  neglected,  c~2 - - 0  

Equation (4.57) together with the boundary conditions r = 0 and r = 1 has 
only the trivial solution 

r = 1 (4.59) 

and the boundary conditions (4.58) reduce to 

f=0 ,  f l - 0 ,  0 t - - C ~ l  exp [ l + ~ a 0 ) o n  y - 0 ,  X ~ 0  

f = 0 ,  0 = 0  on x = 0 ,  y > 0  
f~ -+0 ,  0--+0 as y-+cx~, x > 0  

(4.60) 

Equations (4.55) and (4.56), along with the boundary conditions (4.60), were 
solved numerically by Chaudhary and Merkin (1994) for P r  = 1 and different values 
of a l  when a = 0 and 0.1. The variation of the wall temperature, 0(0), with 
a l  is shown, for a = 0, in Figure 4.12, which shows the existence of a turning 
(critical) point at a l  = ac ~ 0.1596, whereas the variation of In (0(0)) with al  is 
illustrated in Figure 4.13 in order to show both critical turning points for the case 
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Ol 1 

Figure 4.12: Var ia t i on  o f  0(0) with c~1 f o r  c~ - 0 and  P r  - 1. 

3 
In (O(0)) 
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0 
0.00 

, �9 | , , 

0.04 0.08 0.12 0.16 0.20 

Figure 4.13: Var ia t ion  o f  In (0(0)) with c~1 f o r  c~ - 0.1 and  P r  = 1. 

c~ : 0.1. This figure clearly demonstrates the existence of critical (turning) points, 
which represent a change in the steady state flow stability through a saddle-node 
bifurcation, and this limits the range of existence of the solution of Equations (4.55) 
and (4.56) subject to the boundary conditions (4.60). Chaudhary and Merkin (1994) 
have shown analytically that  there exists a hysteresis point, i.e. a point where the 

! solution changes from having multiple solutions to a single solution, for c~ ~ 5" 
They have also studied the behaviour of the solutions of these equations for large 
and small values of P r ,  and have determined analytical expressions for the lower 

and upper turning (critical) points a l  - c~! 1) and c~1 : a (2), respectively, as a --~ 0. 

R e a c t a n t  c o n s u m p t i o n  inc luded ,  a2 ~ 0 

In this case, Equations (4.55) - (4.58) have been solved numerically by Chaudhary 
and Merkin (1994) for 0 ~ a ~ 0.2 and c~2 = 0.1, 0.2 and 0.3 when P r  = S c  and 
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P r  ~ Sc. The variat ion of 0(0) as a function of a]  is shown in Figure 4.14 for 

a - -0 ,  P r  - 1 and Sc - 1. For the case a2 - 0.1 it can be seen from Figure 4.14(a) 
(~) 

t ha t  there  are two well-defined tu rn ing  (critical) points  at c~1 - ac - 0.1840 and 
( 

and 1 c~1 - a~ 2) - 0.0080 tha t  0(0) ~ ~ as Ctl -+ (x~ on the upper  solut ion branch. For 

a2 - 0.2 there are still two tu rn ing  points,  as can be seen f rom Figure  4.14(b), bu t  

these have become much closer together ,  namely they occur at  a l  - o ~  1) - 0 . 2 2 7 0  
1 and ol 1 - ol~ 2) - 0 . 2 0 2 9 ,  and again we observe tha t  0(0) -~ ~ as Ctl increases on 

the upper  branch.  However, Figure 4.14(c) shows tha t  at a2 - 0.3 the curve of 

0(0) as a function of a]  is monotonic ,  showing tha t  there is a hysteresis point  in the 
1 

range of values 0.2 < a2 < 0.3 and again we have 0(0) ~ ~ on the upper  solution 

branch.  For a -  0.1 and P r -  Sc there are also mult iple  solutions,  bu t  they occur 

at much smaller values of a2, as can be observed from Figure 6 of the paper  by 

C h a u d h a r y  and Merkin (1994). These authors  have de te rmined  explicit expressions 

for the locat ion of the hysteresis points  and they have also shown tha t  00(0) varies 
in the ranges 
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Figure 4.14: Variation of 0(0) with al for Pr - 1, S c -  1 and (a) a2 - 0 . 1 ,  (b) 
a2 - 0.2 and (c) a2 -- 0.3. 
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and 

2 -  a- 2v/1 - a 2 - a + 2~/1 - a 
< Oo (0) < (4.61a) 

o~ 2 ol 2 

2 - 5 a - 2 v / 1 - 5 a  2 - 5 a + 2 x / ' l  5a 
~< O0 (0) ~ (4.61b) 5a 2 5a 2 

The first relation (4.61a) shows that  a necessary condition for the existence of critical 
points is that  a < 1 and when a - 0 this relation gives 00(0) > �88 Further, the 
second relation (4.61b) gives the necessary condition for the existence of a hysteresis 

1 point that  a ~< g. 
On the other hand, for Pr ~ Sc Chaudhary and Merkin (1994) have shown that  

bifurcation points can be determined only by performing numerical calculations. 

4 .3 .2  V e r t i c a l  f ia t  p l a t e  

This problem can be described by Equations (4.49) - (4.52), where now S(x) = 1. 
A solution of these equations can be obtained by taking 

r  4 f ( x , r / ) ,  0 - x ~ h ( x , ~ ) ,  r 1 6 2  77- y~ (4.62) 
x g  

Substi tuting the expressions (4.62) into the Equations (4.49) - (4.51) gives 

4 f ,  3 . ,2  ( O f '  O f )  
f ' " + -~ f - -~ : + h - x f ' O x f " Ox 

1 h " + 4 f h '  1 f '  ( f ,  O h _ h ,  c3f ) p---~ - -~  h -  x -~x ~ 

I -4- 5 f C' - x ( f '  O r - r ' c3 f -~x 

and the boundary conditions (4.47) can be written in the following form: 

f = O, f '  -- 0 ) 

h' - r  z~ r ~ x~ on -- i , -- a2x Cexp - -  
l+o~x ~ h l + a : r  ~ h 

f - - 0 ,  h - 0 ,  r  on 
f ' - + 0 ,  h--+0,  r  as 

r /=O,  

X - - 0 ~  

rl --4 cx~ , 

(4.63) 

(4.64) 

(4.65) 

x > 0  

r / > O  
x > O  
(4.66) 

Equations (4.63) - (4.66) were solved by Merkin and Chaudhary (1994) for small 
values of x (<< 1). Thus, for P r -  S c -  1, they obtained the following expressions 
for the non-dimensional skin friction Tw (X), the temperature at the plate 0w (x) and 
the surface concentration Cw (x)" 

] rw (x)  = x ~  1 . 3 7 4 4  + 1.3450 (1 - a2)  z~  +. . .  
~[ ~ ] Ow (x) -- x-~ 1.8728 + 2.5980 (1 - a2) x~ + . . .  (4.67) 

1 
Cw(x) = 1 - 1.8728 a2x~ + . . .  
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for x << 1. These expressions suggest that  the boundary-layer is driven initially by 
the heat released by the reaction on the plate. The effects of the reactant  consump- (') tion c~2 becomes important  only at a slightly later stage, namely in the O x~ 

term in the expansion. However, Merkin and Chaudhary  (1994) have shown that  (') the activation energy parameter  c~ still enters the solution at O x~ . 

The solution (4.62) was then extended to larger distances downstream by per- 
forming a numerical investigation of the full boundary-layer Equations (4.63) - 
(4.66). However, to remove the singularity which occurs at x = 0 from the numerical 

1 
solution, Merkin and Chaudhary  (1994) introduced the t ransformation ~ = x~, so 
that  the results are presented in terms of ~ rather than x. There are again two cases 
to be considered, namely a2 = 0 and a2 ~ 0. 

R e a c t a n t  c o n s u m p t i o n  n e g l e c t e d ,  c~2 - - 0  

In this case, we have again Cw(X) -~ 1, see expressions (4.67). From the numerical 
solution it was found that  a singularity develops in the solution at a short distance 

= ~s away from the leading edge, where ~s ~ 0.308, i.e. x ~ 0.0028, for a = 0 
and P r  = 1. The numerical solution suggests that  ~'w(~) remains finite and 0w(~) 
becomes infinite as ~ -+ ~s- The results for Tw(~) and Ow(~) are presented in Fig- 
ure 4.15 for the case when a2 = c~ = 0 and P r  = 1, while Figure 4.16 shows the 
results when a2 = 0, a = 0.2 and P r  = 1. The latter figure suggests that  the 
solution proceeds to large values of x without  a singularity developing but  there is a 
very rapid increase in the value of 0w(~) near ~ ~ 0.54 (x ~ 0.044). Further,  it was 
found by Merkin and Chaudhary  (1994) that  the effect of decreasing the value of c~ 

(a) (b) 
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0.0 0:1 ~ 012 013 ~ 1 7 6  ' o . 1  o : 3  o . o o  . . . 

Figure 4.15: Variation of (a) the skin friction, 7-~(~), and (b) the wall temperature, 
Ow(~), with ~ for Pr  = 1, a2 - 0 and a - O. 
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Figure 4.16: Variation of (a) the skin friction, Tw(~), and (b) the wall temperature, 
0~(~), with ~ for Pr  - 1, O~ 2 - '-  0 and a - 0.2. 

is to reduce the value of ~ at which this rapid increase in the value of 0w(~) occurs. 
Further, both Tw(~) and 0w(~) increase indefinitely with ~ and do not appear to be 
approaching constant values as ~ ~ cx~. 

Merkin and Chaudhary (1994) have shown, by performing a very detailed anal- 
ysis, that 7w(x)  and 0w(x) behave, for a2 = a = 0, near to the singularity point 
x = X s as follows: 

1 

Tw (x) ,,- 2a0 + O /~s_x 

Ow (x)  ,,~ ~ln (~s !z )  + In [2, ( 3 a o P r ) ~ ]  + 0 [(xs - x)�89 In ( 1 
(4.68) 

where ao = ao ( P r )  is a constant which is given by the (finite) value of the skin 
friction Tw(X) at x -  Xs. 

R e a c t a n t  c o n s u m p t i o n  i n c l u d e d ,  a2  r 0 

In this case Merkin and Chaudhary (1994) presented numerical results for different 
values of a and a2 when P r  - S c  - 1. Results for rw(~), 0w(~) and Cw(~) when 
a - 0.2 and c~2 - 0.05, 0.1 and 0.2 are shown in Figure 4.17. It can be seen that 
there is an initial slow increase in the values of ~-w(~) and 0w(~), and a decrease 
in 0w(~) from the leading edge (~ - 0), followed by a rapid change at a finite 
distance downstream. Then, we can see, at large distances downstream, that  0w(~) 

1 approaches a constant value which correlates well with a value of ~-~2" It should 
be noted that  ~w(~) grows indefinitely as ~ increases and that Cw(~) --+ 0. These 
conclusions are supported by the asymptotic solutions for Tw(x), 0w(x) and r 
as x --+ c~, which can be found in Merkin and Chaudhary (1994). 
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Figure 4.17: Variation of (a) the skin friction, 7~(~), (b) the wall temperature, 
0~(~), and (c) the wall concentration, r with ~ for g r  - 1, Sc - 1, c~ - 0.2 
and a2 - 0.2, 0.1 and 0.05. 

4 .3 .3  T h r e e - d i m e n s i o n a l  s t a g n a t i o n  p o i n t  

This flow situation has been considered by Ingham et al. (1999) by following Poots 
(1964) and Chaudhary et al. (1995a). Consider a three'dimensional stagnation point 
of attachment at the origin of a Cartesian system of coordinates O x y z ,  with z = 0 
being the body surface and O z  normal to the surface, see Figure 4.18. We assume 
that the parametric curves x = constant and y = constant on the body surface 
coincide with the lines of curvature, the flow is steady and incompressible, and an 
exothermic catalytic chemical reaction takes place on the body surface which can 
be modelled according to the first-order Arrhenius kinetics (4.41). Under these 
assumptions the boundary-layer equations can be written as 

O~ + ~yy + ~ z z  = 0 (4.69) 
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Figure 4.18: Physical model and coordinate system for a nodal point of attachment. 

U -~x + V -~y + W -~z = u -~z 2 + g fl ( T - Too )a5  (4.70) 

~ ~  + ~ ~  + ~ ~  = "b-~ + gZ (T - Too) b~ (4.71) 

OT OT OT u O2T 
u o-~x + V -~yy + ~ 8-2 = P r 052 (4.72) 

0 C  0 C  OC v 02C 
u--~xx + V-~y + w--~zz = Sc  052 (4.73) 

where a and b are functions of the local blunt body geometry and a measure of 
the curvature of the body surface in the planes y = 0 and x = 0, respectively. If 
the parameters  a and b are both  positive then the body surface is of a nodal type 
of a t tachment  at the origin. However, if one of the parameters  a or b is negative 
then the body surface is a saddle point of a t tachment  at the origin. If both a and 
b are negative then the body surface is again of a nodal type, but  the flow is one 
of separation. However, we shall consider here only the case of nodal points of 
a t tachment .  

The ambient fluid is assumed to be at rest at a constant tempera ture  Too and a 
constant  concentration Coo of the reactant  A. Equations (4.69) - (4.73) are therefore 
subject to the following boundary  conditions" 

- 0 ;  ~ - 0 ,  ~ - 0  

k~ ~ = -QkoC ~xp ( - - ~ )  o~ 
D Oc~ = koC exp ( - - ~ )  

~ 0, ~ - +  0, T - + T o o ,  G - + C o o  as 

= 0, x, y > 0 

m 

-+ cr x, y > 0 

(4.74) 

To make Equations (4.69) - (4.73) non-dimensional we introduce the following new 
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variables 
x - - a 2 ,  y - - a ~  z--a-2Gr�88 0 - - ~ - ,  r  c 

, coo (4.75) 
_ ~- 1 1 

u - Gr �89 ~ ,  v - Gr -~  ~ ~--~, w - G r  ~ - -  u~ 

where the non-dimensional ambient temperature Oa, the characteristic velocity Uc 
and the Grashof number Gr are defined as follows: 

O~ R T ~  
- -  E , U c - v a ,  G r =  Rua agile (4.76) 

Equations (4.69) - (4.73) then take the following form: 

Ou Ov Ow 

o--i + ~ + 5-2 

Ou Ou Ou 
~ ~  + v ~  + ~ o--; - 

Ov Ov Ov 
~ ~  + v ~  + ~ Oz - 

O0 O0 O0 

~ ~  + ~ + ~ o-; = 

or  or  or  _ 
u-~z +V-~y + W oz - 

= 0 (4.77) 

~21t  
+ (0 - G ) x  (4.78) 

Oz 2 

02v 
Oz 2 

+ (0 - Oa)c2y (4.79) 

1 020 

P r  Oz 2 

1 02r 
-Sc Oz 2 

(4.80) 

(4.81) 

1 
b , where c = (a) ~ and the boundary conditions (4.74) become 

0 0 _  
Oz 

u - 0 ,  v - 0 ,  w - 0  } 
-C~lCexp (_~1 ,  o_4Oz = c~lc~2r ( - } )  on 
u--+O, v--+O, 0~0~ ,  r  as 

with c~1 and c~2 defined as in Equation (4.53). 

z -- 0, x, y > 0 

Z ---~ CXg~ x , y > O  
(4.82) 

A similarity solution of Equations (4.77) - (4.81) suggests the introduction of 
the transformation 

u - x f ' ( z ) ,  v - c y h ' ( z ) ,  w - - ( f + c h ) ,  O - O ( z ) ,  r 1 6 2  (4.83) 

This leads to the reduced system of ordinary differential equations 

f ' "  + ( f  +ch)  f " -  f '2 + O - O a  = 0 

h"' + ( f  + ch) h" - ch '2 + c (0 - Oa) - 0 

0" + P r  ( f + ch) O' - 0 

r + Sc ( f  + ch) r - 0 

(4.84) 

(4.85) 

(4.86) 

(4.87) 
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which have to be solved subject to the boundary conditions 

f - 0 ,  f ' - - 0 ,  h - 0 ,  h ' - 0  
0 ' - -  -CrlCexp ( - ~ ) ,  r  atcr2r ( _ ~ ) )  on z - -  O, x , y  > 0 

f ' -~0,  h ~ 0 ,  O--+Oa, r  as z--+cr x , y > 0  
(4.88) 

We note that for c = 0 then h -- 0 and we recover the two-dimensional problem 
studied by Chaudhary et al. (1995a), while for c = 1 the assumption that f = h 
gives rise to the axisymmetric problem. 

To determine the solution of Equations (4.84) - (4.88), we introduce a positive 
constant 00 according to, see Chaudhary et al. (1995a), 

o~  - o (o )  - 0a + 0o (4.89) 

so that it represents the amount, as yet undetermined, by which the non-dimensional 
surface temperature, 0w, exceeds the non-dimensional ambient temperature, 0a. The 
constant 00 is now employed in a rescaling of Equations (4.84) - (4.88) according to 
the following transformation: 

1 1 1 

O - Oa + Ooa (rt) , r 1 6 2  
(4.90) 

where Cw - r This leads to the standard free convection problem of a three- 
dimensional stagnation point as described by Banks (1972, 1974), namely 

F'"  + (F + cH)  F"  - F '2 + G - O 

H m + (F  + cH)  H "  - cH  t2 -t- cG - 0 

G" + P r  (F + cH) G I -  0 

K "  + Sc  (F + cH)  K l -  0 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

along with the boundary conditions 

F ( 0 ) - 0 ,  F ' ( 0 ) = 0 ,  H ( 0 ) - 0 ,  H ' ( 0 ) - 0 ,  G ( 0 ) - I ,  K ( 0 ) - t  
(4.95) F ' - -+0,  H ' - -+0,  G--+0, K- -+0  as ~7--+cxz 

For given values of the flow parameters P r  and Sc, the continuous spectrum of 
parameter values c >~ 0 describes the fluid flow around all possible three-dimensional 
blunt body shapes. However, as in Banks (1972), a restriction can be made to 
consider only the finite range of values of c, namely 0 ~< c <~ 1, since Equations 
(4.91) - (4.94) possess the following symmetry transformation 

(1 1) F(77;c) = c - � 8 9  c~r/;c- , 

a (,7; : a 

- ( , ; c )  = 

K (77; c) = K c~77; c-  
(4.96) 
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Thus, solutions for 0 < c < 1 can be used to generate solutions for 1 < c < oo. 
The solution of Equations (4.91) - (4.95) provides values for the non-dimensional 

surface heat transfer G'(0) and the surface mass flux K'(0) functions, namely 

O'(O) - - A o ( c ,  Pr ) ,  K'(O) - - A 1  (c, Pr,  Sc) (4.97) 

where A0 and A1 are positive quantities. It should be noted that A0 - A1 when 
P r -  Sc. 

Applying the rescaling defined by Equations (4..89) and (4.90) to the boundary 
conditions (4.88) for 0'(0) and r we obtain the expressions 

(01) 0g A0 - c~lCw exp - , (1 - -  Cw) 0g A1 - -  O~10~2r exp - (4.98) 

which can be combined to give 

Cw - 1 - C~a00 (4.99) 

where 
Ao 
- -  (4.100) c~a - c~3 (c, Pr,  Sc,  ~2 ) - c~2 A1 

Then, by combining Equations (4.97) and (4.99) to eliminate 05,,, we obtain 

(Ow - Oa) ~ - c~ [1-c~3 (Ow-Oa)]exp ( 1 )  A---o -~-~ (4.101) 

which gives us a relationship between Ow and 00 for given values of the other param- 
eters c, c~1, c~2, P r  and Sc. Equation (4.99), or (4.101), further implies that 

1 
Ow - Oa <~ - -  (4.102) 

ol3 

for 0~/> 0. 
As the ambient temperature is readily controlled experimentally, it is the most 

natural physical variable to use in a bifurcation analysis. The response of the surface 
temperature in the form of a bifurcation diagram allows the distinguishing features 
of the solution to be viewed and provides us with critical values of the parameter 
On. The bifurcation analysis of Equation (4.101) has been performed in detail by 
Chaudhary et al. (1995a) although the additional variability provided by the three- 
dimensional body curvature parameter c gives some further interesting points for 
discussion. 

The bifurcation analysis of Equation (4.101) depends only upon the parameters 
c~3 and a~ 3-d, and through these parameters on c, P r ,  Sc  and c~2. A hysteresis bifllrca- 
tion point, i.e. the point where multiple solutions change to one solution, occurs at 

/ \ 

(a_x) and at the point (Oa,h, Ow,h)wi th in  the phase space. As the parameter value Ao h 
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m_~ increases further, a multiplicity of solutions is achieved with a typical S-shape Ao 

, (a_~) the upper critical point (extinction in the parameter space (0a 0w) until at Ao 0 

( a l )  the bifurcation diagram is point) touches the 0a - 0  axis. For ~o > , ,~o  0 disjoint 

and the upper solution branch becomes separated from the lower solution branch. 
The critical points (0a,c, 0w,c) in the parameter space are solutions of Equation 

(4.101) for which the condition 
d0a 

= 0 (4.103) 
d0~ 

is additionally satisfied. Thus we have 

a303 ,c -  (5 + 4a3 + c~30~,~)02,c+4 (1 + 2c~30~,c)0w,~-40a,c (1 + c~30a,~) = 0 (4.104) 

and on using Equation (4.99), the critical points in the (On, Czv) parameter space are 
subsequently found to occur at 

4a3 (Ow,c - Oa,c) 02 
~'~ (4.105) 

r = 4 (Ow,~ - On,c) - 502,c 

The restriction that Cw,c >~ 0 then reveals that  all critical points occur within the 
region 0a ~ �89 At a hysteresis bifurcation point (Oa,h, Ow,h) we further require 
that the critical points coincide to form a point of inflexion at which the following 
condition is satisfied: 

d20a 
= 0 (4.106) d02 

Such points must therefore additionally satisfy the constraint 

3o~30~, h - 2 (5 + 4a3 + a.3Oa,h) Ow,h + 4 (1 + 2a3Oa,h) -- 0 (4.107) 

v ,uo 

where 

( a l )  at which a hysteresis bifurcation For a given value of Ol3, the parameter  value ~o h 

is achieved is now defined by Equation (4.101). 
o1 ( )  ~ , where the parameter For disjoint bifurcation diagrams we require 3-5 > Ao 0 

is such that the upper critical point lies on the Oa - 0 axis at (0, Ow,o) 
0 

0~,0 : 2c~3 5 + 4c~3 - 5 + 24c~3 + 16~ (4.108) 

on using Equation (4.104) and ( ~ ' )  is subsequently found from Equation (4.101). 
' _ _ X S o  0 

It can easily be verified that for all values of ~ and c~3 the bifurcation curves A0 
approach the origin of the parameter  space (0a, 0w) along the line Ow -- Oa, whilst 
all curves in the parameter space (Oa, Cw) approach the point 0a = 0, Cw : 1 along 
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the line Cw - 1. However, for large values of Ow and Oa, and given values of ~oo a~ and 
aa, the behaviour of the solution is described approximately by 

Ow - Oa + A0, Cw - 1 - o~3A0 (4.109) 

where A0 is defined by the following relation: 

(A0)]- A--o (1 - a3A0) (4.110) 

a~ 1 which is consistent with Furthermore, it can be seen that as ~oo --+ oc then A0 -+ ~ ,  
the condition (4.102) and ensures that  all solutions in the parameter space (Oa, Ow) 
are bounded by the straight lines 0w - Oa and Ow - Oa + 1--. ~3 

In Figure 4.19 a sequence of bifurcation diagrams, determined by solving the 
algebraic Equation (4.101), shows the variation of Ow as a function of 0~ for a3 - 1, 
but the behaviour shown in this figure is representative of the general a3 case. As 
discussed above, the increase of ~o a~ from small values shows that the bifurcation 
curves deviate further from the solution Ow = 0a but remain monotonic until the 

( a a )  2.385011, which a hysteresis bifurcation is achieved at the value X~o h after 

point Oa,h -- 0 174859, Ow,h -- 0.309925. By further increasing the value of ~1 the 
�9 ~--~o ~ 

hysteresis point develops and it is clearly seen that  a typical S-shape behaviour 

(~1)  - 6 . 1 6 4 1 4 0 t h e u p p e r c r i t i c a l p o i n t  occurs, see Figure 4.19. At the value Ao 0 

touches the 0a = 0 axis at Ow,o - 0.468871 For  al ( a~ )  the bifurcation 
�9 ~ >  ,,~o-o o j  

1 . 0  �84 

0.8 
O~ (0,~).6 

0.4 

0.2 

0o:0 

~00 = 1.2, 2.385011, 3.6, 
6.164140, 9 

i, . 

0:1 0:2 " 0:3' 0:4 0:5 
0 a  

Figure 4.19: Variation of the wall temperature, Ow(Oa), with Oa for a3 -- 1, obtained 
by solving Equation (4.101). The small Ow behaviour Ow ..~ Oa is indicated by the 
broken line. 
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o~1 diagram is disjoint and as ~o becomes large the upper solution branch tends towards 

1 _ Oa + 1. Figure 4.19 also demonstrates that, the bounding solution 0w - 0a + 
for all values of ~ the bifurcation diagrams follow the behaviour 0w ~ 0a for small Ao 
values of Ow. 

The variation of the non-dimensional surface concentration r with Oa is shown in 
Figure 4.20 for a3 = 1 and for the same values of ~oo as discussed in Figure 4.19. From 
Figure 4.20(a), which displays the (Oa, Cw) parameter space for small values of Oa, 

we observe that the hysteresis point occurs at Cw,h -- 0.8649934 whilst the d iagram 
becomes disjoint when the curve touches the vertical axis at Cw,0 - 0.531129. Again, 
the curves are seen to approach the behaviour Cw = 1. However, for larger values of 
Oa, illustrated in Figure 4.20(b), the bifurcation diagrams are seen to approach the 
asymptotic value Cw = 1 -o~3A0 , where the value of A0 is obtained from Equation 
(4.110). 

a) O/1 -1.2, 2.385011, 3.6, 
1.0 . . . . . . .  

0.8 

r176 (Oa)o. 6 

0.4 

0.2 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 

0a 

(b) 

0.6] ~ _~ __ 1.2, 2.385011, 3.6, 
r ~ ~ 6.164140, 9 

1 10 100 
e~ 

Figure 4.20: Variation of the wall concentration, Cw(0a), with Oa /or a3 = 1 at 
(a) small values of Oa and at (b) large values of Oa. The small Ow approximation 
r = 1 is indicated by the broken line and the asymptotic behaviour Cw = 1-a3A0 
at large values of Oa is indicated by the dotted line. 

Finally, we mention several other interesting papers on the topic of convective 
flows due to the combined buoyancies of heat and mass diffusion. Angirasa and 
Srinivasan (1989) have studied the double-diffusive free convection flows adjacent to 
a vertical surface in a stable thermally stratified medium. Further, Angirasa and 
Mahajan (1993) have presented a numerical study of double-diffusive free convection 
over a horizontal finite flat plate for both aiding and opposing buoyancies and for 
equal and unequal Prandtl and Schmidt numbers. The double-diffusive free convec- 
tion from a vertical flat plate which is situated in a binary mixture was studied by 
Rahman and Lampinen (1995) using a finite element method, whereas Lin and Wu 
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(1995, 1997) have studied the double-diffusive free convection from a vertical fiat 
plate for any ratio of the solutal buoyancy force to the thermal buoyancy force using 
a new similarity transformation. Very accurate correlations of the mass transfer and 
the heat transfer rates have also been developed by the latter authors. 



Chapter 5 

Convective flow in buoyant 
plumes and jets 

5.1 I n t r o d u c t i o n  

Free and mixed convection flows arising from point and line thermal sources at the 
leading edge of a vertical surface, also referred to as a wall plume, in an infinite ex- 
panse of otherwise quiescent fluid are of considerable interest from both theoretical 
and practical points of view. Practical interest in plumes occur in many engineering 
situations including hot-wire anemometry, flows that arise in fires, cooling of elec- 
tronic circuitry, meteorology, industrial processes such as heat treatment, forging, 
foundry welding, etc. There is a huge quantity of literature pertaining to this topic 
and much of this has been reviewed by Schneider (1981), Jaluria (1980), Afzal (1986) 
and Gebhart et al. (1988).  However, there has still been an increasing interest in this 
area of research during the last years and very valuable contributions on this topic 
have been made by Worster (1986), Joshi (1987), Angirasa and Sarma (1988), Ing- 
ham and Pop (1990), Thomas and Takhar (1988a, 1988b), Riley (1988), Hunt and 
Wilks (1989), Wang (1989), Srinivasan and Angirasa (1990), Jagannadham et al. 

(1992), Desrayaud and Lauriat (1993), Kay et al. (1995), Vazquez et al. (1996), Lin 
et al. (1996), Higuera and Weidman (1998), Lifis and Kurdyumov (1998) and Kur- 
dyumov and Lifis (1999). In the following we review some of the most interesting 
aspects of buoyant plumes which have been highlighted very recently and which 
arise from heated point or line sources. We also consider the problem of a laminar 
buoyant jet. 

5.2 Free  c o n v e c t i o n  in a wal l  p l u m e  

The geometry considered is equivalent to a line thermal source of heat which is 
embedded at the leading edge of an adiabatic vertical plane surface bounded by 
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a horizontal insulated wall, which is placed at the level of the heat source and 
is maintained at the temperature T~ of the ambient fluid, see Figure 5.1. The 
Cartesian coordinate system (~, ~) has the origin at the leading edge of the vertical 
plate with the 5-axis being measured along the plate in the upward direction and 
the ~-axis along the horizontal wall. For this two-dimensional flow geometry the 
governing equations, on using the Boussinesq approximation, can be written in non- 
dimensional form as, see Riley (1974), 

or o 
Ox Oy 

0r  0 (V2r + Gr_~V4r  _ 0 (5.1) 
oy Ox 

0r OT 0r OT 1 
Ox Oy Oy Ox ~ ---P-rr Gr -~V2T  0 (5.2) 

where T = T-Too is the non-dimensional temperature with Tref being the reference Tref 
temperature which is related to the heat flux per unit length qs released from the line 
heat source and Gr is the Grashof number based o n  Tre  f. The boundary conditions 
of Equations (5.1) and (5.2) are as follows: 

0r _ 0 ,  O T  _ 0 on 0 0, r  0--Y-- 0--Y-- -- 0 < r < c ~  

0~ --0, OT = 0  on 0 - -  ~ 0 < r < c~ r - 0, a~ o~ ~, 
71" r  T - + 0  as r - + o o ,  0 < O <  

(5.3) 

where (r, 0) are the polar coordinates of a point in the outer (inviscid) region. A 
global heat flux condition should be added to the boundary conditions (5.3), which 

~g / / I'~xplum. e 
\ ]/~Bound~ry- 

r ( /~1~  / 
/ 

T=Too ~ \ ~ l ~ t  

- - - -  ~ /  ..----Viscous 
"----'-----.... I . ~  -- I~' '- Boundary-Layer 

O Y 
Line Heat Source 

Figure 5.1" Physical model and coordinate system. 
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can be written as, see for example Afzal (1980), 

Gr~ [Pr ~o~176 dy - Gr-~ ~o cr OT dy] - Q (5.4) 

qs is the equivalent global heat flux. where Q - u~Tre f 
Equations (5.1) and (5.2), together with the boundary conditions (5.3) and the 

constraint Equation (5.4), have been solved by Ingham and Pop (1990) for moder- 
ately large values of the Grashof number Gr using the method of matched asymptotic 
expansions as proposed by Van Dyke (1975). This method involves dividing the flow 
field into three distinct regions: two are the inner regions close to the walls and the 
other is the outer region far from the walls. Separate, locally valid expansions of 

1 
the free stream r and the temperature T functions are developed in terms of Gr-~ 
in these three regions and they lead to ordinary differential equations (in the inner 
regions) and to the Laplace equation (in the outer region) at least for the first two 
approximations which admit closed form analytical solutions. 

5.2.1 O u t e r  region 

r - Gr-~ r y) + Gr - 3  r y) + h.o.t. 
T ~ exponentially small 

(5.5) 

Substituting the expansions (5.5) into Equations (5.1) and (5.2) gives 

V2r ( ~  n = 2 , 3  (5.6) 

which have to be solved subject to the boundary conditions in which r 0) and 

r (0, y) match with the inner expansions at the edges of the boundary layers, and 
the infinity condition 

(5.7) Vr ~  as r ~ c ~ ,  0 < 0 <  

5.2.2 I n n e r  r e g i o n  

On the other hand, in the inner regions the solution separates into two distinct forms. 
In the plume region there is a structure of the solution similar to that discussed by 
MSrwald et al. (1986) and Ingham and Pop (1989), namely 

r - Gr-~ r (x, Y) + Gr-~ r Y) + Gr-�89 r Y) + h.o.t. 
1 

T = T1 (x, Y) + Gr-~ T2(x, Y) + G r - ~  T3(x, Y) + h.o.t. 
(5.8) 

in which x (> 0) and the inner variable Y = Gr l y  are fixed as Gr --+ o0. It 
should be noted that the third terms in the expansions (5.8) represent the effect of 
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the horizontal wall on the development of the plume. Then, in the inner solution 
which is associated with the horizontal viscous boundary-layer, we use the following 
expansion, 

3 ~ 2 
r - G r - - ~  r y) + G r - ~  Ca(X, y) + h.o.t. (5.9) 

1 
in which y (> 0) and the inner variable X - G r ~  x are fixed as Gr -+ cx~. We also 
note that in this region we have T _-- 0 since the horizontal wall is insulated. 

T h e  f i r s t -o rde r  inne r  so lu t ion  

Rewriting Equations (5.1) and (5.2) in terms of the inner variable Y, and substituting 
the series (5.8) into the resulting equations, leads to the following first-order inner 
equations 

OQ~ 1) 02r 1) 0 ~  1) Oq2'~ 1) 0q3,~ 1) 
OY OxOY Ox OY 2 = T / l ) +  OY a (5.10) 

- ( 5 . 1 1 )  
OY Ox Ox OY P r  OY 2 

which have to be solved subject to the boundary and constraint conditions (5.3) and 
(5.4), namely 

r --0, o*~l) --0, ~ --0 on Y- -0 ,  X ~> 0 
o Y  - -  O Y  - -  

0r 1) T/1)  
oY ~ O, ~ 0 as Y --+ cx~, 

Pr f~O (..)r T ~ I ) d Y  -- Q for all X 
O Y  

X > 0 (5.12) 

It should be noted that these equations are the boundary-layer equations for the 
plane wall plume as described by Riley (1974). 

We seek the solution of Equations (5.1.0) - (5.12) in the form 

3 , T[t) 3 Y (5.13) r  _ x ~  f l  (r/) - x - ~  h i  (r / ) ,  7? - 2 
Xs 

where the functions fl  and h l satisfy 

f~,  + 3 flf~, 1 ,2 - ~ f ~  + h ~ - O  
1 h i t  ) ,  1-[- 3 (flhx - 0  

f t ( 0 ) - - 0 ,  f~(0) - -0 ,  h~(0) = 0  
f~ -+0, hi --+0 as 77-+oo 

P r  f o  f~ h l d~ - Q 

(5.14) 

where primes denote differentiation with respect to rl. 
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H i g h e r - o r d e r  s o l u t i o n s  

To obtain higher-order solutions it is necessary to match the inner boundary-layer 
solutions (5.8) and (5.9) to the outer solutions (5.5) and this can be done following 
the procedure as described by Ingham and Pop (1989, 1990). For the outer flow this 
leads to the need to solve the following problems: 

V2r ~ - O, r (x, O) -- f l  (oo)x 3 r y) - 0 (5.15) 

and 
V2r ~ - 0, r (x, 0) - 0, r y) - ~2y~o (5.16) 

along with the boundary conditions at infinity (5.7). Solving Equations (5.15) and 
(5.16), we obtain 

7r 38 
_ _ ~ ~,..j,~.~, r -- - f 1 ( c r  sin [3 (0 - y)] r 3 sin ( ) 

[ 3~r ~ - -  a2  r 1o 
-i-6) s in(  3~ sin t 

We can now determine the second- and third-order terms from the inner series 
solutions (5.8) and (5.9) and after some algebra we obtain the following system of 
equations: 

f2 m 1 t + 3 f l f~'  + -gfaf~ + h2 - O 

pr + -~ (f~h'2 + 2f{h2 + h~f~) - 0 

f2(O)--O, f~(O)--O, h~(O)=O 
- f (oo)cot ]-6) - -  b2, h2 --+ 0 a s  

f O  (f~ h2 + f ~ h l )  dr] - 0 

r/-+ c~ 
(5.18) 

m 3 - - : t t  ( ? ~ )  
2 - ~ . f 2 f 2  + ~ -g~- - 0  

f 2 ( o )  - o, f 2 ( o )  - o 
- '  3 A(cr =b-2 as ~ -+cx~  f 2  - ~  ~ ~in(~)~" - 

f3111 3 I I  I -f- g f l f 3  A- l f ~ f  3 -- 3 f [ ' f3  "4- h3 - - 0  
1 h~ p----~ -4- 3 f l h l  3 4- 3 f~h3 A- ~ h l f 3  - 3 h i l l 3  -- 0 

f3(0) -- 0, f~(0) -- 0, h~(0) -- 0, h3(cx3) - 0 
3 ,, ~2 - b 3  as rl-+cxD f3  --+ 1--Osin(3"~-6) - -  

f o  (f~h3 + f~hl) dO = 0 

~! "=! / 
- : " '  3 u ~ "  11 b2b3 f 2 f 3  -- 0 f 3  -- ]"6J2J3 -~- 1-0 

f 3 ( O )  - -  O, f 3 ( O )  - -  0 
--:1 f3 --+ - -3a2  c~ (31r ~ ) - ~ 3  as ~ - ~  

(5 .19)  

(5 .20)  

(5.21) 
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where for the bar functions the primes denote differentiation with respect to ~, which 
is defined by 

X 
~ -  7 (5.22) 

y lo  

Inspection of Equations (5.18) - (5.21) indicates that  the decay of the fluid velocity 
field is exponential in the plume layer whereas it is algebraic in the horizontal layer, 
i.e. the functions f2, f2, f3 and f3 behave as 

f2(77) ~ b2rl + a2 + 0 (e -a~u) 

f3(r/) ~ b3 r] -4- a3 -4- O (e -a~176 

73 (~) ~ b 3 ~ d - a 3 - 4 -  0 ( ~ _ s )  
\ / 

(5.23) 

as ~, ~ --+ ~ where aoo - 3f1(oc). 
However, the inner expansions (5.8) and (5.9) are not unique. To each of them 

may be added any one of an infinite set of eigensolutions which have the form 

1 3 
Ck - -  CkGr-:(l+~k)x:(1-?k)Fk(r]) 

1 3 
Tk -- CkGr-~kx-~(l+~k)Hk(rl)  

(5.24) 

and 
-~k -- -CkGr-~(3+~k)Y ~(3-?k)-Fk (~) (5 .25)  

where 7k and 7k are the eigenvalues associated with the inner boundary layers while 
Ck and Ck are multiplicative constants which, in general, are indeterminate. The 
differential equations for the functions Fk and Ilk are given by 

3 1 3 K111! 
(2 - 37k)f[F~ + -5 (1 )f~'Fk + Ilk -- 0 

1 3 3 3 3 I! 
(1 + 7k) f lHk + -5 (1 )h~Fk + -~hlF~ - 0 Pr  

(5.26) 

(5.27) 

along with the boundary conditions 

Fk (0) -- 0, F i ( 0 )  -- 0, H i ( 0 )  - 0 (5 .28)  
F ~ - ~ 0 ,  H k - + 0  as V - + ~  

Numerical integration of Equations (5.26) - (5.28) has been performed by Ingham 
and Pop (1990) who found that  the smallest value of 7k is ~/1 - -  5 for all values of 
Pr. This eigenvalue introduces a term in the inner expansions (5.8) which in order 
of magnitude lies between the third and fourth terms in each of the series. The next 
eigenvalues ~/k, for k -- 2, 3 , . . . ,  depend on the value of the Prandtl  number Pr, 
and we have, for example, ")'2 -- 3.231 for Pr - 6.7. Thus, the assumed form of the 

solutions (5.8)is appropriate to O "  -(Gr-�89 and O ( G r - ~ ) ,  respectively. 
\ / \ ] 
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The equation satisfied by the function Fk is given by 

y,, ,  a - V '  (8 + k - N J 2  k -  
_ . . : i t  w 

(3 - 7k) f2Fk  = 0 (5.29a) 

which has to be solved subject to the boundary conditions 

F_k(0) - 0, Fk(O ) -- 0 (5.29b) 
F k ~ O  as ~ o c  

A numerical inspection of Equations (5.29) shows that they do not possess a solution 

for any real ~k > 0 and therefore the expansion (5.9)is correct to O ( G r - ~ ) .  

On the other hand, Equations (5.14) and (5.18) - (5.21) have been integrated 
numerically by Ingham and Pop (1990) for Pr = 0.72 and 6.7. The distribution 
of the fluid velocity and the temperature fields are illustrated in Figure 5.2. This 
figure shows that the second- and third-order boundary-layer corrections involve 
flow reversals at some distances from the vertical wall. 

- I  

- 2  0.5 

- 3  

- 4  

- 5  

i , , 

n ~b f2 1.o 

h i  

, j 0.0 

-0.5 

(a) (b) 

11 ~ 1.5 

1"o 

Figure 5.2: (a) The fluid velocity, and (b) the temperature, functions associated 
with the plume boundary-layer for Pr - 0.72. 

We can also calculate the skin friction coefficients C / a n d  Cf  and the adiabatic 
vertical wall temperature Ta from the following expressions: 

C / -  2 G r - ~ x - ~  02r , C / -  - G r - ~  oX2 x=o Tref OY 2 y=0 
(5.30) 

Using the series (5.8) and (5.9), and the obtained numerical solutions of Equa- 
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tions (5.14) and (5.18) - (5 .21) ,  we have 

I 1 3 
Cf _ 2.6201 + 0.8761 Gr-z ~ + 5.1859 G r z  ~o + h.o.t. 

I - -  1 3 
G r ~  ~ 1.8596 + 0.1245 Grx 5 + 2.3932 Grz  10 + h.o.t. 

for 

for 

_ 1 
Cf _ 1.7479 + 1.9813 Gry ~ + h.o.t, for 

1" ~ 1 

G r y  ~ 0.5918 + 0.9794 Gry ~ + h.o.t, for 

P r  = 0.72 

P r  = 6.7 

I 1 3 
Ta _ 1 + 0.9875 Grz  5 + 5.9166 Grz  ~o + h.o.t, for 

1 -- 1 3 
Grz  5 1 + 0.3895 Grz  5 + 4.3291 G r z  ~o + h.o.t, for 

P r  - 0.72 

P r  - 6.7 

Also, the equivalent global heat flux, Q, is given by the expression 

P r  = 0.72 

P r  = 6.7 
(5.31) 

(5.32) 

(5.33) 

/0 c~ { 1.0915 for P r  - 0.72 (5.34) 
Q - P r  f~ hi d~? - 2.6446 for P r  - 6.7 

We note from the expressions (5.31) and (5.33) that the skin friction and the 
adiabatic temperature on the axis of the plume (vertical wall) are underpredicted by 
the first-order boundary-layer solution. It is also seen that the third-order correction 
terms add to the second-order terms in the underprediction of the values. ~br values 
of Gr z  less than O (105) it is observed that the errors which occur in using the 
first-order theory are in excess of the order of 10%. On the horizontal wall the 
second-order correction reinforces the first-order correction term to further increase 
the magnitude of the skin friction. This increase in the skin friction coefficients and 
the adiabatic wall temperature implies a decrease in the thickness of the boundary 
layers for moderately large values of the Grashof numbers. Further, we note from 
the expressions (5.31) and (5.33) that the effect of the horizontal wall leads to a 

correction which is O ( G r z - ~ ) .  The first eigensolution which modifies these results 

is O r~ ~ and therefore expressions (5.31) - (5.33) are correct to the number of 

terms quoted. In fact, the eigensolutions form the next correction to the skin friction 
coefficients and the adiabatic wall temperature. In the work by Afzal (1980) he 
ignored the effects of the boundary-layer which is formed on the horizontal wall and 
hence his solution technique is only correct up to, and including, his second term. In 
turn, this leads to smaller corrections to the skin friction and adiabatic temperature 
on the axis of the plume (vertical wall) and the presence of the horizontal wall 
substantially changes the third-order boundary-layer correction terms. 

The fluid flow pattern outside the inner boundary layers is shown in Figure 5.3 for 
P r  = 0.72 and G r  = 10 l~ It is seen from this figure that  at a small distance from the 
horizontal wall that  the effect of the boundary-layer is to make the streamlines enter 
the convective boundary-layer such that they are convex upwards, whereas in the 
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Figure 5.3" The streamlines associated with the outer flow at Gr - 10 l~ for Pr = 
0.72. The 1-term and 2-term forms of expression (5.5) are indicated by the broken 
and solid lines, respectively. 

absence of the horizontal boundary-layer the streamlines enter convex downwards. 
It transpires that,  rather than becoming less important,  viscosity becomes more and 
more dominant as one moves to the outer edges of the inner boundary layers and 
the outer flow is inviscid. It is thus quite conceivable that  the complete Navier- 
Stokes equations have to be solved in the outer region. This is also suggested by 
the algebraic behaviour of the functions ( ]2 , f3)  given by Equations (5.23). This 
mat ter  has been also discussed by Schneider (1981), who pointed out that  wall jets 
and plumes which are limited by walls induce non potential outer fluid flows. 

5.3 Inclined wall p lumes  

We consider a buoyancy-induced wall plume of heat flux qs along an inclined adia- 
batic plate, which arises from a line heat source which is embedded at the leading 
edge of the plate, see Figure 5.4. The flat plate is inclined with an arbitrary tilt 
angle ~, covering the range from the vertical to the horizontal, i.e. 0 ~ T ~ ~ On 5" 
the basis of the boundary-layer approximation, the governing equations are given by 
the Equations (3.38) - (3.40) and they have to be solved subject to the boundary 
conditions 

u = 0 ,  v = 0 ,  0_T_T = 0  on y - - 0 ,  x > 0  
Oy (5.35) 

u--+0,  T - + T o o ,  P-+Poo as y--+c~,  x > 0  
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Figure 5.4: Physical model and coordinate system. 

along with the constraint condition on the energy conservation, namely 

fO ~ 
pcpl u (T - Too) dy - qs for x > 0  (5.36) 

To solve this problem Lin 
dimensional quantities 

et al. (1996) have proposed the following non- 

~ ( x ) -  [l ff- (alRa'sin~)-~] -1 
( ~ 1 n ~  ~os ~) 

1 1 1 1 
x~ - ( ~  Ra~ ~os ~) ~ + (~l/~a~ ~in ~) ~ } (~lRa~ ~os ~)~ = ~ ( ~  Ra~ sin ~) 

(5.37) 
where (71 is defined as in expression (2.72) and the Rayleigh number Raz is based 
on the temperature T* = q~ It should be noted that for the limiting cases of a 

p C p o t  f l " 

vertical plate (~o - 0) ~ - 1 and for a horizontal plate (qo - ~) ~ - 0. In addition to 
the non-dimensional quantities (5.37), the following non-dimensional variables are 
introduced: 

(5.38) ] 

Using Equations (5.37) and (5.38) the boundary-layer Equations ( 3 . 3 8 ) -  (3.40) 
transform to the form: 

pr  fm + 5 ;  ~ f f , ,  1 -,2 5 - ~  2 - 5 ~ f  + 10 r / h ' -  ~ h + ( l + P r ) ~ 5 0  

__ ~__d((X _ () ( f ,  Of' f , ,Of o~ 
h' - (1 + e~ ) (1  - ~)60 

Oh) (5.39) 

(5.40) 
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5+~ 1 ( ) (5.41) 0 " +  10 (fO)' -- ~(1--~)  f ,  OO _ O,i)f 

which have to be solved subject to the boundary conditions (5.35), namely 

f (~ ,O)=O,  f ' (~ ,O)=O,  0 ' ( ~ , 0 ) = 0  for ~> /0  
f ' - -+0 ,  h ~ 0 ,  0--+0 as 77~c~ ,  ~>~0 

(5.42) 

and the constraint condition (5.36) which can be written as 

o ~ f ' O d ~ - I  for ~ 0  (5.43) 

For the limiting case of a vertical wall plume (~ - 1) we have h = 0, see Equa- 
tion (5.40). Thus, Equations (5.39) and (5.41) reduce to the following similar form 

3 f ,  1-,2 P r f ' "  + -~ f - -~J + (1 + Pr)O - 0 (5.44) 

3 
O" + -~(fO)' -- 0 (5.45) 

while for the other limiting case of a horizontal plume (~ = 0), Equations (5.39) - 
(5.41) become 

P r f ' "  + 2 f  f "  
1 

+ ~ (1 + P r ) ~ 0  - 0 (5.46) 

1 
0 " + - ~ ( f O ) ' -  0 (5.47) 

Both the sets of equations (5.44), (5.45) and (5.46), (5.47) are subject to the bound- 
ary and constraint conditions (5.42) and (5.43). 

Equations (5.39) - (5.42) have been integrated numerically by Lin et al. (1996) 
using the Keller-box method with a slight modification to include the integral con- 
dition (5.43). The flow characteristics determined are the fluid velocity component, 
u, and the temperature, T, namely 

u 1 f ,  , T - T o O R a ~  - ~ 0(~ 71) (5.48) (_~) = ~--~ (fflRaz cos ~) ~ (~ ~), T* (al cos ~)~ ' 

as well as the non-dimensional skin friction, 7w(~), and the wall temperature, 0~(~), 
which are given by 

Tw(~) = (al co s~ )~  /"  , ~ ~ 0(( ,  0) (5.49) 
~3 (~, O) Ow (~) : (o-1 cos V) g 

Typical fluid velocity and the temperature profiles for some specified values of the 
inclined angle ~ are shown in Figure 5.5 for P r  = 0.7 and Raz = 105. It can be seen 
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Figure 5.5" (a) The fluid velocity, and (b) the temperature, profiles for Pr  - 0.72 
and Raz - 105. 

from these figures that  the fluid velocity profiles decrease with increasing values of 
the angle ~, while the t empera tu re  profiles increase as the angle ~o increases. This 
is due to a decrease in the component  of the buoyancy force along the wall with an 
increase in the tilt angle cp. 

For the limiting case of a vertical wall plume (9 -- 0 and ~ -- 1), relations (5.49) 
reduce to 

3 1 

Tw(1) -- ~ f " ( 1 , 0 ) ,  0w(1) - -  O'1 5 0(1, 0) (5.50) 

The  values of T~(1) and 0w(1), as calculated by Lin et al. (1996) from the direct 
numerical  solution of Equat ions  (5.39) - (5.43) for ~ = 1, are compared with the 
similari ty solution obtained by Liburdy and Faeth (1975) in Table 5.1 for several 
values of P r  between 0.001 and 1000. It is easily seen that  the agreement between 
these results is very good and this suggests tha t  the numerical  solution obtained by 
Lin et al. (1996) is uniformly valid over the entire range of the plate inclination from 
the vertical to horizontal. 

A simple, but  very accurate,  correlation equation was also proposed by Lin 
et al. (1996) for predict ing the non-dimensional  wall t empera tu re  of the inclined 
wall p lume problem for 0.001 ~< P r  <~ 1000. Also, some very nice experimental  
results for the tempera ture  field in air has been presented by these authors,  which 
confirm the physical reality of the horizontal and inclined wall plumes. 

Finally, Figure 5.6 shows photographs  of interferograms of the inclined wall 
plumes for tilt angle ~ = 0 ~ (vertical), 30 ~ 45 ~ 60 ~ 75 ~ and 90 ~ (horizontal). It can 
be seen tha t  there are stable boundary- layer  flows along the plate and tha t  no sep- 
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Table 5.1- Comparison of the values of r~(1) and 0w(1) ]or the vertical wall plume 
( v -  o). 

0.001 
0.01 0.9775 
0.1 1.0761 
0.7 1.0899 
1 1.0898 
7 1.1109 
10 1.1174 

100 1.1535 
1000 1.1690 

Tw (1) Ow(1) 
Lin et al. 'Liburdy and Lin et al. i]iburdy and 

(1996) Faeth (1975) (1996) Faeth (1975) 
. . . . .  

0.8207 3.1~i89 
0.9779 
1.0763 
1.0900 
1.0950 

0.8796 
1.1542 

, 

1.9934 
1.2599 
0.8771 
0.8287 
0.6710 
0.6546 
0.6041 
o.5888 

1.9936 
1.2600 
0.8771 
0.8340 

0.6547 
0.6038 

a ra t ion  and  wake format ion  has been  observed from these exper iments .  Moreover, 

Lin et al. (1996) have shown tha t  b o t h  exper imenta l  and theoret ica l  results  indicate  

t ha t  the wall t e m p e r a t u r e  decreases along the plate.  In the  theoret ical  analysis,  it 

Figure 5.6: Experimental results for  the temperature field of the inclined wall 
plumes when (a) ~ - 0 ~ (vertical wall), (b) ~p - 30 ~ (c) ~o - 45 ~ (el) ~ - 60 ~ 
(e) ~ -  75 ~ and (]) ~p -  90 ~ (horizontal wall). 
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was assumed that  all the thermal energy released from the wall line source has been 
transferred totally to the boundary-layer flow whereas the experiments also indicate 
that there is significant heat transfer to the fluid around the line source due to the 
large temperature difference between the line source and the ambient fluid. Thus, 
as expected, the wall temperatures estimated from halographic interferometry are 
lower than the numerically predicted values and this is due to the heat losses. 

5 . 4  F r e e  c o n v e c t i o n  far  d o w n s t r e a m  o f  a h e a t e d  s o u r c e  

o n  a s o l i d  w a l l  

It is well-known that  a point heat source of buoyancy in an unbounded fluid can 
give rise to free convection in the form of a narrow vertical plume. Most plumes 
in common experience are turbulent, e.g. smoke from a chimney, but there are 
circumstances, typically when the fluid viscosity is large, in which a plume remains 
laminar for a considerable height. The laminar plumes are more stable when the 
heat sources are embedded in an adiabatic downward-facing solid wall, and these 
plumes have been extensively studied. However, the three-dimensional wall plumes 
arising from localised heat sources are of even greater practical importance than their 
two-dimensional analogues because real heat sources are of finite size. In particular, 
these plumes are relevant to the cooling of electronic components in circuit boards. 

Higuera and Weidman (1998) have described the asymptotic self-similar struc- 
tures of two free convection flows at large distances downstream of the point heat 
sources on the solid walls. The first of these is the wall plume of a point source on 
an adiabatic non-horizontal wall and the second is the wall plume of a point or line 
source on a wall that is held at the same temperature as the ambient fluid far from 
the source. 

5 .4 .1  I n c l i n e d ,  d o w n w a r d - f a c i n g  a d i a b a t i c  wa l l  

The physical model considered by Higuera and Weidman (1998) is shown in Fig- 
ure 5.7, where the heat source ~ is localised on the surface of an insulated inclined 
wall which faces downward. It is assumed that the inclined angle ~o is in the range 

and the governing equations are given by 0 < ~ o < ~  

V .  ~ - 0 (5.51) 

~ .  v--~ - 0p 
o~ + vv2~ + ~ cos ~ (5.52) 

O~ + ~,~2~ (5.53) 

op 
~--V---~ = + v V 2 ~ -  O sin ~ (5.54) 

oy 
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Figure 5.7: Physical model and coordinate system. 

~.  v O  - " ~ 2 ~  (5.55) 
P r  

where (~, ~, ~)  are the fluid velocity components along the Cartesian coordinates 
- - P~ with Pr being the excess pressure above its (~, y,~), o 9g (T - Too), ~ = p~ 

value at infinity and V 2 is the three-dimensional Laplacian operator. The boundary 
conditions appropriate to this physical problem are as follows: 

- -  o o  - ~ - - +  o o  v--0,_ o-~--_0 on y - - 0 ,  2 />0 ,  _ (5.56) 
~--+o, 0--+o, p--+o as ( l ~ l , ~ ) - + ~ ,  x--+oo 

and the constraint heat flux condition 

0 d~ dy - qs 
(2O 

as ~ -+ c~ (5.57) 

Next, the physical variables (y, z, u, v, w, 0, ~) are non-dimensionalised as follows: 

__2 __~ 5 V _ ~ ~0 -- P (5.58) Y-V~' Z-z: '  : :u : '  "=y~u~ ' ~  ~ '  ~ p V~ 

where the characteristic quantities are defined in the asymptotic limit 5 --+ c~ by 

Y c  " -  v~(tan~)~5~ Z c  _ .  ~�89 .~ ~ , ~ , u~ = ~ ( ~ ~ ) ~  
~ - 

(5.59) 
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with Q - qs sin 99. These quantities are based on viscous diffusion and they were 
obtained by Higuera and Weidman (1998) on balancing different terms in Equa- 
tions (5.51) - (5.54) and also using Equation (5 57) Expressions (5.59) give ~ << 1 

" " Z c  
1 3 

for 5 > u~Q -~ (tan qo)-5 and thus the boundary-layer takes on a pancake-like struc- 
ture as shown in Figure 5.7. 

On subst i tut ing expression (5.59) into Equations (5 .51) -  (5.55) gives 

11 
v T .  ~ + -6-~ - 0 (5.60) 

l u 2  _ 02u 
~ . V T U  -- -9 --  Oy 2 + 0  (5.61) 

4 14 0t9 02w 7 
~" V T ~  + -~u~-  8---~zu2 = Oz ~ zO (5.62) Oy 2 9 

op 
= - 0  (5.63) 

Oz 
11 1 020 

~. v ~ o -  - ~ 0  - p~ Oy2 (5.64) 

where 
5 7 

- v - ~ yu, ~ - w - ~ zu (5.65) 

are the scaled velocity components normal to the curvilinear coordinate surfaces 
y - constant and z - constant, respectively. Also, 9 - (z~,~) and VT is the 

gradient operator in the transverse plane and is defined as ( o ,  b~.~)- The boundary 

conditions (5.56) far downstream of the heat source and the constraint relation (5.57) 
also become 

u - - 0 ,  ~ = 0  ~ = 0 ,  0 ~ = 0  on y - - 0 ,  z > / 0 ,  
' Oy 

u ~ O ,  ~ ~ o ,  0 ~ o ,  p--+o as (I~I,Y)--+cr 
f o  f-~,~ uOdydz  - 1 as x -4 c~ 

x --+ cx:) 

x -4 cx~ (5.66) 

Equations (5.60) - (5.64), subject to the conditions (5.66), have been solved 
numerically by Higuera and Weidman (1998) using finite differences in combination 
with a pseudo-transient method that  essentially amounts to adding time derivatives 
to the left-hand sides of Equations (5.61), (5.62) and (5.64) and marching in time 
until a steady state solution is attained. Figure 5.8 shows the local thermal, 50(z), 
and local momentum, 5u(z), boundary-layer thicknesses, which are defined as 

1/0  5o(z) -- Omax O(y, z) dy, 5u(Z) - u(y, z) dy (5.67) 
' t tma  x 

as a function of z for Pr = 0.1, 0.2, 0.5, 1 and 5; here 0 m a x  --- 0 ( 0 , 0 )  and 
Umax -- maxy,z(U). Also presented in this figure is the wall temperature  at each 
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Figure 5.8: The thermal, 5o (z) , and momentum, 6u (z) , boundary-layer thicknesses, 
indicated by the solid and broken lines, respectively, and the wall temperature dis- 
tribution, o~(z) indicated by the dotted lines, for several values of Pr 

0 m a x  ~ 

section, Ow(z) = O(z, 0), divided by 0ma x. As expected, the thicknesses are maxi- 
mum at the centreplane and decrease with the spanwise distance z. Further, it is 
seen from Figure 5.8 that the thermal boundary-layer (solid lines) is thicker than 
the momentum boundary-layer (dashed lines) for some small values of P r  (< 1) and 
vice versa for some large values of P r  (>> 1). However, the spanwise width of the 
momentum layer is larger than that of the thermal layer for all values of the Prandtl  

number Pr.  This may be an effect of the slow decay with z of the term (0 + - ~ ) ,  
f 

J 

which acts as a forcing term in the momentum Equation (5.61), compared with the 
fastest decay of the term 1�89 in Equation (5.64). 

Results of this problem were also presented by Higuera and Weidman (1998) for 
both small and large values of the Prandtl  number. Appropriate scales from the 
variables (y, z, u, ~, ~, 0, p) in the thermal layer, involving the thermal diffusion in 
Equations (5.60) - (5.64) for small and large values of P r  are used. 

5 .4 .2  V e r t i c a l  a d i a b a t i c  wa l l  

This corresponds to the situation in which a vertical plume (~p = 0) is cut down 
its centreline by an infinitely thin insulated wall, and a scaling similar to that for a 
vertical plume which emanates from a point source in an unbounded fluid may be 
used, namely 



168 CONVECTIVE FLOWS 

1 1 3 1 1 

Uc - , Oc qs (-qs u) -~ u4 x2  (~su) 
= _ ,  P c =  _ , 1_ , , 

u x  x ~ 4 s ~ .  

( 5 . 6 8 )  

The fact that  diffusion occurs equally in both the spanwise and plate-normal di- 
rections (Yc - Zc)  were used in establishing relations (5.68). On transforming the 
dependent and independent variables according to the expressions (5.58), with the 
scales given by expressions (5.68), yields the equations governing the transverse 
structure of the vertical wall plume, namely 

V T  "~  + u  -- 0 

~"  V T u  -- V ~ u  + O 

"" 41u2 2 V . V T V -  X -- - - V T p -  O X  + V ~ ' v  + V T U  

v ' V T O - - u O - -  1 V20 
P r  

(5.69) 

(5.70) 

(5.71) 

(5.72) 

where again ~ -  (~, ~) with ~ and ~ given by 

_ y u  _ z u  (5.73) v - - v  2 '  w - w  2 

and X = (z, y). The boundary conditions and constraint equation are the same as 
those given by the conditions (5.56) and (5.57). 

Equations (5.69) - (5.72), subject to the conditions (5.56) and (5.57), have also 
been solved numerically by Higuera and Weidman (1998) using the same pseudo- 
transient method similar to the case described in Section 5.4.1. Some isotherm 
and streamline plots, as well as a fluid velocity vector field, given by arrows, which 
represent the transverse velocities (w, v) are shown in Figure 5.9 for P r  = 1. Here the 
streamwise velocity u acts as a sink for the transverse flow and this is in agreement 
with expression (5.69). In contrast to the case of an inclined wall plume, as described 
in Section 5.4.1, an appreciable fraction of the fluid comes now from the sides of the 
insulated wall and is affected by the presence of this wall, see the region of low 
transverse fluid velocity in the lower right region of Figure 5.10. 

The case of a wall plume far downstream of a point or line heat source on an 
isothermal vertical wall (~ = 0) has also been treated by Higuera and Weidman 
(1998). This problem leads to self-similar solutions of the second kind, in which 
the rate of decay of the temperature with the distance from the source has to be 
determined as an eigenvalue of a nonlinear problem. 

To this end, a few comments are noteworthy. Using the matched asymptotic tech- 
nique, Thomas and Takhar (1988a) obtained the first- and second-order boundary- 
layer equations for the case of free convection due to a point source of heat, the 
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Figure 5.9" Isotherm plots (solid lines) between 0 - 0.02 and 0.16 and streamline 
plots (broken lines) between u - 0.05 and 0.3 for Pr  = 1. The arrows represent 
the transverse velocity field (w, v). 
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Figure 5.10: Fluid velocity, u, (broken lines) and temperature, 8, (solid lines) 
profiles ]or Pr  - 1. The dotted line in the right hand figure represents the wall 
temperature Ow profile. 
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surrounding fluid being bounded by a conical surface, while Riley (1988) considered 
the case of mixed convection flow above a point heat source in an unbounded fluid. 
It has become increasingly apparent that mixed convection regimes occur frequently 
in practice and that an understanding of these flows is crucial in many processes, 
e.g. in the dispersion of pollutants and the study of chemical reactions in plumes. 
In the study of this problem, Riley (1988) was motivated by some difficulties which 
were encountered in an experiment that he had conducted to measure the temper- 
ature and the concentration fields above a smouldering substance because of the 
instability of the plume. However, he observed that  this experimental flow situation 
may be modelled by a mixed convective flow consisting of a vertical uniform stream 
passing over a fixed-point heat source. In this respect, Riley (1988) investigated a 
more accurate representation of the fluid flow and temperature fields due to a point 
source of heat in order to improve the description of the experiment, and also to 
facilitate the investigation of non-parallel flow stability. The results obtained by 
Riley (1988) are restricted to the case of the Prandtl  number being unity. It was 
found that  there exists an unchanging balance between the buoyancy and forced 
convection effects and there are regions where the forced convection dominates and 
the asymptotic regions where buoyancy dominates. The balance essentially arises 
because the centreline fluid velocity in the plume above a point heat source does not 
vary with height, see Fujii (1963) and Fujii et al. (1973), and thus it is in a constant 
ratio to the imposed flow. 

In general, the literature on buoyant plumes and jets deals with plumes and 
wall jets due to fixed (still) surfaces. However, Wang (1988) has investigated the 
horizontal boundary-layer due to a line heat source on a moving adiabatic flat plate. 
He has shown that a horizontal boundary-layer does not exist if the line heat source 
is still, whilst it exists if the line heat source is moving laterally. Therefore, the 
boundary-layer caused by a horizontal flat plate is distinctly different from that due 
to a heated line source on a moving adiabatic wall. As is known, the boundary-layer 
of the former exists only on the top surface, while the boundary-layer of the latter 
exists on the bottom of the plate, and only when the heat source is moving with 
some speed. If a cold source is substituted for a heat source then the results of 
Wang's problem apply to the top surface instead. 

5.5 Laminar plane buoyant jets 

Hot fluid which discharges from a narrow slot into a large quiescent fluid reservoir 
of lower temperature is termed either a plane free jet or a wall jet if it propagates 
tangentially along a flat surface. The theory of viscous buoyant jets has received 
great attention in the past due to the many applications of these jets in industrial 
systems and environmental studies, such as mixing, ocean circulations, and air or 
water pollution. In practice, the jet flows are turbulent and most of the previous 
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investigations deal with turbulent buoyant jets, see Rodi (1982) and List (1982). 
However, laminar buoyant jets have also extensively been studied, see Schneider 
and Potsch (1979), Jaluria (1986), Yu et al. (1992) and Noshadi and Schneider 
(1999). 

It is known, see Savage and Chan (1970) or Mollendorf and Gebhart (1973a, 
1973b), that buoyant jets behave like a pure forced convection (momentum) jet 
in the region close to the nozzle, i.e. where the buoyancy force is negligible in 
comparison to the inertia force. In the far downstream region from the nozzle, 
where the buoyancy force is dominant, the buoyant jet is equivalent to a buoyant 
plume arising from a line heat source. The most simple and traditional methods 
to describe these limiting jets and plume flows are based on the use of self-similar 
solutions. However, these solutions do not, in general, apply to buoyant jets. An 
attempt has been made by Maxtynenko et al. (1989) to obtain self-similar solutions 
for a class of plane and axisymmetric buoyant jets on the basis of boundary-layer 
theory and the Boussinesq approximation. Both the cases of linear and quadratic 
dependence of the density on the temperature were considered. However, these 
solutions are far from being adequate to comprehensively describe the flow pattern 
to a high level of accuracy over the entire range of buoyancy intensities. 

The numerical methods employed by several researchers involve the solution of 
two systems of partial differential equations. One of these systems describe the 
perturbation of the purely forced convection (momentum) jet (the case of a weakly 
buoyant plume) and the other system describes the perturbation of a purely free 
convection flow (the case of a strong buoyant plume). Results of this kind of sim- 
ulation have been reported by Rao et al. (1984) and Wilks et al. (1985). However, 
this procedure is not free from complications and in particular for the case of the 
opposed wall buoyant jets where singularities may occur, and this is responsible 
for a reduced rate of the convergence or even the complete loss of stability in the 
numerical solutions obtained. 

Yu et al. (1992) have proposed a very effective and accurate method to study the 
free and the wall buoyant jets for the entire range of intensities of the buoyancy force 
including the intermediate region where the inertia is comparable with the buoyancy. 
In addition, simple but very accurate correlation equations for the centreline fluid 
velocity and the temperature of the free buoyant jet, as well as the skin friction and 
the wall temperature of the wall buoyant jet, have been proposed by these authors. 
We next present some results obtained by Yu et al. (1992) for these free and wall 
buoyant jets. 

Consider a laminar, plane buoyant jet of an incompressible fluid which emerges 
vertically from a long, narrow slit of width b and which spreads into a quiescent fluid 
reservoir of a constant temperature Too and it is assumed that the fluid temperature 
at the slit (exit) is To, where To > Too. For the free jet the flow is unconfined after 
discharging from the slit, while for the wall jet the flow develops along an adiabatic 
vertical fiat wall. Under the boundary-layer and the Boussinesq approximations, the 
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governing equations for this physical problem are as follows: 

Ou Ov 
Ox + Oyy -- 0 (5.74) 

Ou Ou 02u 
+ v~-~v - u~-~u 2 4- gj~ (T - Too) (5.75) U ~ x  

OT OT ~, 02T 
~~ + v 0~  = p~ 0y~ (5.76) 

where the x and y axes are measured in the upward and horizontal directions, 
respectively, and the + signs in Equation (5.75) designate the assisting or opposing 
flow cases. 

The boundary conditions appropriate to Equations (5.74) - (5.76) are given by 

v - 0  OT = 0  
Oy 

o__~_u = 0  free jet u - - 0  wall jet ~ on y - 0 ,  x > 0  (5.77) 
Oy 

u--+0,  T - + T o o  as y - + c ~ ,  x > 0  

In addition to these boundary conditions, three integral constraints should be con- 
sidered in order to obtain non-trivial solutions, and these constraints can be obtained 
using the classical procedure first proposed by Glauert (1956). Thus, we have 

df F U 2 dy - -  

dx ~ 

[/0 ) ] ] d c~ ~ u  2dy dy - u g f l ( T - T o o )  dy dy 
d x  u 

(5.TSb) 
for x > 0  wall jet 

p cp u (T - T ~ ) d y  - -~ for x > o free jet (5.78c) 
Qo for x > 0  wall jet 

g / ~ ( T - T o o ) d y  for x > 0  free jet (5.78a) 

where Q0 is the rate of heat flow which discharges from the slit per unit length. In 
the region very close to the slit, i.e. x -+ 0, the buoyant forces are negligible and 
the jets are non-buoyant. Therefore, we have the classical relations 

/? J0 - lim p u  2 dy - constant for a free jet (5.79a) 
x-+0 c~ 

K0 - lim p u  p u  2 dy dy = constant for a wall jet (5.79b) 
x--+0 

By introducing the mean initial velocity u0 of the jets, which is defined as follows, 

uo - N ~ for a free jet (5.80) 

( o ~ )  ~ for a wall jet 
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the quantity Qo is then given by Qo = pcpuob (To-  Too). 
Further, we introduce the non-dimensional variables defined by Yu et al. (1992), 

namely 

(y) ~ ( x ) = ( l + ~ ) - I  r / - - ) ,4  x ' r  

where 

-A4x(T-T, o(~,n) 

(5.81) 

(RebR~)~- for a free jet 
Gr~ (5.82a) 

i for a wall jet 
Gr~ 

{ ),4 -- (RebRez)~ + Gr~ for a free jet (5.82b) 

(Re, Rex) �88 + Gr~ for a wall jet 

Here Rex, Reb and Grz are defined as 

R e x -  uo___x_x R e b -  uob G r x -  g~T*x 3 
- v '  v '  v 2 ( 5 . 8 3 )  

where T* - Qo = (To-  Too)Reb. It should be noted that  the coordinate ~ plays pcpv 
the role of a buoyancy or a mixed convection parameter.  In the region near to the 
slit, i.e. x -+ 0, the buoyancy force can be neglected and the flow configuration 
corresponds to a pure forced convection (momentum) jet. In this case Rez >> Grx, 
so that  ff -+ c~ and ~ = 0. However, far downstream from the slit the buoyancy 
force is dominant and the system behaves like a buoyant plume arising from a point 
thermal source. Now Grz >> Rex and thus ff -+ 0 and ~ = 1. 

5 .5 .1  F r e e  j e t  

Using the variables (5.81), Equations (5.74) - (5.76) become 

5 + 4~ f f,, + 4- (50 - ((1 - ~) f ,  Of' if, Of f"'+ 15 15 o~ ~ (5.84) 

( ) 1 0" + (fO)' = ~(1 - ~) f ,  O0 _ 0,0/  (5.85) 
P----r 15 ~ 

and they have to be solved subject to the boundary and integral conditions (5.77) 
and (5.78), which can be writ ten in non-dimensional form as follows: 

f ( ~ , O ) = O ,  f " (~ ,O) - -O,  0 ' ( ~ , 0 ) - - 0  

f, -+oc ,  0 - 4 0  as r/--+oc 

(1 - ~)~ ( I o  I '~ d.) + 3 So S '~ d . -  ~ 4 S o  Od, 
1 lim f :  ft2 dzl -- 1 f o  f'O dr I - 

~--+0 

for ~ > 0 (5.86) 
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where the primes denote differentiation with respect to ~. 
For the limiting case of ~ - 0, Equations (5.84) - (5.86) reduce to the equations 

which describe a momentum free jet, see Wilks et al. (1985), namely 

f " F  ~ f  f "  + ~f,2 _ O, aO ' -F  ~ f O -  0 

f (O)--O,  f ' ( O ) - O ,  f ' --+O, 0 - + 0  as r/--+oo 
oo 1 oo 1 

fo f ' 2 d r / - 7 ,  fo f ' O d r l - ~  

(5.87) 

On the other hand, for ~ - 1 the Equations (5.84) - (5.86) describe a pure buoyant 
line plume, see Fujii et al. (1973), namely 

f,,, + 3 f f , ,  l f ,2  - -~ : t : 0 - 0 ,  

f ( 0 ) - 0 ,  f ' ( 0 ) - 0 ,  f ' ~ 0 ,  
1 f o  f'O dr/ - -~ 

. r  
0- -+0  as r / ~ ~  (5.88) 

Equations (5.84) - (5.86) have been solved numerically by Yu et al. (1992) for 
Pr  = 0.7 and 7 using the Keller-box method along with a specialised algorithm 
which deals with the integral constraints (5.86). Only the case of assisting flow has 
been considered and the technique employed is described in detail by Yu et al. (1992) 
and therefore it is not presented here. 

Figure 5.11 shows the variation of the non-dimensional centreline fluid velocity, 
Uc(X), and temperature, 0c(X), profiles, i.e. 

(a) (b) 

101 . . . . . . .  102 
Assisting Flow 

100 
r 

I0 -I ., , ,,,,, �9 

X 

u~(x) 101 
o~(x) 

10 0 

10 -1 

10-2 

10  - 3  
11 

. ,  , . , .  

Assisting Flow 

0 . . ~  ~ - ~ 0 
. .,-, I ~ ~ I l~i .,_4 

~ I ~ ~ I ~ bD 

;-s i0'-2 i(~--1 "1~}0 '1~}1 "l~}e "10 s 
X 

Figure 5.11" Centreline (a) fluid velocity, Uc(X), and (b) temperature, Oc(X), 
profiles of a free buoyant jet for Pr = 0.7 (solid line) and Pr - 7 (broken line). 
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1 

= r ~-21,(~, o) 

- r r o(~, o) 
(5.89) 

as a function of the vertical distance 
1 

 c;o : r  
15 

, (5.90) 

It is seen from these figures that  initially the centreline fluid velocity decreases with 
X to a minimum value and then increases continuously. Physically this means that 
the flow decelerates near the slit and accelerates far downstream from it. In the 
region close to the slit, the centreline fluid velocity is retarded by the viscous forces, 
whilst in the far flow region the buoyancy force increases and drives the fluid to flow 
faster. However, the centreline temperature decreases monotonically with increasing 
distance X. On the other hand, Figure 5.11 reveals that there are two different slopes 
corresponding to the jet region and the plume region, respectively. The region of 
transition from the momentum free jet to the buoyant plume jet is near X = 0.5. 
We also note that both the centreline fluid velocity and temperature at Pr = 7 are 
higher than those for Pr = 0.7. 

5 .5 .2  W a l l  j e t  

Again using Equation (5.81), Equations (5.74) - (5.76) take the form 

5 -  7{ ,2 7 ( 5 -4- 7~ f f,, + ~ f •  o _  (1 ~) f, Of' f,,Of 
f " ' +  20 10 "2--6 ~ - \ O~ 

5 + 7 ~  7 ( O 0 0 f )  10"+~(fO)'= (1 ~) f '  - 0 '  
P-~ 20 ~ - ~ 

and the appropriate boundary and integral conditions are as follows: 

(5.91) 

(5.92) 

f (~,O)--O,  ff(~,O)--O, 0 ' ( ( , 0 ) - - 0  

f -+0,  0 - + 0  as r / - + ~  

(1 -  ~)~ (So : :  '~ d~) + 4 So : :  '~ d ~ -  ~ So :Od~ for ~ > 0 (5.93) 
lim f o  f f,2 d~7 - -  1 

~-~0 

This set of equations can be readily reduced to the set of equations for a non-buoyant 
wall jet ( ~ -  0), see Glauert (1956), namely 

fro+ �88 f. + �89 _ O. --~-70' + �88 - 0 

f (o )  - o, f"(o)  - 0 (5.94) 
f ' - + O ,  0-+0 as r/--+cr 

1 f o  f f,2 dT1 = 
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and to the buoyant wall plume, see Liburdy and Faeth (1975), namely 

f m + ~  f f ' ' - l f ' 2 + O - O ,  A--Otpr + 3 f  0 ' = 0  

f(0) - 0, f ' (0)  - 0 (5.95) 
f ' - -+0 ,  0--+0 as 77--+oo 

f o  f f'~ d, - ~ f o  f o d, 

Equations (5.91) - (5.93) have been solved numerically by Yu et al. (1992) for 
Pr - 0.7 and 7 for both the assisting and opposing flow cases. The variation of the 
non-dimensional wall temperature 

Ow(X) - (Tw - Too 
\ G r b ]  

as a function of the non-dimensional distance 
1 

_ 

-- ( ~  ~ 0(~, 0) (5.96) 

2O 
(5.97) 

is illustrated in Figure 5.12. It can be seen that 0w(X) decreases with X and 
that there are also three distinct regions, namely the jet region (X < 0.1), the 
intermediate region (0.1 < X < 5), and the plume region (X > 5). 

101 

o~(x) 

100. 

10-x 

10-2 
10-2 

. . . . .  Opposing Fiow 

! I , ~ , 

10 -1 100 1{) 1 102 
X 

Figure 5.12: Non-dimensional wall temperature distribution, Ow(X), of a wall jet 
for P r -  0.7 (solid line) and P r -  7 (broken line). 

Finally, the skin friction coefficient 

- (1 - f ) - 3 f , , ( f ,  O) (5.98a) 
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o r  

Cf  (Re3Grb 5) ~ -- ~ r 0) (5.98b) 

is plotted as a function of r in Figure 5.13(a) and as a function of X in Figure 5.13(b) 
for both the assisting and opposing flow cases. It is seen that the skin friction 
coefficient attains a constant value of about 0.13134 for r < 0.2 and then increases 
or decreases with ~ depending whether the forced flow is assisting or opposing the 
buoyancy force. However, it decreases with the distance X in both the assisting and 
opposing flow cases, see Figure 5.13(b). 

(a) (b) 

7 102 

q~ 

.-,~ 101 

lO 0 

10-1 

102 

Assisting F l o w / / /  

//I/l/l////l//l rr 

upposing ow 

' l ~  0 r 

g--. 

~3 
~ 101, 

100, 
Assisting Flow 

upposing ow 

10 -2 . 1 0  - 1  . . . 

10-  10 150 
X 

Figure 5.13: Variation of the skin friction coefficient of a wall jet for Pr - 0.7 
(solid line) and P r -  7 (broken line) as (a) a function of ~ and as (b) a function 
of X .  

Other flow characteristics, such as the fluid velocity and the temperature profiles, 
as well as some very accurate correlation equations, can be found in the paper 
by Yu et al. (1992). However, it should be mentioned that only the buoyancy 
assisting jets and the buoyancy opposing jets with a slight negative buoyancy force 
can be studied by the method proposed by Yu et al. (1992). A break-down in the 
numerical integration of the governing equations occurs as the negative buoyancy 
force increases to a critical value of the parameter ~, namely ~ - ~c -- 0.31 for 
Pr  = 0.7 in the case of a buoyancy opposing wall jet. The numerical integrations 
show that the slight negative buoyancy force does not reverse the jet flow but only 
retards it. 



Chapter 6 

Conjugate  heat  transfer over 
vert ical  and horizontal  flat 
plates  

6.1 I n t r o d u c t i o n  

In the traditional area of convective heat transfer between a solid wall and a fluid 
flow the wM1 conduction resistance is usually neglected, i.e. the wall is assumed to 
be very thin. In this case it is usual to prescribe either the wall temperature or the 
wall heat flux, and a considerable amount of research work has been done in order to 
understand the heat transfer characteristics over a wide range of flow configurations 
and fluid properties. However, in many real engineering systems the wall conduction 
resistance cannot be neglected since conduction in the wall is able to significantly 
affect the fluid flow and the heat transfer characteristics of the fluid in the vicinity 
of the wall. In order to take account of physical reality, there has been a tendency to 
move away from considering idealised mathematical  problems in which the bounding 
wall is considered to be infinitesimally thin. Thus, the conduction in the solid wall 
and the convection in the fluid should be determined simultaneously. This type of 
convective heat transfer is referred to as a conjugate heat transfer process and it 
arises due to the finite thickness of the wall. 

Conjugate heat transfer effects are of considerable importance in many practical 
problems, e.g. in ablation or perspiration cooling problems as well as in heteroge- 
neous chemical reaction situations, where information on the interfacial temperature 
and concentration distributions is essential because the transfer characteristics are 
mainly determined by the temperature and concentration differences between the 
bulk flow and the interface. Further, these effects occur also in the design of thermal 
insulators and in material processing and geothermal systems. In particular, it has 
been ascertained that  free convection can induce the thermal stresses which lead 
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to critical structural damage in the piping systems of nuclear reactors, see Hong 
(1977). It is also worth mentioning that recent demands in heat transfer engineering 
has led to new types of heat transfer equipment which has a superior performance, 
especially in compact and light-weight equipment. Increasing the need for small-size 
units, research has focused on the effects of the interaction between the develop- 
ment of the boundary-layer near to the wall and on the axial wall conduction, which 
usually degenerates the performance of the heat exchanger. 

It appears that the topic of conjugate heat transfer was originated by Perelman 
(1961), who was the first to study the boundary-layer equations for the fluid flow 
over a fiat plate of finite thickness with two-dimensional thermal conduction taking 
place in the plate. He derived theoretical expressions for the interfacial temperature 
and the local Nusselt number. The investigation was then extended by Luikov 
et al. (1971) and since then various types of conjugate heat transfer problems have 
been studied. Conjugate problems can be roughly classified into the following three 
groups from the viewpoint of fluid flow situations: (a) one or two forced convection 
flows; (b) one or two free and mixed convection flows; and (c) one forced convection 
flow and one free or mixed convection flow. In the earlier investigations, the first 
type of problem (a) was intensively studied because the fluid flow was not greatly 
influenced by the heat transfer in the incompressible fluid and the equations of 
motion and energy could be solved separately. However, problems of the types (b) 
and (c) have been more recently investigated because of the difficulties in solving 
the coupled equations of the fluid flow and the heat transfer simultaneously, but the 
present computer facilities has lead to detailed solutions of these types of problems. 

From the class (b), one case which has received much attention in the past has 
been that of the two-dimensional free convective flow of a viscous incompressible 
fluid heated by a vertical conducting fiat plate of finite thickness. The early theoret- 
ical and experimental work for a viscous fluid has been reviewed by Gdalevich and 
Fertman (1977), Miyamoto et a l .  (1980) and Martynenko and Sokovishin (1989). 
However, the most recent contributions on this subject may be found in the pa- 
pers by Pozi and Lupo (1988, 1989), Vynnycky and Kimura (1996), Merkin and 
Pop (1996), and Pop et al. (1996b). Important contributions to the cases (b) and 
(c) of flow typeproblems were made by Lock and Ko (1973), Anderson and Be- 
jan (1980), Viskanta and Lankford (1981), Sakakibara et al. (1992), Cdrdova and 
Trevifio (1994), Trevifio et al. (1996), M@ndez and Trevifio (1996), Camargo et al. 

(1996), Chen and Chang (1996, 1997) and Shu and Pop (1999). 
In the next two sections, we present detailed results for the conjugate free or 

mixed convection flow over a vertical conducting flat plate of finite length and thick- 
ness, while in the last section of this chapter we give results for the conjugate free 
convection boundary-layer past a finite horizontal flat plate. It has been concluded 
from these studies that it is very difficult to obtain analytical solutions of conjugate 
heat transfer problems due to the matching conditions at the solid-fluid interface, 
but the use of numerical methods, such as finite-difference schemes, is the most 
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promising procedure for performing this matching. 

6 . 2  C o n j u g a t e  f r e e  c o n v e c t i o n  o v e r  a f i n i t e  v e r t i c a l  f l a t  

p l a t e  

Consider the steady free convection flow over a vertical flat plate of length I and 
thickness b in a viscous and incompressible fluid of ambient temperature Too, see 
Figure 6.1. It is assumed that heat is transferred from the outside surface of the 
plate, which is maintained at the constant temperature To, where To > Too. The 
energy equation in the solid plate is given by 

02T~ 02T~ 
0---- ~ +  0y 2 =0  for 0 ~ ~ l ,  - b ~ < ~ 0  (6.1) 

and this equation is coupled to the energy equation in the fluid region by the condi- 
tion that the temperature and the heat flux are continuous at the solid-fluid interface, 
namely 

T s - T f  on y - 0 ,  0~<5~<I (6.2a) 
OT~ 0Ts _ ks-o~-k$ oy on y - 0 ,  0<~5~<I (6.2b) 

To T~ 

V 

T~ (z) 

T~ 

-b 0 Y 

Figure 6.1" Physical model and coordinate system. 
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6.2.1  B o u n d a r y - l a y e r  a p p r o x i m a t i o n  

In general, the axial conduction of heat along the wall is negligible when compared 
with the normal conduction across the wall and this assumption is consistent with 
the boundary-layer theory, see Luikov et al. (1971), Luikov (1974) and Merkin and 
Pop (1996). In this case Equation (6.1) reduces to 

02Ts 
= 0  for 0 < ~ l ,  - b ~ < 0  (6.3) 

0y  2 

However, the assumption of the neglection of the axial conduction of heat from 
Equation (6.1) is only valid provided that the ratio of the wall thickness to the 
length of the plate is small, i.e. b ~ 1. Thus on applying the condition that Ts - To 

on y -  -b,  Equation (6.3) gives 

Ts (-2, ~) - T~, (-2) + Tw (-~) - To _ (6.4) 
b Y 

where Tw (5) is the temperature at the solid-fluid interface, and this is determined 
by the solution of the free convection problem. Therefore, condition (6.2b) can be 
written as follows" ( T~ (~) - To \~  -~) ~=o (6.5) 

On the other hand, the boundary-layer equations which govern the convective 
flow are as follows" 

O~ 0~ ~xx + ~ - 0 (6.6) 

0~ 0~ 02~ 
U -~x + V -~y - u --~y 2 + g Z ( T f - T c r  (6.7) 

~ OTI ~ S  u 02 T I  (6 8) 
-~x + ~ O~ -- P r  0-~ 2 

which have to be solved along with the following boundary conditions: 

~ - 0 ,  ~ = 0  } 
O T f _  k~ on ~ - - 0 ,  ~ > 0  

T S -- Tw (~), o~ - bkf (T f  - To) (6.9) 

~ - + 0 ,  TS--+Tc~ as ~ - + c ~ ,  ~ > 0  

To make Equations (6.6) - (6.9) non-dimensional, Merkin and Pop (1996) used 
( b k f  ~ 4 

a convective length scale L which is defined as L - ~ (To - T ~ )  k~ ] 

leads us to introduce the following non-dimensional variables 

- ( ) - k_~_ y ,  u =  k ~ ]  ~ x - -  s  y bk I -L"u, v --: uks ] V 

( ) -  r = b_~ ~ 0 = T1-r~176 (6.10) 
ks ' To-Too 

. This then 
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and then Equations (6.6) - (6.8) become 

0r 0 2r 0r 0 2r 
Oy OxOy Ox Oy 2 

0r OO 0r OO 
Oy oy 

and the boundary conditions (6.9) become 

0 3 r  
+ 0 Oy 3 

1 020 
Pr  Oy 2 

(6.11) 

(6.12) 

r  o__~_~ = 0 ,  o o = 0 _ l  on y - 0 ,  x > 0  
o~ oy Oy (6.13) 
Oy ~ 0, 0 - + 0  as y--+ cr x > O 

We note that  on using the transformation (6.10) that  the Prandtl  number be- 
comes the only relevant parameter in the problem and that  the length of the plate 
l does not appear in these variables. However, 1 does enter the solution of Equa- 
tions (6.11) - (6.13) in the range of interest which is now given by 

0 ~< x < ~ - g/~ ( T o -  Too) (6.14) 

Smal l  values  of x ( ( ( 1 )  

A solution of Equations (6.11) - (6.13), which is valid for small values of x, is given 
by the free convection boundary-layer over a vertical flat plate subject to a constant 
heat flux rate. Thus, taking qw(x) = 1 in the transformation (1.26) gives rise to the 
following: 

Y (6.15) r - x4 f (x, rl), O - x~ h(x, rl), f i -  
x5 

and Equations (6.11) and (6.12) can now be written as follows- 

4 f , ,  3 .,2 
f ' " + g f  - g ]  + h  

4 h' 1 1 h ' +  f - f lh  

- -  X 

~ X  

f ,  Of' f , , O f )  Ox -~x (6.16) 

( f ,  Oh_ox h'Of)Ox (6 .17) 

where primes denote differentiation with respect to 77 and the boundary conditions 
(6.13) become 

1 

f(x,O) - O, f ' (x,O) -- O, h'(x,O) - - 1  + x~h(x,O) for x > 0 (6.18) 
f ' - -+0 ,  h--+0 as ~ - + c ~ ,  x > 0  

A solution of the system of Equations (6.16) - (6.18) can be obtained for small values 

of x (<< 1) by expanding the functions f and h in powers of x-~. Such a solution 
was obtained by Pozi and Lupo (1988), who considered a large number of terms and 
then extrapolated this solution to large values of x (>> 1). 
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La rge  va lues  of  x ( ) )  1) 

A solution of Equations (6.11) - (6.13), which is valid for large values of x, is now 
appropriate to the problem of the free convection boundary-layer from a vertical fiat 
plate with a uniform surface temperature. If we let T~,(x) - 1 in the transformation 
(1.22) we obtain 

- N y (6.19) r  0 - h ( ~ , ~ ,  ~ - - - v  
X4  

and Equations (6.11) and (6.12) transform to 

"- 3 f f .  1]) 2 - f ' " + ~  - ~  + h -  

1 ~,,+ fh '  
Pr -4 

- - X  

f ,  Of ~ f,, O'f) 
Ox ~xx (6.20) 

(?o~ ~,,o)-) 
O x -  ~ (6.21) 

and these have to be solved subject to the boundary conditions (6.13) which become 

f ( x , O ) - O ,  f ' ( x , O ) - O ,  h ( x , 0 ) - l - x - � 8 8  for x > 0  (6.22) 
f ' - + 0 ,  h - + 0  as 77--+c~, x > 0  

where primes now denote differentiation with respect to ~. 
The boundary conditions (6.22) suggest that  we look for a solution for x >> 1 by 

using the following expansion: 

f(~, ~ - fo (~ + ~-~ i1 (~ + z-~ L (~ + ~- t  L (~ + . . .  
(~, ~ - ho (~ + ~-~h~ (~ + ~-�89 (~ + ~-~h3 (~ + . . .  

(6.23) 

The equations satisfied by "--  \(f0,h0) are the same as those which are obtained from 
k / 

Equations (1.32) and (1.33) when m = 0 (constant wall temperature), and the 

well-known, see Ostrich (1952). The functions ( f l , h l )  are given by 
J % 

solution is the 

linear system of equations 

fl  + ~fo fl  - _ ~fo fl  + _ ~fo f l  + h - 0 (6.24) 

1 - ,  3 1 71 1--., 7, 
p r h l -+- -~ f o "h l + -~ f o "hi + -~ h o f l - 0 (6.25) 

and these have to be solved subject to the boundary conditions 

N N . . ~  

fi (o) - o, f~ (o) - o, h~ (o) - h~(O) 
(6.26) 

f ~ - + 0 ,  h i - + 0  as ~7--+cx~ 
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It is seen from these boundary conditions that  if we just require the wall temperature,  

i.e. hi (0), then this can be obtained directly from the equations for ~]o, h0) 
\ 

without 

having to solve Equations (6.24) - (6.26). 
The solution for the higher-order terms (fi, hi, i >~ 2) can be continued in this 

way. However, to O (x -1) the first eigensolution which arises is given by 

for some constants A0 and this requires the inclusion of the term which is 
O (x -1 In x). Hence the usefulness of the asymptotic expansion (6.23) is confined 

to terms up to O "  "(x-~).  The corresponding equation for ( f i ,  hi, i = O ,  1,2,3)  have 

been solved numerically by Merkin and Pop (1996) for both P r  - 0.7 and Pr  - 7 
and the non-dimensional wall temperature,  Ow(x), is given for x :>:> 1 by the following 
expressions" 

1 1 3 

Ow(x) - 1 - 0.35683 x - ~  + 0.12975 x - ~  - 0.03521 x - i  + . . .  (6.28a) 

for P r -  0.72, and 

1 1 3 

Ow(x) - 1 - 0.74551 x - ~  + 0.57699 x - ~  - 0.34319 x - ~  + . . .  (6.28b) 

for P r -  7. 

N u m e r i c a l  s o l u t i o n  

To obtain a solution which is valid for all values of x, Equations (6.11) - (6.13) 
have to be solved numerically. In order to do this Merkin and Pop (1996) have used 
the method of continuous transformation as proposed by Hunt and Wilks (1981) 
in combination with a finite-difference technique. The continuous transformation 
method incorporates an initial transformation of variables which reflects the form 
of the solution for both x small and x large. 

Since the numerical integration must be started at small values of x, we consider 
the transformation 

r - Y) ,  
1 

-- x~ s ( x )H(x ,  Y), y __ yt(x)~ (6.29) 
X 5  

where r(x),  s(x) and t(x) are to be chosen in order to allow a smooth transition from 
the small to large value of x. On subst i tut ing expressions (6.29) into Equations (6.11) 
and (6.12) leads to 
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4 r x dr ) FF" F ' " +  g ~ + y ~  

( 3 r  xdr  x r d t ) F , 2  s_~ H r ( F" - - -x  F I OF! OF 6.30) 
-5 -t + 7 -~x + t 2 dx + rt 3 t Ox ~ ] 

( 4 r  x d r )  (5  r r dS) F , r (F, OH H, OF) (6.31) 1 H " +  + F H ' -  + x  H -  - 
P---~ -5-[ -t dx -t ~-~x t Ox 

Without any loss of generality we can prescribe r(O) - s(O) - t(O) - 1 and this 
leads to the conclusion that 

r(x) -- t(x) -- (1 + x)---  20 
1 

s ( x ) -  (1 + x)-g (6.32) 

and accordingly we have 

1 1 

~) _ ~4 (1 -I- ~ 5 ) - ~  F(~, Y), 0 - ~ (1 + .~5)-g H(~, Y) 
1 1 

Y -  (1 + : o  
(6.33) 

It should be noted that expressions (6.33) reduce to expressions (6.15) for small 
values of x and to expressions (6.191 when x is large. On using expressions (6.32), 
Equations (6.30) and (6.311 become 

1 ( 1 6 + 1 5 ~ 5 ) F F , ,  1 ( 6 + 5 ~ 5 ) F , 2  
F'" + 20 1 + ~5 1-0 1 + ~5 

(F' OF' 
+ H  - -g O~ 

1 H, , 216(16+15(51  1 1 F , H _  ~ (F, OH 
Pr + 1 + ~5 FH' - -5 (1 + ~5~ g O~ 

F"O-~~) 
H lOF 

(6.34) 

(6.35) 

and the boundary conditions (6.13) reduce to 

F(~, 0) - 0, F'(~, 0) - 0 

H'(~, 0) - (1 + ~5)~ H(~, 0) - (1 + ~51�88 

F ' - + 0 ,  H - + 0  as Y--+c~, 

for 

~ > o  

~ > 0  
(6.36) 

The non-dimensional skin friction, ~-w(~), and the wall temperature, Ow(~), are 
now given by 

3 

Tw (~) -- ~2 (1 -t-~5)-~ F"(~, 0) (6.37a) 
1 

Ow (~1 -- ~ (1 + ~5)-g U(~, O) (6.375/ 
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Equations (6.34) - (6.36) have been solved numerically by Merkin and Pop (1996) 
using a very efficient finite-difference method which was first proposed by Terril] 
(1960) and later has been substantially improved by Merkin (1969). The results for 
Tw(~) and 0w(~) as obtained from the present numerical method, along with those 
obtained from the series expansion given by Pozi and Lupo (1988), are included in 
Table 6.1 for P r  = 0.733. It can be concluded from this table that  both ~w(~) and 
0w(~) obtained by both these methods are in good agreement up to ~ = 0.7 (for 
0w) and ~ = 0.9 (for ~-w). Thereafter the two sets of results increasingly diverge 
with values for both Tw(~) and 0w({) start ing to decrease. This is contrary to the 
numerical solution, which shows a monotonic increase in both Tw(~) and 0w(~), and 
to the asymptotic series solutions (6.28). Furthermore, the radius of convergence 
x0 of the series expansion of Pozi and Lupo (1988) is estimated to be x0 ~ 1.16 
(~ ~ 1.03) and the results shown in Table 6.1 appear to confirm this prediction. 

Table 6.1" Values of the non-dimensional skin/fiction, Tw(~), and the wall tem- 
perature, Ow(~), for P r -  0.733. 

Pop (1996) 

~(e) 
Merldn and Pozi and 

Lupo (1988) 
. . . . . .  

M erkin and Pozi and  
Pop (1996) Lupo (1988) 

, .  

0.1 0.014 0.014 0.177 
0.2 0.051 0.051 0.310 
0.3 0.105 0.105 0.413 
0.4 0.172 0.172 0.493 
0.5 0.250 0.250 0.557 
0.6 0.337 0.337 0.608 
0.7 0.430 0.430 0.651 
0.8 0.530 0.530 0.686 
0.9 0.635 0.635 0.715 
1.0 0.745 0.741 0.741 
1.1 0.859 0.829 0.762 
1.2 0.972 0.817 0.781 

. . . . . . . . . . . . .  

0.177 
0.310 
0.413 
0.493 
0.557 
0.608 
0.651 
0.684 
O.708 
0.717 
0.699 
0.640 

The variation of Tw(X) as a function of x is illustrated in Figure 6.2 for P r  = 0.72 
2 

and 7. It can be seen from this figure that  the x~ singularity which occurs near 
x = 0 increases more rapidly for P r  = 0.72 than for P r  = 7. Further, the variation 
of 0w(x) as a function of x, given by Equations (6.37b), is shown in Figure 6.3 (by 
solid lines) for P r  = 0.72 and 7. Also shown in this figure (by the broken lines) are 
the values of 0w(x) as obtained from expressions (6.28) and the asymptotic limit 
0w(x) -+ 1 as x --+ oo (shown by the dotted lines). From this figure it appears 
that  the asymptotic expansion for x large gives a bet ter  representation for 0,v(x) 
for the smaller value of Pr .  Also, the asymptotic limit Ow(x) -+ 1 as x -+ co is 
approached more quickly for the smaller values of Pr .  Finally, Figure 6.4 shows the 
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Figure 6.2" Variation of the skin friction, ~-w(x), with x for Pr  - 0.72 (solid line) 
and P r -  7 (broken line). 
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Figure 6.3: Variation of the non-dimensional wall temperature, O~(x), with x / o r  
(a) P r  - 0.72 and (b) Pr  - 7. The numerical solution, namely Equation (6.37b), 
is indicated by the solid lines, the solutions at large values of x, namely expression 
(6 .28a) /or  Pr  - 0.72 and expression (6.28b) for Pr  - 7, are indicated by the 
broken lines and the asymptotic limit Ow -+ 1 is indicated by the dotted lines. 

development  of the non-dimensional  t empera tu re  profiles O(x, y) at various values of 
x p lo t ted  against  y for P r  - 0.72 and 7. It is clearly seen from this figure tha t  the 
rise in the  wall t empera tu re  as x increases, in line with Figures 6.2 and 6.3, and tha t  
the t empera tu re  profiles become more spread out as x increases, with this spreading 
in y being greater  for P r  = 0.72 than  for P r  - 7. 
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Figure 6.4: Non-dimensional temperature profiles, O(x,y), for (a) P r -  0.72 and 
(b) P r -  7. 

Some recent studies by Merkin (1994b) and Merkin and Chaudhary (1996) have 
considered another class of problem, namely that  the heat flux at the plate is pro- 
portional to the plate temperature,  the so called Newtonian heating. 

6 .2 .2  F u l l  g o v e r n i n g  e q u a t i o n s  

The problem of conjugate free convection over a heated vertical flat plate for the 
most general case when the plate is assumed to be of both finite thickness and 
length in the presence of axial conduction effects has been investigated by Miyamoto 
et al. (1980) and Vynnycky and Kimura (1996), who solved the full Navier-Stokes 
and energy equations. However, the former authors have solved the problem only 
numerically by the finite-difference method and found a singularity at the leading 
edge of the plate. In order to resolve this singularity, Vynnycky and Kimura (1996) 
have reformulated the problem in a more plausible form and solved it using very 
efficient analytical and numerical methods. 

The physical model considered by Vynnycky and Kimura (1996) is schematically 
shown in Figure 6.5, where the rectangular plate occupies the region - b  ~ x ~< 0, 

a a - ~  ~ y ~< ~ and it is adjacent to a semi-infinite region of incompressible fluid (x > 0, 
- o o  < y < cx)) which is at a constant temperature Too. The left-hand side of the 
plate is maintained at a constant temperature To (> Too), whereas its horizontal 
sides, which are at y -  •  are insulated. The no slip boundary condition is taken 

a being insulated so that  heat flows into x > 0 at x -  0, with the portion for lYl > 
a Using non-dimensional variables, the full Navier-Stokes and energy only via lYl < ~- 

equations can be written, see Vynnycky and Kimura (1996), as follows: 
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Figure 6.5: Physical model and coordinate system. 

V2r - -w (6.38) 

1 ( O w  Ow) OOf (6.39) 
P r u --~x + v -~y - V 2 w + R a 0 x  

OO f OO f 
U--~X --[- V Oy -- v 2 0  f (6.40) 

for the fluid regio n and 

V20~ - 0 (6.41) 

in the solid plate. Equations (6.38) - (6.41) have to be solved subject to the appro- 
priate boundary conditions which are given by 

o r  1 
r  Ox = 0  on x--O, l Y I ~  (6.42a) 

0 0 f  O0 s l 
o, - of ,  Ox = k-5-~ on �9 - 0, lYl ~< ~ (6.42b) 

0Of 1 (6.42c) Ox = 0  on x - 0 ,  [YI> 

1 
O s - 1  on x - - - c ,  lY]<~ (6.42d) 

00~ 1 
= 0  on Y - ~ x ,  - c < x ~ < 0  (6.42e) 

Oy Z 
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with inflow and outflow conditions as follows: 

02r 02r 
V -'-+ O, OX 2 ~ O, Of -+ O, w --+ Oy 2 

02r 02r 
u ----> O, ~Oy 2 --~ O, Of --+ O, w --+ OX 2 

as 

a~ y --+ :t:cx~, 

1 

x > 0  

(6.43a) 

(6.43b) 

and 

v - +  0, 02r 00__ L _  02r 1 (6.44a) 
O x---- ~ -~ O, O x ~ 0, w --+ O y 2 as x cr lyl 

_ OOf 02~r) 
u--+0,  02r  ~0 ~ - ~ 0 ,  w--+ as y - -++c~  x > 0  (6.44b) 

Oy 2 ' Oy OX 2 ' 

b denotes the aspect ratio of the plate and k - k~ is known respectively. Here c = a 

as the conjugate parameter.  
In this formulation the local and average Nusselt numbers are given by 

1 ( ' /_i -bT  )==0~176 for lyl 7 and N u  = 2 N u d y  (6.45) 

The problem posed by Equations (6.38) - (6.41), along with the boundary condi- 
tions (6.42) - (6.44), is now treated for the case when R a  >> 1, i.e. in the boundary- 
layer regime, and also for finite, but moderately large values of R a  by solving the full 
Equations (6.38) - (6.41) when expressed in elliptic coordinates. The situation when 
R a  >> 1 assumes that,  at the interface between the plate and the fluid, that there 
are thermal and viscous boundary layers whose convective heat flow is coupled to 
the conductive heat flow within the solid. Denoting by 00 the value of the constant 
temperature,  O s, at the location (0 , - � 89  where it is evident that  0 ~< 00 <~ 1, two 
cases emerge, namely when Os = 00 > 0 and Os = 00 = 0. Also, two distinct values 
of P r  are to be considered for an asymptotic solution. 

For 00 > 0 and P r  ~ O(1) the boundary-layer is locally temperature driven, so 
that  the appropriate variables are as follows: 

1 
r  R a � 8 8  w - Ra~gt ,  x -  R a - Z X  (6.46) 

On substituting these expressions into Equations (6.38) - (6.40) and letting R a  -+ 

cx~, then, on eliminating ~t, we obtain the following boundary-layer equations: 

P r  O Y  O X  2 O X  O X O Y  O X  3 

O~ OO f O~ OO f 02 0 f 

OY O X  OX OY O X  2 

Of (6.47) 

(6.48) 
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with Y - y + 1, so that the start of the boundary-layer is shifted to the origin. The 
boundary conditions (6.42a), (6.42b) and (6.43a) become 

-- O, 0tI, o x = O  on X - O ,  Y - O  

O~-Oy ~ - k ~  ~176 on X - O  O~<Y~<I 
' O x  - -  O X  , ' 

o~ 0 ~ Y ~ I  ox ~ O, Of ~ 0 as X -+ c~, 
(6.49) 

1 
R a ~  where kl = ---~. Boundary conditions are also required at Y - O, and these are 

obtained by assuming that the flow is stagnant for Y ~< 0, i.e. 

0~P 
~P-O, OY = 0  on Y - 0 ,  X - 0  (6.50) 

For the purpose of the analytical development and the ultimate numerical so- 
lution, it is convenient to reformulate Equations (6.47) and (6.48) using the new 
variables 

q 2 - Y ~ F ( Y , ( ) ,  O f - G ( Y , ( ) ,  ( -  X~ (6.51) 
Yr 

Then Equations (6.47) and (6.48) reduce to the following form: 

1 (1F,2  
F"' + ~ r  [ - 

3 _ F F , , ) _ G _  Y (F,,OF F ,OF' 
4 Pr OF - ~  

G" 3 G -4 F - Y ( G' OF - F ' OG -ff~ 

(6.52) 

(6.53) 

which have to be solved subject to the boundary conditions (6.49), for 0 ~< Y ~< 1, 
and these reduce to 

F(Y ,  O) = O, F ' (Y ,  O) = 0 

0 ~ - G  0e~_ k~G, on ( - - 0  (654) 
O x  - -  y ~ i  

F ' - + 0 ,  G - + 0  as ( ~ c x ~  

with Equations (6.50) satisfied automatically. On letting Y -+ 0, Equations (6.52) 
and (6.53) reduce to the following ordinary differential equations 

l ( 1 F ' 2  4 ) F'" + ~ -~ - FF" - G 

G" 3 - - ~ F G '  

= o (6 .55)  

= 0 (6.56) 

and the boundary conditions (6.54) become 

F ( 0 )  - F ' ( 0 ) ,  a ( 0 )  - 00 
F'--+0,  G ~ 0  as (--+cr  (6.57) 
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The constant 00 may be removed from Equations (6.55) - (6.57) by using the trans- 
formation 

F = O~) F , a - OoG , r - 0~ r (6.58) 

and the continuity of the heat flux at the solid-fluid interface in the vicinity of Y -- 0 

becomes 5 

DOs _ klO____~ 0 ' ( 0 )  (6.59) 
Ox y�88 

Further, on the introduction of polar coordinates (r, r given by 

x - r cos r Y - r sin r (6.60) 

the boundary conditions (6.42e) and (6.59) transform to the form 

OOs ~ 0 on r = ~r 
(6.61) - -  / 5 ~  3 7r 

0r -k l0~  G'(0)r  ~ on r - 

A solution of Equation (6.41) which satisfies the boundary conditions (6.61) is 
given by 

5 ^  

0~(r,r - 3sin ( ~ )  

Therefore, the singularity at r -  0 may be now removed by writing 

A 

Os = Os + 0 s (6.63) 

where 0 s satisfies the equation 
V20 * - 0 (6.64) 

and this equation has to be solved subject to the boundary conditions 

A A 

0 s = O o G - O s ,  on x = 0 ,  0 ~ < Y ~ < I  
5 

oo; = k~, Oo,, ~ ~ ,  _ o ~  
o= y ]  0= on x = 0 ,  0 ~ Y K 1  

oo; 
ov = 0  on Y - 0 ,  - c ~ x ~ 0  

0 0 ;  __ 00~ 
OF - OF o n  Y - l ,  - c ~ < x ~ < 0  

A 
O ~ - l - O s  o n  x = - c ,  0 K Y < ~ I  

(6.65) 

It should be noted that  the case when 00 = 0 was treated by Vynnycky and 
Kimura (1996) in a similar way to that for 00 > 0, and therefore we do not reproduce 
it here. 

A simpler approach at estimating the boundary-layer temperature and the av- 
erage Nusselt number is to assume that  the heat flow is one-dimensional within the 
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plate, and to consider the local boundary-layer temperature,  Ob(y), and the average 
w 

boundary-layer temperature, Ob, defined as 

1 

Ob(y) -- Tb(y) -- T ~  Ob -- Of(y,  0)dy (6.66) 
To-Too' 

and to replace 00 by Ob. Equation (6.42b) reduces, after integration and averaging 
f o r - � 8 9  <~ y<~ �89 to 

k (0b - - l )  4 ~ - ~ G '  c - 5 R a  ~ 0 b (0) (6.67) 

Further, on making use of the transformation 

_!  4c ~t 
Z - 0 ~ ,  k2 - -3--kRa�88 (0) (6.68) 

Equation (6.67) becomes 
k2 Z5 + Z 4 -  1 - 0  (6.69) 

where k2 > 0, since G~(0) < 0 for all values of P r .  It has been shown by Vynnycky 
and Kimura (1996) that Equation (6.69) has only one physically acceptable solution 
in the sense that ]0bl ~ 1 and this solution was found numerically. Finally, the 
average Nusselt number is now given by 

4 1 ~ t  _5 
N u  - - -3 R a  Z (0) 0~ (6.70) 

The case 00 > 0, P r  << 1 and R a P r  >> 1 proceeds in a similar manner, except 
that the scalings (6.46) are now replaced by 

r - ( R a P r )  �88 ~ ,  w - ( R a P r )  ~ ~ ,  x - ( R a P r ) - � 8 8  X (6.71) 

The system of Equations (6.55) - (6.57) now reduce to the following form: 

1 Fl2 3 FF" - ~ - G - 0 (6.72) 

G" 3 GI - ~ F  - 0 (6.73) 

F(0) - 0, G(0) - 0b (6.74) 
F - + 0 ,  G - + 0  as ~ - + ~  

which are independent of P r .  Again, on using the variables (6.58), we can show that  
G'(0) - 0.6. It can be also shown that  Equation (6.69) for Ob remains unchanged, 

C 1 but this time k2 - -0 .8  ( ~ ) ( R a P t ) z ,  and N u  is now given by 

N u  = -0 .8  ( R a P r )  ~ 0 b (6.75) 
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On the other hand, Equations (6.38) - (6.40) in the fluid region have been inte- 
grated numerically by Vynnycky and Kimura (1996) using the elliptical coordinates 
(~, ~/), namely 

1 1 
x -  ~ sinh~sin~/, y - - ~  cosh~ cost/ (6.76) 

which are more appropriate coordinates to use for a finite flat plate. On using the 
variables (6.76) then Equations (6.38) - (6.40) can be written as 

02r 02r 1j2 
O~ 2 ~ O~ 2 = --4 (~' ~)w (6.77) 

l ( O ' r 1 6 2  O2wO2w l (OOf OOf ) 
Pr O~ 077 00 0~ - O~ 2 + ~ + -2 Ra - ~ c o s h ~ s i n 7 7 + ~ s i n h ~ c o s n  

(6.78) 
0 r  (~Of G9r 0 0 f  (~2 Of 0 2 Of 
0{ 0~ 0~ 0{ = 0{ 2 ~ 0~ ~ (6.79) 

where j2(~, ~) _ �89 (cosh 2 ~ -  cos 2~). Equation (6.41) is retained in Cartesian coor- 
dinates because it remains unchanged when the transformation (6.76) is employed, 
but the boundary conditions (6.42) now become 

0r Os - O f r - 0, o ~  - 

2 OOf ~ OOs 
ksinT? O{ -- Ox 

001 r  o !  = 0  ~ = 0  ' Or/ ~ 0r/ 
Os- 1 
0_~0 = 0 
Oy 

on ( - 0 ,  O~r/~<Tr 

on r / - O ,  lr, ~ - - 0  
1 on x - - c ,  lYl <~ 

on y = •189 --c ~ x ~ 0 

(6.80) 

Furthermore, denoting the fluid velocity components in (~/, ~)-coordinates by (un, u~), 
it can be shown that 

2 0r  2 0r  
u n =  J 0 ~ '  u~=  j 0 r /  (6.81) 

Thus, the inflow and outflow boundary conditions (6.43) and (6.44) become 

u~ -+ 0, 02r } 
o(--f -+ 0 

4 O2V: as ~--+c~, 0 ~ r / ~ n  (6.82) 

and 
u0 --+ 0, -ff~ --~ 0 ~ 1 6 2  ] 
o0f o2#: : -+ 0, w ~ _ 4 _  
0~ 

as ~ o o ,  0 ~ / ~  (6.83) 

respectively. 
Equations (6.77) - (6.79), subject to the boundary conditions (6.80), (6.82) and 

(6.83), have been solved numerically by Vynnycky and Kimura (1996) using a control 



196 C O N V E C T I V E  FLOWS 

volume approach and a non-uniform grid network as described by Patankar  (1980). 
Streamlines and isotherms are shown in Figures 6.6 to 6.8 for P r  - 1, c -  1 and 
k - 1 and 100 with R a  - 102 and 10 6, respectively. Figures 6.6 and 6.7 indicate 
a relatively mild entrainment of the fluid, which is significantly affected by the 
difference in k and R a .  Figure 6.8 shows a boundary-layer flow, as we would expect 
for this value of R a ,  as seen by the much closer contour spacings of the streamlines 
and isotherms. On the other hand, Figures 6.6(b) and 6.7(5) show that  the lower 
value of k ensures a much larger temperature  drop across the solid plate. 

(a) (b) 

/ 

Figure 6.6: (a) The streamlines,  and (b) the isotherms,  for  k = 1, c - -  1, P r  = 1 
and R a  = 102 (Ar = 1, A0 = 0.1). 

(b) 

l 

Figure 6.7: (a) The streamlines,  and (b) the isotherms,  for  k - 100, c -- 1, P r  -- 1 
and R a - -  102 (Ar -- 1, At? -- 0.1). 
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(a) (b) 

Figure 6.8: (a) The streamlines, and (b) the isotherms, for k - 100, c -  1, P r -  1 
and R a -  106 ( A r  10, A 9 -  0.1). 

Figures 6.9 and 6.10 show the boundary-layer temperature Ob(y) and the local 
Nusselt number N u  for R a  - 102, 104 and 106 and two sets of parameter values of 
P r ,  k and c. We conclude from these figures that,  in general, the temperature Ob, 

as obtained using the boundary-layer theory, tends to be higher than that obtained 
from the full numerical solutions. However, the local Nusselt number N u  tends to 

(a) (b) 
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0.9 
e (y) 
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0.7 
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i | 

0:0 0:5 y 

20] 
Nu 

10 

. . . .  

-0.5 0.0 0.5 
Y 

Figure 6.9: Variation of (a) the boundary-layer temperature, 9b(y), and (b) the 
local Nusselt number, N u ,  with y for k - 20, c - 1, Pr  - 1 and Ra - 102 , 
10 a and 106. The full numerical solutions are indicated by the solid lines and the 
boundary-layer solutions are indicated by the broken lines. 
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(a) 
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Figure 6.10: Variation o] (a) the boundary-layer temperature, Ob(y), and (b) the 
local Nusselt number, Nu,  with y /or k = 5, c = 0.1, Pr = 1 and Ra = 102 , 
104 and 106. The full numerical solutions are indicated by the solid lines and the 
boundary-layer solutions are indicated by the broken lines. 

be lower, but  the agreement between the two values improves as the value of Ra  

increases. The largest discrepancy, even at Ra  -~ 106, arises at the leading and 
trailing edges of the plate. In general, Ob increases monotonically and N u  decreases 
monotonical ly with y, except in the trailing edge region. At the trail ing edge the 
elliptical na ture  of Equations (6.77) - (6.79) ensures tha t  the t empera tu re  decreases 

1 slightly in view of the discontinuity in the boundary  condition on 0/ for y > ~. 
Further ,  there is a singularity in the local Nusselt number  here, a feature which 
the boundary- layer  theory cannot  pick out. The trailing edge features, whilst quite 
marked for all the plots as regards N u  are less severe for Ob for the larger aspect 

rat io plate, see Figure 6.9(a). 
m 

Finally, the variation of the average boundary-layer  tempera ture ,  Ob, and the 
average Nusselt  number,  N u ,  with R a  is presented in Figure 6.11 for k = 1~ 2.5 
and 10 with c = 1 and P r  = 0.1. The agreement between the full numerical  and 
analyt ical  solutions is, as we would expect,  be t ter  for R a -  106 than  for R a  102, 
a l though even for the lat ter  case, the agreement appears to be sufficiently good for 
the formulat ion to be reliably used for a wide range of values of Ra. 
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Figure 6.11- Variation of (a) the average boundary 
(b) the average Nusselt number, Nu ,  with Ra for 
analytical solutions are indicated by the solid lines ane 
are denoted by the symbols o ( k -  1), A ( k -  2.5) an, 

r temperature, Ob, and 
I a n d P r  - 0.1. The 
full numerical solutions 
'k = 10). 

6.3 C o n j u g a t e  m i x e d  c o n v e c t i o n  
over a vert ica l  flat p late  

Consider a vertical fiat plate of length l and thickne 
of free stream velocity Ucr and temperature Too. The 
maintained at a constant temperature To, where To 
(opposing flow), as shown in Figure 6.12. 

Introducing the non-dimensional variables 

x = -- y = R e ]  u = v = Re�89 
L ' -L ' Uoo ' 

Equations (6.6) - (6.8) can be written as follows: 

or 02r or 02r 
. ,  

Oy OxOy Ox Oy 2 

or oo or oo 
Oy Ox Ox Oy 

03r 
Oy 3 

1 

P r  

(~2 
where L - - ~  \ k~ ) is a convective length scale a 

parameter, which is defined in Equation (2.147), is 

mdary- layer  flow 

which is placed in a fluid 
fide surface of the plate is 
(aiding flow) or To < Too 

T - Tc~ , o= (6.84) 
To - Too 

(6.85) 

(6.86) 

is the mixed convection 

~l on L and T 0 -  Too and 
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T~ 

t t  
U~,T~ 

~ T~(~) 

0 y 

Buoyant Force Vectors 

t 
Aiding Flow Opposing Flow 

To>Too To<Too 

Figure 6.12: Physical model and coordinate system. 

is a positive or negative parameter. The boundary conditions appropriate to Equa- 
tions (6.85) and (6.86) are given by 

r  o~ = 0 ,  0 o = 0 _ 1  on y - 0 ,  x > 0  
or Oy (6.87) 
Oy ~1, 0--+0 as y--+c~, x > 0  

The boundary value problem governed by Equations (6.85) - (6.87) has been solved 
by Pop et al. (19965) for Pr - 0.7 (air) with the parameter A in the range 
-200 ~ A ~ 200 In principle, the method of solution is similar to that used 
for solving Equations (6.11) and (6.12) for the corresponding problem of conjugate 
free convection from a vertical flat plate. 

6 .3 .1  S m a l l  v a l u e s  o f  x ( ( ( 1 )  

In this case we introduce the transformation 
1 

r - x �89 f (x, 77), 0 - x5 h(x, ~), Y (6.88) r / -  --- y 
X 2  

and the governing Equations (6.85) and (6.86) transform to 

l f f,, _~ ( O f ' _ f , , O f )  f ' " + -~ + A x h -  x f -~x -~x 

Pr l h ' '  + 2 fh '  - - ~ f ' h - x l  ( f ' O h - h ' O f  ) ~  -~x 

(6.89) 

(6.90) 
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while the boundary conditions (6.87) become 

f (x, O) -- O, f ' ( x ,  O) - O, h'(x,  O) - x�89 h(x,  O) - i for x > O  
f ' - ~ 0 ,  h - + 0  as r/--+cx~, x > 0  (6.91) 

The solution of Equations (6.89) - (6.91) is sought for x << 1 in the form of the 
series 

OO (X) 

f = ~ f j(rl)x~,  h - ~ hj(rl)x~ (6.92) 
j=0 j=0 

where the leading-order terms are given by the ordinary differential equations 

2f~" + f0fg' = 0, 
f0(0) - 0, 

f~ -+ 1, 

hg P--7 + foh'o - foho = O 
f ~ ( 0 ) = 0 ,  h ~ ( 0 ) - - 1  
h0--+0 as r/--+oo 

(6.93) 

This system of equations describes the forced convection flow and heat transfer along 
a flat plate with a constant surface heat flux, see Wilks (1973). The equations for 
the next coefficients in the series (6.92) are given in Pop et al. (1996b). 

From the expressions (6.88) and (6.92), the skin friction, T (1) (X), and the wall 

temperature, 0(w 1) (x), in non-dimensional form can be obtained as follows" 

OO 

T(1)(X) -- x-�89 f " ( x ,  O) - ~ f~'(O)x~2 ~ (6.94a) 
j-O 

O0 

0~)(~) - ~ hj(o)~ ~ (6.94b) 
j=O 

for x << 1. 

6 .3 .2  L a r g e  v a l u e s  o f  x (>> 1) 

We now take 

0 = h (x, ~ ,  ~"- y~ (6.95) 
x~ 

and Equations (6.85) and (6.86) reduce to 

f-~,,+ ~yy,_ ~_y,~.+~_ ~ (y, of"ox f,,oY) 
1 ~,, + ~_f~, = ~  ( o~ _ ~ , a f )  

P~ ? ~  

(6.96) 

(6.97) 
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with the boundary conditions (6.87) becoming 

f ( x , O ) - O ,  f ( x , O ) - O ,  x - � 8 8  for x > 0  
- ~ .-. ... ( 6 . 9 8 )  
f ' - - + x - ~ ,  h - + 0  as r ] -+cc ,  x > 0  

These boundary conditions~ suggest that we look for a solution of Equations (6.96) 
and (6.97) by expanding f and h in a power series of x (>> 1) of the form 

f [f0 + + + . .  
(6.99) 

h = 0 ( ~ + x - z h l ( ~ + . . .  + x  - ~ k H k ( ~ + . . .  

where ( f 0 , h 0 ) a n d  ( f fk , [ Ik)are  given by 

f~" + 3i0]~' �89 + ~ 0  - o ,  ~ 0 + 3 yo~'o - 0  
f0(0) -- 0, ~ (0)  - 0, h0(0) - 1 (6.100) 

f~-+0,  h0-+0 as V-+oc 

~;" -" - - " -  ~,~ o +}foF~ +t'Y~ 1)]~Fk (-y~-3)Y~'h+ - 
1 ""  It 

p-THk...+ 3 foH~ + "7k~Hk... -- (~/k N-- 3 )~07  k _ 0 (6.I01) 

Ek(O) -- O, F~(O) -- O, Hk(O) =0  
F~-~0, Uk-+0  as ~ -+cr  

and the sets of equations for the other coefficient functions in the expansion (6.99) 
can be found in Pop et al. (1996b). 

Equations (6.100) can be reduced, after a little algebra, to the classical equations 
which governs the free convection boundary-layer over a vertical isothermal fiat plate, 
i.e. Equations (1.100) - (1.102). Then, it should be noted that Equations (6.101) 
have a non-trivial solution only for particular values of ")'k for k -- 1, 2 , . . .  In par- 
ticular, the smallest such value is 3'1 -- 1, and the corresponding eigenfunctions arc 
similar to those given by Equations (2.23). Hence, the usefulness of the asymptotic 
expansion (6.99) is confined to terms up to O (x - l ) .  On the other hand, it should 
be noted that  Equations (6.85) - (6.87) do not have a solution for large values of 
x (>> 1) when A < 0 and this is because in this case the boundary-layer separates 
from the plate at some finite value of x and the solution cannot be continued past 
this point. 

The skin friction, T(2)(x), and the temperature at the plate, O(w2)(x), are now 
given by 

T(2)(X) -- ]~'(0) X~ + ]~ ' (0)+ ]~'(0) X-~ + . . .  (6.102a) 

O ( w 2 ) ( X )  - -  h0(0) -4- hl (0) X-~ -~... (6.102b) 

for x >> 1. 
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6 .3 .3  N u m e r i c a l  s o l u t i o n  

A numerical solution of Equations (6.85) - (6.87), which is valid for both small and 
large values of x, can be obtained using a finite-difference scheme along with the 
method of continuous transformation, see Hunt and Wilks (1981). Thus, on defining 
the variables 

1 ~2 �88 ~2 ~ - ~ ,  r  ) y ,  r  )~F(~,r o -  

Equations (6.85) and (6.86) can be written as 

~ H(~,~) 
(1 + ~2)~ 

(6.103) 

F'" + 2 -I- 3~ "2 F F "  

4(1 +~2) 

2 + 3~ 2 1-~--H" + F H  t 
Pr 4 (1 + ~2) 

~2 F '2 
2(1 +~2)- 

~3 1 ( F  l OF' 
+A H -  

(1 + ~2)~ 2{ \ 0~ 

1 1 { OH 
- 2(1 +(2) F'H - ~ [,F' o~ 

_ _  _ F "OF)  - ~  (6.104) 

H IOF) - ~  (6.105) 

along with the boundary conditions (6.87), which become 

F(~, 0) - 0, F'(~, 0) - 0 / 
H ' ( ~ , 0 ) -  ~ H(~ 0 ) - ( 1 + ~ 2 ) � 8 8  for ~ :>0  

(1+~21�88 ' 
1 

g ' - +  ( 1 + ( 2 ) - ~ ,  H - + 0  as ~-+cx~, ~>0 

(6.106) 

It should be noted that Equations (6.104) - (6.106) reduce to Equations (6.89) - 
(6.91) for small values of x and to Equations (6.96) - (6.98) for large values of x, 
respectively. 

The non-dimensional skin friction, zw(~), and the non-dimensional wall temper- 
ature, 0w(~), are in this case given by 

3 

Tw(~) -- ~-1 (1 + ~2)z F"(~, 0) (6.107a) 

Ow(~) - ~ 1 H(~, 0) (6.107b) 
(1 +~2) ~ 

Equations (6.104) - (6.106) have been solvec numerically by Pop et al. (1996b) 
using a modification of the finite-difference scheme as proposed by Merkin (1969). 

Figures 6.13 and 6.14 show the non-dimensional skin friction, ~'w(f), and the wall 
temperature, 0w(f), respectively, given by the expressions (6.107) as a function of 

for Pr = 0.7, and A = 1 and -1 .  Also included in these figures are the 1, 4 and 
7 terms of the small x solution, as given by the expansions (6.94), and the 2 and 4 
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Figure 6.13: Variation of the skin friction, Tw((), with ~ for Pr = 0.7 when (a) 
A - 1 and (b) A - - 1. The numerical solutions, namely Equation (6.107a), are 
indicated by the solid lines, the 1, 4 and 7 terms of the small x expansion (6.94a) 
are indicated by broken lines and the 2 and 4 terms of the large x solution (6.102a) 
for A > 0 are indicated by the dotted lines. 
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Figure 6.14: Variation of the non-dimensional wall temperature, Ow(~), with ~ for 
Pr = 0.7 when (a) A - 1 and (b) A = -1 .  The numerical solutions, namely 
Equation (6.107b), are indicated by the solid lines, the 1, 4 and 7 terms of the 
small x expansion (6.94b) are indicated by broken lines and the 2 and 4 terms of 
the large x solution (6.102b) for A > 0 are indicated by the dotted lines. 

t e rms  large x solution for A > 0, as given by the expansions (6.102). As expected,  
as the  numbe r  of terms taken in the relevant expansions increases then  larger is the 
range of validity of the solution. Fur ther ,  when A :> 0 the smaller  the value of A 
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the better do the asymptotic solution approximate to the numerical solution over 
a larger range of values of (. When A < 0 the boundary-layer separates and hence 
no large x solutions are given in Figures 6.13(b) and 6.14(b). Clearly, the small x 
solution cannot accurately predict the point of separation, ~ - ~s, as it cannot even 
predict the position of the maximum skin friction, Tw(~). 

As the parameter A approaches negative infinity then the location of the point of 
separation appears to approach zero. Thus, several possible variations of ~ - ~s(A) 
have been investigated and it has been found that  for -200  < A < -10 ,  ~ = ~s(A) 
behaves approximately as 

~s(A) --~ 1.3 exp ( - 0 . 3  IAI�89 (6.108) 

This is confirmed by a plot of ~s(),) as a function o f - A  as obtained from the nu- 
merical solution of Equations (6.104) - (6.106) and this is illustrated in Figure 6.15. 
Also shown in this figure is the function (6.108). It can be seen that for ), ~< - 2 0  
the agreement between the numerical and analytical values of ~s(A) are almost in- 
distinguishable. Hence, the correlation (6.108) can be used, with confidence, for 
predicting the position at which the solution of Equations (6.104) - (6.106) breaks 
down for large negative values of A. However, as )~ --~ - o c  an asymptotic solution 
of these equations yields 

1 

~s()~) ~ 0.42S(-A)~ (6.109) 

but this is only valid for values of A much smaller than those considered here, i.e. 
- 1 0 0 < A <  1. 

1.0 

0.5 

0.0 

l 
0 5'0 160 150 2()0 -A 

Figure 6.15" Variation of the separation point, ~ - ~s, with - A  for Pr  - 0.7. The 
numerical solution of Equations (6.10~) - (6.106) is indicated by the solid lines 
and the approximate function (6.108) is indicated by the dotted line. 
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6.4 Conjugate free convection boundary-layer flow past 
a horizontal flat plate 

Consider a horizontal fiat plate of finite length I and thickness b, which is placed in a 
viscous fluid of ambient temperature Too as shown in Figure 6.16. It is assumed that 
the lower side of the plate is maintained at the constant temperature To (> Too) and 
that the heat is transferred steadily by conduction across the solid plate and this is 
coupled with the free convection in the fluid, while the axial heat conduction in the 
plate is neglected. Consequently, the temperature profile in the plate can be assumed 
to be linear and is given by Equation (6.4). This problem was first considered by 
Yu and Lin (1993) using a new conjugate parameter A5 and novel non-dimensional 
coordinates. Thus, these authors have proposed the use of the following variables ( )_1 

~ ( x ) -  1 +  ~ , R ~ .  
( a l R a h ) ~  

0(~, 7]) -- ~-1 T - T ~  
To-Too ' 

. ~ . ~  ~ (~, ~) 
P - P ~  - O ' lX 2 ,c, 

(6.110) 

where 

1 

,~5 - ( ~ R a ~ )  -~ + (a~Rah)-~ 

(V) - -  a l v  , ~ y v g ~ t  X3,  qh - -  k~(T0-Too) 
(6.111) 

with a l  defined as in expression (2.72), and we note that in this formulation the 
variable ~(x) is also called the conjugate parameter. With the variables (6.110), 
Equation (3.51) gives 0 -  h ~, so that Equations (3.50) and (3.52) become 

l O - (  f f .  P r  f m + ~ 
15 

5 - 2~ f,2 1 
15 + (1 + Pr )  [(5 + ~)r/h' - (10 - 4~)h] 

(6.112) 

o Y ~  T~(~) 
- b N \  \ % \ \ \  \ \ \ i \ \  ~ - ' ~ \ ~ \ \ ~  

To 

Figure 6.16: Physical model and coordinate system. 
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1 [ ] ~ (1 - ~) f '  Of' f,, Of Oh - 0~ ~ + (1 + Pr)-~ 
1 0 - ~ f h , ,  1 - ~ f ' h '  1 ( O h ' _ h , , O f )  (6 113) 

h " ' +  15 3 - ~ ( 1 - ~ )  f ' - ~  ~ -  . 

and the appropriate boundary conditions for the problem under consideration are 
as follows: 

f (~, O) = O, f '(~, O) - 0 ~ for 
~h' (~, 0) - (1 - ~) ~ h" (~, 0) - 1 J 

f~--+0, h--+0,  h ~ - + 0  as 77--+o0, ~ > 0  

(6.114) 

Finally, the local Nusselt number, Nu, can be expressed as 

Nu 0'(~, 0) h"(~, 0) 1 - ~h'(~, 0) 
)~5 0(~, O) h'(~, O) (1 - ~)-} h'(~, O) (6.115) 

For the limiting case of ~ = 0, Equations (6.112) and (6.113) reduce to the 
following set of ordinary differential equations: 

P r f  ,,, + , ,_  l f,2 + 1(1 + Pr) (rTh' - 2h) - 0 
2 f f h t t t _ t  - ~ f h t t  1 t t - ~ f h  - 0  

f ( O ) = O ,  f ' ( O ) = O ,  h " ( O ) = - I  
f ~ - + 0 ,  h - + 0 ,  h ~ 0  as ~--~c~ 

(6.116) 

In contrast, when ~ = 1, the reduced equations are those of the free convection 
boundary-layer flow past a heated horizontal plate subject to a constant temperature 
and at an arbitrary Prandt l  number, namely 

Prf" '  + ~f  f " -  l f ,2 --  h"' fh"  - g j  + 2 ( l + P r ) ( 7 7 h ' - h )  0, + 3  0 

f(O) = O, f'(O) -- O, h'(O) = 1 (6.117) 
f ' - -+0 ,  h--+0, h ' - -+0  as r/--+c~ 

Equations (6.112) - (6.114), as well as Equations (6.116) and (6.117), have been 
solved by Yu and Lin (1993) using the Keller-box method. 

Typical profiles of the non-dimensional fluid velocity, f '(~,r/), and the non- 
dimensional temperature,  0(~,r/), are shown in Figures 6.17(a,b) for Pr = 0.7. 
Figure 6.17(b) suggests that  the temperature profiles decrease from Too at ~ = 0 
to To at ~ - 1. The variation of the local Nusselt number with the conjugate pa- 
rameter ~ is illustrated in Figure 6.18 for several values of Pr and it is seen that  
the Nusselt number decreases almost linearly with increasing ~ for any value of the 
Prandtl  number considered. Finally , it is worth mentioning that  a very accurate 
correlation equation of the local Nusselt number can be found in the paper by Yu 
and Lin (1993). 
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Figure 6.17: (a) The fluid velocity, f'((, 7), and (b) the temperature, 0(~, ~), pro- 
files for Pr  - 0.7. 
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Figure 6.18: Variation of the local Nusselt number with ~. 



Chapter 7 

Free and mixed  convect ion  from 
cyl inders  

7.1 Introduct ion  

The study of convective flow over fixed two-dimensional and axisymmetric bodies 
of arbitrary shape in an infinite fluid medium constitutes an important heat trans- 
fer problem from the standpoint of theoretical and engineering applications. This 
subject has been extensively treated analytically, numerically and experimentally 
for several decades and much of the existing literature on this topic prior to 1988 
has been reviewed by Moon et al. (1988). However, this topic has recently attracted 
much more attention because of its importance in practical heat transfer devices 
and we review here only some of the most important and more recently published 
results on steady free and mixed convection flows over both horizontal and vertical 
cylinders, as well as elliptical cylinders and spheres. More than 250 publications on 
free convection past a horizontal circular cylinder have been reviewed by Morgan 
(1975) and there continues to be a large amount of interest in this problem. 

7.2 Free convect ion  from horizontal  cyl inders 

The boundary-layer approximation usually leads to the neglect of the curvature ef- 
fects and the pressure difference across the boundary-layer and, on using this approx- 
imation, the simplified boundary-layer equations have been solved using similarity 
techniques and series methods, for more details see Kuehn and Goldstein (1980). It 
appears that  Merkin (1976, 1977a) was the first to apply the finite-difference method 
as proposed by Terrill (1960) to study the steady free convection boundary layers on 
horizontal circular and elliptical cylinders which are maintained at either a uniform 
temperature or uniform heat flux. He showed that on starting at the lowest point 
of the cylinder that  the fluid flow reaches the top point without separating and at 
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this point the boundary-layer has a finite thickness. This numerical method also en- 
ables the various approximate methods of solving the free convection boundary-layer 
equations to be compared. 

7.2.1 C o n s t a n t  wa l l  t e m p e r a t u r e  

In what follows, a general analysis of the steady free convection boundary-layer flow 
over two-dimensional or axisymmetric bodies which are maintained at a constant 
surface temperature Tw and which are situated in an ambient fluid of constant 
temperature Too, where Tw > Too, see Figure 7.1. The coordinate 5 is the distance 
measured along the surface from the lower stagnation point O of the body in the 
direction of main flow and ~ is normal to it. For axisymmetrical bodies we also 
introduce the radial distance ~ (~) from the surface to the axis of symmetry. The 
governing equations, as given by Lin and Chao (1974, 1978) or Kumar et al. (1989), 

(a) 

i 
i 

i 

[ /  
O 

Two-Dimensional Body 

(b) 

! 
I 
i 
i 

0 
Axisymmetrical Body 

0 ~ 0 

�9 
, 

1 i / 

Two-Dimensional Body Axisymmetrical Body 

Figure 7.1: 
T~ <Too. 

Physical models and coordinate systems ]or (a) Tw > Too and (b) 
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can be written in non-dimensional form as follows: 

0 0 ( ~ ) +  ( ~ )  - 0 

Ou Ou 02u 
~ ~  + "o-~ = ov ~ + s(~)o 

O0 O0 1 020 
U-~x + V Oy = P r  Oy 2 

(7.1) 

(7.2) 

(7.3) 

and the boundary conditions appropriate to the problem under consideration are of 
the form 

u - 0 ,  v - 0 ,  0 - 1  on y - 0 ,  x > 0  (7.4) 
u - + 0 ,  0--+0 as y--+co,  x > 0  

where S = sin (I) and (I) is the angle between the outward normal to the cylinder and 
the downward vertical direction. The non-dimensional variables used are defined as 

x - - T ,  y - G r ~  , r - -  T 

_ _  l 1 
a ~ - ~  (~) ~, ~ - a ~ - ~  (~) ~, o - ~,~ 

(7.5) 

Next, the non-dimensional stream function r is defined as follows: 

0r 0r 
rv  = (7.6) 

ru - O---y' Ox 

The (x, y) coordinates are then transformed into the GSrtler-Meksyn coordinates 
(~, 77) according to 

fo z rU  - ~ .y (7.7a) - r 2 U d x ,  r/ (2~)~ 

where 
1 

and the reduced stream function f(~, r/) is defined by 

r - (2~)�89 f (~, 77) (7.8a) 

Then it follows that 

rU [ Of 
u - U f '  v = f + 2~ 

' (2~)�89 ~ -  
+ (  H+ 2~-dr ) ] 

r d x - 1  rlf' (7.8b) 

where 
~r dU 

n(~) = 2 - - -  
u d~ 

sin (I) 
= 2~ r2U3 (7.9) 
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is called the configuration function since it is determined completely by the shape 
of the body and its orientation relative to the vertical direction. Using the afore- 
mentioned transformations, Equations (7.2) and (7.3) take the form 

f 
i l l  

O~ ] ~ (7.10) 

l o n + f O , _ 2 ( ( f ,  O0 . ,O f )  p--~ ~ - v ~ (7.11) 

and the boundary conditions (7.4) become 

f ( ( , O ) - O ,  f ' (~,O)--O,  0 ( ~ , 0 ) - 1  for ~ > 0  
f ' - -+0,  0--+0 as 77-+oo, ~ > 0  (7.12) 

The following cases can now be treated: circular cylinders, elliptical cylinders, 
ellipsoids and spheres. If r is the eccentric angle and e is the eccentricity given by 

e 2 - 1 -  (~,)2, where a and b are the major and minor axes of the elliptical cylinder, 
respectively, then we have 
(a) circular cylinders ( a -  b), see Figure 7.2, 

X x - C ,  S(x) - s i n x  U(x) - 2sin7 ~ _ 8 s i n  2z 

I I -  [ 1 at the lower stagnation point 
258 ( at all other ~ stations 

(b) blunt elliptical cylinders, see Figure 7.3(a), 

(7.13) 

~ g 

qw 

0 

T~ 

Figure 7.2: Circular cylinder and coordinate system. 
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(a) (b) 

/ 

0 (b 

Figure 7.3: (a) Blunt, and (b) slender, elliptical cylinder orientations and the 
coordinate system. 

- y :  - b sin~_ 

s ( r  - z (~-~ si.~ ~)�89 
1 1 

U(r - ( ~ ) ~  (1 - cosr  

I I - {  1 

- ( ~ )  �89 f r  (1 - cos r189 (1 - e 2 sin 2 r189 de 

at the lower stagnation point 
at all other ~ stations 

(7.14) 
(c) slender elliptical cylinders, see Figure 7.3(b), 

(1--e  2 cos 2 r 2 

V(r - [2 (1 - cosr189 ~ -  2�89 f0~ ( 1 -  cosr �89 (1 - e2 cos2 r189 de 

I I -  [ 1 at the lower stagnation point 
2~s [ ~ -  at all other ~ stations 

(7.15) 

(d) spheres 

x- - r  

U(x) - 2 sin 2 
2~ 

0.5 rI-  ~ 

r = s i n x ,  S(x)  = sin x 
1 

-- 2�89 fo  sin2 x (1 - cos x)~ dx 

at the lower stagnation point 
at all other ~ stations 

(7.16) 

The local Nusselt number, Nu,  can be expressed as follows: 

Nu 
1 

Grz 
- ~u (2~)-�89 [-o'(~, o)] (7.17) 
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Equations (7.10) - (7.12) have been integrated numerically by Lin and Chao 
(1974) for circular and elliptical cylinders using series expansions in terms of the 
parameter H(~) and its derivatives. Later these equations were solved by Kumar 
et al. (1989) using the Keller-box method but they have also considered both normal 
and tangential mass transfer components. However, the effect of both the Prandtl  
number and the mass transfer on the free convection over a sphere has been studied 
by Huang and Chen (1987). 

The local Nusselt number, as given by Equation (7.17), has been obtained by 
Several authors and the numerical results are summarised in Tables 7.1 to 7.3 for 
both circular and elliptical cylinders when P r  = 1. Further, the experimental results 
obtained by Hermann (1936) are also included in Table 7.1. It should be noted that 
the results obtained using the Blasius series and the integral method were obtained 
by Merkin (1976), whilst those by GSrtler-type series have been obtained by Saville 
and Churchill (1967). It is seen from Table 7.1 that the numerical results, unlike the 
experimental results, predict some non-zero value of the heat transfer rate at the top 
(r - 180 ~ of the cylinder. This appears to be due to the collision of the boundary 
layers from both sides forming a buoyant plume and hence the boundary-layer model 
is not valid in the vicinity of r = 180 ~ 

In the case of the blunt elliptical cylinder, the local Nusselt number first increases, 
attains its maximum value and then decreases with r irrespective of the value of 

b ba, see Table 7.2. As the value of a increases, the maximum point moves towards 
b the stagnation point and when a - 1 (circular cylinder) the maximum occurs at the 

stagnation point. For the slender elliptical cylinder, Table 7.3 shows that the local 
Nusselt number decreases along different r stations for all values of b. However, 

a 

the heat transfer rate for a slender elliptical cylinder is higher than that for a blunt 
b and this suggests that a slender body transfers more cylinder, for a given value of a'  

heat than does a blunt body. 
It should be noted that in the papers by Badr and Shamsher (1993) and Badr 

Table 7.1- Variation of N---~ul a8 a funct ion of r for a circular cylinder when P r  - 1 
G r -4 

and as obtained by several authors. 

II 
0 
7r 
6 
71" 

71" 

Kumar et 
(1989) 
0.4214 
0.4163 
0.4008 
0.3746 
0.3364 
0.2824 
0.1944 

al. Merkin I Blasius 
(1976) Series 
0.4214 0.4214 
0.4161 0.4164 
0.4007 0.4008 
0.3745 0.3755 
0.3364 0.3402 
0.2825 0.2934 
0.1945 0.2378 

GSrtler 
Series 
0.4214 
0.4165 
0.4003 
0.3726 
0.3299 
0.2605 
0.00O3 

Integral i Elliott 
Method (1970) 
0.386i 
0.3808 
0.3647 
0.3369 
0.2953 
0.2323 

m 

0.3960 
0.3895 
0.3709 
0.3426 
0.3105 
0.2841 
0.2737 

Hermann (1936) 
Experiments 

0.4310 
0.4263 
0.4073 
0.3763 
0.3297 
0.2595 
0.0000 
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Table 7.2: Variation of - ~  as a function of r for a slender elliptical cylinder 
G r ~  

when P r -  1 and as obtained by several authors. 

r 
(rad.) [i 
O.07 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.14 

_b = I b_ = 0.5 b_ = 0.25 
a . ~ a 

Kumar et al. 
(1989) 

. . . . .  

0.42143 
0.42070 
0.41847 
0.41473 
0.40949 
0.40271 
0.39438 
0.38445 
0.37285 
0.35951 
0.34429 
0.32699 
0.30728 
0.28462 
0.25798 
0.22501 
0.19485 

Merkin 
(1977a) 
0.4212 
0.4204 
0.4182 
0.4145 
0.4093 
0.4025 
0.3942 
0.3843 
0.3727 
0.3594 
0.3443 
0.3270 
0.3073 
0.2847 
0.2581 
0.2252 
0.1963 

Kumar et al. 
(1989) 

. . . . . . .  

o.596oo 
0.58318 
0.55233 
0.51618 

i 

0.48206 
0.45231 
0.42708 
0.40583 
0.38786 
0.37245 
0.35894 
0.34654 
0.33422 
0.32031 
0.30173 
0.27277 
0.24094 

Merkin 
(1977a) 

0.5953 
0.5826 
0.5519 
0.5159 
0.4819 
0.4522 
0.4270 
0.4O58 
0.3878 
0.3724 
0.3589 
0.3465 
0.3342 
0.3204 
0.3019 
0.2731 
0.2407 

Kumar et al. 
(1989) 

0.84286 
0.77226 
0.66327 
0.57946 
0.51912 
0.47472 
0.44109 
0.41500 
0.39440 
0.37793 
0.36465 
0.35379 
0.34466 
0.33625 
0.32628 
0.30702 
0.27632 

Merkin 
(1977a) 

. . . . . . .  

0.8359 
0.7682 
0.6617 
0.5788 
0.5187 
0.4745 
0.4409 
0.4149 
0.3943 
0.3779 
0.3646 
0.3538 
0.3447 
0.3363 
0.3266 
0.3084 
0.2785 

(1997), the problem of free convection from a horizontal,  or inclined to the horizontal,  

elliptical cylinder has been studied numerical ly  for Rayleigh numbers  ranging from 

Ra  - 10 to 103. 

7 . 2 . 2  C o n s t a n t  w a l l  h e a t  f l u x  

The problem of s teady free convection boundary- layer  flow past  a horizontal  cylinder 

of radius a with a constant  heat  flux rate  qw has also been considered by several 

authors,  but  no tab ly  by Wilks (1972), Lin (1976) and Merkin and Pop (1988) and 
we give some of the results to this problem as obtained by Merkin and Pop (1988). 

The basic equat ions for this problem, shown in Figure 7.2, are given by 

o +~-~ - o  

g~xx + V~yy - u ~  + g/~ ( T -  Too)sin 

OT OT v 0 2 T  

U ~ x  + ~ 0-~ - P r  0-~ 2 

(7.18) 

(7.19) 

(7.20) 

and they have to be solved subject  to the appropr ia te  bounda ry  conditions which 
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Table 7.3: Variation of - - ~  as a function of r for a blunt elliptical cylinder when 
Gr~  

P r -  1 and as obtained by several authors. 

, 

(rad.) ] 

b _ 0.25 
a 

Kumar et al. Metk in  
(1989) (1977a) 

= 0 . 5  
a 

Kumar et al. 
(1989) 

Merkin 
(1977a) 

b 0.75 
~ t  

Kumar et al. Merkin 
(1989) (1977a) 

. . . .  

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.14 

0.29800 
0.29946 
0.30396 
0.31192 
0.32416 
0.34205 
0.36759 
0.40122 
0.42491 
0.40702 
0.36685 
0.32387 
0.28377 
0.24737 
0.21341 
0.17887 
0.15067 

0.2979 
0.2994 
0.3039 
0.3118 
0.3240 
0.3418 
0.3673 
0.4008 
0.4244 
0.4070 
0.3670 
0.3241 
0.2840 
0.2476 
0.2136 
0.1791 
0.1504 

0.35438 
0.35563 
0.35943 
0.36584 
0.37489 
0.38628 
0.39871 
o.40848 
0.40909 
0.39592 
0.37124 
0.34060 
0.30798 
0.27507 
0.24164 
0.20543 
0.17489 

0.3542 
o.3555 
0.3593 
0.3657 
0.3747 
0.3861 
0.3984 
0.4081 
0.4088 
0.3958 
0.3713 
0.3407 
0.3081 
0.2752 
0.2418 
0.2056 
0.1746 

0.39218 
0.39270 
0.39417 
0.39635 
0.39879 
0.40067 
0.40080 
0.39766 
0.38984 
0.37665 
0.35843 
0.33623 
0.31110 
0.28359 
0.25334 
0.21832 
0.18761 

0.3920 
0.3825 
0.3940 
0.3961 
0.3986 
0.4004 
0.4006 
0.3975 
0.3897 
0.3766 
0.3585 
0.3364 
0.3112 
0.2838 
0.2535 
0.2186 
0.1873 

are given by 

-- O, V- -  O, OT __ qw --__ o---~-- k f on y 0, ~ > 0  (7.21) 
- + 0 ,  T - + T o o  as ~ - + o c ,  5 > 0  

In order  to solve the  sys t em of Equa t ions  (7.18) - (7.21) we in t roduce  the  new 

variables  

x - - ,  y -- (~r5 , 
a 

r - G r ~ v x f ( x , y ) ,  T -  Too - G r - ~  aqw O(x, y) (7.22) 
kf 

so t h a t  the  E q u a t i o n s  (7.19) and  (7.20) t r a n s f o r m  to 

s i n x  ( / , O f ' f  , , O f )  f,,, + f f , ,_  f ,2 + O -- x 

1 0 "  + fO' - x ( f ' O 0  _ O  'cgf ) 
P--i 

(7.23) 

(7.24) 

and  the  b o u n d a r y  condi t ions  (7.21) become 

f ( x ,  O) -- O, f ' ( x ,  O) -- O, 

f ' ~ O ,  0 - - + 0  as  

O'(x, O) = - 1  for 

y -+ c<), x > 0  

x > 0  
(7.25) 
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Equations (7.23) and (7.24) have been solved n~ 
(1988) for P r  - 0.72 using the same method as tha 
modified slightly to allow for the change from the isot 
the constant heat flux case given by the conditions ( 
started at x - 0 (where - ~  -+ 1 as x - - + s i n x  0) and proce 

top point (x = 180 ~ of the cylinder and it was fore 
proceeded to this point without encountering a singuL 
separates from the top surface of the cylinder by a coll 
plume above the cylinder. 

The variation of the non-dimensional skin frictioi 

Tw(X) -- x f " ( x ,  O) 

and the non-dimensional wall temperature,  0~(x), 
solution of Equations (7.23) - (7.25) for P r  - 0.72, 
solid lines. 

ically by Merkin and Pop 
3cribed by Merkin (1976), 
hal boundary condition to 
). The numerical solution 
! round the cylinder to the 
1at the numerical solution 
. Thus the boundary-layer 
rand then forms a buoyant 

(x), given by 

(7.26) 

brained from a numerical 
indicated in Figure 7.4 by 

(a) (b) 

2.0- 

1.5- 

1.0 

0.5 

0.0 
o g~ g~" s 

X 

3.4 

3.2 

3.0 

2.8 

2.6 

2.4 

2.2 

2.0 
0 

t 

. . , , ,  . . 

2 3 4 

X 

Figure 7.4: Variation of (a) the non-dimensional ski7 
non-dimensional wall temperature, Ow(x), with x for 
solutions are indicated by the solid lines, the Blasius .~ 
the broken lines and the GSrtler series (7.28) are ind 

tion, Tw(x), and (b) the 
-0 .72 .  The numerical 

(7'.27) are indicated by 
d by the dotted lines. 

On using the Blasius series technique, Koh (1964) 
imations for Tw(x) and Ow(x), when P r  - 0.72" 

Tw(X) -- 1.54419 X -- 0.155001. 
Ow(X) = 2.19586 + 0.04679 X 2 

and these results are also included in Figure 7.4 and 
GSrtler-type series solution has been obtained by Me 

,ined the following approx- 

(7.27) 

icated by broken lines. A 
and Pop (1988) for T~(x) 
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and Ow(x), and they give for P r -  0.72, 

" r w ( x ) -  (5~) ~ (sinx)~ 0.88690+0.27833~ ~ + . . .  

_ ( ) (sinx) �88 1.66415+0.06402~ ~ + . . .  

(7.28) 

where 

j/~ x 1 

- (sin x) z dx (7.29) 

The solution (7.28) is also shown in Figure 7.4 by the dotted lines. It should be noted 
from these figures that both the solutions (7.27) and (7.28) are in good agreement 
over most of the range of values of x, being virtually indistinguishable from the 
numerical solution for the lower half of the cylinder 0 ~< x ~< -~. The Blasius 
series underestimates both the values of Tw(X) and Ow(x), whilst tt~e Gbrtler series 
underestimates Tw(X) and overestimates Ow(X). However, the Blasius series is better 
for estimating 0~(x), whilst the Gbrtler series is better for Tw(X). 

However, all of the above mentioned papers refer to the free convection from hor- 
izontal cylinders under the assumption of very large (infinite) values of the Grashof 
number, i.e. the boundary-layer approximation has been made, and this implies that 
the curvature effects and any pressure differences across the boundary-layer are neg- 
ligible. The plume region above the top surface of the cylinder is of course excluded, 
since the development of the plume formed by the separation of the boundary-layer 
from the surface invalidates the basic assumptions. Furthermore, these results do not 
adequately describe the fluid flow and the heat transfer at low or moderate values of 
the Grashof number nor the development of the buoyant plume above the cylinder. 
Kuehn and Goldstein (1980), Farouk and Gii(;eri (1981), Fujii et el. (1982), Qureshi 
and Ahmad (1987), Wang et al. (1990) and Saitoh et al. (1993) have provided numer- 
ical solutions for the complete Navier-Stokes and energy equations for laminar free 
convection about a horizontal circular cylinder which is maintained at a constant 
surface temperature or a constant surface heat flux for values of the Grashof num- 
bers which vary from being very small to being very large. Fujii et al. (1982) have 
also obtained experimental results which are in good agreement with their numerical 
solution. Kuehn and Goldstein (1980) have used the finite-difference method, whilst 
Wang et al. (1990) have used the spline fractional step method. Wang et al. (1990) 
made a comparison between their results and those obtained by Kuehn and Gold- 
stein (1980) and found good agreement. However, Saitoh et al. (1993) claimed that 
the results obtained by Kuehn and Goldstein (1980) and Wang et al. (1990) are not 
very accurate because they did not treat the inflow and outflow conditions correctly. 
These solutions contain errors in excess of 2% and therefore they cannot be regarded 
as the standard bench mark solutions. Motivated by the above remarks, Saitoh et al. 
(1993) attempted to obtain bench mark solutions for the steady free convection heat 
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transfer problem around a horizontal circular cylinder under isothermal conditions 
for Rayleigh numbers ranging from Ra - 103 to 105. 

The steady vorticity, Navier-Stokes and energy equations, expressed in cylindri- 
cal polar coordinates (G 0), see Figure 7.5, can be written as, see Saitoh et al. (1993), 

vorticity equation: 
( 0 r  1 02r (7.30) 

l a  ~ - r  + = - ~  0-~ ~2 002 

momentum equation: 

~-~r + ~ OO 
- - V  [ 1 0  ( 0 ~  102~] (0T 0Tcos0) (7.31) 

r ~ k  0~] -~ ~2o02 +g~ -~rsin0-~ 0 0  ~ 

energy equation: 

U-~rr + ~ 00 = Pr  ~ \--~rr ] q ~2 ~ j (7.32) 

where the vorticity ~ is defined as 

1 [ 0  ___~] 
- _ ( ~ )  - ~ aoj (7.33) 

Introducing the non-dimensional variables 

: r - -  a~ U - -  ~,  V - -  V 

r  -~, w - -  -d-7 -~, T - -  AT 
(7.34) 

Symme.try Line 
- 4 . . . . .  

~ !  .... -..Imaginary Boundary 
L I I ",,or Solid Boundary [ " 

C y l i n d e r ~ y  

Figure 7.5" Physical model and coordinate system. 
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Equations (7 .30)-  (7.32) become 

003 V OW 
U-~r + - ~  r O0 

OT v OT 
U~r  + - ~  r O0 

0T 
= P r V 2 w + R a P r  ~ r  sin0-~ 

= V2T 

(7.35) 

OT cos 
(7.36) ) 00 r 

(7.37) 

where 
1 0r 

U - -  v - -  
r 00 '  

and the Laplacian operator is defined as follows: 

0r 
Or (7.38) 

V 2  - 02 1 0 1 02 
- Or 2 +-r  -~r +--~r2 002 (7.39) 

Only half of the domain is considered since the flow is symmetrical about the vertical 
plane through the axis of the cylinder. Thus, the boundary and symmetry conditions 
are given by 

02~ T -  1 on r 1, u - - 0 ,  v - - 0 ,  r  w - - y ~ - ,  - 0~<0~<Tr 

v - O ,  r  w - O ,  o~ _ 0 aT _ O on 0 - - 0 ,  Tr, r > l  
0 0  - -  ~ 0 - - O  - -  

(7.40) 
As for the outer boundary conditions, Saitoh et al. (1993) adopted the following two 
kinds of conditions: 
(a) inflow and outflow conditions: 
at the inflow region 

v - 0 02r 1 02r T - 0 (7.41a) 
, Or  2 --  0, W - -  r2  0 0 2 ,  

at the outflow region 

02r 1 02~ 07' 
v - O ,  Or 2 = 0 ,  w -  r 2 0 0 2 ,  Or = 0  (7.41b) 

(b) solid boundary condition, see Figure 7.5" 

02r 
v - 0 ,  u - - 0 ,  r  w -  Or 2, T - O (7.41c) 

Equations (7.35) -(7.37),  subject to the boundary conditions (7.40) and (7.41), 
were further expressed using a logarithmic coordinate transformation r /=  In r which 
is necessary to improve the accuracy of the computational results near the surface of 
the cylinder. These transformed equations have been solved numerically by Saitoh 
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et al. (1993) using five kinds of finite-difference schemes, see Table 1 of their paper. 
The method of solution is very well described in that paper and therefore we do 
not give any of the details here. Numerical results were obtained for P r  - 0.7 and 
R a  - 0.37, 10 3, 10 4 and 105 by adopting a solid boundary condition at 1000 - 20 000 
times the diameter of the cylinder. Typical computed results for the streamlines, 
isotherms, vorticities and tangential fluid velocity distributions are shown in Fig- 
ures 7.6 and 7.7 for R a  - 0.37 and 104. These figures resemble what would be found 
near a line heat source, namely the flow is basically upwards and it convects heat 
from the cylinder in a well-defined plume. At larger values of R a  a boundary-layer 
forms around the cylinder and it becomes thinner as R a  increases. At R a  -- 104 the 
boundary-layer thickness is approximately equal to the cylinder radius, see Kuehn 
and Goldstein (1980). The assumption of negligible curvature effect is not valid at 
this value of R a  so the solution to the boundary-layer equations does not give valid 
results here. However, at R a  - 106 the boundary-layer thickness has become much 
thinner than the cylinder radius so the boundary-layer model should give fairly ac- 
curate results. The majority of the flow approaches the cylinder from the side as 
opposed to the bottom at large values of R a  and this agrees with the experimental 
observations of Aihara and Saito (1972). 

(a) 
Solid Boundary 

(b) 

Figure 7.6: I so therms  (left) and streamlines ( r i g h t ) / o r  R a  - 0.37 and P r  -- 0.7 
where (a) T = 0(0.1)1, Ar = 5 and (b) T = 0(0.1)1, A r  2. 

The values of the local, Nu(~), and average, N u ,  Nusselt numbers are calculated 
as follows: 

r----1 r - - 1  

dr? (7.42) 
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(a) (b) 

Figure 7.7: (a) The isotherms (left) (T = 0(0.1)1) and vorticity (right) (Wmaz = 
3630, Wmin = -560), and (b) the streamlines (left) (Ar  = 2) and tangential fluid 
velocities (right) (Vmax = 309}, for Ra = 104 and Pr = 0.7. 

and the results obtained using the present bench mark solution of Saitoh et al. (1993) 
are compared in Table 7:4 with those reported by Kuehn and Goldstein (1980) and 
Wang et al. (1990). These results give clear evidence that the present bench mark 
solution is correct. Therefore the fourth-order, multi-point finite-difference method, 
together with the logarithmic coordinate transformation technique used by Saitoh 
et al. (1993), is a suitable means to obtain the bench mark solutions against which 
other solutions can be compared. Saitoh et al. (1993) have shown that the inflow and 
outflow boundary conditions used by Kuehn and Goldstein (1980) give a significant 
discrepancy compared with the solid boundary condition. 

We mention to this end the interesting paper by Yiincii and Bat ta  (1994) in 
which these authors have studied numerically the free convection over two horizontal 
cylinders placed one above the other in a vertical plane. This is a quite different 
problem from that  of a single cylinder due to the interaction of the temperature 
and flow fields around the cylinders. Fluid flow arising from the lower cylinder 
sweeps over the other cylinder and as a consequence of the upward moving buoyant 
plume, the heat transfer over the upper cylinder can be considered to be a mixed 
convection. Since the heat transfer rate due to mixed convection is higher than that  
of free convection, the heat transfer rate of the upper cylinder increases. On the 
other hand, the temperature of the fluid moving to the upper cylinder is higher than 
that of the ambient fluid, and therefore the heat transfer rate from the upper cylinder 
decreases relative to the single cylinder case. These two conflicting influences make 
it unclear whether the upper cylinder heat transfer rate is higher or lower than 
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Table 7.4" Comparison of the local, N u ,  and average, N u ,  Nusselt numbers ob- 
tained using different methods for P r  - 0.7. 

N~t 
Ra ] O I O~ 30~ 1. 60~ I 90~ [ 120~ 150~ i ! 800 

. . . . . . . . .  

Kuehn and 3.85 3.72 3.45 2.93 2.01 1.22 
10 3 

10 4 

10 s 

3.89 
Goldstein (1980) 

Wang et al. (1990) 3.86 
Saitoh et al. (1993) 3.813 

l i  

Kuehn and 6.24 
Goldstein (1980) 

Wang et al. (1990) 
Saitoh et al. (1993) 

1 6.03 
I il 5.995 

Kuehn and 
Goldstein (1980) 

Wang et al. (1990) 
Saitoh et al. (1993) 

10.15 

9.80 
9.675 

Nu 

3.09 

3.83 3.70 3.45 2.93 1.98 1.20 3.06 
3.772 3.640 3.374 2.866 1.975 1.218 3.024 

6.19 6.01 5.64 

5.56 
5.410 

4.82 3.14 1.46 4.94 

4.87 3.32 1.50 4.86 
4.764 3.308 1.534 4.826 

9.02 7.91 5.29 1.72 8.00 

8.90 8.00 5.80 1.94 7.97 
8.765 7.946 5.891 1.987 7.898 

5.98 5.80 
5.935 5.750 

, 

10.03 9.65 

9.69 9.48 
9.557 9.278 

. . . . .  

t ha t  of a corresponding single cylinder. As the separat ion distance between the two 
cylinders increases, the velocity of the fluid approaching the upper  cylinder increases 
when the p lume is laminar  and the t e m p e r a t u r e  of the impinging fluid decreases and 
vice versa. Therefore, the presence of the lower cylinder enhances the upper  cylinder 
heat  transfer at  certain separat ion distances. 

7 . 3  C o n j u g a t e  free convect ion from a hor izonta l  c i rcular  
cyl inder  

Considerat ion is given here to the steady, laminar  free convection from a horizontal  
circular cylinder of radius a and t empe ra tu r e  Tb which is placed in a quiescent fluid 
of uniform t empera tu re  Too and the cylinder has a heated core region of radius ac and 
t empera tu re  To, with ac < a and Tc > Too. The  geometry and the polar  coordinates 
(~, 0) appropr ia te  to this problem are depicted in Figure 7.8. If we assume tha t  the 
problem is symmetr ica l  about  a vertical plane which passes through the axis of the 
cylinder, then we have to consider only the range 0 <~ 0 ~ n (or n ~< 0 <~ 2r) .  On 
using the non-dimensional  variables 

a a r a 2 T - Too 
r - - ,  u - - - ~ ,  v - - - ~ ,  r  , w - - - ~ ,  T =  (7.43) 

a C~f C~f r OLf Tc - Too 

Equat ions  (7.30) - (7.32), along with the energy equat ion inside the cylinder, can 
be wri t ten  as follows, see Kimura  and Pop (1994), 

V2r  -- -w (7.44) 
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T~ 

Figure 7.8: Phys i ca l  mode l  and  coord ina te  s y s t e m .  

o , os0) 
V 2 w -  ~ u--~r + - r - ~  - R a \ - ~ - r  sin0-t 00 r (7.45) 

OTI v OTI 
V2T/ -- u-~-r + - - - r  00 (7.46) 

V 2 T s  --  0 (7.47) 

where the Rayleigh number is now defined as Ra - g~(T~-T~)a3. Equations (7.44) - 
c~fv 

(7.47) have to be solved under the following conditions: 
boundary conditions: 

_ 0 2 ~  } 
u - - 0 ,  v = 0 ,  o~rf0'  co-----8-Tv on r - - l ,  0 < ~ 0 ~ l r  (7.48a) 

T f  --  T s ,  Or - k OTs - -  Or 

a c  T s - 1  on r - - - - ,  0~<0~<~r (7.48b) a 

symmetry conditions: 

v = 0 ,  r  
OTj 

O___u __ O, . . . .  O, 
O0 - -  O0 - -  

inflow boundary conditions: 

v - O ,  

outflow boundary conditions: 

N 
w --  0 [ ac 

on O--0,1r, l ~ r ~ - -  (7.48c) 
OT~ _ 0 I a 
O0 - -  

02r 1 02r 
Or 2 =0, T I - O ,  w -  r2002 (7.48d) 

v--0~ 
OT I 1 02r 02r - 0 = 0, co - (7.48e) 

Or 2 --  ' Or r 2 002  
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The local, Nu,  and average, Nu,  Nusselt numbers are calculated from the ex- 
pressions 

( O T f )  , N u _ l  f o ~ (  0 T f )  d0 (7.49) 
N u - -  - ~ r  r : l  ~ ----~-r  r----1 

It should be noted that  this problem, which is governed by Equations (7.44) - (7.47), 
along with the boundary conditions (7.48), was first solved both asymptotically and 
numerically by Kimura and Pop (1994). It is clear that an exact analytical solution 
of these equations does not appear to be possible for arbitrary values of Ra but 
there is a limiting case, given by the boundary-layer approximation Ra >> 1, when 
an asymptotic solution can be obtained. The two distinct values of Pr  for the 
asymptotic solution are Pr  >> 1 and Pr  ~ 1, respectively, and we shall consider 
further these two cases. 

7 .3 .1  P r  >> 1 

In this case the heat flux q" per unit area from the surface of the cylinder can 
be expressed as, from the one-dimensional equation of heat balance between the 
solid-fluid interface (at ~ -  a), 

- ,  

. T b - Too 
q = = ( 7 . 5 0 )  

2~ra In (--a) �9 .~ 

where T~ is the average boundary-layer temperature. We also introduce the non- 
dimensional average boundary-layer temperature Tb* , where T~ and Tb* are defined 
aS 

~0 71" --* --.T b -- -~1 T f ( a , O)dO , T~ = T bT~ _ Too (7.51) 

The boundary-layer thickness, 5, is given by, see Holman (1976), 

5 1 
- -- 1.89 Ra b 4 (7.52) 
a 

where Rab is defined as Rab -- gZ(T~'-T~ and it is assumed that Rab >> 1 We 
~ f v  �9 

note for large values of k that Rab is effectively the same as Ra. On the other hand, 
when the value of k is small then Rab is also small and most of the temperature drop 
takes place close to the surface of the cylinder and convection plays only a minor 
role in the determination of Tb- Therefore it is conceivable that Tb* is relatively 
insensitive to the definition of the Rayleigh number and Rab can be replaced by Ra. 

Using expressions (7.50) and (7.52), where we take Rab -- Ra, we obtain the 
following relation for the non-dimensional average boundary-layer temperature- 

1.89 k 
Tb* = 1.89 k - na�88 In (~-) (7.53) 
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f o r P r > > l  a n d k ~ l .  
The average boundary-layer Nusselt number may be expressed as follows: 

q" a --* 
T b - T o o  1 1 

N u  - k i ( Tc - Too) ~ Tc - Tc~ RaZ - T~ Ra~ 
(7.54) 

if Equations (7.50) and (7.52) are used. Equations (7.54) suggests that the ratio of 
1 

N u  to T~ Ra~  is always constant, i.e. 

N u  
1 Tb* 

= A (7.55) 

where A is as yet, an undetermined constant. Insertion of expression (7.53) into 
Equation (7.55) leads to 

1 

A R a ~  
N u  - 1 (7.56) 

1 Ra~I In ( ~ )  
1.89k 

for P r  >> 1 and k ~ 1. Therefore, N u  can readily be obtained once the constant A 
has been determined. 

7 .3 .2  P r  << 1 

Guided by the above asymptotic solutions, we can easily establish the following 
expressions for Tb* , A and N u ,  see Kimura and Pop (1994), 

1.89k 
Tb* = (7.57) 

1.89 k ( P r R a )  �88 In ( a ) 

N u  
-- , (7.58) 

1 

N u  A ( P r R a )  
- ~ (7.59) 

1 -  (PrRa)~i 
1.89k In (~-) 

f o r P r < < l  a n d k ~  1. 
The solution of Equations (7.44) - (7.47), subject to the boundary conditions 

(7.48), have been obtained numerically by Kimura and Pop (1994) using a finite- 
difference method, which is similar to that described by Kimura and Pop (1991, 
1992a, 1992b) for different values of the parameters k, P r  a~ and Ra Thus, with ~ a " 

the assistance of Equations (7.56) and (7.59), a value of A = 0.48 was found to 
accurately predict the value of N u .  

Figures 7.9 and 7.10 show the isotherms (left) and the streamlines (right) for k = 
1 P r  - 0.1 0.7, 100 a~ _ 0.2, 0.5, 0.9 and R a  - 104 106 As expected evidence of 
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(a) (b) 

Figure 7.9: I s o t h e r m s  (left)  and s t reaml ines  ( r i g h t ) / o r  k - 1, R a -  104 and 

P r -  0.7 when  (a)  a~ a -g- -- 0.9, Ar -- 2.5 and  A T  -- 0.1 and  (b) ~r - 0.2, Ar - 2 
and A T  - 0.1. 

(a) (b) 

Figure 7.10: I s o t h e r m s  (left)  and s t reaml ines  ( r i g h t ) / o r  ~ = 0.5, k = 1 and 
R a  - 106 when  (a) P r  - 0.1, Ar  - 1 and  A T  -- 0.1 and (b) P r  = 100, Ar = 2.5 
and A T -  1. 

the plume development is found near the top surface of the cylinder and the width  
of the plume increases as the ratio of thermal  conductivities k decreases. However, 
the width of this p lume decreases with  an increase in R a .  Also the isotherms are 
seen to be distorted in accordance with the flow patterns.  

The variations of T ~ ,  N u  and N u  as a function of R a  or 0, as obtained nu- 
merically are presented (shown by solid or broken lines) in Figures 7.11, 7.12 and 
7.13, respectively, for different values of the involved parameters.  The analytical 
(asymptotic) solutions (7.53), (7.56), (7.57) and (7.59) are also included in these 



228 CONVECTIVE FLOWS 

(a) 

1.0 

T; 

0.5 

(b) 

1.0 

0.5 

0.0 " ' 0.0 
101 159. 1(} 3 1(} 4 1(} ~ 106 l0 t 

Ra 

I Numerical 

~ 

- l o  0 

~ j  ~ ""~" 

I~)2 ib 3 ib 4 ib 5 Ib 6 

Ra 

Figure 7.11" Variation of the average boundary-layer temperature, T~, with Ra 
for a 2 - 0.5 when (a) k - 1 and (b) k - 0.4. The analytical solution (7.53) for 
Pr  >> 1 is indicated by the solid line and the analytical solution (7.57) for Pr  << 1 

i s  indicated by the broken line. 

figures. Despite a slight deviation of the analytical solutions from the numerical 
results of Tb* and N u ,  on the whole both results agree well, showing the validity of 
the present theory. These figures also show clearly the effect of the parameter k, 
namely as the value of k increases then the local Nusselt number N u  increases. The 
variation of N u  as a function of 0 is linear and flat, except near to the top (0 = 180 ~ 
of the cylinder, i.e. in the plume region, where N u  decreases. This is because the 
boundary-layer solution does not give an adequate prediction of the heat transfer 
for 0 >~ 130 ~ see Merkin (1976). Here the development of the plume makes the 
boundary-layer assumptions invalid. 
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(~) 
100 

Nu 

10 --0.2,  0.5, 0.9 
t2 

/ 
4 ~ 

(b) 
100 ' "~ 1 

10 
k 10 

k = l  ,,, 

0.1 

k - 0 . 4  

.1 , . . . . 

o 90 o(o) 
(c) (d) 

100 100 

Nu Nu  

10 10 

1 -- 1 

180 0 9'0 180 e(o) 

- -0 .7  

9'0 180 e(o) 
0.1 0.1 

0 0 90 0(0) 180 

Figure  7.12: Variation of the local Nusselt  number, N u ,  with 0 for  (a) different 
values of ac a when k = 1, Ra  104 and Pr  - 0.7, (b) different values of k when 
aca = 0.5, Ra - 104 and P r  - 0.7, (c) different values of P r  when k - 1, ~ - 0.5 
and R a -  104 and (d) different values of Ra  when k -  1 a~ _ 0.5 and P r -  0.7. a 
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(a) 

10 

Nu 

1 

(b) 

10- 

Nu 

{Numerical] 

{ " ,100 I 

0.1 {~a 1~}4 1 106 101 1 {~4 ' ' 101 1~}2 1 ~)s ' 0.1 ~)2 1~)3 1 105 106 
Ra Ra 

Figure 7.13: Variation of the average Nusselt number, Nu,  with Ra for k = 1 
when (a) ac --5-- 0.9 and (b) ac --d- - 0 . 2  The analytical solution (7.56) for Pr  >> 1 is 
indicated by the solid line and the analytical solution (7.59) for Pr << 1 is indicated 
by the broken line. 

7.4 M i x e d  c o n v e c t i o n  b o u n d a r y - l a y e r  flow from a hori-  
zonta l  cy l inder  

As mentioned in Chapter 2, the parameter which best characterises mixed convection 
is A - c~ where the value of n lies between 2 and 3 An order of magnitude R e n  ~ 

analysis indicates that the conditions for the two effects to be of equal order is 

ReD -- 0 Gr~) , where ReD and GrD are the Reynolds and Grashof numbers 

based on the diameter, D, of the cylinder. There are numerous papers which report 
theoretical and experimental results on mixed convection flow from a horizontal 
circular cylinder, and there is an excellent review of this problem by Chen and 
Armaly (1987) and Ahmad and Qureshi (1992). A literature search reveals that the 
mixed convection boundary-layer on an isothermal horizontal circular cylinder in a 
stream which flows vertically upward for the case of assisting flow (heated cylinder) 
was first studied by Sparrow and Lee (1976). They obtained a similarity solution 
based on using an approximate expression for the fluid velocity outside the boundary- 
layer. The local Nusselt number distribution as a function of the angular coordinate 
was only obtained in the region upstream of the point of separation (measured from 
the forward stagnation point). Merkin (1977b) studied this problem and he obtained 
a numerical solution to the boundary-layer equations in both the cases of heated and 
cooled cylinders. The method was again restricted to the region preceding the point 
of separation since the boundary-layer equations are not valid beyond that  point. 
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In terms of the non-dimensional variables 

x l y  -- �89 
x = - ,  y - Re~- ,  r = uRe x f (x, y), 

a a 

T - T c ~  

A T  
(7.60) 

where 5 is measured from the lower stagnation point of the cylinder, the governing 
boundary-layer equations can be writ ten as, see Merkin (1977b), 

f,,, .+. f f,, f,2 + s inxcosx  sinx ( f ,  Of' f , ,Of ) + A 0 - x (7.61) 
z z O x  

1 0 , , + f O  , ( f ,  O0 ~ z )  p--~ -- x Ox - O' (7.62) 

which must be solved subject to the boundary conditions 

f ( x , O ) = O ,  f ' ( x , O ) = O ,  O(x,O)=l  for x > O  
f ,  _+ sinx 0---}0 as y - + c ~ ,  x > 0  (7.63) 

X 

where ), is again the mixed convection parameter which is defined as in Equation 
(2.147). We note that  the case of A = 0 is the forced convection solution obtained 
by Terrill (1960). 

The non-dimensional skin friction, Tw(X), and wall heat transfer, qw(x), can be 
expressed as follows: 

Tw(x) = x f"(x,  0), qw(x) = -O'(x,O) (7.64) 

Equations (7.61) - (7.63) have been solved numerically by Merkin (1977b) for 
Pr = 1 using a method similar to the one he employed in his papers for the corre- 
sponding problem of free convection boundary-layer flow, see Merkin (1976). 

The variations of Tw(X) and qw(x) as a function of x are shown in Tables 7.5 and 
7.6 for Pr = 1 and for different values of A. The results from these tables show that  
increasing A delays separation and that  separation can be suppressed completely 
in 0 ~ x ~ r for a sufficiently large value of A (> 0), A = Ac, say. For values of 

greater than A = Ac, the boundary-layer remains attached to the surface of the 
cylinder up to the upper point (x --- ~) of the cylinder, where the boundary layers 
on each side must collide and leave the surface of the cylinder to form a thin wake 
above the cylinder. On the other hand, the separation point, x = Xs(A), is brought 
nearer to the lower stagnation point (x = 0) of the cylinder. 

The numerical solutions indicate that  the value of A which first gives no sepa- 
ration lies between A = 0.88 and A = 0.89. Moreover, Merkin (1977b) has demon- 
strated that separation does not, in fact, occur for A > 1. The numerical results 
also show that,  in those cases when the boundary-layer separates, Tw(Xs) --+ 0 and 
qw(xs) --+ qs (~  O) in a singular way, as we observed for a vertical flat plate in 
Section 2.2. 
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Table 7.5- Values of the non-dimensional skin friction, vw(x), for Pr - 1 and 
different values of )~. 

�9 1 :1.751 i.5 
o.o I o.oooo I o.oooo 
0.2.1..0._0006' ] 0.0533 
0.4 0.0741 
0.6 0.0026 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

7 1 "  

-1 .0  

0.0000 
0.1257 
0.2266 
0.2784 
0.2554 
0.1069 

-0..5 
0.0000 
0.1871 
0.3511 
0.4706 
0.5271 
0.5051 
0.3890 
0.1253 

0.0 

o:oooo 
0.2427 
0.4627 
0.6393 
0.7552 
0.7982 
0.7615 
0.6429 
O.44O5 
0.1069 

, 

0.5 

0.0000 
0.2945 
0.5662 
0.7941 
0.9614 
1.0561 
1.0727 
1.0121 
0.8814 
0.6927 
0.4599 

0.88 

o.oooo 
0.3321 
0.6409 
0.9057 
1.1088 
1.2383 
1.2886 
1.2608 
1.1625 
1.0072 
0.8131 

0.1842 0.6012 
0.3936 
0.2112 
0.0711 

0.89 l '  1.0 

0.0000 
0.3330 
0.6429 
0.9085 
1.1125 
1.2430 
1.2941 
1.2671 
1.1695 
1.0491 
0.8295 
0.6103 
0.4O33 
0.2219 
0.0847 
0.0149 
0.0504 

0.0000 
0.3436 
0.6639 
0.9398 
1.1538 
1.2938 
1.3541 
1.3356 
1.2459 
1.0986 
0.9117 
0.7063 
0.5048 
0.3287 
0.1979 
0.1292 
0.1206 

. , .  

2.0 

0.0000 
0.4354 
0.8464 
1.2106 
0.5094 
1.7295 
1.8637 
1.9117 
1.8793 
1.7781 
1.6236 
1.4334 
1.2248 
1.0123 
0.8043 
0.6002 
O.45O8 

Table 7.6- Values of the non-dimensional heat transfer, qw(X), for Pr - 1 and 
different values of ~. 

x ...... -1.75 -1 .5  -1 .0  -0.5 0.0 0.5 0.88 0.89 l, 1 . 0  
. . . . . .  

0.0 0.5420 0.5705 0.5943 0.6096 0.6100 0.6156 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

7 1 "  

0.4199 
0.4059 

0.4576 
0.4498 
0.4236 
0.3373 

0.5067 
0.5018 
0.4865 
0.4594 
0.4160 
0.3326 

0.5380 
0.5260 
0.5056 
0.4760 
0.4353 
0.3784 
0.2736 

. . . . . .  

0.5668 0.5911 
0.5564 0.5817 
0.5391 0.5661 
0.5145 0.5443 
0.4826 0.5165 
0.4426 0.4828 
0.3928 0.4431 
0.3280 0.3972 
0.2114 0.3444 

0.2821 
0.1970 

0.6067 
0.5979 
0.5833 
0.5631 
0.5375 
0.5066 
0.4709 
0.4307 
0.3863 
0.3383 
0.2871 
0.2331 
0.1766 
0.1162 

0.6071 
0.5983 
0.5837 
0.5636 
0.5380 
0.5072 
0.4716 
0.4314 
0.3872 
0.3394 
0.2885 
0.2350 
0.1796 
0.1227 
0.0745 
0.1033 

. . . .  

0.6115 
0.6028 
0.5885 
0.5686 
0.5435 
0.5133 
0.4785 
0.4394 
0.3967 
0.3509 
0.3029 
0.2540 
0.2061 
0.1634 
0.1354 
0.1306 

2.0 I 
0.6497 
0.6471 
0.6393 
0.6264 
0.6086 
0.5863 
0.5597 
0.5294 
0.4960 
0.4601 
0.4225 
0.3842 
0.3460 
0.3088 
0.2730 
0.2381 
0.2122 
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The variation of the separation point, Xs(A), as a function of )~ for P r  = 1 is 
given in Figure 7.14. This figure shows that  there is a value of A = ~0, say, below 
which a boundary-layer solution is not possible. The reason is that  for A < 0, the 
cylinder is cooled and the free convection boundary-layer would start at x = 7r and 
for sufficiently small values of ,k there comes a point where the flow of the stream 
upwards cannot overcome the tendency of the fluid next to the cylinder to move 
downwards under the action of the buoyancy forces. This is an unstable situation 
and whether a boundary-layer can exist at all on the cylinder for ~ < ~0 is still an 
unanswered question. 

2.0 

.5 

lO 

-2.0 -1.0 0.0 ' 1 : 0  

Figure 7.14: Variation of the separation point, xs(A), with )~ for Pr = 1. 

It is also worth mentioning the work of Cameron et al. (1991) on mixed convec- 
tion boundary-layer flow from two-dimensionM or axisymmetric bodies of arbitrary 
shape, but they only considered the case of assisting flow. Numerous papers after 
1980 have reported numerical results on mixed convection flow from horizontal cir- 
cular and elliptical cylinders by solving the full Navier-Stokes and energy equations 
under various forced flow directions such as, assisting, opposing and inclined. To 
this end we mention the work of Badr (1983, 1984, 1985, 1994, 1997), Amaouche 
and Peube (1985), Moon et al. (1988) and Ahmad and Qureshi (1992). 

Further, we present some results reported by Badr (1984) for the problem of 
mixed convection from a horizontal circular cylinder which is maintained at a con- 
stant temperature, Tw, and it is placed in a uniform forced flow of velocity, Uc~, 
and temperature, Too, where Tw > Too, see Figure 7.15. The line 0 -  0 ~ is taken to 
be the radius through the rearmost point on the cylinder surface viewed from the 
upstream direction. Using a modified polar coordinate system (~, 0), where ~ - In r, 
the governing equations of vorticity, Navier-Stokes and energy can be written in the 
following form, see Badr (1984), 
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U~,T~ 

t t 
U~,T~ 

Figure 7.15: Physical models and coordinate systems. 

02r 02r 
e2~w -- !" 

0~ 2 002 

0w 2 (02W 02wh 0 r  0 r  

Cr e~ ( OT OT ) (7.66) 
+ 2R 2 sin e + cos e 

OT 2 ( 0 2 T  02T) Or Or (7.67) 
e2~ Ot = Pe - ~  + ~ O00~ ~ O~ O0 

(7.65) 

where Re, Gr and Pe are based on the diameter of the cylinder, with Pe (= Re Pr) 
being the P~clet number. The i signs in Equation (7.66) depends on the flow regime 
and it is positive for assisting flow and negative for opposing flow. The boundary 
conditions appropriate to this problem are as follows: 

o ~ _ 0 ,  o , ~ _ 0  T = I  on  ~ - 0  0 < ~ 0 ~ < 2 ~ r  r - 0, ~ - o~  - , 
e-~ 0r e-  ~ 0~ o--Y -+ cos 0, ~-~ --+ sin 0, w -+ 0, T ~ 0 as ~ -+ cxD, 0 <~ 0 ~< 21r 

(7.68) 
The method used by Badr (1984) to solve these equations is similar to that  

developed by Ingham (1978b) for studying the free convection limit (Re = 0) and 
Badr (1983) for the problem of cross mixed convection flow from a horizontal circular 
cylinder. In this method the velocity and thermal boundary layers are developed in 
time until they reach steady state conditions. This has been achieved in two stages. 
During the first stage of the motion the free stream is assumed to start from rest 
at time t - 0, where T -- 0 and the momentum (forced convection) boundary-layer 
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develops partially with time, while there is no body force present. The second stage 
starts at time t = t*, when the cylinder is assumed to be heated instantaneously to 
the constant temperature Tw, and now the fluid velocity and thermal fields develop 
simultaneously with time until reaching steady state conditions. Accordingly, the 
following series expansions for r w and T are assumed 

o o  c o  o o  

r = E f  n (t,~)sinnO, w--  ~-~gn (t,~)sinnO, T -  lho(t ,~)+~-~hn ( t ,~)cosn0 
n----1 n--1 n--1 

(7.69) 
where the functions fn, gn, ho and hn are given by the equations 

02 - n2fn - e2r (7.70) 

Ogn 4 (02gn n2gn) =l= Sn 
2e2~ Ot = Re O~ 2 

e2 ~ Oho = 2 02ho b Zo 
Ot Pe O~ 2 

Ohn 4 ( Pe O~ 2 ) Oho~ 2e 2~ - n2hn -nfn--xz-~ 

(7.71) 

(7.72) 

+ Zn (7.73) 

and the functions Sn(t,~), Zo(t,~) and Zn(t,~) are given in Badr (1984). 
The boundary conditions of Equation (7.68) now reduce to the following form: 

of~ _ 0 ,  h 0 - 2  h n - O  on ~ - 0  f~ - 0, o~ - (7.74) 
f n -+ S n e ~ , g n --+ O , h o -+ O , h n -+ O as ~ -+ oo 

where 5~ - 1 when n - 1 and 5n - 0 when n ~ 1. By integrating both sides of 
Equation (7.70) with respect to ~ between ~ - 0 and c~, and using the boundary 
conditions (7.74), we obtain 

/o ~ e(2-n)~gn d~ - 25n (7.75) 

The local, Nu(O), and average, Nu, Nusselt numbers for the steady state condi- 
tions can be expressed as, see Badr (1984), 

N u ( O ) - (  O h ~ 1 7 6 1 7 6  ) 0 ~  2 E - ~  sin nO , Nu  - - (Oho~_~] ~=o (7.76) 

n--1 ~=0 

The solution procedure and the details of the numerical method used by Badr 
(1984) for solving Equations (7.70) - (7.73), along with the boundary conditions 
(7.74) and the integral condition (7.75), are those described by the author in one of 
his previous papers, namely Badr (1983). He obtained results for Nu({?), Nu and 
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ww(O) for P r  = 0.7, 5 <~ Re ~ 60 and 0 ~ Gr <~ 720 and the results for Gr = 0 
(forced convection flow) were obtained by Dennis and Chang (1970). 

The calculated values of N u  and the angle of separation 0~ as a function of Re 
and Gr, given by Ww(O) = 0, are presented in Tables 7.7 and 7.8 in both cases of 
assisting and opposing flows, respectively, for P r  = 0.7. 

T a b l e  7.7: Values of the average Nusselt number, Nu,  and the separation angle, 
Os, for the case of assisting flow with Pr = 0.7 for various values of Re and Gr. 

Re 
5 
5 
5 
5 
5 
5 

20 
20 
20 
20 
20 

0 
5 

30 
60 
[0( 

0 
[0( 
10( 
30( 
2O 

1.450 
1.499 
1.727 
1.882 
2.010 
2.075 
2.540 
2.654 
2.970 
3.227 

) 3.420 

os (!i 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

43.13 
29.51 

0.0 
0.0 
0.0 

Re 
20 
40 
40 
40 
40 
40 
40 
60 
60 
60 

Gr 
�9 , ,  , , , ,  , 

1600 
0 

400 
1600 
3200 
4800 
6400 
9OO 

4600 
7200 

3.564 
3.48O 
3.650 
4.100 
4.420 
4.690 
4.910 
4.260 
4.912 

5:270 

Io,(o) 
, , I 0.0 

53.60 
42.46 

[ 0.0 
I 0.0 

i 0.0 
0.0 

50.01 I 23.29 

I 0.0 

T a b l e  7.8- Values of the average Nusselt number, Nu,  and the separation angle, 
Os, for the case of opposing flow with Pr - 0.7 for various values of Re and Gr. 

I Re 

2O 

a ll 
15o ...... il 1.19 

2.12 

400 II 1.78 

0~(~ 
31.33 
67.74 

180.00 
62.84 

144.82 

20 800 
40 400 

40 186000o 
40 
40 ,3200 

2.15 
3.17 
3.05 
2.70 
3.22 

o, 
180.00 

68.33 
79.19 

106.77 

18o.o9 

Table 7.7 shows in the case of assisting flow that Gr has no effect on the angle 
of separation 0s for Re = 5 since separation occurs at 0 = 0 ~ i.e. on the top surface 
of the cylinder, and no circulation takes place in the wake region. This observation 
agrees with the results obtained by Dennis and Chang (1970), who found for the 
forced flow case, i.e. Gr = 0, that there is no recirculation zone in the wake when 
Re < 6. At larger values of Re (say, 20, 40, 60) an increase in the value of the 
Grashof number Gr leads to a delay in the flow separation. However, in the case 
of opposing flow, the separation is delayed even for values of Re = 5. It should be 
mentioned that  the values of N u  obtained by Badr (1984) were also compared with 
the available experimental correlations determined by Hatton et al. (1970) for the 
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case of assisting flow and sat isfactory agreement  was found. 
Figures 7.16 and 7.17 show the var ia t ion of ww(0) with 0 for P r -  0.7, R e -  20 

and 40 and for different values of Gr,  for bo th  assisting, Figure 7.16, and opposing, 
Figure 7.17, flow cases. Also, the var iat ion of Nu(O)  as a function of 0 is shown in 
Figures 7.18, assisting flow, and 7.19, opposing flow, for the same values of P r ,  R e  

(a )  (b) 
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Gr =_ 1600 
= 800 

, . . . .  

1�89 60  0 e(o) 
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~ 00 
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1�89 ' ' e(o) 

~r -- 3200 

6'o o 

Figure 7.16- Variation of the wall vorticity distribution, ww(O), with 0 in the case 
of assisting flow for Pr  - 0.7 when (a) Re - 20 and (b) Re - 40. 
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Figure 7.17: Variation of the wall vorticity distribution, ww(O), with 0 in the case 
of opposing flow for Pr  - 0.7 when (a) Re = 20 and (b) Re - 40. 
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Figure 7.18: Variation of the local Nusselt number, Nu ,  with ~ in the case of 
assisting flow for Pr = 0.7 when (a) Re = 20 and (b) Re = 40. The solid lines 
indicate the solutions of Badr (198~) and the broken lines indicate the solutions 
obtained by Dennis et al. (1967) for forced convection flow (Gr = 0). 

a n d  Gr. I t  is seen f rom F i g u r e  7.16 t h a t  inc reas ing  Gr  t e n d s  to  a s ignif icant  inc rease  
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Figure 7.19: Variation of the local Nusselt number, Nu ,  with ~ in the case of 
opposing flow ]or P r -  0.7 when (a) R e -  20 and (b) R e -  40. 
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it can be seen from Figure 7.18 that  increasing Gr results in a significant increase 
in Nu(0) near the front stagnation point, ~ = 180 ~ The response of Nu(t?) to 
the increase in Gr near the rear stagnation point, ~ - 0 ~ is slightly different. At 
first, a small increase in Gr  above its zero value causes a decrease in Nu(O) until 
reaching its minimum value. A further increase in Gr results in increasing Nu(O) 
near t? - 0 ~ The reason for this behaviour is that the initial increase of Gr above 
its zero value causes a decrease in Iww(O)l near ~ - 0 ~ see Figure 7.16, and this 
accordingly causes a drop in Nu(O). Further increase in Gr leads to an increase 
in Iww(~)l near ~ = 0 ~ and a corresponding increase in Nu(O). We notice that the 
forced convection, Gr - 0, Nusselt number values obtained by Dennis et al. (1967) 
for Pr = 0.73 are also included in Figure 7.18 and it is seen that  these values agree 
very well wi th  those obtained by Badr (1984) but for Pr = 0.7. 

On the other hand, in the case of opposing flow, Figure 7.17 shows that the 
value of Iww(~)] increases near 0 = 0 ~ This is mainly because the buoyancy force is 
assisting the circulating flow close to the cylinder surface near t? = 0 ~ This effect 
causes Nu(0) to increase as Gr increases in the same region, while decreasing near 

- 180 ~ see Figure 7.19. It can also be seen from Figure 7.17 and Table 7.8 that on 
increasing Gr causes the point of separation to move towards the front stagnation 
point and this is contrary to the case of assisting flow. 

7.5 Mixed convection boundary-layer flow along a 
heated longitudinal horizontal cylinder 

The three-dimensional mixed convection boundary-layer along a heated longitudinal 
horizontal circular cylinder has received little attention. The physical model chosen 
is a semi-infinite cylinder of radius a, which is aligned with its axis parallel to a 
uniform fluid flow and normal to the direction of gravity, see Figure 7.20. The 
uniform flow is assumed to have a velocity Uc~, and temperature  Too, whilst the 
temperature of the cylinder is Tw (> Too). As is well known, for most external 
flows, the buoyancy force can be neglected in a small pure forced convection region 
downstream of the leading edge. Beyond that  region the effect of buoyancy cross- 
flow increases as the fluid flows downstream and a secondary flow is induced. In 
general, close to the leading edge the magnitude of the secondary flow is small and 
the boundary-layer flow is forced-convection dominant. The secondary flow grows 
downstream and the interaction of the free and forced convection becomes important  
and the flow becomes free convection dominant further downstream. Previously this 
flow configuration has been treated only by Yao and Catton (1977) and Yao et al. 
(1978). 

In terms of the non-dimensional variables, the boundary-layer equations for this 
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Figure 7.20" Physical model and coordinate system. 

problem can be written in cylindrical coordinates as, see Yao et al. (1978), 

Ox + ~ + 

Ou Ou 

Ov i)w 

Or 

Ou 

Or 
op 
Or 

= 0  (7.77) 

019 02 u 
+ (7.78) 

Ox Or 2 

= 0 (7.79) 

Ov Ov Ov 02v 
u-~x + v - ~  + w 0---~ - Or 2 + T sin 0 (7.80) 

OT OT OT 1 cO2T 
U ~ x  + v -f f  ~ + w 0--~ = P r Or 2 (7.81) 

where (u, v, w) are the fluid velocity components along the (x, 0, r) directions and 
the non-dimensional variables are defined as follows: 

- - , - - g - ) ,  T -  

u - -  uoo , v - -  Uoo v ~  ' w - G r ~ , 

m 

T-Too 
A T  

P - P o o  
P -  pU2 

(7.82) 

and the mixed convection parameter A is a positive quantity (assisting flow). The 
boundary and symmetry conditions appropriate to this problem are given by 

u = 0 ,  v - 0 ,  w - 0 ,  T - - 1  on r - 0 ,  0~<0~< 
Ou _ o, v - O ,  Ow _ O OT _ o on 0 0, o-Y-- 0o - , o-Y- = r >  1 (7.83) 

u - + l ,  T - + 0  as r-+cx~, 0 ~ 0 ~  

Equations (7.77) - (7.81), after neglecting small-order terms, are the govern- 
ing equations for a three-dimensional mixed convection boundary-layer flow over a 
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heated longitudinal circular cylinder. The transverse curvature terms, which are 

0 ( G r - � 8 8  are still small and can be neglected since the thickness of the boundary- 
"k I 

is O ( G r - � 8 8  which is smaller than the non-dimensional radius of the cylinder. layer 
\ , i  

Equation (7.79) indicates that  the pressure gradient normal to the wall is negligible 
and the pressure gradient Op from Equation (7.78), can be evaluated from the in- 
viscid solution at the outer edge of the boundary-layer, which is zero for the present 

problem. 
The solution of Equations (7.77) - (7.81) for small values of x (<< 1) can be 

derived from the following expansions: 

u - (77) + 0 + . . .  
v = 2xF(~ (r/)sin 0 + . . .  

x/-~w - r/f~ - f0 + (2x) 2 (r/F1 - 5F1 - F2)cos0 + . . .  
T - To (r]) + (2x) 2 G1 (r]) cos 0 + . . .  

( 7 . 8 4 )  

_ r is the Blasius variable. The functions f0, F1, F2, To and G1 have where r] vff5 

been determined by Yao and Catton (1977). 
To numerically solve Equations (7.77) - (7.81), subject to the boundary condi- 

tions (7.83), Yao et al. (1978) have written them in the (x, ~, 0) coordinate system 
and the transformed equations were then solved using a finite-difference scheme 
known as the Laasonen scheme and this was proposed by Smith and Clutter (1963). 
However, Ingham and Pop (1986a, 1986b) have proposed a more efficient finite- 
difference method for solving a set of equations which is similar to the system of 
Equations (7 .77) -  (7.81). 

Axial u and radial w fluid velocity profiles are presented in Figures 7.21 and 
7.22 for Pr  - 1 and 10 at some stations 6. At the leading edge of the cylinder, 
x - 0, the axial fluid velocity is simply the Blasius profile but for Pr  = 1 and 
x = 0.5 then the u-profiles at 0 -- 0 ~ (bottom line of the cylinder), and 0 = 90 ~ are 
seen to be fuller than the Blasius profile. This indicates that  the secondary (cross) 
flow stabilises the axial fluid flow and enhances the heat transfer rate. Along the 
top line of the cylinder (0 - 180~ the u-velocity profile becomes less full than the 
Blasius profile, which suggests that the secondary (cross) flow de-stabilises the axial 
fluid flow and reduces the heat transfer rate. The u-velocity profiles along t? = 180 ~ 
and at x - 1 show that  the fluid flow forms a thermal plume and this may lead to 
flow separation farther downstream. Further, Figure 7.22 shows that  the w-velocity 
profiles first change sign at x = 0.73, which indicates that  the fluid is sucked into 
the boundary-layer along 0 = 0 ~ It can also be seen farther downstream that the 
flow gradually becomes free convection dominated. However, it is worth mentioning 
that  Yao et al. (1978) have not exactly determined the location of the separation 
point of the boundary-layer from the cylinder since they stopped their computation 
at x - 1.13. For P r  = 10, the flow development is similar to that  for Pr -- 1 but it 
extends over a longer distance. In fact the surface of the cylinder can be looked at 
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F i g u r e  7.21" Axial  velocity profiles, u(x,O,71), for  (a) P r  - 1 and (b) P r  - 10. 

The Blasius profile at x - 0 is indicated by the broken line, the profile at x - 0.5 

is indicated by the solid line and the profile at x - 1 is indicated by the dotted line. 
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F i g u r e  7 .22:  Radial velocity profiles, w(x ,  O, r I - cx~), at the edge of the boundary- 
layer. The solution for  Pr  = 1 is indicated by the solid line and the solution for  
P r -  10 is indicated by the broken line. 
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as being made up of two regions. On the lower side of the cylinder the boundary- 
layer is thinned and the axial u-velocity profile is fuller than the Blasius profile, see 
Figure 7.21, but  on the upper side of the cylinder the boundary-layer is thicker and 
the axial fluid velocity profile is not as full as the Blasius profile. The possibility of 
an inflexion in the u-velocity profile along 0 - 180 ~ is clearly indicated in Figure 7.21 
and this axial velocity profile is antisymmetric with respect to ~ - 90 ~ as it results 
in from the expressions (7.84). 

The local Nusselt number ratio 

N u  _ 1 ( OT ) (7.85) 
- T;(0) N 

as a function of X 2 is shown in Figure 7.23 for P r  - 1 and 10; Nufc  is the local 
Nusselt number for a flat plate in forced convection flow. Using expressions (7.84), 
Yao and Cat ton (1977) obtained the following asymptotic solution: 

N u  = 1 +  (2x) 2 G~(0) (o------y cos0 + . . .  (7.86) 

and this result is also included in Figure 7.23 (shown by dotted lines). This figure 
shows that  at the upper side of the cylinder the secondary (cross) flow decreases the 
heat transfer rate, while it increases the rate of heat transfer on the lower side of the 
cylinder. However, the asymptotic solution (7.86) overpredicts this effect for x > 1. 

1.2 

1.0 
Nu 

0.8 

0.6 

0.4 
0.0 0:2 0:4 0 :6~0:8  1.0 

Figure 7.23: The variation of the local Nusselt number ratio with x 2. The solution 
for Pr - 1 is indicated by the solid line, the solution for Pr = 10 is indicated by 
the broken line and the asymptotic solution (7.86) is indicated by the dotted line. 
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Finally, Figure 7.24 shows the variation with x of the total heat flux over the 
cylinder, which is defined as follows: 

lf0  I f0-[ ] Gr�88 - ~rx v / ~  - - ~  (x, 0, 0) dO dx (7.87) 

as a function of x for P r  = 1 and 10. As expected, N u ( x )  increases as P r  increases 
and it appears that  as long as the flow is laminar, and x < 1.13, then the total heat 
flux can be obtained using forced-convection correlations. 

- 5  - , , - 

Nu(x) -4  

Gr~ -3  

-2  ~ P r  = 10 

-1 
P r =  1 

0 
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X 

Figure 7.24: Variation of the total heat flux with x for Pr = 1 and 10. 

7.6 M i x e d  c o n v e c t i o n  b o u n d a r y - l a y e r  f low a l o n g  a ver-  
t i ca l  c i rcu lar  c y l i n d e r  

Flows over horizontal and vertical cylinders are usually considered to be two- 
dimensional as long as the radius of the body is large compared to the boundary-layer 
thickness. For slender cylinders, the boundary-layer thickness may be of the same 
order as their radius and thus the governing equations must be solved for axisymmet- 
ric flows. In this case the equations contain the transverse curvature term which can 
considerably influence the fluid velocity and the temperature profiles, and the corre- 
sponding skin friction and heat transfer rate as the ratio of the radius of the cylinder 
to the boundary-layer thickness becomes small. Consequently, the governing equa- 
tions for boundary-layer flows over a vertical cylinder do not admit a similarity-type 
boundary-layer solution. Over the years a number of techniques have been devel- 
oped and applied to solve this problem. Among the procedures used are the heat 
balance integral, local similarity and local nonsimilarity methods, finite-difference 
techniques and perturbation methods. 
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Heat transfer by free and mixed convection flow along a vertical cylinder has been 
analysed rather extensively by many investigators, see for example Kuiken (1974), 
Cebeci (1975), Minkowycz and Sparrow (1974, 1978, 1979), Chen and Mucoglu 
(1975), Mucoglu and Chen (1976), Bui and Cebeci (1985), Lee et el. (1987, 198S), 
Mahmood and Merkin (1988) and Heckel et al. (1989). However, we believe that 
the most comprehensive work on this topic is by Mahmood and Merkin (1988) and 
therefore we present some of their results. 

Let us consider a thin (slender) vertical cylinder which is aligned in a direction 
which is parallel to a fluid flow which is uniform and the undisturbed free stream 
velocity is Uoo, the temperature is Too, and the radius of the cylinder is a. The radial 
coordinate ~ is measured from the axis of the cylinder, while the axial coordinate 
is measured vertically upward such that 5 = 0 corresponds to the leading edge where 
the boundary-layer thickness is zero. A uniform temperature Tw is maintained at the 
surface of the cylinder and then the buoyancy force acts in the same direction as the 
basic forced flow when Tw > Too (assisting flow) and in the opposite direction to the 
basic forced flow when Tw < Too (opposing flow). Based on the usual Boussinesq 
approximation, the governing mixed convection boundary-layer equations can be 
written in non-dimensional form as, see Mahmood and Merkin (1988), 

0 
a - 0 ( 7 . 8 8 )  

ox 

Ou Ou lO(Ou)  
U -~x + v 0--~ = r Or r -~r + ~ 0 (7.89) 

u-ff~ x + v 0--~ -- r P r  Or [ (7.90) 

where u and v are the fluid velocity components along the x and r axes and )~ is the 
mixed convection parameter which is defined by Equation (2.147). The boundary 
conditions appropriate to this problem are as follows: 

u = 0 ,  v = 0 ,  0 = 1  on r = l ,  x > 0  
u -+ 1, 0 --+ 0 as r --+ c~, x > 0 (7.91) 

The problem posed by Equations (7.88) - (7.90), along with the boundary condi- 
tions (7.91), has been solved by Mahmood and Merkin (1988) using a series solution 
method which is valid near the leading edge of the cylinder which was then extended 
by a numerical solution of the full boundary-layer equations far downstream. An 
approximate solution was also derived which is valid for all axial distances x. 

Smal l  values  of  x (<< 1) 

In this case the flow is, in principle, that  on a flat plate, which suggests the trans- 
formation 

1 r 2 -  1 (7.92) r -- x~ f ( x ,  ~7), O -- O(x, ~7), r / - -  
2x~  
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where the stream function, r is defined by 

0r 0r 
r u -  Or' r v -  Ox (7.93) 

On introducing expressions (7.92) into Equations (7.89) and (7.90), and with the 
primes denoting differentiation with respect to r/, we obtain the following: 

' l  f f,, ( , O f ' f  , ,Of)  [ ( l + 2 r / x � 8 9  + ~  + ) ~ x O - x  f Ox -~x 

1 , 1  [(1+ 0,] + 

(7.94) 

(7.95) 

with boundary conditions 

f ( x , O ) = O ,  f ' (x ,O)=O, O(x,O)=l for x > O  
f ' - - + l ,  0 ~ 0  as r / ~ c ~ ,  x > 0  (7.96) 

These equations suggest an expansion for the functions f and 0 for x ~ 1 of the 
form 

f - fo(rl) + x�89 (rl) + xf2(q) + . . .  (7.97) 
e - 6o(~)  + ~-~o~ (~) + ~ o 2 ( ~ )  +. . .  

where the coefficient functions fi(r/) and Oi(rl), i = 0, 1, 2 , . . . ,  have been numerically 
determined by Mahmood and Merkin (1988) by solving a set of ordinary differential 
equations. 

Using the determined values of f and 0 it follows that the skin friction coefficient, 
Cf, and the local Nusselt number, Nu, are given as follows: 

i Ou c l -  
Nu - _(lOO 

O-7)r=l 

1 f ,  = x - ~  (x ,  O) 
1 Ot 

- ~ ~ [- (~, o)] 
(7.98) 

and for Pr = 1 these quantities become 

[ , ] Cf - x ~ 0.33206 + 0.69432x~ + (-0.65658 + 1.14666,~)x + . . .  

Nu - x-�89 [0.33206 + 0.69432 x-~ + (-0.65658 + 0.27108 A)x + . . . ]  
(7.99) 

for x ~ 1. 

N u m e r i c a l  so lu t ion  

To numerically solve the transformed boundary-layer Equations (7.94) - (7.96), the 
integration should be started from the leading edge of the cylinder (x = 0), where 
the fluid flow is basically that on a flat plate, with the effects of the curvature and the 
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buoyancy force having only small effects near x - 0. However, there is a singularit~r 
in Equations (7.94) and (7.95) at x = 0 which arises from the presence of the 15 
term. In order to remove this singularity it is convenient to make the transformation 

1 
= x~, so that  these equations become 

, 1 l ( f ,  Of' f , ,O f )  (7.100) [(1 + 2r/~) f"] + f f "  + A~20 - ~ 0~ 

1 , 1 1 ( f ' O O - o ' O f )  (7.101) [(1 + 2v )o'] + f o' - 

and the boundary conditions are those given by the Equations (7.96). 
Equations (7.100) and (7.101), along with the boundary conditions (7.96), have 

of been numerically solved by Mahmood and Merkin (1988) for Pr - 1 using q = b-~ 
and 0 as the dependent variables, and then replacing the derivatives in the ~ direction 
by finite differences and all the other quantities by averages. The details are not 
given here as they can be found in the paper by Mahmood and Merkin (1988). The 
skin friction coefficient and the local Nusselt number, given by Equations (7.98), can 
be calculated at each step in the ~ direction. 

A p p r o x i m a t e  so lu t ion  

Further, in order to obtain an approximate solution which is valid for all values of 
x, Mahmood and Merkin (1988) have used an integral form of the energy Equa- 
tion (7.90), namely 

d ( f l ~ 1 7 6  1 ( 0 0 )  (7.102) 
dx ruOdr - Pr Or r=l 

and considered the following approximate forms for the fluid velocity and the tem- 
perature profiles 

u -- } ( 1 -  r 2) + ~ [1 + } (e TM -- 1)] lnr  I for 
0 - -  1-- ~ l n r  J 

u = 0, 0 = 0  for 

l ( r < e  M 

r ~ e  M 
(7.103) 

so that 
1 

Nu : (7.104) 
M(x) 

The function M(x) can be determined analytically by solving an ordinary differential 
equation, and which, for Pr = 1, gives 

x - 3Ae4M + �88 (1 + ~)e  TM + 8-~ [4 (1 - e TM) - A (1 + e TM - 2e2M)] 

13)k fO M (e4M-l) dM + ( 1 _  11~)fo M (e2M--1) 
+64 M M "  rg dM 

(7.m5) 
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1 
For small values of x (<< 1), Equation (7.105) gives M ( x )  ~ (12x)~ 
pendent of ,~, and thus it follows that  

, which is inde- 

1 
N u ( x )  ,~ 0.289 x-~  (7.106a) 

for x << 1, and M ( x ) -  �88 In (63-~) giving 

4 
N u ( x )  ,-., In (63-~-) (7.106b) 

for x >> 1 and A > 0. Additionally, Mahmood and Merkin (1988) have obtained the 
following asymptotic expression 

4 
N u ( x )  ,,~ 12z 2z (7.107) 

In ~- In -x-) t 

for x >> 1 and A > 0. 
The variation of 

1 1 

Cf  Re2z = / " ( x , O )  NuRe2z = -O ' ( x  0) (7.108) 
Re ' Re  ' 

as a function of x as obtained from the numerical solution of Equations (7.100) 
and (7.101) for P r  - 1 when A > 0 are shown in Figure 7.25. It is clearly seen 
from this figure, for a given value of A, that there is a rapid increase in the skin 
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~4 

Figure 7.25: Variation of (a) the skin friction coefficient, and (b) the local Nusselt 
number, with x in the case of assisting flow. 
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friction and the heat transfer rate as x increases along the cylinder, with this increase 
being more pronounced for the larger values of A. Further,  Figure 7.26 shows the 
variation of N u ( x )  as a function of In x for A - 1 as obtained from the approximate 
solution (7.107). Included in this figure are also the numerical results obtained from 
expressions (7.98) by solving numerically Equat ions (7.100) and (7.101) for step 
lengths in the z/direct ion of h -- 0.05 and 0.1. 

1.6 

0.8 

Nu 

0.4 

-'2 0 �89 4 (i 8 1'0 
lnx 

Figure 7.26: Variation of the local Nusselt number N u  with In x. The numerical 
solution is indicated by the solid line, the results with h -- 0.1 and h = 0.05 are 
indicated by the broken and dotted lines, respectively, and the asymptotic solution 
(7.107) is indicated by the dot-dash line. 

Further,  the variations of f " ( x ,  0) and - O ' ( x ,  0) as a function of x are il lustrated 
in Figure 7.27 for A - - 1  and A -- - 1 0 ,  i.e. opposing flow with P r  - 1. These 
figures indicate tha t  the heat transfer decreases slowly, whilst the skin friction goes 
to zero at a finite value of the separation point x - Xs(A). The variation of x - xs(A) 
with A (< 0), as obtained from the numerical solution, is shown in Figure 7.28 and 
also shown is the variation of x = xs(A) as calculated from the series (7.99) for 
C f  = 0 at x = X s(A). This gives 

1- 1 [ 1] 
xs2 (A) -- 1 + 1.746 0.529 + (0.280 + 0.506(1 + 1.746 IA[)) (7.109) 

It can be seen tha t  the agreement between the numerical values of x = Xs(A) and 
those given by the analytical expression (7.109) is good. Further,  we see from this 
expression that  x - Xs(A) ~ oi~j29o mr ~ I A[ >> 1. Thus, for IAI >> 1, the curvature effect 
of the cylinder is small and the flow up to separation is basically given by the flat 
plate solution found by Merkin (1969), from which it follows that  }A[ Xs(A) ,.~ 0.192 
for IAI >> 1. We also observe from Figure 7.27 that  for smaller values of ]AI, the value 
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Figure 7.27: Variation of f " (x ,  O) (solid line) and -O'(x, O) (broken line) with x 
for P r -  1 when (a) ;~-  -1  and (b) , ~ -  -10.  
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Figure 7.28: Variation of the separation point, Xs()~), with )~ for Pr - 1. The nu- 
merical solution is indicated by the solid line and the approximate solution (7.109) 
is indicated by the broken line. 

of the skin frict ion at x = Xs(X) behaves in a regular way wi thout  the appearance  of 

a singularity. W h e n  I,~] is small, the curvature  of the cylinder has a significant effect 
on the flow and the numerical  solutions of M a h m o o d  and Merkin (1988) suggest  

tha t  this has the effect of inhibi t ing the square root s ingular i ty  near separa t ion tha t  

arises in two-dimensional  boundary- layer  flow, see Section 2.2, with the solut ion 
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being regular at x = Xs(~). In fact, the numerical solution for A = -0.1 and ), = - 1  
continued past the point x = Xs(%) into a region of reversed flow, where, as expected, 
it became unstable and broke down. 

Finally, it should be noted that the problem of free convection boundary-layer 
along a partially heated infinitely long vertical cylinder which has been disturbed 
by a steady horizontal flow has been studied theoretically by Yao (1980), Yao and 
Chen (1981) and Scurtu et al. (2000). The asymptotic solution indicates that the 
boundary-layer is mainly induced by the buoyancy force in the vicinity of the ther- 
mal leading edge. The effect of the horizontal free stream on the boundary-layer 
gradually increases as one moves upward away from the thermal leading edge along 
the cylinder. It is found that the boundary-layer separation does not occur in the 
vicinity of the thermal leading edge but the asymptotic solution shows that the 
forced convection tends to separate the boundary-layer along the rear stagnation 
line of the vertical cylinder. 



Chapter 8 

Free and mixed  convect ion  
boundary- layer  flow over 
mov ing  surfaces 

8.1 I n t r o d u c t i o n  

During many mechanical forming processes, such as extrusion, melt-spinning, etc., 
the extruded material  issues through a slot or die. The ambient fluid condition is 
stagnant but a fluid flow is induced close to the material being extruded, due to the 
moving surface. In regions away from the slot or die the fluid flow may be considered 
to be of a boundary-layer type, although this is not true in the vicinity of the slot 
or die. Similar situations prevail during the manufacture of plastic and rubber 
sheets where it is often necessary to blow a gaseous medium through the material 
which is not, as yet, solid, and where the stretching force may be varying with time. 
Another example that  belongs to the class of boundary-layer flow problems due to 
moving surfaces is the cooling of a large metallic plate in a bath, which may be an 
electrolyte. In this case the fluid flow is induced due to the shrinking of the plate. 
Glass blowing, continuous casting and the spinning of fibres also involve the flow due 
to a stretching surface. In all these cases a study of the flow field and heat transfer 
can be of significant importance since the quality of the final product depends to a 
large extent on the skin friction and the surface heat transfer rate. 

The first study on the boundary-layer adjacent to a continuous moving surface 
was conducted by Sakiadis (1961) and since then it has been much generalised 
and refined. The fluid flow problem due to a continuously moving surface in an 
ambient fluid differs from that of the fluid flow past a fixed surface. Unlike the 
flow past a fixed surface, the continuous moving surface sucks the ambient fluid 
and pumps it again in the downstream direction. However, in all the earlier studies 
on boundary-layer flows due to a moving surface the effects of the buoyancy force 
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was neglected. Griffin and Throne (1967) in their experimental work employed an 
isothermal belt that moved through the surrounding air which was at 75~ while 
the surface temperature of the belt was held at 175 ~ Due to the buoyancy effects, 
the measured Nusselt number values were found to be 10 - 60% larger than those 
predicted without including the buoyancy effects as determined by Erickson et al. 

(1966). 
The free and mixed convection boundary-layer flow from vertical, inclined and 

horizontal moving surfaces has drawn considerable attention in recent years and a 
large amount of literature has been generated on this problem. The problem has been 
the subject of studies by Moutsoglou and Chen (1980), Lin and Shih (1981a, 1981b), 
Kuiken (1981), Khan and Stewartson (1984), Ingham (1986b), Merkin and Ingham 
(1987), Ramachandran et al. (1987), Lee and Tsai (1990), Riley (1992), Daskalakis 
(1993), Lin et al. (1993), Vajravelu and Nayfeh (1993), Pop et al. (1995b), Hady 
et al. (1996), Kumari et al. (1996b) and Fan et al. (1997). 

8.2 Free convect ion  boundary- layer  flow from a m o v i n g  
vert ica l  sheet  

Consider a plane sheet of thickness 2b which moves vertically downwards with a 
velocity - U s  in a quiescent viscous and incompressible fluid of ambient temperature 
Tcr We assume that below a certain point, that we shall locate at x = 0, the 
sheet may release its excess heat to the surrounding fluid. It is also assumed that 
at x = 0, i.e. at the exit, the temperature of the sheet is To, where To > T~. 
The physical configuration is schematically illustrated in Figure 8.1 together with 
the coordinate system employed. The coordinate x measures the distance along 

I 

2b ~ -  y 
I 

- - U  S 

Figure 8.1" Physical model and coordinate system. 
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the sheet, x being negative along the conducting portion, and y is normal to the 
sheet and being negative at one side of the sheet. This interesting problem was first 
considered by Kuiken (1981) in his investigation of the problem of free convection 
arising in the manufacture of glass fibre. The fibre is very hot as it leaves the orifice 
and it then slowly descends vertically losing heat by convection. As a result, the 
motion of the fluid is mainly towards the point where the sheet enters the system 
and a 'backward' boundary-layer ensues. Indeed, the exposed portion of the sheet is 
semi-infinite but the motion of the fluid is towards the finite end of the semi-infinite 
region. 

The equations which govern the motion of the fluid near the plane sheet are of 
the boundary-layer type and are given by Equations (1.77) - (1.79). Kuiken (1981) 
assumed in the problem he was investigating, that these equations are subject to 
the boundary conditions: 

u - - u s ,  v - O  on y = 0 '  x~<0 
u --+ 0, T --+ Too as y --+ c~, x < 0 (8.1) 

along with the heat condition 

(pcp) s usb (Ts - Too) - (pCp) f fo ~ u (T - Too) dy (8.2) 

In deriving the relation (8.2), Kuiken (1981) has assumed that within a cross-section 
of the sheet its temperature, Ts, is constant and therefore we note that the condition 
(8.2) is valid only for the boundary-layer approximation. However, a more generally 
applicable condition is given by the following equation: 

OTs OT 
Ox + k --~y 

y=O 
- o ( s . a )  

~'(PcP)s is the conjugate parameter. In establishing Equations (8.2) where k = Pr b us (pCp)s 

and (8.3), Kuiken (1981) assumed that the convection-induced fluid velocity is much 
larger than the sheet velocity, i.e. 

1 

u~ [gfl (To - Too)l]--~ << 1 (8.4) 

where 1 is a characteristic length, e.g. that  of the exposed portion of the sheet. The 
condition (8.4) permits us to assume that  us is very small and to be able to replace 
the condition u -  - U s  from the boundary conditions (8.1) by u = 0. 

Kuiken (1981) has shown that the appropriate similarity transformation for this 
problem is as follows: 

1 

r - [g~ (To - Too) v2x03] z f(~) 
3 

1 [ o3] r l =  ~ - B ( T o - T ~ ) x  ' 122 x o  - - x  

( s . 5 )  
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where x0 is a constant, which is as yet unknown, and then the Equations (1.77) - 
(1.79) reduce to the following two ordinary differential equations 

f , , ,  f , 2 + 0 _ 0  (8.6) 

0 " -  3 P r f ' O  - 0 (8.7) 

and the boundary conditions (8.1) become 

,o - o, f ' ( 0 )  - o, 0 ( o )  - ~ (8 .8 )  

Further, on using the condition (8.2) and Equation (8.7), the constant xo is given 
by 

4 

�9 0 - [ g ~  (To - T ~ ) ~ , ~ ] - ~  - 0 ' ( 0 ) k  (8 .9 )  

It is seen that  the parameter x0 plays a central role in the physical interpretation 
of the solution of this problem, namely it decides the rate at which the temperature 
decays in the downstream direction. If it is large then the decay is relatively slow, 
which is the situation when the sheet is thick, moves fast or the heat capacity is 
relatively large. Furthermore, it should be noted that the singularity at x = x0 does 
not affect the solution in any way. Indeed, the similarity solution (8.5) is defined in 
a region below x = 0, so that the singularity is outside the field of interest. Beyond 

OT x -- 0 the solution is governed by quite a different boundary condition, e.g. ~-  - 0 
if the wall is adiabatic. The fluid flow is a kind of wall plume that carries a fixed 
amount of heat in the upward direction. This amount of heat is equal to the heat 
that leaves the 'backward' boundary-layer at x = 0, and this in turn is equal to the 
heat that  is brought into the system by the moving sheet. 

Equations (8.6) - (8.8) were solved numerically by Kuiken (1981) for intermediate 
values of the Prandt l  number P r  and matched asymptotic expansions were used to 
treat the cases of very small and very large values of Pr .  For P r  = 1, this author 
has obtained 

f"(O) = 0.69321, O'(O) = -0.76986, f ( ~ )  = 2.43998 (8.10) 

On using these results, the temperature in the sheet, Ts, and in the boundary-layer, 
Tb, as well as the local Nusselt number, N u ,  were calculated and expressed as follows: 

( )3 
T~ - T ~  + (To - T ~ )  ~~ 

x o - x  

0 r (0)  xo  (8.11) 
- ( T o -  

N u  - -  6b 
k(zo,~) 

%-Too It can be shown that the ratio T~ :T~ reaches a maximum value of 0.2 when P r  --+ 0 

and it decreases continuously as P r  increases such that it tends to zero as P r  --+ c~. 
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It should be noted that  the present solution has the unusual property that  the 
temperature  and the fluid velocity profiles decay algebraically to zero as y tends to 
infinity, i.e. outside the free convection boundary-layer, and this contrasts to the 
more usual exponential decay. Further, Kuiken (1981) has examined, by analogy to 
the present problem, the extent to which the similarity solution (8.5) is relevant to 
the complete flow field. 

Subsequently, Khan and Stewartson (1984) have extended the similarity solution 
(8.5) by embedding it into the full solution of a system of partial  differential equations 
which are appropriate to the free convection boundary-layer flow over a vertical flat 
plate. They have shown that  the Kuiken (1981) solution (8.5) gives a remarkably 
accurate result for the flat plate properties, e.g. the heat transfer and the skin 
friction. However, the displacement thickness differs significantly from the similarity 
prediction almost everywhere. This is not unexpected because a similarity solution 
may be interpreted as an inner solution and the outer solution, which converts the 
a!gebraic decay of the temperature and the fluid velocity to the more acceptable 
exponential decay, should have a significant effect on the displacement thickness. 

In non-dimensional variables the equations that  govern the Khan and Stewartson 
(1984) problem are the Equations (1.14) - (1.16), along with the boundary conditions 

u : O ,  v = O  
OT cOT a--~- + -~  - 0  

u - + 0 ,  T ~ O  
u = 0 ,  T =  1 
u = 0 ,  T = O  

on y - - 0 ,  x > 0  

as y --+ cx~, x > 0  
on x = 0 ,  y = 0  
on x = 0, y > 0 

(8.12) 

Thus, the similarity solution (8.5) of Kuiken (1981) 
dimensional form as follows: 

1 y'(,1) co( ) 
u = ~ ,  T =  r i -  

x0 - x (x0 -- x) 3' 

can be written in non- 

1 

C ~ y  

X 0 - -  X 

(8.13) 

where f and 0 satisfy Equations (8.6) and (8.8) with C being a constant which can be 
determined from the condition OT aT ~- + ~ = 0 at y = 0 in Equation (8.12) as follows: 

111,]-1 Cz - - ~ 0  (0) (8.14) 

which gives C = 2.30589 • 10 2 for P r  = 1. In order to incorporate the singularity in 
the solution (8.5) at x = x0 as a natural  limit of the solution, Khan and Stewartson 
(1984) used the following variables 

,  (x1 x) 3 ( Xl )3 
x - X -~ ,  y - x X 1  ~, r - x - ~ F ( X , ~ 7 ) ,  T -  X t  - X G ( X ,  rl) 

(8.15) 
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where X1 is a constant to be chosen. On substituting the expressions (8.15) into 
Equations (1.14) - (1.16), and assuming that Pr = 1, we find that F and G satisfy 
the equations 

03F 3 X  (OF) 2 3 ( X )  (OF 02F OFO2F) 
Oq 3 4 X 1 - ~  -f- G - -~ X 1 -- -~1 0?7 0X077 cOX OV 2 

( X )  [3 02F I ( 0 F )  2] - 
0772 2 ~ 

0772 4 X~ 0---~ G - -~ X 1 - -~1 &7 0X Orl OX 

4 ~ FO--~ 

(8.16) 

(8.17) 

which have to be solved subject to the boundary conditions 

F - O  OF = 0  
07/ 

3 ( X 1 - X )  aC aG ~ on ~ - - 0  X > 0  + 4X~-g~ + 9G - 0 
OF X > O  o--~ -~ 0, G -+ 0 as 77 --+ cr 

(8.18) 

These equations were solved numerically by Khan and Stewartson (1984) by 
using the Keller-box method. It was decided that the best choice of Xa made in 
the computations was X1 = 3.84 and then the choice of the step sizes in 77 and X 
of 0.1 seems to guarantee at least four-figure accuracy in the skin friction and the 
temperature at the wall up to X = 3.8. It is important in the computations that X1 
be chosen correctly. If X1 is too small, then G has a triple zero at X = XI by virtue of 
Equation (8.15), and if X1 is too large, then G develops a singularity before X = X1. 
However, if X1 is chosen correctly, then G remains finite at X = X1 and furthermore 
the behaviour of F and G near X = X1 should be smooth. The determination of 
x0 and X0, the Kuiken (1981) singularity parameter in the present formulation, 
from the solution of Equations (8.16) - (8.18) is made as follows. According to the 
expressions (8.13) and using 0 ( 0 ) =  1, we have, close to x = x0, that 

1 

Tw 3(x) - C-~ (x0 - x) = 0.163075 (x0 - x) 

C} -�89 (x) - C-~ [f ' (0)]- �89 (x0 - x) - 0.156136 (x0 - x) 
(8.19) 

for Pr = 1, where the skin friction coefficient is given by 

- N x ,  - x o , 2  ( x , o )  (8 .20)  

The numerical results for Tw(x), Cl(x) and r c~) are given in Tables 8.1 and 
8.2 where (Tw)num, (Cf)num and r are the values of T~(x), Cf(x) and 
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Table 8.1- Variation of the skin friction coeO~cient, CI (x), and the stream function, 
r c~), as a function of X for Pr - 1. 

II 
0.0 oo 
0.5 1.07755 
1.0 0.86035 
1.5 0.69938 
2.0 0.55379 
2.5 0.41044 
3.0 ..0.26318 

1 

(c~)L ~ 
, 

0.939 
0.87678 
0.78264 
0.67068 
0.54533 
0.40900 
0.26321 

r OO)num 
. .  

0.0 
0.756 
0.548 
O.388 
3.293 
4.290 
5.441 

(Cf) nu~m 
...... 3.2 " 0.20244 
3.3 0.17162 
3.4 0.14049 
3.5 0.10905 
3.6 0.07731 
3.7 0.04525 
3.8 0.01290 

1 '  

(c~)/~ ~ 

0.2o~5o 
0.17167 
0.14052 
0.10906 
0.07730 
0.04525 
0.01291 

r cx:~)num 
, , . . .  _ _  

5.976 
6.269 
6.59 
6.94 
7.34 
7.83 
8.45 

Table 8.2' Variation of the temperature distribution at the cooling vertical sheet, 
T~(x), as a function of X for Pr = 1. 

[ ~  x ~ (Tw)num 
o.o o.o ~.o 
0.5 0.39685 0.90629 
1.0 1.0 0.80269 
0.5 1.71707 0.68817 
2.0 2.51984 0.50197 
2.5 3.39302 0.42380 
3.0 4.32675 0.27405 

_ .  

(T~)as ] ,] (T~)n.,um 
0.98049 
0.91577 
0.81742 
0.70049 
0.56957 
0.42718 
0.27491 

..X ! x 
3.2 4.71556 0.21114 
3.3 4.91306 0.17909 
3.4 5.11256 0.14666 
3.5 5.31406 0.11387 
3.6 5.51743 0.08073 
3.7 5.72272 0.04726 
3.8 5.92986 0.01347 

._  

(T~)~  
0.2i150 
0.17929 
0.14676 
0.11391 
0.08074 
0.04726 
0.01347 

r  c~) computed  from Equat ions  (8.16) - ( 8 . 1 8 ) ,  while (Tw)as and (Cf)as are the 
asymptot ic  values obta ined from the expression (8.19) with x0 = 6.01252. The 

asymptot ic  theory predicts  tha t  r  oo) is constant  and equal to C�88 - 9.5081 
but  it is clear tha t  the numerical  values of r  cx~) are monotonically increasing 
with x at a rate  which gradual ly increases and becoming quite sharp near x = 
x0. The reason for this is tha t  the displacement thickness r  c~ ) rep resen t s  the 
overall s t ructure  of the boundary- layer  and its previous history. By comparing now 
the numerical results from Tables 8.1 and 8.2 with those given by the asymptot ic  
expressions (8.19), we can conclude tha t  bo th  the numerical  and the asymptot ic  
solutions agree in fixing the values of x0 and X0 as follows: 

x0 - 6.01252, X0 - 3.83966 (8.21) 

and thus the discrepancies between the numerical  and asymptot ic  solutions are only 
in the fifth place of decimals for x >~ 5. 

The fluid velocity function ( x o -  x )u ( x ,  y) and the fluid t empera tu re  function 
( x o -  x ) 3 T ( x , y ) ,  as obta ined from the numerical  solution of Equat ions (8.16) - 
(8.18), are plot ted as a function of XoY_z in Figure 8.2 for various values of X and 
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Figure 8.2" (a) The fluid velocity, and (b) the temperature, profiles for Pr  - 1. 
The numerical solutions are indicated by the solid lines and the limiting solution 
(8.13) is indicated by the broken line. 

the limiting solutions (8.13) are also shown in these figures. It can be seen that  the 

agreement between these solutions is good. However, for the fluid velocity profiles 
the shapes differ considerably at finite values of xY_x, the numerical solution being 
smaller than  the limiting form, and this feature accounts for the discrepancies in the 
displacement thickness. 

The reduced fluid velocity, OF and the temperature,  T, profiles are shown in ~-~, 
Figure 8.3 for various values of X.  We can see, for any finite value of Y > 0 it 
appears tha t  OF ~-V and T have virtually zero limit values as X --+ X0. This result is 
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(a) 

5 

0, 
0 

(b) 

2 ~" x.=3. 

0.5 

3.4 X = 3.4 

y 5 0 y 5 

Figure 8.3: (a) The fluid velocity, OF (X, Y) and (b) the temperature, T(X,  Y) 
profiles/or Pr = 1. 

surprising, for it might have been expected that  normal diffusive processes would 
1 

have produced a boundary-layer  of thickness ~ x z from the heating near x - 0. 

8.3 Free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low f rom a hori-  
zonta l  m o v i n g  s h e e t  

Consider a thin rigid flat sheet of thickness 2b which issues from an adiabatic shroud 
and it cools as it moves along in the horizontal direction with a constant velocity - u s  
into an ambient fluid, see Figure 8.4. The Cartesian coordinates are defined with the 
origin on one side of the sheet at the orifice of the shroud so tha t  the coordinate 
measures the distance along the sheet, being negative along its conducting portion, 
and the coordinate y is in the direction of the gravity vector g. This problem has 
been solved by Pop et al. (1995b) following the similarity solution method of Kuiken 
(1981) for a part icular  fluid model (Pr  - 1), in a very general manner  to describe 
the nature of the near surface fluid flow for P r  ~ 1. 

Under the steady state flow condition and the boundary-layer  and Boussinesq 
approximations, the governing equations can be wri t ten in non-dimensional form, 
see Pop et al. (1995b), as follows: 

Ou Ov 
+ ~ - 0 ( 8 . 2 2 )  

0---~ oy 
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Adiabatic 
Shroud 

, ~ ~ ' ~  . . . .  

2b ~ -us ~4 

Figure 8.4: Physical model and coordinate system. 

Ou Ou Op 02u 
u--~x + v O---y = Ox ! (8.23) Oy 2 

Op 
0 - Oy + T  (8.24) 

OT OT 1 02u 
~~ + v o-7 = P~ oy~ (8.25) 

where the upper sign (+) in Equation (8.24) corresponds to the case when we choose 
the positive ~-axis upwards and consider the flow above the sheet, whilst the lower 
sign ( - )  corresponds to the case when the positive ~-axis is oriented downwards 
and the flow is under the sheet. These equations have to be solved subject to the 
boundary conditions: 

u - 0 ,  v - 0  } 
OT OT on y - - 0  x > 0  
O-~ + -0~ - -0  

u - + 0 ,  T--+0,  p - + 0  as y-+cx~, x > 0  
u - - 0 ,  T - - 1  on x - 0 ,  y - - 0  
u - - 0 ,  T - - 0  on x - 0 ,  y > 0  

(8.26) 

On seeking a similarity solution of Equations (8.22) - (8.25) it was found that 
r T, p and 77, the similarity variable, should have the following form: 

y r - -  C ~ I ( T ] ) ,  T - -  C 0(77)  1 h(r/) 
( x 0 -  x) 3' p -  • ~ (8.27) (z0 x) 2' ~ - C ~  X0 - -  X 

where x0 and g are constants to be determined. On substituting expression (8.27) 
into Equations (8.22) - (8.25) gives h'(~7) - =h0(~/) and the equations satisfied by f 
and h are then given as follows: 

f ' " -  I '~ T (2h + ~h') - 0 (8.28) 
1 

~ h ' "  - 3 f ' h '  - 0 (8.29) 
P r  
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with the boundary conditions (8.26) reducing to 

f (O)--O,  f '(O)=O, h ' ( 0 ) - I  
f ,  (8.30) --+0, h - + 0 ,  h ~ 0  as 77-+oo 

The problem defined by Equations (8.28) - (8.30) can be solved numerically for 
different values of Pr. Once the numerical solution has been obtained for a given 
value of Pr, the constants x0 and C can then be determined by using the boundary 
condition OT OT ~-~ + ~-~ -- 0 at y -- 0 from expression (8.26). Using this condition, along 
with T and 77 from expressions (8.27), we obtain 

3h' (0) + C 1 h" (0) - 0 (8.31) 

which, in combination with the boundary conditions (8.30) and that T 
(x, y) = (0, 0), gives 

- l a t  

5 

C -- h"(0) ' x0 - C�89 - h"(0) (8.32) 

As can be seen from Equation (8.29), the coefficient of the highest derivative of 
h becomes very small when Pr is very large and this may cause difficulties when the 
problem is solved numerically. Thus, it is convenient to introduce the transforma- 
tion, for large values of Pr (>> 1), 

4 " ~  1 " V  

f -- P r - ~ f ( ~ ,  h -  P r - ~ h ( ~ ,  y -  P r - ~  (8.33) 

so that Equations (8.28) and (8.29) become 

f fff 
Pr :F 

h " -  3f'h' = 0 (8.35) 

along with the boundary conditions of the form shown in Equation (8.30) and all the 
primes now denote differentiation with respect to ~. A solution of Equations (8.34) 
and (8.35) for large values of Pr is sought in the form of the following series 

]~(~ -- fo (~ + Pr - l  f~ (~ + Pr-2f2 (~ + . . .  
(~  - ho (~  -t- p r - l h l  (~  Jr- pr-2h2 (~  4-...  

(8.36) 

N 

where f0, h0, etc. are determined from three sets of ordinary differential equations 
which are given by Pop et al. (1995b) and therefore they are not repeated here. 
These sets of equations were solved numerically using the Runge-Kutta method and 
therefore the functions f ,  9 and h have been determined for various large values of 
Ft. 
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However, it should be noted that  it was found to be difficult to use the same nu- 
merical method, i.e. the Runge-Kut ta  method, to solve Equations (8.28) - (8.30) for 
both cases of flows under and above the sheet. Thus different numerical techniques 
were employed for different situations. For the flow under the sheet, i.e. the lower 
sign (+) in Equation (8.28), it was found that the central finite-difference scheme as- 
sociated with Newton's method was the most robust numerical technique. However, 
even this technique sometimes failed to give convergent solutions for small values of 
P r  (<< 1), so that  it was found advantageous to avoid the third-order derivatives 
that  occur in Equations (8.28) and (8.29). Thus the following new functions were 
introduced 

f ' =  F(r/), h ' =  0(~) (8.37) 

In terms of F and 0, Equations (8.28) and (8.29) become 

F " -  F 2 + (2h + U0) - 0 (8.38) 
1 

~ 0 " -  3FO = 0 (8.39) 
P r  

along with the boundary conditions (8.30) which take the form 

F ( o )  - o, 0 (0 )  - 1 (8 .40)  
F - + O ,  0--+0 as r/--+cr 

The function h is now given by 

f0 ~? h(r/) -- 0 dr /+  constant (8.41) 

where the constant can be determined using the boundary condition h(c~) = 0. 
Equations (8.38) - (8.41) have been solved numerically for P r  << 1 by Pop et al. 

(1995b) using a central finite-difference scheme and therefore the details are not 
given here. However, this method does not apply for the flow above the sheet. 
Instead, the system of Equations (8.28) - (8.30) with the upper sign ( - )  in Equa- 
tion (8.28) was solved using a standard Newton iteration method with a deferred 
correction technique as proposed by Curtis et al. (1974) and adopted for boundary 
value problems by Pereyra (1979). 

Typical numerical results for the fluid velocity, ft,  the temperature, 0, and the 
pressure, h, are presented in Figures 8.5 to 8.8 when P r  varies from P r  - 0.45 to 
1000 for both the cases of flow above and under the sheet. Figure 8.5 shows the 
variation of f~ and 0 for the flow above the sheet as obtained using the perturbation 
solution (8.36) for P r  = 50, 100, 500, 1000, 5000 and 10000 together with the full 
numerical solution of Equations (8.28) - (8.30) for P r  = 50. It can be seen that the 
agreement is very good. Further, Figure 8.6 shows the variation of f~ as a function 
of U for the flow under the sheet, Figure 8.6(a), and above the sheet, Figure 8.6(b), 
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(a) (b) 

0.05 1.0 

0.04 (71)0.8 
f'(,7 o 

0.03 O.6 

0.02 0.4 

0.01 0.2 

0.00 0.0 
0 2 4 6 8 0.0 0.4 0.8 1.2 1.6 2.0 

Figure 8.5: (a) The fluid velocity, f '(~), and (b) the temperature, 0(~), profiles 
above the sheet using both the full numerical solution (broken line) for Pr - 50 
and the series solution (8.36) (solid lines) for large values of Pr. 
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Figure 8.6: The fluid velocity profiles, f'(•), (a) under the sheet and (b) above the 
sheet. 

for various values of Pr.  It is clearly seen from Figure 8.6(a) tha t  for Pr  very large 
that  f '  is positive everywhere, but  as the value of Pr  decreases, f t  becomes negative 
near the sheet, i.e. there is a region of reversed flow in the vicinity of the sheet. As 
P r  decreases further, both  the magni tude and the size of the region of the reverse 
flow becomes larger. In contrast, no reverse flow region was found for any value 
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Figure 8.7: The temperature profiles, 0(71), (a) under the sheet and (b) above the 
sheet. 
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o 2 4 ~ 6 s o ~ ~ ~ 6 

Figure 8.8" The pressure profiles, hO?), (a) under the sheet and (b) above the sheet. 

of Pr  invest igated and this can be observed from Figure 8.6(b). Then, it can be 
observed from Figure 8.8 that  the pressure function h decreases everywhere as P r  
decreases and this leads to some difficulties in obtaining the numerical solutions of 
Equat ions  (8.28) - (8.30) for P r  < 1. Figure 8.7 i l lustrates for the flow under  the 
sheet tha t  the  t empera tu re  9 changes relatively slowly for relatively small values of 
Pr,  whilst 9 changes more rapidly and decays to its asymptot ic  value of zero very 
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quickly for the case of flow above the sheet. 
Finally, Figure 8.9 shows the variation of x0 with P r  for both flow situations 

considered. We see that for a given value of Pr ,  the value of x0 for the flow under 
the sheet is always greater than that for the flow above the sheet. This suggests that 
cooling by convection in the region above the sheet is more effective than that under 
the sheet. If we imagine that the upper and lower parts of the sheet are thermally 
isolated then at the same position x, the temperature on the upper surface of the 
sheet is lower than that on the lower part of the sheet. Pop et al. (1995b) concluded 
from the numerical solution of Equations (8.28) - (8.30) that x0 and 0'(0), the rate 
of heat flux at the sheet, have the following asymptotic expressions: 

x0 ~ 19.543 (Pr  - Pro) -1"~ , 0'(0) ~ -0 .504 (Pr  - Pro) ~ (8.42) 

for P r  ~ Pro = 0.438. The variation of x0 with Pr,  given by expression (8.42), 
is also shown in Figure 8.9 and it is clearly seen that this value is in very good 
agreement with that obtained from the full numerical solution of Equations (8.28) 
-(8.30). 

1000 

XO 

10 

100 

".-.. . . .  

10000 

0.1 
0.1 i lb 160 10'00 10000 

Pr 

Figure 8.9: Variation of Xo with Pr. The solutions under and above the sheet are 
indicated by the solid and broken lines, respectively, and the solution under the 
sheet using the asymptotic form given in Equation (8.42) is indicated by the dotted 
line. 

8.4 Free convect ion  boundary- layer  flow from a moving  
vertical  cyl inder 

This problem belongs to the class of convective boundary-layer flows past moving 
surfaces in a quiescent viscous fluid described in Section 8.2. However, the present 
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problem refers to the free convection boundary-layer on a heated, downward moving 
slender circular cylinder which was first considered by Riley (1992). The physical 
model and the coordinate system is that shown in Figure 8.10. A hot vertical 
cylinder or fibre of circular cross-section and diameter 2a moves with the velocity ~s 
in the direction of the acceleration due to gravity and it emerges from an orifice with 
an excess temperature To over that of the ambient temperature Too, and disappears 
into another orifice with an excess temperature T1 < To, which is unknown a priori. 
The exposed length of the cylinder is L and it is assumed that its temperature is 
T s (~), which is not known a priori. 

T~ 

Y 

- -  V 

Figure 8.10" Physical model and coordinate system. 

Introducing the non-dimensional variables 

N 

-~ Y - a ~ ~ T a 1 

x - - - i ,  y - -  a '  u Uc' v cUc' T - T 1 '  c =  l '  Uc (gj6Tll)~ 
(8.43) 

where 1 is O(L) and is an axial length scale, the governing boundary-layer equations 
can be written as, see Riley (1992), 

(~U OV V 
- -  ~ ~ O l + y  

Ou gu l ( 02u l Ou ) 

(8.44) 

+ T (8.45) 
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OT OT 1 (02T 1 0 T )  (8.46) 
U Ox + V O---Y = c P r G r �89 -~Y 2 4 l + y O y 

which have to be solved subject to the appropriate boundary conditions for this 
problem, namely 

} U - -  u s  V - -  0 U~, 
0T k 0 T _ 0  on y - - 0 ,  x>~0 

T - -  Ts(x), -5~ + 2-i-5~ 
u--+0, T - + 0  as y - + c o ,  x / > 0  
u - 0 ,  T - 0  on x - 0 ,  y > 0  

(8.47) 

where k is the conjugate parameter defined in Equation (8.3). To further simplify 
1 

these equations, Riley (1992) assumed that Pr - 1, cGr~ - 1 k_ _ s and also 
c - -  2 

that us << U c ,  i.e. the cylinder's downward velocity is small compared with the 
induced free convective velocity in the ambient medium. On making use of these 
assumptions, Equations (8.44) - (8.46) become 

0 u  0 v  V 
- - 0  

O x + O y  + l + y  

Ou Ou 02u 
u ~  + v o~ = Oy 2 

OT OT c92T 
~ -~x + v O-y = O y 2 

1 07' 

(8.48) 

t- T (8.49) 
l + y O y  

1 0 T  
(8.50) 

l + y O y  

while the boundary conditions (8.47) reduce to (8.12). 
Contrary to the corresponding problem of the cooling of a two-dimensional verti- 

cal thin sheet which was considered by Kuiken (1981), the present problem, as posed 
by Equations (8.48) - (8.50), does not admit a similarity solution. Kuiken's similar- 
ity solution (8.5) is remarkable in that it is singular at a finite point x = x0 on the 
sheet. Guided by this fact, Riley (1992) assumed a series solution of Equations (8.48) 
- (8.50) of the form 

U - -  (~o - ~) ~ (~o - ~)~ f ' ( , )  
n--O 

C�88 oo 
v - (xo - x) ~ (xo - x) n (nfn - 7 7 f ' )  (8.51) 

n--O 

C 
(~o - ~1~ F ,  ( ~ o  - ~)~ o~(~1 

n--O 

T ._ .  

where 
c~ 

n - y (8.52) 
X0 - -  X 
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Here the leading order functions f0 and 00 satisfy the Equations (8.6) - (8.8) and 
the constant C is given by expression (8.14). 

To solve Equations (8.48) - (8.50) numerically, Riley (1992) introduced new 
coordinates as follows: 

3 4 X �89 (X0 - X)  y (8.53) 
x -  ~X~,  Y -  Xo 

where Xo, which corresponds to the point x0, remains to be determined. The fluid 
velocity components and the temperature are then transformed as follows: 

2 
X o X  -~ Xo X 3 

- - - U ( X ,  Y), v -  V(X, Y), T =  O(X, Y) 
X o - X  X�89 (X O - x )  (Xo - X )  3 

and they satisfy the Equations (8.48) - (8.50) which become 

OU OU OV 
F 2 - ~  + F3-~-~ + F1U + - ~  + F4V - O 

02U OU 
Oy 2 F 2 U - ~  + (F4 - F 3 U -  V) OU U2 -ov-F~ + o - o  

020 O0 O0 
O y 2 F2 U - -~  + (F4 - F3 U - V) - ~  - Fs U O - 0 

together with the boundary conditions (8.47), which take the form 

where 

U = 0 ,  V = 0 ,  
30 + (X0 - X )  o0 o0 0--Z + Xoo-7 - 0 

U ~ 0 ,  0 - + 0  
U = 0 ,  0 = 1  
U = 0 ,  0 = 0  

on Y - 0, X > 0  

as Y -+ c~, X > 0  
on X = 0, Y = 0  
on X = 0, Y > 0 

2xo+x F2(X)-  X(Xo-X) 
FI (~) - 3Xo , Xo , 

F~ ( X ,  Y )  - x ~  ( x o - x )  
Xo+X~(Xo-XlY 

F3(X, Y)  - ( 4 x - x ~  

Fs(X) -  x-o-o3X 

(8.54) 

(8.55) 

(8.56) 

(8.57) 

(8.58) 

(8.59) 

Equations (8.55) - (8.58) were solved numerically by Riley (1992) using an adap- 
tation of the Crank-Nicolson finite-difference method and he obtained 

X0 = 3.58634, x0 = 4.11715 (8.60) 

The obtained numerical results are summarised in Figures 8.11 and 8.12 for the wall 
temperature distribution, the skin friction, and the fluid velocity and temperature 
profiles. Included here (by the broken line) are also the similarity solutions given by 
expressions (8.13) and (8.19) with xo being given by (8.60). It is clearly seen that  
the agreement between these solutions is excellent and it confirms that Kuiken's 
similarity solution (8.13) is indeed the appropriate limiting solution as x ~ xo. 
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Figure 8.11" Variation of (a) the wall temperature distribution, and (b) the skin 
friction coefficient, with x ]or Pr  - 1. The numerical solutions are indicated by 
the solid lines and the similarity solutions (8.19) are indicated by the broken lines. 

(a) (b) 

L 
" ~ 4 ~  ~ ~ 180 

o .~ I 120 

60 
1 

0 0 
0 1 2 3 4 0.0 Y 

X 0 - -  X 

= . ,3 .5  

i i  

0:5 1:0 
Y 

x 0  - -  x 

Figure 8.12" (a) The fluid velocity, and (b) the temperature, profiles for Pr  - 1. 
The numerical solutions are indicated by the solid lines and the similarity solutions 
(8.13) are indicated by the broken lines. 

8.5  Free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low d u e  to  a c o n -  
t i n u o u s l y  m o v i n g  v e r t i c a l  f lat p l a t e  

T h e  p r o b l e m  of  t h e  free convec t i on  b o u n d a r y - l a y e r  flow over  a ver t i ca l  flat p l a t e  

w h i c h  is in c o n t i n u o u s  u p w a r d ,  or d o w n w a r d ,  m o t i o n  is a lso of  i m p o r t a n c e  in severa l  
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manufacturing processes in industry. Ingham (1986b) has shown that if the plate 
moves with a constant velocity Uw, and its surface temperature varies according to 
the relation (3.54), then the governing boundary-layer equations become similar and 
their solution depends on the mixed convection parameter ;k, which is now defined 
as 

Gr 
A - 2 Re--- 5 (8.61) 

Several flow situations corresponding to A > 0 (assisting flow), A < 0 (opposing 
flow) and A = 0 (forced convection flow) have been considered in detail by Ingham 
(1986b). 

Under the usual Boussinesq and boundary-layer approximations, the governing 
equations for this problem can be written in non-dimensional form as, see Ingham 
(1986b), 

0r 0 2r 0r 0 2r 
Oy OxOy Ox Oy 2 

or OT 0r OT 

0 3 r  -I- A--T 
Oy3 2 

1 02T 

Oy Ox Ox Oy Pr  Oy 2 

and the appropriate boundary conditions are as follows: 

r  o_r  T - !  on y - 0 ,  
Oy ~ ~ - -  x 

0__~r _~ 0, T --+ 0 as y --~ c~, 
Oy 

If we look for a similarity solution of the form 

r 1 8 9  T--10(77) ,  ~/-- 
x 

then Equations (8.62)and (8.63) become, with Pr  = 1, 

f ' "  + f f " +  AO -- 0 

0" + f O' + 2 f'O = 0 

and the boundary conditions (8.64) reduce to 

f ( 0 ) = 0 ,  f ' ( 0 ) = l ,  

f ' -+0 ,  0--+0 as 

0(0) = 1 

U --+ cr 

x > O  

x > O  

1 
(2~)~ 

(8.62) 

(8.63) 

(8.64) 

(8.65) 

(8.66) 
(8.67) 

(8.68a) 

(8.68b) 

8.5.1 A > 0  

Solving numerically Equations (8.66) - (8.68), Ingham (1986b) has found that  dual 
solutions exist for 0 < A < Am (= 2.531) and that near A = 0 + the solution on the 
second (upper) branch curve is of the form 

f(r/) -- fo(r / )+  Afl(r/) + . . .  
o(,7) = ~,-~Oo(,7)+ o~(,7) + . . .  

(8.69) 



CONVECTIVE BOUNDARY-LAYER FLOW OVER MOVING SURFACES 273 

The functions f0, 00, f l  and 01 are given by the following two sets of equations 

/g '  + f o f g  + Oo - o, o8 + foO'o + 2 y Oo - o 

f o ( O ) - O ,  f (~ (O) - l ,  0 o ( 0 ) - 0  
f ( ~ O ,  0 o - + 0  as r / -+oo  

(8.70) 

f~,r + lo f t '  + f l f ~  ~ + O1 - - 0  
Oil t + fOOll + 2f~01 + f l  Oto + 2 f~ O0 -- 0 

f l ( 0 ) - - 0 ,  f~.(O)--O, 01(0) - -1  
f~ -+0,  01 ---~0 as r l ~ C ~  

and the numerical solution of Equation (8.70) gives 

(8.71) 

f~ r (0 ) -  29.325, 0(~(0) -- 393.69, f0(cx3)= 5.733 (8.72) 

The values of f"(0),  f(c~) and 0'(0), as obtained by Ingham (1986b), for 0 < 
< 1 on the second (upper) branch curve are given in Table 8.3 and the values 
1 t of ~00(0 ) are also included in this table for comparison. These results clearly show 

that  as A ~ 0 + the asymptotic solution (8.69) is being approached. 

Table 8.3- 
P r -  1. 

1 ! Variation of f"(O), f(oo),  0'(0) and ~0o(0 ) as a function of )~ for 

1.0 300.5 

0.8 399.9 
0.6 564.7 
0.4 893.5 
0.2 1878.4 
0.1 3847.1 
O.05 7784.1 
0.02 19594.0 
0.01 39279.0 

Limit  A = 0.0 

e,r 
393.7 
429.1 
656.2 
984.2 

1968.5 
3936.9 
7873.8 

19684.0 
39369.0 

8 .5 .2  ,k < 0 

In this case it was found by Ingham (1986b) that no solutions of Equations (8.66) 
- (8.68) are possible for ~ < ~c (= -0.182) and this occurs at f(c~) - 0.348. As 
the value of f(oo) was further reduced towards zero it was shown that a second 
branch of the solution curve has been developed. It appeared that  )~ ,-~ -0.174 as 
f(c~) --+ 0 +. Further, a search of the asymptotic solution of Equations (8.66) and 
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(8.67) as 77 -+ oo yields that  it must have an algebraic decay which is of the form 

Ao A1 A2 
f ~  + + + . . .  

( ,  + ao) ( ,  + ao) 2 (~ + ao) 3 

Bo B1 B2 
0 ~ + + + . . .  

( ,  + ao) 4 ( ,  + ao) 5 (~ + ao) 6 

(8.73) 

where ao, Ao, B o , . . .  are constants, 

10 20 8 A - _  3 AcoB1 - - AooB2 2A 2 A2 T~A~ A 0 - - ~ - ,  AooB0-  9 '  ~ 1~ ~ -- 
, a l .  X . J  

(8.74) 
and )%0 is the unknown value of A for which f (o o) = 0. 

A numerical solution of Equations (8.66) and (8.67), subject to the boundary  
conditions (8.68a) at 77 = 0 and (8.73) at 77 = 7/oo, gives 

A o o - - 0 . 1 7 3 9 ,  f " ( 0 ) - - 0 . 8 8 7 3 ,  0 ' ( 0 ) - 0 . 7 4 6 7  (8.75) 

The variation of f ' ( 0 ) ,  0'(0) and A as a function of f(oo) is shown in Table 8.4. 
This table clearly shows that  the solution of Equations (8.66) and (8.67), which 
at large values of r/ has the algebraic decay given by expressions (8.73), is being 
approached and that  dual solutions exists for Ac < A < Aoo. Ingham (1986b) has 
demonstrated analytically that  the solution of these equations is singular at ,k = Aoo. 
Therefore, an important  and novel outcome of the opposing flow case (A < 0) of this 
problem is the singular nature of the solution curve of Equations (8.66) - (8.68), 
which terminates at f (oo) = 0. In all other similar problems, where dual and singular 
solutions exist for nonlinear ordinary differential equations, the termination of the 
solution curve usually occurs in a quite predictable manner  but this does not occur 
in the present problem. 

Table 8.4: Variation of f"(0),0'(0) and A as a function of f(c~) for P r -  1. 

?(ooi 0,(0) 
_ _ .  

0.7 0.8383 
0.6 0.7967 
0.5 0.7671 
0.4 0.7486 
0.3 0.7401 
0.2 0.7411 
0.1 0.7448 
O.O5 0.7460 
0.02 0.7465 
0.01 0.7467 
0.0 0.7467 

[ f" (0) 
-0.8479 
-0.8712 
-0.8861 
-0.8939 
-0.8955 
-0.8927 
-0.8883 
-0.8877 
-0.8874 
-0.8873 
-0.8873 

A 
--0.1514 .... 
-0.1672 
-0.1770 
-0.1814 
-0.1814 
-0.1783 
-0.1746 
-0.1742 
-0.1739 
-0.1739 
-0.1739 
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Typical results for f"(0) ,  f (er  and 0'(0) obtained from a direct numerical inte- 
gration of Equations (8.66) - (8.68) are shown in Figure 8.13 for several values of A 
of interest. Also shown in these figures are the limiting and asymptotic solutions. 
It is seen that there is an excellent agreement between these solutions. Further, it 
is observed from Figure 8.13(a) that  f"(0)  > 0 on the lower branch of the solu- 
tion curve for ~ > 0.3817 and on the upper branch curve for X > 0. This shows 
that  for this range of values of A that  the maximum fluid velocity occurs within 
the boundary-layer. This is not surprising since as ~ increases the buoyancy force 
becomes larger and it will eventually dominate over the motion caused by the plate. 
Also, 0'(0) > 0 for all values of A for which solutions are possible and this gives rise 
to temperature profiles in which the maximum temperature  occurs at a point within 
the boundary-layer rather than on the plate. 

(a) (b) 

30- 600 
f"(o) o'(o) 

450 
20- 

10- 

---0:5 1:0 1:5 2. 0 2:5 
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0:5 
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1:0 1:5 2:0 2:5 
A 

Figure 8.13: Variation of (a) f"(O), and (b) 9'(0), with )t for Pr  - 1. The 
numerical solutions are indicated by the solid lines, the asymptotic solution (8.69) 
for small values of A is indicated by the broken line and the limiting solutions are 
denoted by the symbols o. 

It should be noted that  the corresponding problem of a flat plate which moves 
horizontally has been studied in a similar way by Merkin and Ingham (1987). It 
was found that  there is a unique solution for all positive values of the buoyancy 
parameter A and that  for negative values of A the solution terminates in a singular 
manner with algebraic decay. 
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8.6 M i x e d  convec t ion  boundary- layer  flow from a mov-  
ing horizontal  fiat plate  

Consider the mixed convection boundary-layer flow over a horizontal flat plate which 
moves continuously from a slot with a constant velocity Uw (>/0). The plate moves 
in a viscous incompressible fluid parallel to a uniform free stream U~ (~> 0), see 
Figure 8.14. The mixed convection boundary-layer flow arises due to the interaction 
of the free stream, the motion of the plate, and the streamwise pressure gradient 
caused by the buoyancy force from the temperature difference between the uniform 
surface temperature Tw and the ambient fluid temperature Too, where Tw > Too 
for a heated plate and Tw < Too for a cooled plate. This general problem was first 
formulated by Lin et al. (1993) and it includes six sub-problems as we will show 
below. 

t--~u~ ~u~ 
Too_._~,~y ~ T~ -''~ ._~ Ay ~ i  :k 

-v~ 

Figure 8.14: Physical model and coordinate system. 

The basic equations governing the boundary-layer flow for this problem are the 
Equations (3.50) - (3.52) and they have to be solved subject to the boundary con- 
ditions 

u-: i=Uw, v - O ,  T = T w  on y = 0 ,  x > 0  (8.76) 
u --+ Uoo, T -+ Too, P --+ poo as y -+ co, x > 0 

where -t- pertain to the case of the plate moving in the same or the opposite direction 
to that of the free stream. 

In order to solve this problem Lin et al. (1993) defined the following variables: 

r - o~fA6f(~, 7]), 0(~, ~7) -- i /kT ~ ,  P - Poo - x ~ h ( ~ ,  71), 

where 

x 

(8.77) 

AS - 1  

1 
A f -- (o'3Rew + o'2Reoo) 7 , 

P r  
O'1 - -  1 + P r  

- ~ A6 - A I + An - "+~' ( =  ~-7' - (  ~R~)  -1 ~ 
Am 1 + a l  R e w  , An -- (al Raz) 

P r  P r  2 
O-2 - -  ~  - -  

( l + P r ) � 8 9  ' l + P r  

(8.78) 
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with Rew = u~oz and Reoo -- Uooz being the local Reynolds numbers based on Uw 
//  /2 

and Uoo, respectively. It is worth mentioning that  the transformations (8.77) and 
(8.78) convert the entire mixed convection domain from 0 <~ ~ ~< co to 0 ~< ~ ~< 1. 

Substituting expressions (8.77) into Equations (3.50) - (3.52), we obtain 

P r f ' "  + ~0 ~ f 510 rlh' ~) f ,  Of' if, Of Oh 

(8.79) 

h ' -  t ( l + P r ) ~ 5 0  

1 ( ) 0" + , fO' - ~ (1 - () f ,  O0 _ o, Of 

(8.80) 

and the boundary conditions (8.76) become 

f(~ 0 ) - 0 ,  f ' ( ~ , 0 ) - - •  ~ ( 1 - ~ ) 2  0 ( ~ , 0 ) - 1  for ~ > 0  
0"I 

1 

e- o, as 

(8.82) 
where the + sign in Equation (8.80) corresponds to the case of assisting flow above 
the heated plate due to a favourable pressure gradient, whilst the - sign applies to 
the opposing flow above the cooled plate. 

The following six problems can be readily obtained from the general Equa- 
tions (8.79) - (8.82) by setting appropriate values of the parameters ~ and Am, 
namely (i) free convection on a horizontal flat plate (~ - 1); (ii) forced convection 
from a fixed plate (~ = 0, Am = 0); (iii) forced convection from a moving plate in a 
quiescent ambient fluid (~ - 0, Am - 1); (iv) forced convection from a moving plate 
in a free stream (~ -- 0, 0 ~< Am ~< 1); (v) mixed convection from a fixed horizontal 
plate in a free stream (Am -- 0, 0 ~< ~ ~< 1); and (vi) mixed convection flow from a 
moving horizontal flat plate in a quiescent ambient fluid (Am - 1, 0 ~< ~ ~< 1). 

Physical quantities of interest are the fluid velocity and the temperature profiles, 
as well as the local skin friction coefficient and the local Nusselt number. After some 
manipulations we obtain 

C / R e ~  - 2a} (1 - Am)-~ (1 - ~)-3 f,,(~, O) 
1 

N~ = aft ( 1 -  Am) -�89 ( 1 -  ~1-1 [--0'(~,01] 
R~ 

1 1 
N u  - - 1  r = a ~ A m  ~ ( 1 - ~ )  [-0'(~,0)] 
Re~ 

(8.83) 

Equations (8.79) - (8.82) were solved numerically by Lin et al. (1993) using the 
Keller-box method for several values of the parameters ~, Am and Pr which are of 
interest. Figures 8.15 to 8.17 show the reduced fluid velocity and the temperature 
profiles for Pr -- 0.7 from the limiting case of a fixed plate (Am -- 0) to the other 
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Figure 8.15: Fluid velocity profiles, f'(~,~), for Pr  - 0.7 in the case of assisting 
flow when (a) )~r~- 0 and (b) Am - 1 (parallel to the free stream moving plate). 
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Figure 8.16" Fluid velocity profiles, f'(~,~7), for Pr  = 0.7 and )~m 
to the free stream moving plate) in the case of opposing flow. 

- 0.5 (parallel 

limiting case of a moving plate (Am - 1) in both assisting and opposing buoyant flow 
situations. It is from Figure 8.15(b) that  for the special case of U~ - Uoo (Am - 
0.3295) the fluid velocity profiles are uniform in the forced convection dominant  
region, ~ < 0.3. Then, Figure 8.16 shows that  in the buoyancy opposing fluid flow 
case, the fluid velocity profiles, as expected, decrease slightly as the parameter  
increases from 0 to 0.4. It was stated by Lin et al. (1993) that  convergent numerical  
solutions cannot  be obtained for higher values of ~, for example, ~ > 0.4 for ~ m  - -  



CONVECTIVE BOUNDARY-LAYER FLOW OVER MOVING SURFACES 279 

(b) 

1.0 1.0 

0.8 ~ 0.8 

0.6 0.6 

0.4 0.4 
�9 , 

0.2 0.2 

0.0 0.0 
0 2 4 ~7 6 8 0 2 4 71 6 8 

Figure 8.17: Temperature profiles, 0(~,r/), for Pr = 0.7 and Am 
moving plate) for (a) assisting flow and (b) opposing flow. 

= 0.5 (parallel 

0.5. This is due to the breakdown of the boundary-layer approximation when the 
unfavourable pressure gradient is larger than a certain critical value. Also, the 
temperature profiles shown in Figure 8.17 increase as the parameter ~ increases 
from 0 to 0.5, but decrease as ~ increases from 0.6 to 1 for the case of buoyancy 
assisting flow. 

The skin friction coefficient and the local Nusselt number, as given by the rela- 
tions (8.83), are shown in Figures 8.18 and 8.19 for several values of ~, Am and Pr. 
Some interesting features of these quantities can be clearly seen in these figures and 
a good discussion of the flow characteristics can be found in the paper by Lin et al. 
(1993). 

Additionally, Lin et al. (1993) have given some comprehensive correlations for the 
Nusselt number when 0.01 ~< Pr  <~ 10000 over the entire domain of mixed convection 
flow and for any relative velocity between the plate and the free stream. These 
correlations are very useful for the design and operations of several manufacturing 
processes, such as hot rolling, extrusion and material cooling on a conveyer. 
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Figure 8.18: Variation of the skin friction coefficient with ~ or Am for Pr - 0.7 
in the case of a parallel to the free stream moving plate for (a), (c) assisting flow 
and (b) opposing flow. 
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Figure 8.19- Variation of the local Nusselt number with ~ when Pr  - 0.7 ]or (a) 
a parallel to the free stream moving plate and (b) a reverse moving plate. The 
cases of assisting and opposing flow are indicated by the solid and broken lines, 
respectively. 



Chapter 9 

U n s t e a d y  free and mixed 
convect ion 

9-1 In troduct ion  

The problem of unsteady convective heat transfer has long been a major subject in 
the heat transfer theory because of its great importance from both a theoretical and 
practical viewpoint. In fact there is no actual flow situation, natural or artificial, 
which does not involve some unsteadiness and examples of unsteady convective flows 
are very numerous. These flows are frequently encountered in technological and envi- 
ronmental situations, such as, for example, energy conservation processes, buildings 
and structures, the processing of materials, geophysical and biological flows, and the 
spread of pollutants and fires as well as many others. 

In the broad class of fluid and heat transfer problems there are two main cate- 
gories of truly unsteady problems, namely linear and nonlinear problems. However, 
most viscous flow problems fall into the second class, which are, of course, more 
difficult to analyse and model. On the other hand, since most of the fundamental 
concepts which can be described by linear theory are now fairly well understood, 
the greatest challenges today are in nonlinear situations. Therefore, our attention 
in this chapter is focused only on unsteady nonlinear convective flow problems. 

9.2 Basic  equat ions  

We consider the heat transfer and fluid motion that occurs in a viscous incompress- 
ible fluid adjacent to a vertical semi-infinite flat plate which is heated or cooled in 
an unsteady manner. At time t < 0 the temperature of the plate is at the same 
temperature as that of the surrounding fluid, Too, and then at t - 0 the temperature 
or the heat flux of the plate is suddenly increased or decreased and maintained at 
either the value T--w or qw- The quantities Tw and qw can depend on both time and 
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position along the plate, although, perhaps, the most basic problems are when Tw 
and ~ are constant. The fluid motion and heat transfer is described in a Cartesian 
coordinate system (~,~) which is attached to the plate as shown in Figure 1.1(a). 
The analysis incorporates the non-dimensional variables 

t - -  ur �9 -r-, x - - i ,  u - -  

() T-Too (VWT) T -  T* y - G r ~  , v - Gr�88 ~ , - 

1 (~) 1 ( ~ )  1 ~TOo 
y - G r ~  , v - G r ~  ~ , T -  G r ~  ~ (VHF) 

(9.1) 

where Uc and T* are defined in Section 1.2. On substituting the expressions (9.1) 
into Equations (I.1) - (I.3), and assuming that the boundary-layer approximations 
are valid and this holds when the Grashof number is very large ( G r  >> 1), then the 
governing unsteady boundary-layer equations for the vertical flat plate problem are 
as follows: 

Ou Ov 
+ N - 0 (9.2) 

Ou Ou Ou 02u  
0--[ + U-~x + v Oy - Oy 2 ~- T (9.3) 

OT O T  0"1" 1 0 2 T  

O-T + u ~ + v O--y = P r  Oy2 (9.4) 

The appropriate initial and boundary conditions for these equations are as follows: 

u = O, v = O, T = O, qw = O for t < 0 ,  y ) 0 ,  
u - 0 ,  v = 0  / 

T - - T w ( x , t )  (VWT) on y - 0 ,  x~>0 
O T  oy -- - q w ( x ,  t) (VHF) 

u - + O ,  T - + O  as y - + o c ,  all x 

u - - 0 ,  T - 0  on x - 0 ,  y > 0  

all x 

for t>~O 
(9.5) 

Equations (9.2) - (9.4), along with the boundary conditions (9.5), form a cou- 
pled set of nonlinear partial differential equations in three independent variables. 
Many attempts have been made to find analytical and numerical solutions of these 
equations when applied to certain specific boundary conditions and using different 
mathematical approaches. Yang (1960), Gebhart (1961), Menold and Yang (1962), 
Williams et al. (1987) and Abdel-el-Malek et al. (1990) have considered the situa- 
tion when the wall temperature T w ( a ,  t)  varies only with time, or with position, or 
with both time and position, and in situations which yield similar or semi-similar 
solutions. In the semi-similar solution method the number of independent variables 
is reduced from three to two by use of an appropriate scaling. This allows the use of 
fast and accurate numerical methods in the solution of the reduced equations. In ad- 
dition, these semi-similar solutions yield new and valuable information on the basic 
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structures of these unsteady flows, as well as providing accurate results which can be 
used for checking the more complicated, and often unproven, numerical procedures 
that are required for general unsteady flows. However, the use of the method of 
semi-similar solutions is not without some penalty and not all wall temperature dis- 
tributions, Tw(x,  t), lend themselves to semi-similar solutions. In a review paper on 
buoyancy-induced fluid motion, Gebhart (1979) discussed the many important flows 
which have power-law wall temperature distributions and possess similar solutions. 

Virtually all the investigations on unsteady free convection boundary-layer flows 
in the vicinity of a vertical semi-infinite flat plate, which is impulsively heated, or 
cooled, to a constant temperature which is higher, or lower, respectively, than that 
of the ambient fluid, have considered the transient process from the initial unsteady 
flow to the final steady state flow. At a given point on the plate, during the early 
phase of the flow development, then the temperature and the fluid velocity fields 
develop as if the plate were infinite in extent as there is no mechanism by which the 
presence of the leading edge can be transmitted instantaneously up the plate. Illing- 
worth (1950) has shown that in the case of an impulsively heated infinite vertical 
plate that the temperature field develops in the same manner as the temperature 
field in a semi-infinite solid whose surface is impulsively heated, i.e. for the infinite 
plate the heat transfer is by one-dimensional conduction only. Once the signal from 
the leading edge of the plate reaches a given position then the flow and the heat 
transfer at that position begins a transition and ends in the steady state which is 
described mathematically by the well-known similar solution of Schmidt and Beck- 
mann (1930). Explaining the transition from the small time solution to the large 
time, or steady state, solution has proved to be very difficult. A large number of in- 
vestigators have attempted to solve this problem analytically and/or numerically and 
despite repeated efforts no completely accurate analytical or numerical solution to 
this problem has yet been found. Sugawara and Michiyoshi (1951) used the method 
of successive approximations, whilst Siegel (1958), Yang (1960, 1966), Heinisch et al. 
(1969), Nanbu (1971) and Miyamoto (1977) used the Ks163 integral 
method. Siegel (1958) has explained the physical phenomena as follows. At a finite 
distance from the leading edge the fluid flow develops as if the plate were infinite in 
extent but due to the wake-like nature of the unsteady boundary-layer equations a 
finite time elapses before the leading edge influences the flow development at that 
station and the transition to the classical steady state solution takes place. These 
essential features of the flow have been confirmed experimentally by Goldstein and 
Eckert (1960), Gebhart et al. (1967) and Mollendorf and Gebhart (1970). 

The only analytical solution for the problem of transient free convection near 
an impulsively heated vertical flat plate has been given by Brown and Riley (1973). 
They obtained series solutions which are valid for small and large values of the sim- 
ilarity variable T - ~ and predicted a time up to which their small time unsteady 

solution is applicable. No solution was reported for intermediate values of T. These 



286 CONVECTIVE FLOWS 

authors have also established that the maximum penetration distance, Xp, of the 
leading edge signal is given by 

j~0 t Xp - max [u(y, t)] dt (9.6) 

whereas Goldstein and Briggs (1964) predicted that 

where the maximisation is with respect to y. 
Numerical solutions of Equations (9.2) - (9.4), subject to the boundary con- 

ditions (9.5), with Tw(x, t)  - 1 which corresponds to an impulsively heated plate 
were first obtained by Hellums and Churchill (1962) and Carnahan et al. (1969). 
These authors used the finite-difference method in which the governing equations 
are solved in three independent variables as an initial value problem. The solution 
obtained shows that the leading edge disturbance propagates at a speed which is in 
excess of the maximum one-dimensional speed as predicted by Equation (9.7). Fur- 
thermore, Brown and Riley (1974) obtained a numerical solution of Equations (9.2) 

- (9.4), subject to the boundary conditions (9.5) with T,~(x, t) = 1, and this solution 
showed a departure from the one-dimensional solution earlier than that predicted 
theoretically by Equation (9.6). On the other hand, computations for a surface with 
a sudden generation of internal energy were performed by Joshi and Gebhart (1988) 
and they showed that Equations (9.6) and (9.7) actually imply an overshoot in the 
mass flow rate over the steady state levels for Prandtl  numbers of 0.73 (air) and 6.7 
(water). 

Careful numerical solutions of Equations (9.2) - (9.5) with Tw(x, t) = 1 have 
been performed by Ingham (1978a), where he reproduced the results of Hellums 
and Churchill (1962) for the same finite-difference step size and showed that as 
the step size was reduced the results diverged. In a subsequent paper, Ingham 
(1978b) solved these equations using four different numerical methods. All these 
results show a departure from the unsteady one-dimensional solution before the 
theoretically predicted time and that as the mesh size is reduced then the results 
do not tend to a smooth limit, but rather the time of transition from the one- 
dimensional solution appears to tend to zero. This suggests that the solution of 
the boundary-layer equations may be one in which it changes discontinuously from 
the unsteady one-dimensional solution to the steady state solution. To check this 
hypothesis, Ingham (1985) assumed that Tw(x, t) = x m ,  where m is a given constant, 
and solved Equations (9.2) - (9.5) for several values of m but with detailed attention 
to the behaviour of the solution as m --+ 0 +. In another paper, Ingham (1978c) 
considered the unsteady free convection boundary-layer flow past a suddenly cooled 
vertical plate, which is the reverse of the Brown and Riley (1973) problem. Although 
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the governing equations of both problems are the same, the two problems are, as it 
will be seen later, fundamentally different. 

9.3  T r a n s i e n t  free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low over  
a s u d d e n l y  h e a t e d  v e r t i c a l  p l a t e  

Under the assumption that the wall temperature T~ is given by Equation (1.31), 
the governing Equations (9.2) - (9.4) may be reduced to two independent variables 
by writing 

~m v t (9.8) r - -  X f ( T , T ] ) ,  T - -  x m o ( T , T ] ) ,  ~ - -  1 - m  t T - -  1 - m  
X 4 X 2 

where f and 0 satisfy the equations 

3 + m  1 - m  c33f -t- f - -  
Or] 3 4 2 

1 020 ( 3 +  
pr Ofl 2 t- 4 

Of)  02f l + m ( O f )  2 
T ~ Or12 2 + 0 -- 

(1 l - - m  Of)  02f 
- - - ~  ~- -~  O ~ O r 

m 1 - m  Of'~ O0 Of 
f 2 N- N 

( 1 1 - m  Of)  O0 

(9.9) 

(9.~o) 

which have to be solved subject to the boundary conditions (9.5) which for the VWT 
case reduce to the following form: 

of f(T, 0) -- 0, ~--~(T, 0) -- 0, O(T, 0) = 0 for T < 0 

I(T,O)--O, -~n ( % 0 ) - 0 '  0 ( % 0 ) - - 1  ~ f o r  T ~ 0  
O f --+ O 0--4 0 as ~-+ c~ J 071 

(9.11) 

To study the initial development for small values of T (<< 1) of the boundary- 
layer, in which ~ (= n-v) is an appropriate variable, it is found convenient to use 

t~ ~-~ 
the following independent variables: 

1 z 1 
~ = 2 T  �89 and T (9.12) 

and also to write 

f (T, 77) = 2T~ FO-, ~), 0(~-, ~) - G(T, ~) (9.13) 
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Thus, Equations (9.9) and (9.10) take the form 

103F (1  1-  mT_3 0F ) 
-~ o(--~ + -~ r + m~2F 2 

1 102G (1 
Pr 40~ 2 ~- -2 ~ + mT2F 

02F ( O F )  2 OF 
0( 2 m7 -2 - ~  + G 0 ( =  

( 1 -  m r  2 0_~~) 02F 
T 1 2 0(0T 

1 -- m T3 OF) OG OF 
2 -~T -~ roT2 O( = 

~-(1 1-- m r2 OF - ~  OGoT 

(9.14) 

(9.15) 

along with the boundary conditions (9.11) which become 

OF o) o, F ( ~ , 0 )  - 0, ~ ( ~ ,  - 

OF 0) 0, F(~-, 0) - 0, -O-~-( (T, - 
OF -~0,  G - + 0  as 0--(- 

G(~-, 0) = 0 for 

G(T, 0) -- 1 / for 
( - + c o  J 

T < 0  

r~>0  
(9.16) 

If at ~- = 0, we write 

F(T, ( ) =  Fo((), c ( ~ ,  ( )  = Co(r  (9.17) 

then the set of Equations (9.14) - (9.16) reduce to 

F~" + 2(F~' - 4F~ + 4Go - 0, P--~I Gg + 2~G~ - 0 

Fo(O) = o, F ' (o )  = o, Co(O) = 1 
F~ -+0,  Go --+0 as ~ -+c~ 

(9.18) 

The solution of these equations was first determined by Illingworth (1950), and 
which, for Pr = 1, is given in terms of the complementary error function, erfc (, as 
follows: 

- e-  - ( e r f c (  , G 0 - e r f c (  (9.19) 

On the other hand, for large values of T (>> 1), we are interested in investigating 
the departure from the steady state solution as ~- --+ cx~, i.e. the final decay in the 
evolution of the solution to its steady state. In order to do this Ingham (1985) has 
written 

f(T, rl) = foOT) + fl(7-, r]), 0(7", r/) = Oo(r/) + Ol('r,r/) (9.20) 

On substi tuting expression (9.20) into Equations (9.9) and (9.10), assuming i f l l  <'< 
If01, 1011 << 100I and neglecting products of small quantities then we find that  fa and 
01 satisfy 
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3 + m 02fl 03f  + 
01] 3 4 Or] 2 

3 + m 0Ol 1 0 2 0 1 | ~ f  0 
Pr O~ 2 4 077 

0fl 
1 -2 m ~'fo-"Ofl-~T + 3 +4 mf~ -- (1 + m ) f ~ - ~  + 01 =(9.21) 

( 1 _  7-(1-m)  ) 02fl 
2 f~ O~?OT 

1-- mTotoOfl 3+ ( Of 1 ) 
2 -~T -b 4mO~ofl+m O o ~ + f ~ O i  -- 

( 1 -  T ( 1 - m )  2 f~ ) 0 0 1  0T (9.22) 

together with 
Of 1 f l  (% 0) -- 0, ~ (T, 0) -- 0, 01 (% 0) -- 0 

0l~ (9.23) 
o,7 -+0'  9 1 - + 0  as ~?--+c~ 

The right-hand sides of Equations (9.21) and (9.22) show that the nature of the 
approach to the steady state depends on whether m > 1 or m < 1. 

9.3 .1  m > 1 

In this case we set 

f t = T'~ F1 ( r] ) , 

where 7 is an eigenvalue to be found. 
problem 

01 = T~/GI (7]) (9.24) 

Thus we obtain the following eigenvalue 

3 + m  3 + m  
4 f o F ~ ' - ( l + m ) f ~ F ~ +  4 - -  2 

1 , ,  3 + m  
p r a l  -~- ~ 

, ( 3 + m  
fog 1 - m(f~at  + OoF;) + 4 

1 -- m '~ ir 
foYl TG1 - / 

1 - m  
- 2  

1 - 2 roT) O~~ -- 

1 - m  
2 ~'f~G1 

(9.25) 

(9.26) 

which have to be solved subject to the boundary conditions 

F I ( 0 ) - 0 ,  F ~ ( 0 ) - 0 ,  G I ( 0 ) - 0  (9.27) 
F~ -+0,  G1 --~0 as 77--+oo 

The eigenvalue problem described by Equations (9.25) - (9.27) has been solved 
numerically by Ingham (1985) for Pr = 1 and various values o fm using the boundary 
conditions (9.27) along with F~'(O) = 1 in order to obtain a non-triviM solution. 
The values of the parameter "7 determined are given in Table 9.1 with the minimum 
modulus, 7rain(m), say. It was found that  for m < 1 all of the eigenvalues are 
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Table 9.1- Variation of 7rain(m) with m for P r -  1. 

[ m  il 7min(m) 
"0.0 2.0158 
0.1 2.4061 
0.25 3.3453 
0.5 5.9892 

1.1 -40.670 

[ m 7rain(m) 
1.5 -9.589 
2.0 -5.695 
4.0 -3.079 

10.0 2.190 

positive, whilst  for m > 1 they are negative but  for the present theory to be valid 
we require the eigenvalues to be negative. An investigation of the eigenvalues as 
m -+ 1 + shows that  values of ~min become very large and negative. 

9 . 3 . 2  m < 1 

In this case it was found by Ingham (1985), after some algebra, that  f l  and 01 take 
the form 

fl(~,W) - T*(~-) [a0f;(r/) + 7-1F1(7]) + O (T-2)] 
01(%~) - T*(~-)[a00~(~)+ T - 1 G l ( r ] ) +  O (T-2)] (9.28) 

where 1 ,  ) 
T* (~-) - T a4 exp alT  3 + -~a2 -t- a3T (9.29) 

with a 0 , . . . ,  a4 being known constants.  
Further ,  the problem governed by Equations (9.9) - (9.11) and (9.14) - (9.16) 

has been solved numerically by Ingham (1985) for P r  - 1 and some values of m, 
where the later equations were used for small values of ~-. Star t ing from the solution 
(9.19) at ~- = 0, Equations (9.14) - (9.16) were solved using a step-by-step marching 
procedure for m - -0 .1 ,  0, 0.001, 0.005, 0.025, 0.1, 0.25, 0.5, 1, 2 and 4 until 
T -- 2.25 using a method similar to tha t  described by B loor and Ingham (1977). At 

- 2.25 the integration was continued using the variables ~-, ~, f and 0, which are 
the most  appropr ia te  at large times. Equations (9.9) and (9.10) were then solved 
by a s tep-by-step method in ~-, subject  to the boundary  conditions (9.11) and with 
the initial conditions at T -- 2.25 as obtained by the solution in the T, {, F and G 
variables. 

If m ~> 1 it was found tha t  the solution tended to the steady state solution as 
described by the classical s teady free convection problem over a vertical flat plate 
presented in Section 1.3. However, for m < 1 the numerical  scheme breaks down 

02 f O0 because the coefficients of the terms 0~0~ and ~-7 in Equat ions (9.14) and (9.15) 
become very small and tend towards negative values in some parts  of the boundary-  
layer. Thus,  for a given small value of m (< 1), Equat ions  (9.9) and (9.10) are solved 
up to a par t icular  value of ~ = 7", say, which is close to where the numerical  me thod  
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of solution breaks down. The matching of the steady state solution with the solution 
which is valid at T = T* was carried out by Ingham (1985) using a method proposed 
by Dennis (1972). In this method it was found convenient to write Equations (9.9) 
and (9.10) in the form 

where 

o f  
0~ - g (9.30) 

Og Og 02---~g -~- p r92 + 0 -- (9.31) 
0v/2 ~ qO--TT 

1 020 00 00 
P r O TI 2 ~- P -ff ~ toO9 -- q O T (9.32) 

p - 1 ( 3  + - - 

q -- 1 - �89 - m)Tg (9.33) 

r -- 21-(1 + m) 

and q > 0 for ~- < T*. Equations (9.30) - (9.32) have to be solved along with 
the boundary conditions that  the solution is that as obtained by the step-by-step 
marching procedure at ~- - T*, and that  at T -- Too (a large value of T) the solution is 
that  given by the steady state analysis obtained in Section 1.3. Also, the boundary 
conditions at the plate and at infinity are as follows: 

I (T,O)--O,  9(T,O)=O,  O(T,O)- - I  1 for ~'* 
T (9.34) Too 

g--+0,  0 - + 0  as 77-+oo J 

The numerical finite-difference scheme used, along with other details of the integra- 
tion of Equations (9.30) - (9.32) subject to the boundary conditions (9.34), is very 
well described by Ingham (1985) and therefore it is not repeated here. 

The variation of the non-dimensional skin friction, ~ (~',0), and the non- 

oo (~., 0) as a function of T are shown in Figure 9.1 dimensional heat transfer, -~--~ 
for Pr = 1 and for some values of m. It is seen from this figure that  the larger the 
value of ra, the earlier is the steady state solution achieved. However, the asymp- 
totic analysis, for large z with the values of ")'min given in Table 9.1, suggests that  
the larger the value of ra the slower is the approach to the steady state solution. It 
is also interesting to note for ra >/0.5 it was found that the step-by-step numerical 
procedure of solving Equations (9.30) - (9.32) numerically could be continued up to 
a fairly large value of z, by which time the steady state had been reached. There- 
fore, there was no need to solve these equations by forward-backward differencing. 
However, for m = 0.1 and 0.025 the step-by-step numerical method used produced 
both a maximum and a minimum in the heat transfer and the skin friction, as can 
be seen from Figure 9.1, before the numerical scheme breaks down. The forward- 
backward differencing was then used and the unsteady and steady state solutions 
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(~) (b) 

~" 1.1 
0.8 ~ - - -  

~ P ~  ~ = - 0 . 1 ,  o, 0.025, 0.1, 
0.6 ~ 0 . 9  . 

0.4 0.7 

0.2 0.5 

0.0 0.3 
0 i ~ ~ ~ g 0 ~ 2 3 4 

T 7" 

Figure 9.1" Variation of (a) the non-dimensional skin friction, ~ -5-~(T, O), and (b) 
the non-dimensional heat transfer, -5-~~176 (T, 0), at the plate, with ~" for P r -  1 

were successfully matched.  Further ,  when m ~< 0 the numerical  scheme eventually 
breaks down and no smooth  solution that  matches the unsteady and steady state 
results could be obtained. The  case 0 < m < 0.1 needs special a t tent ion and it was 
studied in detail  by Ingham (1985). 

Results for the non-dimensional  t empera ture  and the fluid velocity profiles were 
also obtained by Ingham (1985) for m = -0 .1 ,  0, 0.001, 0.025, 0.5, 1, 2 and 4 with 
P r  - 1. However, we show in Figures 9.2 and 9.3 only the results for m = -0 .1 ,  
0, 1 and 4 and again with P r  = 1. The steady s tate  results are also indicated by 
the dots in these figures. These figures clearly show tha t  at the smaller values of m 
the t empera tu re  and the fluid velocity profiles overshoot the steady state profiles. 
Further,  we note tha t  as m increases, the smaller is the value of 77 at which the 
boundary  conditions 0(77) -+ 0 and f'(77) -+ 0 as 77 -~ oo are approached. 
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(a) (b) 

0.6 0.6 

0.5 ~ 0.5 
~- -- 0.1325, 0.7725, ~ T -- 0.1325, 0.9725, 

0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0.0 0.0 
0 4 8 0 4 8 

(c) (d) 

0.3 --0.1325, 0.5, 1.1325, 0.3 

~ o ~ t ~ \ ~ .  ~-~ ~ o.~. 

0.1 0.1 

0.0 0.0 
0 4 8 rl 

~ ~- = 0.1325, 0.6325, 
~ 1.3025, 4.2 

0 4 7/ 

Figure  9.2: Fluid velocity profiles, of -5-~(T, 71), for P r -  1 when ( a ) m - - 0 . 1 ,  (b) 
m -  O, (c) r n -  1 and (d) r n -  4. The steady state solutions are indicated by the 
symbols . .  
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(~) (b) 
1 . 0 -  1 .0  

0.4 0.4 

0.2 0.2 

�9 , . | , �9 o o o ~ ~ ~ o o .  
0 4 77 8 

(c) (d) 

1.0  -- 1 .0 

0 . 8  ~ .  0 .8  

C " C 

~" 0.6 ~" 0.6 

0.4 0.1325, 0.5, 111:::~. 0.4 

O'Uo- 2 4 77 6" 0.0 
. . . .  

Figure  9.3: Temperature profiles, 0(% rj), for  P r  = 1 when (a) m = - 0 . 1 ,  (b) 
m = O, (c) rn = 1 and (d) rn = 4. The steady state solutions are indicated by the 
symbols . .  
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9.4 Trans ient  free c o n v e c t i o n  b o u n d a r y - l a y e r  flow over 
a s u d d e n l y  coo led  vert ica l  p late  

The problem considered now is the one in which, for time t < 0, the steady state 
free convection boundary-layer over a vertical semi-infinite flat plate of constant 
temperature Tw (> Too) has been set up. Then, at time t - 0 the value of Tw 
is impulsively reduced to Too. The effect of this change in the wall temperature 
is confined to a thin boundary-layer, within the steady state boundary-layer (inner 
layer), but growing in size with increasing time. Eventually, for sufficiently large 
values of time this will not be true. This problem was studied for the first time 
by Ingham (1978c) following, in principle, the same method as that described in 
Section 9.3 for the case of an impulsively heated flat plate but with m = 0, which 
corresponds to an isothermal flat plate. The transformation (9.8) now becomes 

q2 - x�88 f (r, 77), T - -  O(T, 77), 77 - -  y l ' ,  r -  ta (9 .35)  
x~ x~ 

and Equations (9.3) and (9.4) can be written as 

03 f 

07] 3 

(3  1 0 , ) 0 2 f  1 ( 0 , )  2 ( O f )  02, 
~ f -  ~T -- 1 (9.36) 

1 020 (3 1 O f ) O 0  ( 1  O f )  O0 
P r O ,  2 t- -~ f - -~ T -~r ~--~-- 1 - f i - r ~  ~ (9.37) 

If in these equations we neglect derivatives with respect to T and write f(T, rl) -- 
f0(~) and 0(%r/) -- 00(7/) then we obtain the steady state equations for the free 
convection flow over an isothermal vertical flat plate, namely 

fg' +  YoYg- -~ao + Oo - 0 
1 Dtt 

~ o  + ~]oO'o - o 
(9.38) 

These equations are precisely those which govern the flow for ~- < 0, along with the 
boundary conditions 

fo(O) - O, A(O)  -- O, 0o(0) -- I (9 .39)  
f ~ O ,  0o--+0 as r/--+c~ 

Therefore, the problem described by Equations (9.36) and (9.37) must be solved 
subject to the following initial and boundary conditions: 

f--fo(r/), O=Oo(r/) for r--O, 

f(~-, o}, = o,_+o, f'(~-, O)o~o =o,as ,-~oo~176 =o} 
all r/ 

for T>~O 
(9 .40)  
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Also, for the initial period (T << 1) of the boundary-layer growth, Equa- 
tions (9.14) and (9.15) with m -  0 become 

103F (1 1 3OF) 02F OF ( 1 T 2 0 F )  02F 
-~ O r -t- -~ r - -~ T -ff ~ T 0 r ~ + G 0r = T 1-- -~ --~ 0 ~ 0 T (9.41) 

1 02G (1  1730F)  OG ( IT2OF) OG (9.42) 
4 P r O r 2 + -2 r - -2 -~  0r = T 1-- -~ --~ 07 

along with the boundary conditions (9.16). The problem is solved now in two steps, 
namely for small and large values of T. 

9 .4.1 7" ~ 1  

It is assumed that for small values of T, the growth of the boundary-layer (inner 
layer) takes place within the steady state boundary-layer (outer layer) as described 
by Equations (9.38) subject to the boundary conditions (9.39). Thus, it is necessary 
to find a solution in the inner layer which matches the solution in the outer layer. 
The solution of Equations (9.38) for small values of r/(~< 1) is of the form 

/ 0 ~ ~  2 ~b0~4+ ~a0rl - lr/3 + O (7/5) 
00 ~ 1 - b0~ + O (~2) (9.43) 

where ao - f~(0) and b0 - -0~(0) are constants which depend on the value of Pr 
and in the case of Pr = I then a0 = 0.9082 and b0 = 0.4010. Thus, in the inner layer, 
where the appropriate variables are those given by Equations (9.12) and (9.13), we 
have, on using expressions (9.43), 

'~2 ~3 ~4T1/2 F ..~ aoT-~ -- ] + lbo + O(T) (9.44) 
G ,,~ 1 - 2bo~-�89 + O(T) 

for r >> 1. This suggests a solution of Equations (9.41) and (9.42) for T << 1 of the 
form 

F - ~--�89 F0(r + F1 (r + T�89 F2(~) + O(7-) (9.45) 
G - O0(~) + ~'�89 G1 (~) + O(T) 

where the coefficient functions are given by the ordinary differential equations 

F~" + 2r 2V~ - 0, 
F~" + 2r - 4F[  - - 4 G 0 ,  

F~" + 2r - 6F~ - - 4 G 1  

P-71 G"1-4- 2~G i - 0 (9.46) 

The boundary conditions (9.40) and the matching conditions (9.44) and (9.45) lead 
to 

F~ (o) - o, F[(O) - O, 

Fo ~ ~0r 2, F1 ~ _2r 
Go --+ 1, G1 ~ - 2 b o , . . .  

G~(0)-0 for i=0 ,1 ,2 , . . .  4 } 
F2-+ 5bor , . . .  as ( ~ c o  (9.47) 
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The solution of Equations (9.46), subject to the boundary conditions (9.47), 
gives for P r  = 1, 

OF _ 2aO~T - 1  _ (2~2erf~ + ~ e - ( 2 )  : 0--( -- + 4bo~3T:  + ' ' "  
(9.48) 

G = e r f ~ -  2bo@-: + . . .  

where erf~ is the error function. Therefore the non-dimensional skin friction and 
the non-dimensional heat transfer are given, for T << 1, by 

1 : O0 1 1 
02 f (T, O) -- ao - ~(T,  O) -- -: bo (9.49) - 

9 . 4 . 2  r ) )  1 

From Equations (9.41) and (9.42), the approach to the steady state solution suggests 
that for r >> 1, F and G must have the form: 

F ( T ,  ~) = ~--2H(~) + h.o.t. 
G(T,  r -- T-2K(~) + h.o.t. (9.50) 

On substituting expressions (9.50) into Equations (9.41) and (9.42) gives the eigen- 
value problem 

H" '  + (2~ + 4H) H"  + 4 (2 - H')  H '  + 4K = 0 
1 K" K ! H l p--~ -~- (2~ + 4H) + 4 (2 - ) K - 0 (9.51) 

H ( 0 ) - 0 ,  U ' ( 0 ) = 0 ,  K ( 0 ) - 0  
H ' - + 0 ,  K ~ 0  as r  

Ingham (1978c) has found that there are an infinite number of possible solutions 
of Equations (9.51) because the asymptotic behaviour of these solutions are of the 
form: r 

H '  ,,~ A : ~ 3 e  -~2 + A2r -4 + A 3 ~ e -  + A4~ -2 
K ~ A l r  -r + A2~ -4 (9.52) 

where the constants Ai ,  for i = 1 , . . . ,  4, can be determined by solving numerically 
Equations (9.51). It is worth mentioning that  higher-order terms in the expressions 
(9.50) can be determined and these terms involve eigensolutions. 

Since the analytical solutions (9.45) and (9.50) for small values of v and large 
values of ~-, respectively, are expressed in terms of the variables T and ~, it is thus 
reasonable to deal with Equations (9.41) and (9.42). These equations were solved nu- 
merically by Ingham (1978c) using a step-by-step procedure as described by Merkin 
(1969). The numerical solution starts at ~- = e, where e is a small number, with 
the velocity and temperature profiles as given by Equations (9.48). The boundary 
conditions enforced at ~ = 0 and at a large value of ~, say ~m, are as follows: 

F ( T ,  O) - O, (OF o)  - o ,  o )  = o 

OF (% (m) -- : dfo (Vf~m) G (% (m) -- 00 (~/~m) (9.53) 
~ dr/ ' 
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It was found tha t  accurate results could be obtained using e - 10 -4, a step length 
0.05 in the ~ direction and a value of ~m = 10 was found to be sufficiently large. 

Figure 9.4 illustrates the variation of ~.2 OF -0--(r and ~-2G as a function of ~ for some 
values of ~- when P r  = 1. Also shown (by the dot ted lines) are the steady state 
solutions obtained from expressions (9.50). Figure 9.4(a) shows, as the value of T 
increases above about 4, that  the numerical solution approaches closely the steady 
state (analytical) solution and it was found for values of T greater than  about  15 

that  both  the solutions are almost indistinguishable. Figure 9.4(b) also shows, as 
T increases, tha t  the steady state solution is being approached and for values of ~- 
greater than  about  15 the numerical and analytical solutions are almost identical. 

(a) (b) 

0.6 0.6 - - T  = 4 

0.5 ~ 0.5 T = 2 

C 0.4 0.4 

~ 0 . 3  ~" 0.3 

0.2 0.2 

0.1 0.1 �9 T ---- 1 

0.0 0.0 
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 

Figure 9.4" (a) The fluid velocity, and (b) the temperature, profiles/or Pr  - 1. 
The steady state solutions obtained from expressions (9.50) are indicated by the 
dotted lines. 

The variation of the non-dimensional skin friction and the wall heat transfer are 
shown in Figure 9.5 for P r  = 1. The analytical results for small and large values of 
~-, as given by Equations (9.48) and (9.50), respectively, are also included in these 
figures. It is seen that  the first two terms in the small time analysis are in good 
agreement with the numerical solution of Equations (9.41) and (9.42) up to T ~ 0.5 
and the large T solution may be taken for values of T greater than about 4. 
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Figure 9.5: Variation of (a) the non-dimensional skin friction, ~ ~ ( T ,  0), and (b) 

the non-dimensional wall heat transfer, ~~ (v, 0), with T for Pr  -- 1. The numerical 
solutions are indicated by the solid lines, whilst the approximate solutions (9.~9) 
are indicated by the broken lines. 

9.5 T r a n s i e n t  free c o n v e c t i o n  b o u n d a r y - l a y e r  f low over 
a ver t i ca l  flat p la te  at smal l  and large  P r a n d t l  n u m -  
bers  

In a series of papers, Carey (1983, 1984) and Park and Carey (1985) observed that 
the problem of transient free convection flow from a vertical fiat plate has been, 
in general, studied for Prandt l  numbers both near 1 (gas) and 7 (water). However, 
very little information was provided about the systematic behaviour of this transient 
flow at low and large values of the Prandt l  number. Therefore, the object of Carey's 
papers was to study the transient free convection from a vertical fiat plate resulting 
from the sudden increase of its surface temperature,  or from the sudden generation of 
a uniform heat flux at the plate surrounded by a small or high Prandt l  number fluid. 
Flows of these types commonly occur in technological applications. A low Prandtl  
number is appropriate to liquid metals which are used in nuclear reactor heat transfer 
technology and thermal transport  in metallurgical processing, whilst a fluid with a 
high value of the Prandt l  number is sometimes used as a heat sink in electrical 
transforms. The sudden application of electrical power to the transformer produces 
a transient buoyancy-driven flow. Transient flows at high Prandt l  number may also 
result from the sudden addition or removal of heat in the chemical processing of 
hydrocarbon and silicone polymers and in thermal energy storage devices. 
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The governing Equations (9.2) - (9.4) for these problems have to be solved 
subject to the boundary conditions 

u = 0 ,  v = 0 ,  T = 0  for y~>0, all x, t = 0  (9.54a) 

u = 0 ,  v = 0 ,  T = 0  on x = 0 ,  y > 0 ,  t > 0  (9.54b) 

u = 0 ,  v = 0 ,  T = I  on y = 0 ,  x~>0, t > 0  (9.54c) 

u - + 0 ,  T - ~ 0  as y--+c~, all x, t > 0  (9.54d) 

It can be seen that as Pr -+ O, or Pr -+ oc, the energy Equation (9.4) becomes 
singular and in order to obtain a solution of these equations for small and large 
values of Pr, a singular perturbation technique is necessary. Therefore it is assumed 
that through the transient, the flow consists of two regions, namely an inner region 
near the surface which is dominated by buoyancy and viscous effects, and an outer 
region where only thermal and inertial effects are important. 

The analysis proposed by Carey (1983, 1984) and Park and Carey (1985) to solve 
Equations (9.2) - (9.4) consists of a combination of the matched asymptotic expan- 
sion technique with an explicit finite-difference computational scheme. Asymptotic 
transients were first obtained followed by a numerical computation of the first-order 
correction to the Equations (9.2) - (9.4) to predict the fluid flow and heat transfer 
characteristics at moderate values of Pr. These results provide a more complete pic- 
ture to the manner in which the heat transfer and flow behaviour changes with Pr. 
In addition, the results demonstrate the usefulness of the computational techniques. 

We notice to this end that the corresponding steady state problems for small and 
large values of the Prandtl number have been considered by Kuiken (1968, 1969). 

9.5.1 P r  ~ 1 

Based on the arguments of the singular perturbation technique, the (y, t) coordinates 
in Equations (9.2) - (9.4), as well as the fluid velocity and the temperature functions, 
are scaled for small values of Pr in the inner region as follows- 

y - ~  

t - - T  

_ + + + . . .  
2 i 

T - 1 +  er�89 Pr~T( i )+ . . .  

(9.55) 

On substituting these expressions (9.55) into Equations (9.2) - (9.4) gives the fol- 
lowing equations for the inner variables: 

og ' )  = o (9.56) + 
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o~ ~) ~(o ~)o~ ~) 4) o~ ') o ~  ') 
0---~ + Ox + On = On 2 

T (i) - 1 

Ou~ ') O@ ) 
! = 0  

Ox 0~? 

+ 1 (9.57) 

(9.58) 

(9.59) 

0--------~ + Ox + Ox + Or] + On - Or/------~ + (9.60) 

02T~ i) 
0V 2 = 0 (9.61) 

On the other hand, the outer scalings are chosen such that,  to the lowest or- 
2 . 

der, the term ~ m the momentum equation (9.3)is eliminated. Thus, the outer Ou 
stretched coordinates and expansions are of the form: 

1 

y - P r - ~  
t - - T  

_ ~o)+ p i~o)+  p~ ~o)+ . . .  

v -- P r - ~  + v  + . . .  

T -  To(~ ~ I T } ~  P~T~(~ + ... 

(9.62) 

where the coefficients functions u~ 0), v~ 0), T (0), etc. are given by the equations 

0----~ + 0(  - 0 (9.63) 

O~(o ~ ~o) o~  ~ 4 )  O~(o ~ _- To(O) 
N ~ N ~ N 

(9.64) 

O~o (~ ~o)~0 (~ ~o)~ro (~ O~o (~ 
0 ~  + 0 ~  -~- 0r = 0~ 2 (9.65) 

o~~ Ova~ 
Ox + 0r = 0 (9.66) 

o~?) ~o) O~ ~ (o) O~ ~ ~(o) O~ ~ ~o) O~ ~ _ ~o) (9.67) 

or~ ~ u(o o) o ~  ~ ~o) Oro (~ 4 )  or~ ~ ~o) Oro (~ o~r~ ~ 
o---U + o~ + o----V --F N ~ 0r = or (9.68) 

The initial and boundary conditions at the plate, ~ = 0, for the inner Equa- 
tions (9.56) - (9.61) are obtained by substituting the inner variables (9.55) into the 
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initial and boundary conditions of Equations (9.54a) - (9.54c). Similarly, the initial 
and boundary conditions for the outer Equations (9.63) - (9.68) are obtained by 
substituting the variables (9.62) into Equations (9.54a), (9.54b) and (9.54d). Since 
the flow is split into two regions, each has its own set of equations, the remaining 
necessary boundary conditions for each set of equations must come from matching 
the inner and outer variables (9.55) and (9.62), respectively. The outer, 7/ ~ cx~, 
boundary conditions for the inner Equations (9.56) - (9.61) and the inner, ( -+ 0, 
boundary conditions for the outer Equations (9.63) - (9.68) are obtained by match- 
ing the inner and outer expansions. The method used, as well as the long expressions 
for the initial and boundary conditions, can be found in Carey (1983, 1984) and Park 
and Carey (1985) and therefore they are not repeated here. 

During the initial transient, small 7-, the following closed form solution may be 
obtained for the zeroth-order Equations (9.56) -(9.58) and (9.63) -(9.65)  

_ o. c + 

v~ ~-0,  v~ ~ 
T (i) - 1 ,  To (0) - erfc ( ~ 

where i 2 erfc z is defined as 

o. c 

(9.69) 

1 [(1 + 2z 2) erfc i 2 erfc z - 2 _Z2] 
z ~ z e  (9.70) 

According to the matched asymptotic method, proposed by Van Dyke (1975), 
the composite solution is the inner solution plus the outer solution minus terms 
which are common to both the solutions. Thus, the uniformly valid solution for the 
fluid velocity u and the local temperature T is given by [ (1 

u - - 4 t  i 2erfc ~ y - erfc ~ 

T -  erfc ~ (9.71b) 

It should be noted that the solution for u agrees with the corresponding solution 
obtained by Goldstein and Briggs (1964) for the free convection flow over an infinite 
vertical flat plate. 

The local Nusselt number, Nu, is given for Pr << 1, using the series (9.55), by 

Nu = Pr~. (t, x, 0) - Pr�89 (t, x 0) + . . .  (9.72) 
Gr ~x O~ O~ ' 

whilst the analytical solution (9.71b) gives 

N~ _ ~/P~ 
V ~ -  ~i (9.73) 
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Also, the uniformly valid fluid velocity and temperature profiles obtained from the 
inner and outer expansions (9.55) and (9.62) are given, for P r  ~< 1, by 

_ ~ )  + ~ o ) _  A~ + ~ ( ~ ) +  ~o) 

T - To(')+ T(~ - 1 + Pr�89 (T~ ') + T~ ~ 
- C 1  -B177) + . . .  

- C2 - B27/) + . . .  
(9.74) 

where A2(t, x),  Bl  (t, x), B2(t,  x),  Cl (t, x) and C2(t, x) are functions which were 
determined by Park and Carey (1985) from the matching conditions. 

Typical temperature and fluid velocity profiles obtained by these authors are 
given in Figure 9.6 for P r  = 0.05, x - 100 and for different times t. These profiles 
are obtained by numerically solving the full boundary-layer Equations (9.2) - (9.4) 
(shown by the full lines) and also using the zeroth-order perturbation profiles only in 
Equations (9.74) (shown by the dots). It can be seen from this figure that the zeroth- 
order results alone predict profiles that are very close to the solution calculated from 
the original Equations (9.2) - (9.4). However, including the first-order corrections 
did not improve the results appreciably. 

(~) (b) ~i0 ~i0 
~ g 
Ii 5 2, 4, 10, Jl 5 

o o 
0 10 20 30 40 0 10 20 30 40 Y Y 

Figure 9.6: (a) The fluid velocity, u( t ,x  = 100, y), and (b) the temperature, 
T ( t , x  = 100, y), profiles for x = 100 and Pr = 0.05. The numerical solutions 
are indicated by the solid lines and the zeroth-order perturbation profiles in Equa- 
tions (9. 74) are indicated by the symbols . .  

Figure 9.7 shows the variation with -Jr of the local Nusselt number given by 
x~  

expression (9.72) for P r  = 0.05. The steady state results obtained by Kuiken (1969), 
and those given by Equation (9.73), are also included in this figure. We can see that 
the perturbation solution agrees well with the analytical solution (9.73) for short 
times and Kuiken's steady state solution at longer times. 
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Figure 9.7" Variation of the local Nusselt number with ~ for Pr - 0.05. The 

steady state solution of Kuiken (1969) is indicated by the solid line, the conduction 
transient defined by Equation (9. 73) is indicated by the broken line and the matched 
asymptotic expansion (9. 72) for x = 60 and 100 is indicated by the symbols o and 
�9 , respectively. 

9.5 .2  P r  >> 1 

The solution method for this case follows closely that for small values of P r .  Thus, 
the expansions for large values of P r  (>> 1) are as follows: 
inner  region: 1 

77 -- P r Z y  
1 

T -- P r - ~ t  
1 (  1 ~i) ~)  ) 

u - P r  ~ u~ i) + Pr-~- + p r - 1  + . . .  

v - -  P r - ~  v~ i) + P r  ~- + P r -  + . . .  

T -  T~i)  q - P ~ ' - � 8 9  q - P r - l T ( 2 i ) - ] - . . .  

(9.75) 

outer  region: 1 
- P r - Z y  

1 
~- = P r - ~ t  

( 17A~ 0) U~ 0) ) u - P r - � 8 9  u~ ~ + P r - ~  + P r  -1 + . . .  

T - - 0  

(9.76) 

The corresponding equations, along with the initial and boundary conditions and 
the matching conditions, have been derived by Carey (1983). 

The uniformly valid temperature T is again given by the expression (9.71b), 



whilst the uniformly valid solution for the fluid velocity profiles u is given by 

u -- 4 t P r  -1 (9.77) [i2 erfc ( 2 - - ~ ) -  i2 erfc (2v~P-~y)  ] 

(9.78) 

for P r  >> 1. Also, the local Nusselt number can be expressed, for P r  >> 1, as 

N u  -Pr�88 [ OT(i) 

G r ~  O~ 
(t ~, o) - P~-�89 zT~(=_'). (t, ~, o) +. . . / ]  

' Oq J 

(a) (b) 

The fluid velocity and temperature profiles, as well as the local Nusselt number, 
are shown in Figures 9.8 and 9.9 for P r  - 16 and also the steady state solution 
obtained by Kuiken (1968) is shown in Figure 9.9. It is seen from these figures that 
all results are in very good agreement. 

1.0 2.0 

}lOll 40 100 

0 10 20 30 y 

r 

II 0.5 

0.0 
0 2 4 6 y 8 
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1"o 

Figure 9.8" (a) The fluid velocity, u ( t , x  - 100,y), and (b) the temperature, 
T ( t , x  - 100,y), profiles .for x - 100 and P r  = 16. The numerical solutions are 
indicated by the solid lines and the uniformly valid solutions (9.77) and (9.71b) 
are indicated by the symbols . .  
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Figure 9.9: Variation of the local Nusselt number with ~ for Pr - 16. The 
z 2  

steady state solution of Kuiken (1968) is indicated by the solid line, the conduction 
transient is indicated by the broken line, the perturbation solution (9. 78) for x - 60 
and 100 is indicated by the symbols o and . ,  respectively, and the full solution for 
x -  60 and 100 is indicated by the symbols A and A, respectively. 

9.6 Transient  free convec t ion  boundary- layer  flow over 
a vert ical  plate  subjec ted  to a sudden  change  in 
surface t e m p e r a t u r e  

This problem consists of a steady free convection boundary-layer flow on a vertical 
flat plate which is placed in a viscous and incompressible fluid at a constant tem- 
perature Too with the plate at a uniform temperature 711 (> Too) at time t < 0. 
An unsteady boundary-layer begins to grow when the temperature T1 is suddenly 
changed at time t -  0 to a new constant value T2 (> Too) and maintained at this 
value for t > 0. This problem has been considered by Harris et al. (1998) and they 
solved the problem both analytically and numerically. In fact the solution method 
follows closely the problem posed in Section 9.4, and therefore we give only the basic 
results here. 

The inner unsteady boundary-layer is described by Equations (9.36) and (9.37) 
subject to the boundary conditions 

f(T, 0) -- 0, f ' (~,  0) - 0, 0(T, 0) -- T2 - Too = ~ (9.79a) 
T 1 -  T ~  

f ' - + O ,  0 - + 0  as 7 / -+oo (9.79b) 

Outside this layer, the flow remains at the initial steady state boundary-layer profile 
as given by the functions f0(~) and 00(rl) in Equations (9.38). However, the gov- 
erning equations for the transient flow (T << 1) are the Equations (9.41) and (9.42) 
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subject to the boundary (inner) conditions at the plate given by Equation (9.79a). 
o/ After some algebra, the analytical solution of the reduced fluid velocity, ~-~, and 

temperature, 0(r, r/), profiles can be expressed as follows: 

of 
O77 

( 1 - T ~ )  [ (  
= f ; ( r / ) -  1 - P r  "r 

oxp 

1 (1 
+-~Pr erfc ~ 7/ 

Pr172 
4 ~ - )  - (T + 2r/2) erfc 

+ r / ~ e x p  (-- 

(1 
0 -- Oo (~7) - (1 - 7E)erfc ~ r/ + o  

7/2 

(9.80) 

0I for r << 1. The limiting value of ~ as Pr -+ 1 is given by 

Oforl ' [ 1 2,~ ( r/ ) ~ ( r/2)] - - - i -  7/ = f0 (r/) + (1 - 7~) ~r/ erfc - exp - + O (T) (9.81) 

for ~- << 1. 
Other important physical quantities are also the non-dimensional skin friction, 

02 f O0 0,~(T, 0), and the non-dimensional heat transfer on the plate, (T, 0) as functions 
of t  �9 These quantities have the following explicit series expansions: 

02 f 2 1 �89 
07?2 (% 0) -- ao ~ 1 + x/-P~ (1 - 7~) ~" + O (T) 

0--~ (r, 0) - - b o  + (1 - 7~) T - ~  + O (1) 

(9.82a) 

(9.82b) 

for T << 1, where a0 -- f~'(0) and b0 - -0~(0) and these quantities depend on Pr 
and are determined from Equations (9.38). 

Precise details of the flow and temperature profiles, as well as the skin friction 
and heat transfer on the plate, were obtained by solving numerically the pair of 
coupled partial differential Equations (9.36), (9.37) and (9.41), (9.42), which are 
each parabolic differential equations and thus can be integrated numerically using a 
step-by-step method. The complete details , along with a large quantity of results, 
can be found in Harris et al. (1998). The variation of the reduced fluid velocity 
and the temperature profiles at various values of T is illustrated in Figure 9.10 for 
7~ - 0.5 and in Figure 9.11 for 7~ - 2, both with Pr - 1. These profiles demonstrate 
that initially the effects of the change in the surface temperature of the plate are 
not felt near the outer edge of the boundary-layer. Further, Figure 9.12 shows the 
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oI (T,~) and (b) the temperature, 0(T,r/) Figure 9.10: (a) The fluid velocity, ~ , 
profiles for Pr  - 1 and 74 - 0.5. The numerical solutions are indicated by the 
solid lines, the steady state solutions at 7- - O, f~(rl) and Oo(q), are indicated by 

the dotted lines and the steady state similarity solutions at large "r, T~�89 f~ (rlTt�88 

and 7"400 (~7T4�88 are indicated by the broken lines. 
\ ]  

evolution of the non-dimensional skin friction with ~- for P r  = 1 and the temperature  
parameter  7-4. -- 0.5 and 2. These figures illustrate that  the skin friction approaches 
its steady state solution as T --+ c~, predicted by the solution of Equations (9.38), 
but slightly overshoots and then undershoots it before the numerical method breaks 
down. 

We remark to this end that  the corresponding problem of transient free convec- 
tion from a vertical flat plate subject to an impulsive change in the heat flux at the 
plate has been studied by Joshi and Gebhart  (1988). The small time solution ob- 
tained is similar to that  given by Ingham (1978c), whilst the numerical method used 
is an explicit finite-difference scheme described in Carnahan et al. (1969). These so- 
lutions were also verified by experiments in water in terms of local sensor data  and 
flow visualisation. Another recent paper by Magyari et al. (1999) has generalised 
Rayleigh's transformation connecting the transient free convection boundary-layer 
flow over a vertical surface to the corresponding steady state boundary-layer flow. 
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Figure 9.12: Variation of the non-dimensional skin friction, o2/_ (T, 0) with T /or 

(a) 7s -- 0.5 and (b) ~ - 2. The numerical solutions are indicated by the solid 
lines, the small time solutions (9.82a) are indicated by the dotted lines and the 
steady state solutions at large v, ~�88 f~' (0), are indicated by the broken lines. 

9.7  T r a n s i e n t  free c o n v e c t i o n  f rom a h o r i z o n t a l  c i r c u l a r  
c y l i n d e r  

The literature on transient free convection from a horizontal circular cylinder is 
much less abundant  than that for the corresponding steady state problem. An early 
analytical study, using the boundary-layer approximation (large Grashof numbers), 
was performed by Elliott (1970). Values of the skin friction and the heat transfer 
rate from the cylinder have been obtained for small values of time, which was then 
extrapolated to infinite times to predict their final steady state values as reported by 
Hermann (1936). These results were obtained for P r  = 1. Elliott's paper was then 
extended by Gupta  and Pop (1977) in order to estimate the influence of the curvature 
effects and the Prandtl  number on the skin friction and the heat transfer rate and 
they showed that  the curvature of the cylinder leads to an increase in both the skin 
friction and the heat transfer rate. These papers have been extended by Sano and 
Kuribayashi (1992) by taking the displacement effect into consideration with the 
Grashof number being assumed to be large but finite. The analysis uses the method 
of matched asymptotic expansions in which the fluid velocity and the temperature 
profiles are expressed as separate expansions in an inner region (boundary-layer) 
and an outer region (inviscid). 

Accurate numerical results for the problem of transient free convection boundary- 
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layer over a horizontal circular cylinder appear to have been first reported by Ingham 
(1978d) and Katagiri and Pop (1979). Further, Banks and Campbell (1982), Simp- 
son and Stewartson (1982), and Wilks and Hunt (1985) have examined in more 
detail the behaviour of the unsteady boundary-layer near the upper generator of an 
horizontal cylinder whose temperature, or heat flux, is suddenly increased. There 
are also several papers, notably, by Song (1989) and Wang et al. (1991, 1992) in 
which the unsteady free convection flow from a heated horizontal cylinder is studied 
by solving numerically the full Navier-Stokes and energy equations for both low and 
high values of the Rayleigh numbers. The results of Wang et al. (1991, 1992) were 
obtained using the spline fractional step method and they compared their results 
with some experimental data. 

As we have mentioned before, Ingham (1978d) has developed a numerical solution 
of the problem of transient free convection from an isothermal horizontal circular 
cylinder, which at time t - 0 is impulsively heated and which deals with the collision 
of the boundary layers that occur near the top of the cylinder. The governing 
equations for this problem can be written in terms of the non-dimensional reduced 
stream function r vorticity w and temperature T in the form, see Ingham (1978d), 

e_2rx ( O2w Ow ) + - 

--2Tx 
e 

Pr 

2 w - 4 t - ~ - + 4 t  2 0 9 0 x  Ox O9 e 

( OT OT ) O2 w 
-4e-~X -~x sin 0 + ~--~ cos 9 _ ~.2 ~ e - 2 ~ x  

(9.83) 

02T OT ) OT 
+ 2x-~. - 4t 

Ox 2 0--~ 

+4t2 { 0r OT 
\ 00 Ox 

~ _  02 02r ~_T2 r =_we2~-~ 
Ox 2 002 

(9.84) 
T2 O2a) --2TX 0r OT -2~x - - e  

cox 00 e Pr 092 

(9.85) 

where T = - ~  and 9 is the angular distance measured from the vertical direction Gr~ 
that passes through the lower stagnation point of the cylinder, as shown in Figure 7.5. 
The initial and boundary conditions for these equations for t >~ 0 are given by 

~b -0~ 
0r 

o, 

0r --0~ 
O0 

0r 
= 0 ,  T - 1  on x - 0 ,  0~<9..<7r (9.86a) 

Ox 

w--+0, T--+0 as x ~ o c ,  0~<0~<7r (9.86b) 

w - - 0 ,  T = 0  on 9=0,7r ,  x>~0 (9.86c) 

The power series solution for small t for the boundary-layer equations, as ob- 
tained by Elliott (1970) and Gupta and Pop (1977), can be obtained by setting T -- 0 
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and looking for a power series solution of Equations (9.83) - (9.85) in t 2. However, 
Ingham (1978d) used the method of series truncation to solve these equations. Thus, 
we assume that  r w and T can be expressed, for all values of T, in the form" 

CX3 O0 

r - E gn (t, x) sin(n0), w - ~ hn (t, x) sin(n0) 
n = l  n = l  

oo 

T -- f l  (t, x)  A- E fn+l (t, x)  cos(nO) 
n---1 

(9.87) 

Substi tuting expressions (9.87) into Equations (9.83) - (9.85) and taking T = 
0 gives rise to an infinite set of parabolic partial differential equations. In order 
to obtain a solution of these equations, the infinite series in Equations (9.87) is 
truncated after a finite number of terms no, say. This value of no is taken to be 
sufficiently large such that any further increase in no does not significantly increase 
the accuracy in the solution obtained by solving the resulting finite set of equations, 
which are solved using a Crank-Nicolson type of approximation. All the results were 
obtained for P r  = 1. 

The development of the angular fluid velocity profiles at 0 - 90 ~ and 150 ~ and 
the temperature profiles at 0 = 90 ~ and 180 ~ (upper stagnation point), for several 
values of t along with the steady state solution obtained by Merkin (1976) are shown 
in Figures 9.13 and 9.14. These figures indicate that the approach towards the steady 

(~) (b) 

| ~z-Q, ", 
0.51 ~/~~, 0.6 \ t = 3 . 5  

0 . 3  II 0.4 

0.2]~ \ \ ~ ,  t=3.5 "-5" ', 
, 0.2 ~k 

0.1 ~ 

0.0 0.0. , - -  . 

0 2 4 6 8 0 4 8 12 
rGr~ rGr�88 

Figure 9.13" The angular fluid velocity profiles, v(r,O,t), ]or Pr - 1 when (a) 
0 - 90 ~ and (b) 0 - 150 ~ The steady state solution obtained by Merkin (I976) is 
indicated by the broken line. 
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Figure 9.14: The temperature profiles, T(r, O, t), for Pr = 1 when (a) 0 = 90 ~ and 
(b) 0 = 180 ~ (top surface of the cylinder). The steady state solution obtained by 
Merkin (1976) is indicated by the broken line. 

state occurs for all values of 0 except near 0 = 180 ~ The discrepancy near 0 = 180 ~ 
is to be expected since the formulation of the unsteady and steady problems are 
different. At t = 0 the analytical solution of Elliott (1970) indicates that  the radial 
fluid velocity at  the outer edge of the boundary-layer  is inwards for 0 ~ ~ 0 ~< 90 ~ 
and outwards for 90 ~ < 0 ~< 180 ~ In the s teady state solution of Merkin (1976) the 
radial fluid velocity is always inwards but ,  physically, we expect tha t  the fluid to be 
sucked into the boundary-layer  for all values of 0 except near 0 = 180 ~ where a thin  
buoyant plume is expected to be formed. 

Further,  the variation of the non-dimensional  skin friction 

O--v-V (r -- l O' t) -- lt�89 ( ~  h~ sin 

x = o  

(9.88) 

and the non-dimensional  wall heat transfer 

no--1 / 
1 Of  1 Ofn+l 

OTor (r _ l, 0, t) _ l t _ ~  -~x + ~ Ox cos (nO) 
n=l z=O 

(9.89) 

are shown as a function of 0 in Figure 9.15 for several values of t. The steady state 
values, as obtained by Merkin (1976), and the experimental  results of Hermann 
(1936) are also shown in this figure. It is seen that  the heat  transfer settles down to 
its steady state  values earlier than  the skin friction for all values of 0, except near 



314 CONVECTIVE FLOWS 

(a) (b) 

1.01 - - ~ ~ , ,  0.6 
~ -  ! S ~ ~ , . ~  " , ~-. 

I 2"/~ \ \ ' r  
4 o.s ;~ o.s 4 1 F / ~ \ \ X \  . .---____ 
" I / / /  \ \ \ ~ , "  " o.4  

~~0.3  i t=3"l  
0.4 

0.2 
0.2 

0"11 
0.0 

0 45 90 135 180 0.0. 
o(o )  o 4'5 

t - 2 . 7  
t=___L 

t=3.1~"  \ "  
t=3.5 \ 

9'0 155 180 
o(~ 

Figure 9.15: Variation of (a) the skin friction, o, (r - 1 0 , t ) ,  and (b) the wall -57 
heat transfer, ---svOT (r -- 1, O, t), with 0 for Pr  - 1 . The results of Hermann (1936) 
are indicated by the symbols �9 and the steady state solution obtained by Merkin 
(1976) is indicated by the broken line. 

0 = 180 ~ Here the limit as t -4 oo clearly does not tend to the steady state values 
as obtained by Merkin (1976) because Ingham (1978d) has imposed the symmetry 
conditions (9.86c) about 0 = 180 ~ As a consequence, the skin friction as given by 
Equations (9.88) cannot have the non-zero value which is predicted by the steady 
state solution. However, Hermann (1936) experimentally found that the skin friction 
at 0 = 180 ~ to be zero. 

The structure of the boundary-layer near 0 = 180 ~ (upper stagnation point) has 
been further elucidated by Simpson and Stewartson (1982) using both analytical 
and numerical studies. In order to do this they started from the boundary-layer 
equations written in the non-dimensional form as follows: 

Ou Ov 
o-~ + ~ - o 

Ou Ou Ou 02u 
0---[ + U-Oxx + v O---y = Oy 2 + T sin x 

OT OT OT 1 0 2 T  
0---( -t- u ~ + v O---y = P r O y 2 

(9.90) 

(9.91) 

(9.92) 
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and these have to be solved subject to the boundary conditions: 

u = 0 ,  v = 0 ,  T = 0  at t = 0 ,  0 ~ < x < ~  y > 0  
u = 0 ,  v = 0 ,  T = I  on y = 0 ,  0 ~ x ~ ,  t > 0  (9.93) 

u - + 0 ,  T - - + 0  as y--+oo,  0 < ~ x ~ T r ,  t > 0  

Numerical integration of these equations starts at x = 0 (the lower generator 

of the cylinder) by assuming that  the variables are (-Yr, t ]  w h e a t  is small and at 
/ 

\ t ~  ] 

some convenient time are switched to the variables (y, t). For other values of x the 

solution could be found in terms of the variables (x, :Yg, t)  when t is small i n n  
\ / 

simple way. At each new stat ion of t the integration proceeds along the direction 
of x increasing, s tar t ing from the semi-similar solution already found at x = 0. The 
integration is expedited if one sees that  on writing 

u (t, x, y) - ~ (t, x, y) sin x (9.94) 

Equations (9.90) - (9.92) become 

O~ . Ov 
~cos x + ~x  s m x  + ~y -- 0 (9.95) 

0-7 + cos �9 + sin + = 0V + T (9.96) 

OT ~OT OT 1 02T 
O---t- + ~ s inx + V-~y - P r  oy 2 (9.97) 

It follows that  ~ (t, 0, y) = u0, v (t, 0, y) = v0, T (t, 0, y) -- To and, provided that  
remains bounded at x = 7r (the upper generator of the cylinder), u ~ 0 as x --+ lr. 
If ~ is finite at x = 7r, u is proport ional  to (Tr-  x) as x --+ lr and hence no small 
disturbance from any other par t  of the flow field can reach the upper generator 
(x - ~). In order to s tudy the properties of ~ at x - r ,  we write 

(t, 7r, y)  -- U( t ,  y ) ,  v (t, ~r, y)  - V ( t ,  y ) ,  T (t, 7r, y)  - 7" (t, y)  (9.98) 
and the appropriate equations for the new functions are given by 

U 

OU U 2 + V 
Ot 

OT 
+ V ~  

Ot 

with initial and boundary  conditions: 

U = 0 ,  T = 0  
U = 0 ,  V = 0 ,  T = l  

U - + O ,  T ~ O  

OU 

oy 
O T  

Oy 

OV 
Oy (9.99) 

02U 
+ T (9.100) Oy 2 

1 02T  
P r  Oy 2 (9.101) 

at t - - 0 ,  y > 0  
on y = 0 ,  t > 0  
as y --+ c~, t > 0  

(9.102) 
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The numerical  solution of Equat ions  (9.99) - (9.101) was performed by Simpson 
and Stewar tson  (1982) using the Keller-box scheme for P r  = 1. They found tha t  the 

boundary- layer  thickness grows rapidly once the t ime t exceeds about  3 and when 

the calculat ions were te rmina ted  at t ..~ 3.41 this thickness had reached the value of 
about  100. The  graphs of the variation of U, V and 7- with y for P r  = 1 and for 
some values of t are displayed in Figure 9.16. Calculat ions were performed for a step 
length in the y direction of h = 0.1 and the step length in t reduced to 0.0002 as t 
approaches the  value 3.417. It was concluded tha t  the flow develops a s ingular i ty  

in the boundary- layer  at the upper  generator,  x = 7r, in which the normal  velocity 

(b) 

~16-  t =  . 

300 

II 12- 

200 
8 

4 ~ 100 

0, 0 
0 ~o 1'0 1'5 2'0 2'5 Y 

t=3 .4  

t -- 3.35 

t = 3.3 

t 2 

0 g lb 1'5 2'0 2'5' y 

(c) 

= 1, 2, 3, 3.2, 
l 0-8 . . . 

~0 .6  

0.4 

0.2 

0.0 
0 5 1'0 1'5 2'0 2'5 Y 

Figure 9.16: (a) The f lu id  velocity, U( t ,  x - 7r, y) ,  componen t ,  (b) the f lu id  velocity,  
V ( t , x  - 7r, y) ,  component ,  and (c) the temperature ,  T ( t , x  - 7r, y), profiles at 

x - n (upper  generator)  for  P r  - 1 and h - 0.1. 



UNSTEADY FREE AND MIXED CONVECTION 317 

V tends to infinity at t - ts .~ 3.417, where the computation of Equations (9.99) 
- (9.101) breaks down. At larger times the oncoming boundary layers on either 
side of the cylinder arrive at x = 7r with a non-zero tangential fluid velocity and 
so a collision process occurs. Except at the upper generator, we may expect that 
the boundary-layer on the cylinder to remain smooth for all time and approach the 
steady state form of Merkin (1976) as t --+ c~. Simpson and Stewartson (1982) have 
given a complete analytical description of the nature of this singularity showing that 
it has a form which is closely analogous to that on a spinning sphere as discussed 
by Banks and Zaturska (1979). 

Wang et al. (1991) have investigated numerically the transient free convection 
flow over a horizontal circular cylinder whose temperature is suddenly increased for 
a complete range of values of the Rayleigh number between 0.1 and 2 • 107 using the 
spline method. The advantages of this technique are that a variable grid spacing may 
be used, thus obtaining the need for hybrid grids with their attendant interpolations, 
it is of high accuracy and requires fewer grid points for a given problem. The 
governing equations, which are expressed in non-dimensional form are given by, see 
Wang et al. (1991), 

V2r - - w  (9.103) 

O w O w v O w o _ 7  Or  (OT~ 0T c ~  ( 9 " 1 0 4 ) 0 0  r + u_-=--- + - - -  = P r V 2 w  + P r R a  sin 0 -I 
r O0 

OT OT v 071 V2 
+ u-x-  + - - -  = T (9.105) 

0--t- r 00 o r  

where the Laplacian operator in cylindrical coordinates is given by Equation (7.39). 
The boundary conditions appropriate to this problem are as follows: 
on the cylinder surface ( r -  1)" 

02r 
u - - 0 ,  v - - 0 ,  r  w -  Or2, T - - 1  (9.106a) 

on the lines of symmetry  (0 - 0, 7r)- 

V m O ~  W m O~ 
OT 

00 
- -0  (9.106b) 

at the inflow region (u < 0)" 

V m O ~  
0r 
or 

on the outflow region (u > 0)" 

v --'O~ 
0r 
Or 

=--0~ 

---'0~ 

0 3  m 

W --- 

1 02r 
r 2 002' 

1 02r 
r 2 002, 

T - - 0  

T = 0  

(9.106c) 

(9.106d) 
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Equations (9.103) - (9.106) have been solved numerically by Wang et  al. (1991) 
using the spline fractional step method for a range values of R a  with P r  - 0.7. 
Figure 9.17 shows a typical sequence of the different stages of the development at 
R a  - 10 (low Rayleigh number) and 10 ~ (high Rayleigh number). These results 
were also compared with the experimental results obtained by Genceli (1980) and 
the agreement was found to be very good. The development of the plume region 
near the top of the cylinder is presented in Figure 9.18 for R a  - 106 and P r  = 

0.7 and it is seen that with the progress of time, the convective effects become 
7r - 0 . 5  increasingly more dominant. When t > ~- ~ ( ~ ) R a  , where 7- denotes the time 

scale for the formation of the thermal boundary-layer, the tangential component of 
the fluid velocity continues to increase. This increase in the convection causes the 
development of the plume region. The upward flow transports hot fluid to the top 

(b) 

t=0.5  t = 6  t =  16 

t = 0.0012 t = 0.0002 t = 0.002 

(a) 

Figure 9.17: S t r e a m l i n e s  ( lef t)  and  i s o t h e r m s  (r ight)  f o r  P r  - - 0 . 7  when  (a) R a  = 
10 ( /%r 1, A T -  0.1) and  (b) R a -  l0 T ( A r  20, A T -  0.1). 
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( 

t - -  0 . 0 0 1  

t - 0.0055 

t = 0.002 t = 0.003 t = 0.004 t = 0.005 

F 
t = 0.006 t = 0.0065 t = 0.007 t -- 0.0011 

Figure 9.18: S t reaml ines  (left)  and i so therms  (right) f o r  P r  - 0.7 and R a  - 106 
(Ar - 10, AT - 0.2). 

surface of the cylinder and gradual ly this forms a distinct t empe ra tu r e  front between 
the heated fluid and the unhea ted  ambient  fluid as shown in Figures 9.17(b) and 

9.18. The fluid at the top surface of the cylinder then detaches itself and rises while 
rota t ing at the same t ime because of viscous effects. At larger values of the Rayleigh 
number,  the rota t ion is quite evident and this leading edge of the heated fluid forms a 
'mushroom'  pa t t e rn  which gradual ly takes the final (steady) s ta te  form of a buoyant 
plume. At very large values of the Rayleigh number,  abou t  R a  = 2 x 107, small 

separat ion vortices which are symmetr ical ly  disposed near  the top surface of the 

cylinder are formed, and they grow at a modera te  rate. Fur ther ,  they are shed into 
the plume and then they reform again wi th  this sequence continually repeating itself. 
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9.8 Transient  mixed convect ion boundary- layer  flow 
from a horizontal  circular cyl inder 

It appears that  the problem of unsteady mixed convection flow from a horizontal 
circular cylinder has only been studied up to now by Katagiri and Pop (1979) and 
Ingham and Merkin (1981) using the boundary-layer equations, and by Jain and 
Lohar (1979) by solving numerically the full governing equations. In order to solve 
this problem Katagiri and Pop (1979) have used the local non-similarity method 
together with a difference-differential method. However, this is an approximate 
method and the results can be obtained only near the front (lower) stagnation point 
of the cylinder. Further, the results were obtained only for the case of assisting 
flow. Ingham and Merkin (1981) have obtained an accurate numerical solution of 
the boundary-layer equations using the method of series truncation, similar to that 
described by Ingham (1978d) and presented in Section 8.3. Solutions which are valid 
near both the front (lower) and the rear (upper) stagnation points of the cylinder 
have been obtained using a standard finite-difference method. A small time solution 
was also presented with which the accuracy of the numericalsolution can be checked 
and both the assisting and opposing flow cases were considered. 

The unsteady mixed convection boundary-layer flow from an isothermal hori- 
zontal cylinder in a stream flowing vertically upwards is described by the following 
equations, written in non-dimensional form, as, see Ingham and Merkin (1981), 

0 2r 0r 0 2r 0r 0 2r 
I 

OtOy Oy OxOy Ox Oy 2 

oo or oo or 
f 

Ot Oy Ox Ox Oy 

03r 
= + sin x cos x + ~0 sin x 0y 3 

1 020 

P ,  ay2 

(9.107) 

(9.108) 

where )~ is the mixed convection parameter defined as in Equation (2.147) and can 
take positive or negative values. These equations have to be solved subject to the 
initial and boundary conditions: 

r  or = 0  0 - 0  for t - - 0  0 < ~ x E g ,  y > 0  
Oy ~ 

r  ~162 0 - 1  on y - 0  0 ~ < x < ~ ,  t>~0 
Oy ~ 

02r -- 0 00 _ 0 on x - 0,~, y ~> 0, t ~> 0 r  o x 2 -  , o--~- 
o~ 0 -+0  as y --+ oo, 0-7 --+ sin x, 0 ~< x ~< 7r, t > 0 

(9.109) 

To obtain a solution of Equations (9.107) and (9.108) for small values of t (<< 1) 
they are first transformed by writing 

Y (9 110) r -- 2t~f  (x,u, t ) ,  0 = g ( x , u , t ) ,  r I = ~ 
2t~ 
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so that we obtain the equations 

(93f 

07? 3 

1 02g 

Pr 0772 

- - +  277 02 f -- 4t ( c92f 
oto  

Og (Og 

(Of 02f Of 02f 
d 

Oft OxO~ Ox Oft 2 

Of cog Of Og~ 
0,10x Ox 077 ] 

and the initial and boundary conditions (9.109) become 

sin x cos x - Ag sin x )  (9. 

f - O  o ! = 0 ,  g - O  for t - - O  O~<x~<~r, r / > O  0,7 
f = O  o_f=o,  g = l  on v - O  O~<x~<r ,  t>tO 0,7 

c92f - 0 ,  ~ - 0  on x - O , r ,  77~>0 t>/  f -- O, Ox2 -- 0 

Of +sinx,  g - + O  as r l -+oo ,  O~x~<Tr ,  t > O  
O,7 

111) 

(9.112) 

(9.113) 

c92F 
OtOy 

OF) 2 c92F c93F 
-~y - F ~ o y  2 = ~Oy 3 + 1 + AG (9.117) 

OG OG 1 02G (9.118) 
Ot F Oy - Pr Oy 2 

(9.108), given by 

where F and G can be considered as the leading terms of a Blasius expansion in r 
and 0 about x - 0. The equations for F and G are, from Equations (9.107) and 

r - xF(y, t), 0 - G(y, t) (9.116) 

A solution of Equations (9.111) - (9.113) in power series for small values of t 
(<< 1) was obtained by Ingham and Merkin (1981) up to terms which are O (t 3) by 
the method described by Elliott (1970), namely 

f = sinx/0(~) + t s i n x  [cos xfl(~?) + Afll(r/)] 

+ t  2 sinx [sin 2 xf2(r/) + cos 2 x/22(r/) + A cos x/23(~7)] + . . .  

g -- go(~) + t cos xgl (77) + t 2 [sin 2 xg2(~) + cos 2 xg22(rl) + A cos xg23(~)] + . . .  
(9.114) 

However, it is preferable to use the method of series truncation in which a solution 
of Equations (9.111) and (9.112), which is valid for t << 1, is of the form: 

f - E f n ( ~ , t ) s i n ( n x ) ,  g - gl(rl, t) + ~-~.g~+l(~,t)sin(nx) (9.115) 
n = l  n = l  

In practice the series (9.115) has to be truncated by setting identically zero all the 
terms with a subscript n which is greater than a prescribed integer, no, say. In all 
the calculations performed by Ingham and Merkin (1981) the computations were 
terminated when no reached a value of 40. 

Further, Ingham and Merkin (1981) have analysed the flow near the lower (x = 0) 
and the upper (x = u) stagnation points of the cylinder. Thus, the flow near the 
lower stagnation point is described by 
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and these have to be solved subject to the initial and boundary conditions: 

F - 0 ,  o__F_g = 0 ,  G - 0  for t - 0 ,  y r  Oy 
F - 0 ,  0_g=0 ,  G - 1  on y - 0 ,  t ) 0  Oy 

OF 0--y- -+1 ,  G - + 0  as y- -+oe ,  t > 0  

(9.119) 

By solving analytically Equations (9.117) and (9.118) for small values of t (<< 1), 
Ingham and Merkin (1981) have found, for Pr = 1, the series 

-8~02F (x -- 0, 0, t) -- 0.56419t~ [1 + (A + 1.42441) t -- 0.34182 ()~ + 1.28644) t 2 + . . . ]  

0G (x -- 0, 0, t) -- 0"56r419 [1 + 0.30235 t + 0.08448 (A + 1 69576) t 2 + . . . ]  
Oy t~ " 

(9.120) 
Equations (9.117) - (9.119) have also been solved numerically by the same authors 
using a finite-difference method similar to the one described by Merkin (1976). 

On the other hand, near the upper stagnation point, the solution is of the form: 

= ~F(y, t), 0 = G(y, t) (9.121) 

where ~ = (T r -  x), and F and G are now the leading terms in a Blasius series 
expansions about  ~ = 0 of Equations (9.107) and (9.108). The t ransformation 
(9.121) gives 

0 2 F  

OtOy 

(O_~y) 2 0 2 F  0 3 F  
+ F ~  - - 1 + ),G (9.122) 

oy2 - Oy3 

0G 0G 1 02G 
O-T + F O---y = Pr  Oy 2 (9.123) 

with the initial and boundary conditions (9.119). 
The series solution of Equations (9.122) and (9.123) for Pr  = 1 and t << 1 gives 

02F (x -- 7r 0 t) -- 0.56419 [1 + ( ,~ -  1.42441) t + 0.34182 (,~ -- 1.28644)t 2 + . . . ]  
OY2 ~ ~ t ~2 

oa (x - It, 0 t) - 0.56419 [1 - 0.30235 t + 0.08448 (1.68576 - )~) t 2 + . . . ]  
Oy ~ t~ 

(9.124) 
Equations (9.122) and (9.123) have also been solved numerically by Ingham and 
Merkin (1981) for Pr  = 1 and for some values of A. 

As we have seen in Section 7.4, for the corresponding problem of the steady mixed 
convection boundary-layer flow past a horizontal circular cylinder, Merkin (1976) has 
found that  a solution could be obtained which did not separate in 0 <~ x ~< ~r for 
,~ >,k~ ()~1 ~ 0.88 for Pr  = 1). For ,k < A2 (,~2 = -1.81776 f o r P r  = 1) no uni- 
directional boundary-layer solution was possible and for )~ in the range 3,2 < A < ,kl 
the boundary-layer  separated before reaching the upper  stagnation point. In order 
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to illustrate the different natures of the unsteady flows for iX < ,k2, ~2 < ~ < ,kl 
and ~ > A1, three values of ,k, namely ,k = - 3 ,  iX = 0 (forced convection flow) 
and ~ - 1.25 were considered and numerical computations of Equations (9.111) 
and (9.112) were performed until the time taken to do just  one time step became 
excessive for a large value of no, say 40. 

Figure 9.19 shows the time t = ts taken before reversed flow is detected at the 
lower and the upper stagnation points. The solid lines are the values as determined 
by Equations (9.120) and (9.124) when using the three term expansion and these 
results are in good agreement with the values determined by the series truncation 
method denoted by the dots. Also, the values of t = ts obtained by solving Equa- 
tions (9.117), (9.118) and Equations (9.122), (9.123) are in very good agreement 
with those obtained by the series truncation method. The values ~ and ~ are the 
values of )~ above which the three term small time solution predicts that there is no 
separation at the upper and lower stagnation points. Also Figure 9.19 shows that  
when t = ts is small then the series and the numerical solution are in very good 
agreement, but at values of ,~ at which t = ts is large there is a discrepancy between 
the two results as we would expect. 

~2 ~ ~1 ~ 

Stagnation / i  i [ / ! ! 
Point ~Z/ i ! 0.8|/le.i i 

/]- i i X" \U.'. pp@ 
~ / /  ! i ~ ]  Sta.gna{.ion 

-5 -4  -3 -2  -1 0 1 2 

Figure 9.19: Variation of the separation time, t -- ts, with ~ before reverse flow 
is detected at the lower and upper stagnation points. The values as determined by 
Equations (9.120) and (9.12~) when using the three term expansion are indicated 
by the solid lines and the values determined by the series truncation method are 
indicated by the symbols . .  

Figure 9.20 shows the variation of 02F(x -- 0 0, t) with t and these results 

were obtained by solving numerically the full boundary-layer Equations (9.111) and 
(9.112) (shown by the symbols .) and also Equations (9.117) and (9.118) (shown 
by the solid lines). We can see that  these results are in excellent agreement, as 
we would expect. Ingham and Merkin (1981) have also studied how the solution 
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A =  125 

. A - O  

= - 1  

~ - ~  I \ ~ . . . ~  . . . . .  

- 1 ]  A = - 3 ~  

Figure 9.20: Variation of the skin friction, 02F ( X  - -  O,O,t) with t at x - 0 -5~ 
(lower stagnation point) /or Pr = 1. The solutions of Equations (9.117) and 
(9.118) are indicated by the solid lines and the solutions of the full boundary-layer 
Equations (9.111) and (9.112) are indicated by the symbols .. 

of Equations (9.117) and (9.118) approaches the steady state and this forms an 
eigenvalue problem. To show this, we put g (y, t) - Fg(y) + F1 (y, t) and G (y, t) - 
Gg(y) +G1 ( y , t ) w h e r e  Fg(y )and  Gg(y)are  the values of F (y, t ) a n d  G (y, t) as t 
c~ which were determined by Merkin (1977b). Tile functions F1 and G1 are small 
compared to Fg and Gg, and they are given by linear partial differential equations. It 

can be shown that  these functions are of the form F1 - -  e-'ytF(y) and G1 = e-~/t~(y),  
where F(y)  and G(y) are given by ordinary differential equations with homogeneous 
boundary conditions. These equations define an eigenvalue problem for 9' and this 
problem was solved numerically by Ingham and Merkin (1981). The rate of approach 
of the unsteady flow to the steady state is determined by the smallest value of V = ")'1 
and values of ")'1 for Pr  = 1 and various values of X can be found in Table 1 of the 
paper by Ingham and Merkin (1981). It can be seen from this table that  as A 
decreases, the value of 71 decreases and this shows that  the steady state flow is 
being approached more slowly and this is in line with the graphs of 02F (x -- 0, 0, t) 
for various values of A given in Figure 9.20. 

The flow structure near the upper stagnation point (x = ~) was obtained by nu- 
merically integrating Equations (9.122) and (9.123) and also using the series (9.124). 

It was found that  after a time ts --~ 0.644, the value of a2g (x -- ~, 0, t) becomes zero 
OF and then a region of reversed flow, i.e. -~- < 0, develops next to the wall and the 

thickness of this region increases rapidly with time. On putt ing 02F (x = ~, O, t) = 0 

in Equation (9.124) gives ts = 0.6390, which is in good agreement with the value 
0.644 as calculated numerically. The effect of increasing the value of X is to de- 
lay the separation time t = ts and it is expected from the steady state solution of 
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Merkin  (1976) t h a t  if A > A1 then  there  will be no separa t ion  of the boundary- layer .  

However, for the  calculat ions pe r fo rmed  wi th  ~ - 1.1, 1.125 and  1.5, a region of 

reversed flow appear s  first wi th in  the  boundary- laye r ,  i.e. OF becomes negative over 
�9 02F par t  of the flow, whils t  ~0~ (x - ~, 0, t) is still  positive. The  region of reversed flow 

then  grows rap id ly  ou twards  and more  slowly reaches the wall so t ha t  eventual ly the 

region of reversed flow extends all the  way to the wall. This  is shown in Figure  9.21 

where OF is p lo t t ed  at various values of t for ) , -  1 25 as a funct ion of y. 

1.0 
~ _ ~  ~ _ _  

0.6- 

& 0.2- 
�9 . . . . .J,. . 

_ 0 . 2 ~ 3  12 16 y 20 24 

- 0  6 ~ 

Figure 9.21" Fluid velocity profiles, -~OF (X -- 7F, y, t), at x - r (the upper stagnation 

point) for  P r  - 1 and X -  1.25. 

Finally, we show in Table 9.2 the  values of the separa t ion  angles 0 -- {?s de- 

t e rmined  by Ja in  and  Lohar  (1979) for the  prob lem of uns t eady  mixed convection 

flow from a hor izonta l  circular cyl inder for R e  - 100 and  200, and  G r  - 104 and 
5 • 104 when P r  - - 0 . 7 3  and 0 - -0s  is measu red  from the lower s t agna t ion  point  of 

the cylinder. The  resul ts  of Ja in  and  Goel  (1976), for the  case of uns teady  forced 
convection flow ( G r  - 0), have also been  included in this table.  It can be seen t ha t  

Table 9.2" Variation of the angle of boundary-layer separation, 0 - Os, with Re  
and Gr in mixed convection flow past a horizontal circular cylinder for  P r  = 0.73. 

Forced convection 
Jain and Goel (1976) 

Mixed convection 
Jain and Lohar (1979) 

Re-= 100 
Separation Separat, i0n 

at Right-Side at Left-Side 

114 ~ _ 120 ~ 241 ~ _ 246 ~ 

1 1 6  ~ - 122 ~ 238 ~ - 244 ~ 
. . . .  

(Gr = 104) 

Re -- 200 
Separation Separation 

at Right-Side at Left-Side 
�9 

105 ~ - 111 ~ 250 ~ 255 ~ 

108 ~ - 113 ~ 246 ~ 253 ~ 
(Gr = 5 x 104) 
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in the case of mixed convection flow, the separation of the boundary-layer is delayed 
as the buoyancy force accelerates the fluid motion in the layer and so reduces the 
deceleration of the fluid caused by the adverse pressure gradient and this is in agree- 
ment with the results obtained by Merkin (1976). It is also worth mentioning that 
Oosthuizen and Madan (1970) have derived the following correlation equation for 
the heat transfer rate 

Nufc ~e~e 2 - 0.011 ~ (9.125) 

where N u  is the average Nusselt number for mixed convection flow and Nufc is 
the average Nusselt number for the forced convection flow past a horizontal circular 
cylinder. Having values of Nufc reported, for example by Jain and Goel (1976), we 
can calculate N u  using the expression (9.125). It can be shown that these values of 
N u  are in good agreement with the numerical results reported by Jain and Lohar 
(1979), see Table 2 in the paper by these authors. 

In closing this section, we mention the paper by Kikkawa and Ohnishi (1978) 
in which the authors have investigated both theoretically and experimentally the 
unsteady mixed convection flow from an elliptical cylinder which is inclined at an 
angle 7 to the horizontal free stream. The full Navier-Stokes and energy equations 
have been written in elliptical coordinates and then solved numerically using a finite- 
difference scheme. Developments of the streamlines and isotherms, as well as the 
variation of the local and average Nusselt numbers, are illustrated in several figures. 

It is also worth pointing out that the majority of the previously reviewed pa- 
pers on unsteady free and mixed convection flows have been primarily focused on 
problems of vertical flat plates and horizontal cylinders. Very little work exists on 
unsteady free and mixed convection flow along a vertical cylinder. However, Yang 
(1960) has presented a discussion of the particular wall temperature variations which 
lead to similarity representation of the unsteady free convection boundary-layer on 
a vertical cylinder but no solutions were presented. Abdel-el-Malck and Badran 
(1990) have used two-parameter group transformations to study the unsteady free 
convection along a vertical circular cylinder subject to a variable, with time, surface 
temperature. The three independent variables are reduced to one and, consequently 
the governing equations reduce to a system of ordinary differential equations with 
the appropriate boundary conditions. The particular surface temperature that varies 
exponentially with time, i.e. of the form Tw(t) - ae bt, where a and b are constants, 
has been found to be appropriate to the study of the boundary-layer characteristic 
to this problem. 
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9.9 Unsteady free convection 
a sphere 

boundary-layer flow past 

The problem of unsteady free and mixed convection about a sphere has received very 
little attention in the literature. Brown and Simpson (1982) studied the structure 
of the singularity which develops in the solution of the unsteady free convection 
boundary-layer equations near the upper pole of the sphere when the temperature of 
the sphere is suddenly raised above that of its surroundings. They argue, on the basis 
of a local solution in the neighbourhood of the upper pole, that the boundary-layer 
solution breaks down at a finite time following the initiation of the motion. From a 
detailed analysis of the complicated multi-layered structure of this breakdown, and 
a numerical solution of the local governing equations, they were able to estimate 
the time at which the boundary-layer solution fails. Physically this breakdown 
corresponds to an eruption of the boundary-layer to form the free convection plume 
above the sphere. 

Sano (1982) studied the unsteady low Grashof number free convection about 
a sphere which is suddenly heated using the method of asymptotic expansion. It 
was shown that the solutions for the fluid velocity and temperature fields can be 
expressed in terms of three series which reflect the existence of three distinct regions 
in the (r, t)-plane, where r and t are the non-dimensional radial coordinate and 
time, respectively. Further, Awang and Riley (1983) have considered the case of the 
unsteady free convection boundary-layer about a fixed sphere, whilst Hatzikonstanti- 
nou (1990) has considered that of a rotating sphere. Then, Riley (1986) considered 
the unsteady free convection flow over a sphere by solving numerically the Navier- 
Stokes and energy equations for finite values of the Grashof number Gr using a 
split-operator method, along with a standard alternating direction implicit scheme. 
It was shown that the occurrence of a singularity in the solution of the boundary- 
layer equation (Gr ~ 1) that signals the eruption of the flow from the upper pole 
on the sphere at a finite time, is associated with the boundary-layer approximation 
and is not a feature of the solution of the Navier-Stokes equations. The eruption 
process was illustrated by the isotherms close to the sphere. These are initially 
spherical in shape, but rapidly becomes distorted over the upper pole to form the 
mushroom-shaped cap of the incipient plume. On the other hand, Nguyen et al. 
(1993) have studied the conjugate problem of unsteady heat transfer from a sphere 
under simultaneous free and mixed convection flow by solving the full Navier-Stokes 
equations for the external flow and the energy equations for both inside and outside 
the sphere. The problem was investigated numerically using a combined Chebyshev- 
Legendre spectral method. They obtained results which show that the effects on the 
free convection are most remarkable in the wake region, i.e. above the upper pole 
of the sphere, where the flow structure is changed. Also, the average Nusselt num- 
ber and the skin friction coefficient show a small increase or decrease in magnitude 
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depending on whether the buoyancy flow aids or opposes the main forced flow. 
We present here some results reported by Awang and Riley (1983) for the prob- 

lem of unsteady free convection boundary-layer over a sphere whose temperature is 
impulsively raised to a constant value which is above that of the ambient fluid. The 
governing boundary-layer equations can be written in non-dimensional form as, see 
Awang and Riley (1983), 

0 
0 ( u s i n x ) +  (vsinx) = 0 (9 126) 

0x Oy 

Ou Ou Ou 02u 
Ot + U-~x + v O-y = Oy 2 + 0 sinx (9.127) 

O0 /90 O0 1 020 
a---t + U-~x + v Oy = P r  Oy 2 (9.128) 

and the appropriate initial and boundary conditions are as follows: 

u - - 0 ,  v - 0 ,  O - 0  at t - 0 ,  0~<x~<Tr, y > 0  
u -- 0, v - 0, 0 - 1 on y - 0, 0 ~< x ~< 7r, t > 0 

u--+0,  0--+0 as y--+c~, 0~<x<~Tr, t > 0  
(9.129) 

where the coordinates x and y are measured from the lower stagnation point of the 
sphere and normal to the surface of the sphere, respectively. The solution procedure 
for the solution of Equations (9.126) - (9.129) is divided into the following three 
parts: 

(a) A solution for small values of t (<< 1). This solution is sought in the form- 

3 7 
r - 8t-~ sin 2 xfo(rl) + 128t-~ sin 2 x cos xfl(r]) + . . .  

0 -- 00(r/) + 32t 2 cos x 01 (r/) + . . .  
(9.130) 

where r / -  ~ and r is the stream function defined so that 
2t~ 

I (9r i (9r 
U - - s i n x 0 y ,  v - -  s i n x 0 x  (9.131) 

Substituting expression (9.130) into Equations (9.127) - (9.129) we obtain the 
following ordinary differential equations for f0, 00, fl and 01: 

I0,, 2rlO~-O f~" + 2rlf~' - 4 f~ + Oo -- O, -p--; o +  

/o(0) - O, f~(O) - O, Oo(O) - 1 (9.132) 
f~--+0, 00 --+0 as r/--+oc 

f[" + 2~7f~' 12 f[  - f~2 + 2 fof~r + 201 -- 0 
p----~lo~ -[-- 2T]O~ - 801 + O~)fo --- 0 

fx (0) --  O, f~ (0)  - -  O, O1 (0)  --" 0 

f~ ~ 0 ,  0 1 - + 0  as r l -~oo  

(9.133) 
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Equations (9.132) can be solved analytically giving 

O o -  erfc ( P r } ~ )  

f~ = 2(llpr) [ ( l  + pr~72)erfc (~-PT~7) 

- - ? 7  - P r r l 2  - -  

(9.134) 

for Pr  ~ 1, and 

1 2 1 _n2 
Oo -- erfc r/, f~ -- -~ r /  erfc r /+  2x/_~r/e (9.135) 

for P r  = 1. Equations (9.133) can also be solved analytically. However, 
the process is very laborious and it is much easier to solve these equations 
numerically, especially if Pr ~ 1, see Awang and Riley (1983). 

(b) A solution for small values of x (<< 1) for t > 0. Close to the lower stagnation 
point of the sphere (x = 0), we can write 

u -- x f ( y ,  t), v -- g(y, t), 0 -- h(y, t) (9.136) 

so that, from Equations (9.126) - (9.128), f ,  g and h satisfy 

Og 
2 f  + - 0 (9 .137)  

Of f2 Of 02 f + h (9.138) 
o-7 + + g a y  = 

Oh Oh 1 c92h 
O--t + g Oy -- Pr  Oy 2 (9.139) 

with the boundary conditions at some initial time being provided by the solu- 
tion for t << 1 given by expressions (9.130) together with 

f = 0 ,  g = 0 ,  h = l  on y = 0 ,  t > 0  
f - -+0 ,  h - + 0  as y--+c~, t > 0  (9.140) 

(c) A solution when x, t are O(1). This solution can be obtained using the finite- 
difference numerical method proposed by Hall (1969) for solving unsteady 
two-dimensional, boundary-layer equations. The strategy is, for each station 
x, to integrate Equations (9.126) - (9.128) in the direction of increasing t 
until a steady state solution is achieved, unless the calculation fails due to the 
presence of a singularity in the solution at a finite value of t. This method 
was also used by Awang and Riley (1983) to solve Equations (9.137) - (9.139) 
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and this is very well described in their paper. The results were obtained for 
P r  = 0.72 and they refer to v~ (x, y~, t) as the outflow velocity, the wall heat 
transfer, 0e ~--~(x, 0, t), and the thermal boundary-layer thickness, ST, defined as 

/0 ST(X, t) -- 0 dy  (9.141) 

From expression (9.130), we have, for small vaiues of t (<< 1), that the heat 
transfer from the surface of the sphere is given by 

- O 0 ( x , O , t )  - 0 . 4 7 8 7 t - ~  + 0.0374t} cosx + O t~ (9.142) 
Oy 

and this is shown in Figure 9.22. It is seen from this figure that the heat transfer 
falls from its initially high value to a clearly defined steady state value and this 
progression is not monotonic; for all values of x the heat transfer exhibits a shallow 
minimum which appears to be associated with a maximum in the boundary-layer 
thickness. 

1.5 

1.0 

I 

0.5 

0.0 

= 16 23 T[ ~, 3-]: ~, ~ n  

. . -  

�89 i t 6 

Figure 9.22: Variation of the wall heat trans]er distribution, 
/or P r -  0.72 at several values of x. 

oe (x, O, t), with t 

The outflow velocity, v ~ ( x ,  t), is presented in Figure 9.23 and from the expression 
(9.130) we obtain 

( )  vo~(x , t )  -- -0.9592t~ cosx + 0.0945 (2cos 2 x - sin 2 x) t~ + O t ~  (9.143) 

�9 ~r that  the boundary-layer always for t << 1 Figure 9.23(a) shows that  for x ~< g 
entrains fluid and the fluid velocity decreases from zero to its (negative) steady 
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1.2 

8 

0.0 

-1.2 

2 t 

40 

8 

20 

X'-- ~Tr 

__ 2 3 7 r  x - -  2 9 7 r  

2 4 t 

Figure 9.23" Variation of the outflow velocity, voo(x , t ) ,  with t for  P r  - 0.72 at 
several values of x.  

state value monotonically. However, on the upper hemisphere, that is for x > 
~- the fluid is seen to have a component of velocity outwards as the fluid begins 2 '  
to convect upwards. As this transient phenomenon gives way to a steady state 
flow there is again entrainment into the boundary-layer. Further, Figure 9.23(b) 
shows that  the transient outflow velocity increases substantially until, as x --+ 7r (the 
upper stagnation point of the sphere), there is clear evidence of a singular behaviour 
appearing in the solution. 

Finally, Figure 9.24 illustrates the variation with t of ~T, defined by Equa- 
tion (9.141), and, on using expression (9.130), we have 

~ T ( X , t )  -- 1.3298t[ -- 0.1139t~ COSX + O ( t~)  (9.144) 

for t << 1. The results obtained by Brown and Simpson (1982) show that  as t -+ ts, 
the time when the singularity occurs in the boundary-layer, we can expect 

3 - I  (9.145) ~ + 

where ~" = ts - t with ts, a0 and al being constants. It is seen from Figure 9.24(a) 
that  for x <~ ~ the boundary-layer remains very thin and, following a mild over- 
shoot, quickly attains its steady state value. However, for x ~> ~ a much more 
rapid thickness of the boundary-layer is observed with the overshoot becoming quite 
pronounced. In Figure 9.24(b) the variation of 5T with t at x -- ~r is shown and 
the singularity which the solution develops is clearly observed. Beyond t - 2.75, 
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Figure 9.24: Variation of the thermal boundary-layer thickness, ST(X, t) with t for 
Pr  - 0.72 at several values of  x. The small time solution ( 9 . 1 ~ )  and the large 
time solution (9.1~5) are indicated by the dotted and broken lines, respectively. 

Awang and Riley's solutions are no longer accurate and they have determined the 
constants in expression (9.145) from the numerical solution up to the value t = 2.75 
as a0 - 3.064, al - -0.298 and ts - 2.922. However, Brown and Simpson (1982) 
found ts = 2.912, which is in very good agreement with the value of ts -- 2.922 found 
by Awang and Riley (1983). The asymptotic solutions (9.144) and (9.145) are also 
included in Figure 9.24(b) and we see that  there is a very good agreement between 
the numerical and asymptotic solutions. 

More details on this fascinating problem can be found in the excellent paper by 
Riley (1986) where the singularity in the solution of the boundary-layer equations 
or the flow eruption process is i l lustrated by the development of the isotherms close 
to the sphere. 



Chapter 10 

Free and  m i x e d  c o n v e c t i o n  
b o u n d a r y - l a y e r  f low of  
non-  N e w t  on ian  f luids 

10.1 In troduc t ion  

It is well known that most fluids which are encountered in chemical and allied pro- 
cessing applications do not adhere to the classical Newtonian viscosity postulate and 
are accordingly known as non-Newtonian fluids. One particular class of materials 
which are of considerable practical importance is that in which the viscosity depends 
on the shear stress or on the flow rate. Most slurries, suspensions and dispersions, 
polymer solutions, melts and solutions of naturally occurring high-molecular-weight, 
synthetic polymers, pharmaceutical formulations, cosmetics and toiletries, paints, 
biological fluids, synthetic lubricants and foodstuffs, exhibit complex rheological 
behaviour which is not experienced when handling ordinary low-molecular-weight 
Newtonian fluids such as air, water, silicon oils, etc. Due to the importance of the 
applications of non-Newtonian fluids for the design of equipment and in industrial 
processing, considerable efforts have been directed towards the analysis and under- 
standing of such fluids. Non-Newtonian fluid behaviour has been the subject of 
recent books by Astarita and Marrucci (1974), Schowalter (1978), Crochet et al. 

(1984), Tanner (1985), Bird et al. (1987) and Siginer et al. (1999). Further, a fairly 
large body of fundamental research on non-Newtonian fluid flow can also be found 
in a number of excellent review articles, e.g. Cho and Hartnett  (1982), Shenoy and 
Mashelkar (1982), Crochet and Walters (1983), Shenoy (1986), Irvine, Jr. and Karni 
(1987), Andersson and Irgens (1990) and Ghosh and Upadhyay (1994). 

Real fluids and their mathematical models are classified into the following three 
types, see Andersson and Irgens (1990): 

(i) Time-independent fluids for which the properties are independent of time; 
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(ii) Time-dependent fluids for which the properties change with time as the fluid 
is deformed; 

(iii) Viscoelastic fluids which exhibit both viscous and elastic behaviour, e.g. elastic 
recovery after deformation, and stress relaxation. 

The time-independent fluids may be subdivided into four types, depending on the 
general nature of the viscosity function, as follows: 

- " Y  (10.1) 

where -~ is the shear rate and ~- (~f) is the shear stress. The four types are as follows: 

(i) Viscoplastic fluids (e.g. Bingham-fluids); 

(ii) Pseudo-plastic or shear thinning fluids; 

(iii) Dilatant or shear thickening fluids; 

(iv) Newtonian fluids. 

In dealing with the complexities of non-Newtonian fluid flows, methods that  allow 
the description, interpretation and correlation of fluids properties are required. A 
number of mathematical models and techniques have been proposed to describe the 
rheological behaviour of such fluids, see for example Rosen (1979) and Bird et al. 

(1987). Some empirical models have been found to correlate the viscosity data 
adequately for various types of material through the use of a limited number of 
meaningful parameters. Despite the trend to develop constitutive theories through 
the application of continuum theories, simple models have been developed which 
describe the non-Newtonian behaviour of fluids which have useful applications in 
industry, see for example Cramer and Marchello (1968). Ideally, a simple model 
should give an accurate fit with all the available data and have a minimum number 
of independent constants which can be easily evaluated and they have some physical 
basis. 

Such a model which has been most widely used for non-Newtonian fluids, and is 
frequently encountered in chemical engineering processes, is the empirical Ostwald- 
de Waele model, or the so-called power-law model, defined as follows: 

- (10.2) 

where It0 and n are material parameters, tt0 is called the consistency coefficient 
and n is the power-law index with n being non-dimensional and the dimension of 
#0 depends on the value of n. The quantity #0 is not the viscosity in a classical 
sense unless n is unity. The parameter  n is an important index to subdivide fluids 
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into pseudo-plastic fluids n < 1 (most macromolecular fluids are of this kind with 
0.2 < n < 0.6, see Bird et al., 1987) and dilatant fluids n > 1. Clearly, the power-law 
model described by Equation (10.2) reduces to the Newtonian model when n - 1 

and then the consistency coefficient it0 is the dynamic viscosity. Details of this class 
of fluids can be found in the review articles by Metzner (1965) and Andersson and 
Irgens (1990). 

Other important non-Newtonian fluids are those fluids which contain certain 
additives and some naturally occurring fluids such as animal blood. Physically 
these fluids may form suitable non-Newtonian fluid models which can be used to 
analyse the behaviour of exotic lubricants, colloidal suspensions, liquid crystals, 
etc. A mathematical model for the description of such fluids, which exhibit certain 
microscopic effects arising from the local structure and microrotations of the fluid 
elements is that of a microfluid, first introduced by Eringen (1966). As this model is 
not easily amenable to theoretical treatment, a subclass, known as micropolar fluids, 
was further proposed by Eringen (1972) and such fluids exhibit the micro-rotational 
inertia. They can support couple stresses and body couples only, and may represents 
fluids consisting of bar-like or sphere-like elements. The theory of micropolar fluids 
has generated a considerable amount of interest and many flow problems have been 
studied, see for example Ariman et al. (1973), Pop et al. (1998c) and Rees and Pop 
(1998) for detailed references. 

However, more theoretical and experimental work is still required in the area of 
convective flow of non-Newtonian fluids for both power-law and micropolar fluids. 

10.2 Free convec t i on  b o u n d a r y - l a y e r  f low of  power- law 
fluids over a vert ical  flat plate  

This problem has been studied rather extensively since the pioneering work of 
Acrivos (1960). Because most non-Newtonian fluids are highly viscous and have 
a large Prandtl  number, Acrivos (1960) presented the concept of an asymptotic 
boundary-layer for power-law fluids with large Prandtl numbers. He was the first 
to obtain similarity solutions for free convection boundary-layer of power-law flu- 
ids along a vertical flat plate. Subsequently, a large number of research papers 
which deal with integral, numerical and experimental methods to yield solutions of 
a vertical plate free convection boundary-layer with uniform wall temperature and 
uniform surface heat flux conditions have been published. Tien (1967) obtained an 
approximate integral solution for a vertical flat plate with constant surface temper- 
ature assuming a velocity profile that  does not attain a zero value at a well-defined 
momentum boundary-layer thickness. This is a result of not using the appropriate 
boundary and compatibility conditions when making the choice of the velocity and 
temperature profiles. The average Nusselt number predicted by Tien (1967) is, how- 
ever, correct as can be seen from Table 10.1 showing the comparison of the results 



336 CONVECTIVE FLOWS 

Table 10.1: 

P r z  --+ c~. 

m 

Comparison of  the modified average Nussel t  number,  .... Nu 
RaSW4--f 

Acrivos Tien [ 
(1960) ..... (1967) 

0.5 0.63 0.6098 
1.0 0.67 0.6838 

0.71 0.7229 

Shenoy and Kawase and Huang anc[ 
Vlbrecht (1979) Vlbrecht (1984) Chen (1990) 

0.5957 
0.6775 
0.7194 

0.6275 
0.6700 
0.6960 

0.6105 
0.6701 
0.7012 

, / o r  

of the four theoretical approaches. Emery et al. (1970) have experimentally investi- 
gated the free convection boundary-layer of power-law fluids and they have also used 
a composite fluid model to obtain numerical solutions. Shulman et al. (1976) have 
solved this problem analytically using the method of matched asymptotic expan- 
sions. Kawase and Ulbrecht (1984) have employed an integral method, assuming a 
very thin thermal boundary-layer and using a velocity profile taken from the forced 
convection analysis and hence the energy and momentum equations become decou- 
pled. All these studies were based on the assumption of an infinite value of the 
Prandt l  number and this is, in general, a good approximation, e.g. 0.5% carboxy- 
methylcellulose water solution has P r  - 85 - 500; 0.05% carbopal solution 934 has 
P r  - 65 - 90. If we take into account the finiteness of the Prandtl  number then 
the governing boundary-layer equations for the free convection flow along a vertical 
plate which is immersed in power-law fluids are in general non-similar. Wang and 
Kleinstreuer (1987) and Huang et al. (1989) have employed the Keller-box method 
to numerically solve the coupled system of non-similar equations for this problem. 
We shall present here some of the results obtained by Huang and Chen (1990) for 
the problem of free convection boundary-layer flow over an isothermal vertical flat 
plate in a non-Newtonian power-law fluid using the method of local similarity. 

Consider a vertical fiat plate which is at a constant temperature Tw and it is 
placed in a non-Newtonian power-law fluid of ambient temperature Too ( <  Tw)  and 
pressure p~ ,  which obeys the Ostwald-de Waele power-law model, see Andersson 
and Irgens (1990), namely 

Tij -- 2tt0 (2e i j e j i )  2 (10.3) 

where ~ij is the stress tensor and 

- \ 0zj + / (10.4) 

denotes the strain rate. The governing equations for the steady free convection 
of non-Newtonian power-law fluids stem from those which are commonly used for 
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analysing the continuity, momentum and energy equations and they are given by 

Ou Ov 
+ ~ -- 0 (10.5) 

0-~ oy 

Ou Ou 10p 
~ ~  + ~0~ - p o~ 

Ov Ov 
~ ~ + ~ 0 ~  - 

p -~x \  Ox +-~y J -~y+-ffs + g f l ( T - T o o )  
(10.6) 

lop  t_#o{ 0 [ (Ou Ov)] 0 ( j O v ' ~ }  
- p Oy - p -ff s J -~y + -ff s + 2 -~y \ O y ] (10.7) 

OT OT ( 02T O2T ) 
(10.8) 

where J is the Ostwald-de Waele power-law model parameter which, from Equa- 
tions (10.3) and (10.4), is given by 

n - - 1  

z - 2  ~ +2 N + N + ~  (10.9) 

Equations (10.5) - (10.8) can be transformed further by using the following non- 
dimensional variables 

x - - T ,  y - - ~ ,  ~ ,  v--  
t -  1 

p~'__ P-POOu2 , 0 - -  T-TOOAT , U c -  (gflAT1) 
P c 

(10.10) 

On substituting the variables (10.10) into Equations (10.5) - (10.8) we obtain 

O~ 0~" 
o-~ + N = o (10.11) 

^o~ ~o~ og 
~g~ + ~o-~ - o~ 

o [j o~ 
+c~-�89 { ~  N N 

0~ ^ 

(10.12) 

^o~ o~ o~ 
~ ~  +~o~ = o~ (10.13) 

U -~x + v -@ = p r G r - ~ -f ~x ~ + 0 ~.2 } (10.14) 

where J ' -  uic-nln-lJ and Gr and Pr are the modified Grashof and Prandtl numbers 
which are defined as 

2 

( ~ ) 2  , Pr = c~I (g/~AT)~(~+~) 12(~+~) (10.15) 
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Next we introduce the boundary-layer variables 

x - ~ ,  y - G r ~ ( n + ~ ) ~ ,  ~ - ~ ,  v - G r ~ - ( ~ + ~ ) ~ ,  p - p ,  0 - 0  (10.16) 

into Equations (10.11) - (10.14) and neglect terms which are asymptotically small 
compared with the retained terms as Gr -+ oc. We then obtain, in dimensional 
variables, the boundary-layer equations for the free convection flow over a vertical 
flat plate which is immersed in a non-Newtonian power-law fluid of the form: 

Ou Ov 
o- ;  + - o 

Ou Ou #o 0 [' 
u -~x + V o y  - -  = p Oy 

OT OT 02T 

~u n - 1  (~U) 
o-~ + g~ (T - Too) 

(10.17) 

(10.18) 

(10.19) 

and these equations have to be solved subject to the boundary conditions 

u - 0 ,  v - - 0 ,  T - T w  on y - 0 ,  x / > 0  
u - + 0 ,  T ~ T ~  as y-+cx~, x > / 0  (10.20) 

Following Huang and Chen (1990), we look for local similarity solutions of Equa- 
tions (10.17) -(10.20) of the form 

y r T - T ~  
- ST(X)' f(rl) -- ~s~ ' 0(77) - AT (10.21) 

~T(Z) 

where r is the stream fimction, defined by Equation (1.18), the thermal boundary- 
layer thickness fiT(X) is written as 

x 
ST(X) = ~ (10.22) 

and the modified local Rayleigh number is defined as 

Raz - - ( P )  g~ATx2n+I 
a~ (10.23) 

On substituting Equation (10.21) into Equations (10.18) and (10.19) we obtain the 
following set of ordinary differential equations 

o P r 2  ~+~ O+ [ [ f "  + 3n+-----1 f f ' ' - ~ 3 n + l  - 

2 n + 1  
0"+ 3n +--------~fO' -- 0 (10.25) 
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which have to be solved subject to the boundary conditions (10.20) which become 

f ( O ) - O ,  f ' (O) - -O,  0 ( 0 ) - 1  
f ' ~ O ,  0 - -+0  as 77--+oo 

where P r ,  is the modified local Prandt l  number and is defined as 

(10.26) 

2 

1 ( ~ 0 )  ,,+----X ,,-1 3(,,-1) 
- -  - -  X 2 ( n ' b x ~  (gflAT) 2("+~) (10.27) Prx  - a f 

Finally, the modified local and average Nusselt numbers are given by 

N u  _ _0  t N u  3n + 1 
, - (0), , = [-0 '(0)]  (10.28) 

R a ~ +  1 Ra  3~+~ 2n + 1 

where Ra is the modified Rayleigh number based on the length scale l. 
Equations (10.24) - (10.26) have been solved numerically by Huang and Chen 

(1990) using a finite-difference method in combination with a cubic spline interpola- 
tion procedure proposed by Lee et al. (1986). This solution method has been found 
to yield rapid convergence and results of high accuracy. The method is very effective 
in dealing with the stiff Equation (10.24) which becomes 

0 +  (If"[  '~-1 f " ) '  - 0 (10.29a) 

when Prz  >> 1. Equation (10.29a) has to be solved subject to the boundary condi- 
tions 

f(O) - O, f'(O) -- 0, f"(oo) -- 0 (10.29b) 

and therefore the numerical solutions are independent of Prx.  
Typical reduced fluid velocity and temperature  profiles are shown in Figure 10.1 

for the flow index n = 0.5, 1 (Newtonian fluids) and 1.5, when Prz  = 1, 10, 100 and 
1000. It is seen that  the fluid velocity profiles are strongly sensitive to the modified 
local Prandt l  number and the fluid flow index, while the temperature profiles are 
clearly not influenced. 

The effect of the modified local Prandt l  number on the modified local Nusselt 
number, as obtained by Huang and Chen (1990), is shown (by full lines) in Fig- 
ure 10.2 and the integral solutions of Shenoy and Ulbrecht (1979), and Kawase and 
Ulbrecht (1984) are also included in this figure. It is seen that  the modified local 
Nusselt number increases as Prz  increases for all values of n. It also increases mono- 
tonically as n increases. In addition, for large values of Prz  (~  100), the modified 
local Nusselt number reaches a constant value for all values of n because in this 
case Equation (10.24) is approximated by the Equation (10.29) and thus its solution 
becomes independent of Prx.  Further, we note from Figure 10.2 that  the approx- 
imate results of Kawase and Ulbrecht (1984) compare well with the exact solution 
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Figure 10.1" Fluid velocity profiles, f'(7]), for  (a) n - 0.5, (b) n - 1 and (c) 
n - 1.5 and temperature profiles, 0(~), for  (d) n - 0.5, (e) n - 1 and (f)  n - 1.5. 

of  H u a n g  a n d  C h e n  (1990) for n > 0.9 a n d  very  large  values  of P r x .  However ,  t he  

a p p r o x i m a t e  r e su l t s  of  Shenoy  a n d  Ulb rech t  (1979) d e v i a t e  f rom those  of  H u a n g  
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Figure 10.2: Variation of the local Nusselt number with the power-law index n. 
The solutions of Huang and Chen (1990) are indicated by the solid line and the 
integral solutions of Shenoy and Ulbrecht (1979) and Kawase and Ulbrecht (198~) 
are indicated by the dotted and broken lines, respectively. 

and Chen (1990) for all values of n, even at large values of Prx.  Consequently, we 
conclude that  the results of Huang and Chen (1990) are reasonably good for Prx  

ranging from 1 to 1000. 
Finally, values of the modified average Nusselt number, N u ,  as defined in Equa- 

tion (10.28) and those obtained by some other authors are given in Table 10.1 for 
n = 0.5, 1 and 1.5 when Prx  --+ co. It is observed that the local similarity solutions 
proposed by Huang and Chen (1990) give very good results for high values of the 
modified local Prandt l  number. 

10.3  Free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low of  n o n -  
N e w t o n i a n  p o w e r - l a w  f lu ids  over  a ver t i ca l  w a v y  
s u r f a c e  

The prediction of the heat transfer from irregular surfaces is a topic of fundamental 
importance for many practical problems. Surfaces are sometimes roughened in order 
to enhance heat transfer, for example in flat-plate solar collectors and flat-plate con- 
densers in refrigerators. The presence of roughness elements on a flat surface disturbs 
the fluid flow and hence changes the rate of heat transfer. Yao (1983) was probably 
the first who used the Prandt l  transposition theorem, see Yao (1988), to analyse the 
steady free convection boundary-layer of a non-Newtonian fluid over a vertical wavy 
surface. A simple coordinate transformation was proposed to transform the wavy 
surface to a simple shape, namely that  of a flat plate. The gist of the theorem is that  
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the flow is displaced by the irregularities on the vertical surface and the horizontal 
component of the fluid velocity is adjusted according to the shape of the surface. 
The form of the boundary-layer equations is invariant under the transformation and 
the surface conditions can therefore be applied on a transformed flat surface. Moulic 
and Yao (1989), Chiu and Chou (1993, 1994), Rees and Pop (1994a, 1994b, 1995a, 
1995b), Chen et al. (1996), Yang et al. (1996), Kumari et al. (1996a), Kim (1997) 
and Pop and Na (1999) have used the transformation proposed by Yao (1983) to 
solve free convection problems associated with Newtonian fluids, micropolar fluids, 
fluid-saturated porous media and non-Newtonian power-law fluids. 

Consider the steady laminar free convection of a non-Newtonian power-law fluid 
over a wavy vertical surface which is maintained at the constant temperature Tw, 
where Tw > Too. The physical model and the coordinate system are shown in 
Figure 10.3, where x and y are the axial and transverse Cartesian coordinates, a is 
the amplitude of the surface wave and 1 is a characteristic wavelength of the surface 
waves. In particular, we assume that the surface profile is given by 

y -- a(x) (10.30) 

where or(x) is an arbitrary geometric function. 

T~ 

T 
' t t  

T~ 

y = 

Figure 10.3: Physical model and coordinate system. 

The governing equations for this problem, in non-dimensional form, are Equa- 
tions (10.11) - (10.14) and they have to be solved subject to the boundary (non- 
dimensional) conditions 

= o ,  o - 1  on 
-->0, ~--+0, ~'--+0, 0 - + 0  as ~--+c~, ~ > 0  (10.31) 
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a(x) We now assume that the modified Grashof number is so large where 3(~)  = t �9 
that free convection takes place within a boundary-layer, whose cross-section width 

a is substantially smaller than the amplitude 3 (= i )  of the waves on the surface. 
Thus, invoking the boundary-layer scalings given by the transformations 

1 1 

- ~, ~ -  ( ~ -  3) Gr ~(~+~), ~ - ~, ~ -  ( 9 -  ~z~) Gr ~(~+~), p -  p, Y -  
(10.32) 

where az - -  d Y  Equations (10.11) - (10.14) reduce, to leading order as Gr --+ o0 to 
the following boundary-layer equations: 

u~+Vo--y= O5 

(.,,0~ 
~ ~ 2 + y ~  u ~  x 

+ ~ = 0 (10.33) 
0~ oy  

0~ + (l+a~) N 

+ v  

N o 

= -a~(o~, o~ + ~ (1 + ~)~ o ( o~ 
0~ N N 

-2 020 .~OO ~09 1 + a z 
U-~x + v o-~ -- Pr O~ 2 

and the boundary conditions (10.31) become 

+ 9 (10.34) 

(10.35) 

(10.36) 

= 0 ,  ~ - - 0 ,  0 - - 1  on ~ = 0 ,  5~>0 
~ 0 ,  9 - + 0  as ~--+c~, ~>~0 (10.37) 

It is noted from these boundary conditions that the new variable ~, defined in 
Equation (10.32), transforms the wavy surface into a flat surface. Also it should 
be noted that this analysis is valid only within the framework of boundary-layer 

( ( theory with ~ ' -  O Gr 2(~+~) and ~ -  O Gr 2(~+~) as Gr -+ ec, as obtained 
o A _  from Equations (10.30) and (10.32). Further, Equation (10.35) indicates that o~ - 

0 Gr 2(,~+~) , which implies that the lowest order pressure gradient along the ~ 

direction is determined from the inviscid (outer) flow solution. However, for the 
o~ ~ present problem this gives ~ - 0. In order to eliminate the term Gr2('~+l)~ from 

Equations (10.34) and (10.35), we multiply Equation (10.35) by ~x and the resulting 
equation is added to Equation (10.34). After a little algebra, we obtain 

U ~ x + V - ~ +  1 + ~ 2  0-~ ~ + 1 +~2  (10.38) 

Equations (10.33), (10.36) and (10.38), along with the boundary conditions 
(10.37), form the basic equations for the problem of free convection of a non- 
Newtonian power-law fluid along a vertical wavy surface. These equations can 
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be solved numerically using the Keller-box method as described by Kumari et al. 
(1996a) for a wavy vertical surface which is subject to a constant heat flux rate. 
However, Kim (1997) has solved Equations (10.33), (10.36) and (10.38), along with 
the boundary conditions (10.37), using the finite volume method as proposed by 
Patankar (1980). In order to do this Kim (1997) introduced the parabolic coordi- 
nates 

X ~, Y Y U u - -  - - -  - -  : ~ ( n  + i  
1 , - -  1 , V - [ 2 ( n  + 1)x~ ) g  

[2(n + 1)x--'] 2(-+ ~) [2(n + 1)x--'] v- 

so that  Equations (~0.33), (10.36) and (10.38) become 
(10.39) 

OU 2,~(,~+~) - = 0 n + 1 U + [2(n + 1)X] ~ - Y [2(n + 1)X] (~-~)(2,~+~) OV 
n OY 

1 U-.~OU { 1--n }OU 
--~ Y U  OY [2(n + 1)X]~- + [2(n + 1)X] 2"(~-~) - [ 2 ( n  + 1)X] ~-" 

+ 1 [2(n + 1)x]  
+ [ 2 ( n + l ) X ]  ,~ + 

n 1 + a  2 

...2 n 0 ( 
: (1 + ax) ~-~ 

3n-+-1 O0 
[2(n + 1)X] ~'~(n+i) U O--X 

+ { 2n(n+l) 

O U  ~ - 1 0 U )  0 

OY + l + a ~  

V [2(n-k- 1)X] (1-n)(1+2") } O0 
- Y U  OY 

(10.40) 

(10.41) 

1 + ~ 020 (10.42) 

Pr OY 2 

which have to be solved subject to the boundary conditions 

U - - 0 ,  V = 0 ,  0 = 1  on Y = 0 ,  X>~0 
U - + 0 ,  0--+0 as Y-+c~z, X~>0 

(10.43) 

The local heat transfer coefficient may be determined from the expression 

qw = - k i  n . V T  (10.44) 

where 
a~ 1 ) 

n -  - ~, 1 (10.45) 
(1 +ag)  

is the unit vector normal to the wavy surface. The local Nusselt number can then 
be expressed as follows: 

1 
: - (1 oo ( x , o )  

b--V (10.46) 
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The numerical results reported by Kim (1997) were obtained for a sinusoidal 
surface 

~(X)  = 3sin  (27vX) (10.47) 

in order to show the effects of the wavy surface to the free convection flow. The full 
details of the numerical procedure can be found in Kim and Chen (1991) and Kim 
(1997) and therefore we do not repeat them here. 

Kim (1997) obtained the non-dimensional axial fluid velocity, U, and the tem- 
perature, 0, profiles for P r  - 10, ~ - 0.1, n - 0.8 (pseudoplastic fluids), n - 1 
(Newtonian fluids) and n - 1.2 (dilatant fluids). He found that  the maximum value 
of U increases, but the boundary-layer thickness becomes thinner as the flow in- 
dex n increases. However, the thermal boundary layers of pseudoplastic fluids are 
thinner than those of dilatant fluids. Further, Kim (1997)investigated the axial 
velocity profiles for P r  - 10, ~ - 0.1 and n = 1 and showed that  they are sinusoidal 
along the X direction. The regular nodes along the X direction being at X - 1.5 
and 2.0, and X - 1.75 and 2.25, which represent the troughs and the crests of one 
wavy segment, respectively. The difference in the axial velocity at the crest and at 
the trough are almost indistinguishable but the boundary-layer around the nodes is 
thicker compared to that  of the crests or the troughs. Further,  it should be noted 
that  the computation domain is not paralleled to the physical surface. 

Figures 10.4 and 10.5 show the profiles of the local Nusselt number, given by 
Equation (10.46), for P r  - 10 and 1000 and for some values of the parameters 
and n. It can be seen from Figure 10.4 that  for n -- 1 the local Nusselt number 
for a wavy surface decreases as ~ increases. This is because the buoyancy forces 
on an irregular surface are smaller than those on a fiat plate (3 - 0), except at 

-~ 2.0 

~ ~- 1.5 

1.0 

.5 ' ' " "  " ' '  

0.05, o. 5, 0.2, o1251 

,~.-.-,,. ,I-- . . , ,  /,..---~,, ] 
�9 , , , ,  . . . . .  . . . .  - . i  I 

0.5 WavySurface,~=0.1 - [ 

0 1 2 3 X 

Figure 10.4: Var ia t ion  o f  the local N u s s e l t  n u m b e r  wi th  X f o r  n - 1 ( N e w t o n i a n  

f lu id )  and  P r -  10. 
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o i x 5 3 

Figure 10.5: Variation of the local Nusselt number with X for ~d - 0.1 when (a) 
P r -  100 and (b) P r -  1000. 

the trough and crest points. On the other hand, Figure 10.5 shows that the local 
Nusselt number increases as n increases. However, it decreases as the axial distance 
X increases from X - 0  (flat plate). 

10.4 Free c o n v e c t i o n  b o u n d a r y - l a y e r  wall p l u m e  in non-  
N e w t o n i a n  power- law fluids 

Consider the problem of steady, laminar flee convection from a line source of heat 
positioned at the leading edge of an adiabatic vertical surface which is immersed in an 
unbounded non-Newtonian power-law fluid with the following transport properties 
as proposed by Shvets and Vishnevskiy (1987) and Gryglavszewski and Saljnikov 
(1989), 

~-~j - - p  6~j + #o 
1 

n - - I  
2 

eij, qs -- - k /  
1 

s_ 
2 

IVTI (10.48) 

where 6ij is the unit tensor , /2  is the second invariant of the strain rate tensor and 
s is the heat transfer index. It can be shown that the boundary-layer equations in 
non-dimensional form for this problem are givenby, see Pop et al. (1993b), 

Ou Ov 
0--x-t- ~yy - 0 (10.49) 

u -~-~x + v --~y = O y ~ O y + 0 (10.50) 
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O0 O0 1 0 ( 
U-~x + V O---y = P r  Oy 

O u  

which have to be solved subject to the boundary  conditions 

u - O ,  v - O  } 

0 - (T  - Too) arb oo _ 0 T--~e f or 0--~-- 
u - + O ,  0- -+0  

on y = 0 ,  x>~0  

as y -+ c~, x>~0  

(10.51) 

(10.52a) 

together with the integral condition, see also Section 5.1, 

fo ~ uO dy - Q 

where the non-dimensional variables are defined as follows: 

-2 ~l - - T - T o o  x = -( , y _  Gr  a u V Gr  a O -  Gr  b 
, U - -  ~ c '  V - -  ~ c  ' Tre f 

1 

g c  _ pl n G r -  4n-Jr.l g )  __ qs pl,~ G r , ~ -  1 ,~-  2 

P % I T r e f  ~o  

(10.52b) 

(10.53) 

n and b - where a - 4ri+i 
are now given by 

6 n 2 - 5 n - 2  
( 4 n + l ) ( n - 2 )  " The modified Grashof  and Prandt l  numbers 

2q-n 

Gr -- g~Tref t 2-.  
2 

nC2+s) 
P r  = ~1 l l+sulc_SG r_  4~§ (10.54) 

a /  

We now define the following variables 

2n-I-1 2n+1  nq--1 
42 = x4,~+l f (x, ~71, 0 - x 4,~+~ h(x ,  rl), 77 - x ,,~+~ y (10.55) 

and assume that  the wall t empera ture  depends on x in the following manner 

2 n ~ l  

Tw(x)  -- Too + Gr-bTrefX -~"+~ (10.56) 

Insertion of the variables (10.55) into Equations (10.49) - (10.51) leads to 

The 

( n ) '  2 n + l f f , , _  n f , 2 + h _ x ( f , O  f '  f , , O f )  
I f"l f" + 4n +---5  4n +----i Ox Uz 

"-~-" 1 f , ,  S h, ' 2n + 1  ( f ,  Oh h, Of  ) 
x 4. + ~ p r ( [ I ) + 4 n + l ( f h ) ' - z -~z -~z 

boundary and integral conditions (10.52) become 

(10.57) 

(10.58) 

f - 0, f t  -- 0 "[ 
h -- 1 or h t = 0 f 

f ' - - + 0 ,  h - -+0  

on r / = 0 ,  x ~>0 

as r / - ~ ,  x ~ > 0  
(10.59a) 
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fo c~ d~ Q (n, Pr, x) (10.59b) f 'h 

It is apparent that Equations (10.57) and (10.58) permit similarity solutions if 
the exponent of x in Equation (10.58) vanishes, i.e. 

s = n -  1 (10.60) 

Under this condition, these equations reduce to the following ordinary differential 
equations: 

( If''ln-1 f") '  + 4n2n +~----1+ l f f , , _  4nn+------1 f,2 + h - 0 (10.61) 

1 ( f , , n - 1 ) '  2 n + l  
Pr [ { h' + 4 n + 1  ( f h ) ' - O  (10.62) 

which have to be solved subject to the boundary and integral conditions 

f ( 0 ) = 0 ,  f ' ( 0 ) = 0 ,  h ( 0 ) = l  or h ' ( 0 ) = 0  
(10.63 ) 

f '--+O, h ~ O  as 7?-+oo 

/o ~176 drj (n, Pr) (10.63b) f'h Q 

It should be noted that for n = 1 (Newtonian fluids), Equations (10.61) and (10.62) 
reduce to those derived by Afzal (1980) and Ingham and Pop (1990). Further, the 
skin friction coefficient 

can be expressed as 

/10 C I -  2Gr 4,~+~x 4,~+~ ~ y=O 

cs  (ar ) - 2 If"(o)l (10.65) 

if the variables (10.55) are used. 
Equations (10.61) - (10.63) have been integrated numerically by Pop et al. 

(1993b) using the Runge-Kutta-Gill method for several values of n and for Pr = 0.72, 
1 

10 and 100. For a Newtonian fluid (n - 1) the present results give for C/(Grz)~ 
the values 2.62012 for Pr = 0.72 and 1.85964 for Pr = 6.7, whilst the corresponding 
values obtained by Ingham and Pop (1990) are 2.6201 for Pr = 0.72 and 1.8596 for 
Pr = 6.7. This shows that the agreement between the two sets of results is excellent. 

The results for various transport parameters, which are important for represent- 
ing some heat transfer correlations are given in Tables 10.2 and 10.3 for the flow 
behaviour index n ranging from 0.2 to 1.5 and for Prandtl  numbers 10 and 100, re- 
spectively. It is noted from these tables that f ' (0 )  decreases as the values of n and 
Pr increase and this leads to a decrease in the skin friction coefficient as defined by 
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Table 10.2" Numerical values of the computed parameters for Pr = 10 and the 
values 0.2 ~ n ~< 1.5. 

[ -  
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.5 

I! s"(o) 
3.21309 
1.56230 
1.08804 
0.95063 
0.86123 
0.90450 
0.82903 

. . . .  

f~x(O) 
. . . .  

0.70945 
0.56938 
0.45349 
0.43117 
0.39276 
O.49054 
0.40676 

f(oo) 
. . . . . . . . . . . .  

3.46476 
2.48399 
1.52345 
1.32087 
0.99482 
1.62756 
0.70861 

Q 
14.67177 
9.05100 
5.18968 
3.96055 
3.00209 
2.87300 
2.12471 

Table 10.3: Numerical values of the computed parameters for Pr - 100 and the 
values 0.2 ~< n ~< 1.5. 

l - -  I1 s"(o) 
0.2 1.23283 
0.4 0.73858 
0.6 0.50828 
O.8 O.41895 
1.0 O.48O62 
1.2 0.54364 
1.5 0.53094 

0.22884 
0.20504 
0.13315 
0.09548 
0.12145 
0.16156 
0.13440 

. . . .  

f(~) 
, , 

0.90717 
0.73486 
0.19407 
0.08289 
0.12585 
0.19320 
0.12537 

Q 
3.33278 
2.33788 
1.04260 
0.53576 
0.52386 
0.48404 
0.31474 

. . . . . .  

Equat ion (10.65). It is also seen tha t  the pa ramete r  I,  which serves to determine the 

reference t e m p e r a t u r e  Tre f through the Equat ion  (10.56), decreases with an increase 

in n and Pr. 
Figures 10.6 and  10.7 display results for the fluid velocity and t empera tu re  pro- 

files in the plume. It is seen from these figures tha t  the max imum fluid velocity 
decreases with increasing values of the flow behaviour  index n and this m a x i m u m  
moves closer to the wall as the value of n increases. We also see tha t  the fluid ve- 
locity and the the rma l  boundary- layer  thicknesses decrease as n increases. Fur ther ,  
as the P rand t l  number  increases, the th inning effect of the thermal  boundary- layer  
substant ial ly affects the velocity boundary- layer  region. Also, it can be noted from 

Figures 10.6(a) and  10.7(a) tha t  for n = 1 the solution appears  to intersect more 
curves for Pr  = 100 t han  for Pr  = 10. The reason for this appears  to be the depen- 
dence of the P r a n d t l  number  on the index n, reference velocity Uc and the reference 

length l of the plate. 
The impor tan t  quant i t ies  in this flow geometry are the fluid velocity level, the 

surface t empe ra tu r e  and  the size of the boundary- layer  region. As the flow proceeds 
downstream from a heated  element which is located on an unhea ted  par t  of the sur- 
face, it influences the cooling characterist ics of any other  element it may encounter.  
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Figure 10.6: (a) The fluid velocity, f'(rl) , and (b) the temperature, h(~), profiles 
for Pr = 10. 
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Figure 10.7: (a) The fluid velocity, f'(rl) , and (b) the temperature, h(~), profiles 
for" Pr = 100. 
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An element downstream is immersed in a flowing heated fluid whose temperature 
and fluid velocity are determined by the distance between the two elements and the 
heat flux input I. The values of f"(0),  f~max(~), f(cc)  and Q, as given in Tables 10.2 
and 10.3, allow the evaluation of the temperature and the fluid velocity fields at a 
downstream element. 

10.5 M i x e d  convec t ion  boundary- layer  flow from a hor- 
izontal  c ircular cy l inder  and a sphere  in non-  
N e w t o n i a n  power- law fluids 

Consider the mixed convection flow past a horizontal circular cylinder or a sphere of 
radius a which are placed in a non-Newtonian power-law fluid of free stream velocity 
U~ and temperature Too, see Figure 10.8. We assume that the surface of the cylinder 
or sphere is kept at the uniform temperature Tw, where T~ > Too (heated surface) 
or Tw < Tc~ (cooled surface). The analysis is also valid for downward flow and in 
this case the x-coordinate is measured from the upper stagnation point. Using the 
non-Newtonian power-law fluid model, the boundary-layer equations can be written 
a s  

0 
= 0 (10 .66)  

~ g Thermal 
Boundary-Layer 

Velocity 
Boundary-Layer 

t t t 
U~, T~ 

Figure 10.8: Physical model and coordinate system. 
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Ou Ou du~ po 0 (lOu 
+ - + - 

p N N  0--y =k g/~ (T - Too}sin a 

(10.67) 
OT OT 02T 

U~x + V-~y -- a f  (10.68) Oy 2 

which have to be solved subject to the boundary conditions 

u=0 ,  v - 0 ,  T--Tw on y - 0 ,  x ~ 0  
u-+ue(x), T-+Too as y--+ec,  x~>0 (10.69) 

where ue(x) is the fluid velocity outside the boundary-layer, with i - 0 for the 
cylinder and i - 1 for the sphere, and the =t= signs in Equation (10.67) correspond 
to assisting and opposing flows, respectively. 

Equations (10.66) - (10.68), along with the boundary condition (10.69), were 
first solved numerical lyby Wang and Kleinstreuer (1988). They assumed that 

(x) 
Uc~ =0 .92  -a -0 .131  a (10.70a) 

for a cylinder in cross-flow and 

Uoo - 1.5 - - 0.4371 + 0.1481 - 0.0423 - (10.70b) a a 

for a sphere and it was considered that  both these equations hold for 0.5 ~ n ~< 1.6. 
In order to solve Equations (10.66) - (10.69) we introduce the following variables: 

1 2--n 

~-2. (10.71) 
f(~, V) 0((, 77) -- T_:Too ' IZXTI 

where r (x) is given by 

r(x) -a s in (x )  (10.72) 

Using the transformation (10.71), Equations (10.66) - (10.68) take the following 
f o r m :  

([ft,[n-1 f")' + A(~)f f" + H(~) (1-  f'2) :k AB(~)O - ( (f ,  Of' f,,Of ) 0~ ~ (10.73) 

0" + A( )so' - ( ,oo _ 0,0 ) 
Pr ~-~ ~ (10.74) 

and the boundary conditions (10.69) become 

f - - 0 ,  f ' - - 0 ,  0 - -  1 on ~/--0,  ~ />0  
f ' - + l ,  0 - ~ 0  as ~ - + ~ ,  ~ > 0  (10.75) 
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The coefficients A(~), B(~), C(~) and n(~) in Equations (10.73) and (10.74) are 
defined as follows" 

1 

3(1--n) 
C ( ( ) -  

for the cylinder 

for the sphere 

n-1 
H(r - u~ d~ 

(10.76) 

where the mixed convection parameter A is now given by 

Gr 
A -- 2 (10.77) 

Re 2 - - n  

and Gr, Re  and P r  are defined as follows: 

2 

Gr - P g13 [AT] a2-~ Re  P r  Re  ~+' 

(10.78) 
Finally, the skin friction coefficient, CI, and the local Nusselt number, N u ,  are 

given by 
2"rw aqw 

CI - p U s  ' N u  - k r  IAT] (10.79) 

and these can be expressed in the following form: 

!CfRen~-12 = ~ -  h--4-Y ~ (~, 0)] 

2 - - n  

N u R e  ~u - ~-~-4-f ~ [-0'(~, 0)] 

(10.80) 

Equations (10.73) and (10.74), subject to the boundary conditions (10.75), were 
solved numerically by Wang and Kleinstreuer (1988) for n ranging from 0.52 to 
1.6, P r  = 10 and 100, and )~ = 0 (forced convection flow), 1 and 2 using the 
Keller-box method. Typical results for the skin friction coefficient and local Nusselt 
number are shown in Figures 10.9 to 10.12. It is observed from Figure 10.9(a) 
that for assisting flows pseudoplastic fluids (n < 1) generate higher, and dilatant 
fluids (n > 1) lower, skin frictions than Newtonian fluids (n = 1). However, both 
the power-law index n and the buoyancy parameter A are less influential on the 
skin friction coefficient for a sphere than for horizontal cylinders, see Figure 10.9. 
Further, Figure 10.10(a) shows that, as expected, for a Newtonian fluid the local 
Nusselt number decreases monotonically along the surface of the cylinder. It reaches 
a maximum for pseudoplastic fluids and then, similar to Newtonian fluids, decreases 
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Figure  10.9: Variation of the local skin friction coefficient with r for Pr  - 100 in 
the case of assisting flow for (a) a cylinder and (b) a sphere. The solutions for 
A - 0 (forced convection), 1 and 2 are indicated by the dotted, broken and solid 
lines, respectively. 

(a) (b) 

3.6 'I~ 6 
_Nu_ i~n : 1.6 = . 

Re~-~ "~\\ 
3.2 ~ ~ ~ _ _ _ _ . _ ~  Nu 5 

2.4 3 

2.0 2 

1.6 1 
0 25 50 75 100 0 20 40 60 80 r 1 7 6  r  

Figure  10.10: Variation of the local Nusselt number with r for Pr - 100 in the 
case of assisting flow for (a) a cylinder and (b) a sphere. The solutions for A = 0 
(.forced convection), 1 and 2 are indicated by the dotted, broken and solid lines, 
respectively. 
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Figure  10.11- Variation of the local skin friction coefficient with r for A - 0.5 and 
Pr  - 100 in the cases of assisting flows (solid lines) and opposing flows (broken 
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Figure  10.12: Variation of the local Nusselt number with r /or A - 0.5 and Pr  - 
100 in the cases of assisting flows (solid lines) and opposing flows (broken lines) 
/or (a) a cylinder and (b) a sphere. 
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gradually. In contrast, for dilatant fluids, the local Nusselt number reduces very 
rapidly in the vicinity of ~ = 0 (the forward stagnation point) and then follows, 
after a point of inflection, the general trend of the Newtonian fluids. This behaviour 
can be explained as follows. From Equation (10.80) we have 

1 1 - - n  

~ 0)] (10.81) 

which implies that for ~ --+ 0 

f 0 for n < l  
N u  Re  , ~  "~ i (10.82) cx~ for n > l  

provided that 0'(~, 0) is well behaved at the forward stagnation point. 
On the other hand, Figures 10.11 and 10.12 show that for opposing flows the skin 

friction coefficient and the local Nusselt number have lower values than for assisting 
flows. This trend is comparable to the effect of lowering the buoyancy parameter 
A, cf. Figures 10.9 and 10.10. In these cases, forced convection (A = 0) is either 
retarded by the opposing buoyancy forces (cooled cylinder/sphere) or relatively less 
enhanced by decreasing the buoyancy forces (reduction of A). As can be expected, 
the separation angle for opposing flows, see Figure 10.12, is similar to that of aiding 
flows. 

10.6 Free  c o n v e c t i o n  b o u n d a r y - l a y e r  flow of  a m i c r o p o -  
lar f luid over a v e r t i c a l  flat p l a t e  

Convective flow over a fiat plate which is immersed in a micropolar fluid has at- 
tracted an increasing amount of attention since the early studies of Eringen (1966, 
1972). Results for this generic problem have been reported by several investigators, 
including Jena and Mathur (1982), Gorla and Takhar (1987), Yiicel (1989), Gorla 
(1988, 1992), Gorla et el. (1990), Gorla and Nakamura (1993), Chiu and Chou (1993, 
1994), Char and Chang (1995, 1997), Wang (1993, 1998), Hossain and Chaudhary 
(1998) and Rees and Pop (1998). These latter authors have shown, based on work by 
Rees and Bassom (1996) on the Blasius micropolar boundary-layer flow over a flat 
plate, that  much more information about the solution of free convection boundary- 
layer flow of a micropolar fluid from a vertical flat plate can be found. A novel 
feature of these problems is that the boundary-layer develops a two-layer structure 
far from the leading edge, namely a mean layer and an inner, near-wall, layer. The 
near-wall layer is of constant thickness and it is the region where the microelements 
adjust from their natural free-stream orientation to that imposed by the presence 
of the solid boundary. It should be mentioned that the papers by Rees and Bas- 
sore (1996) and Rees and Pop (1998) are the most complete papers in the area of 
micropolar fluids and we shall therefore present here some results of these papers. 
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Consider a heated semi-infinite vertical flat plate with a constant wall tempera- 
ture Tw, which is immersed in a micropolar fluid of temperature Too, where T,o > Too. 
The governing equations for the steady free convection flow of an incompressible mi- 
cropolar fluid subject to the Boussinesq approximation can be written in the form, 
see Chiu and Chou (1993), 

(o~  

~ + @  - o 

+ ~ - ~  - 

+ ~ y y  - 
05 

P ~~xx 
( o N  _ 

pj \ - ~  +--~y] -2,~N +,~ 0e 
OT OT ( 02 T O2 T ) 

~ ~ + ~ N  - '~: ~ +  o~2 

(10.83) 

op 

0 N  (10.84) 

+ ( , + n )  -~x2 + ~y2 ] + n-~y + pg fl ( T -  Too) 

@ + ( ,  + ~) - (0~  -~ 0 ~  (10.85) 

0g'~ ( 0 2 ~  0 2 N )  (10.86) 
0~/+7 o~2 +o~2 

(10.87) 

N 

where N is the component of the microrotation vector normal to the (5, ~)-plane and 
j,  n and 7 are the microinertia density, vortex viscosity and spin gradient viscosity, 
respectively. We assume that 7 is constant and is given by 

- ( .  + s 88) 

and this is invoked in order to allow the field equations to predict the correct be- 
haviour in the limiting case when microstructure effects become negligible, and the 
microrotation, N, reduces to the angular velocity, see Ahmadi (1976). The boundary 
conditions appropriate to Equations (10.83) - (10.87) are as follows- 

=0, ~- -  0, N -- - n  , T - Tw on y - - 0 ,  5~>0 
(10.89) 

-+0,  ~--+0, N--+0,  T--+Too as y--+ec,  x ) 0  

where n is a constant. On using Equation (10.86), and the boundary conditions 
(10.89), when n - 0 we obtain that N - 0. This represents the case of concentrated 
particle flows in which the microelements close to the wall are not able to rotate. The 
case of n - �89 results in the vanishing of the antisymmetric part of the stress tensor 
and represents weak concentration. Ahmadi (1976) suggested that in this case the 
particle spin is equal to fluid vorticity at the wall for fine particle suspensions. Then, 
the case of n - 1 is representative of turbulent boundary-layer flow, see Peddieson, 
Jr. (1972). 
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Next, we introduce the following non-dimensional variables 

I 

-2 ~ ~ ~ p - p~ T - Too lN 
x=- [ ,  y - - i ,  U - u ~  , v Uc' p pU2c, O -  AT ' N -  Uc 

, (10.90) 

where Uc - (g~AT l)~ and we assume that  the length scale is given by j - 12. On 
using the expressions (10.90) in Equations (10.83) - (10.87), we obtain 

Ou Ov 
+ : - 0 (10.91) 

0---~ uy 
__ _ _  1 + / C  ( 0 2 u  + 0 2 u )  Ou Ou O ,  + 

Ov Ov _ Op ~ 1-t-K: ( 0 2 v :  + 02v) 
oy 

ON ON 2K IC (Ov Ou) 
-- ~ N +  

u-~z + v O y  at:. a t :  Oz Oy 

O0 0 0 _ 1 ( 0 2 0 0 2 0 )  
+ 1 + 

1C ON 
+ 0 +  , -- (10.92) 

Gr: Oy 
K, ON 

: (10.93) 
Gr: Ox 
l+�89 02N 02N) 

+ : + �9 (10.94) 
Gr: Ox2 OY 2 

(10.95) 

- ~ is the micropolar parameter and Pr and Gr have been defined in the where K: 
same way as for a s tandard Newtonian fluid; non-zero values of K: cause coupling 
between the fluid flow and the microrotation component N. 

We now invoke the boundary-layer approximation, namely 

x Gr~, y - y  u Gr�89162 :0r : _ A _ , v - - G r :  N - G r : N  ( 1 0 9 6 )  
Oy -5-zz' " 

which when subst i tuted into Equations (10.91) - (10.95) and formally letting Gr --+ 
cx~ leads to the following boundary-layer equations: 

o o o  2o ooo 2o 0 3o o.~ 
0~" 0~0~ O~ 0~  2 = (1 + K:) - ~  + 0 + K: 

0 r  00 0 r  00 1 020 

o~ o~ o~ o~ P r O y  2 

(10.97) 

(10.98) 

(10.99) 

and the boundary conditions (10.89) become 

0r ^ 0~g, .-. - -0 ,  N - - - n - b - - ~ ,  0 - 1  on y = 0 ,  ~>~0 

a~ ~.0, _N-+O, 0 - + 0  as ~ o o ,  ~>10 
(10.100) 
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As a prelude to obtaining numerical solutions, the governing Equations (10.97) 
- (10.99) and boundary conditions (10.100) are first transformed into a local non- 
similarity form. In order to do this we introduce the following variables: 

1 A 1  Y (10.101) r - X~ f(X,~?), O -  g(X,7?), N - X~h(X,~),  X - x~, 77- 1 

X~ 
where the functions f ,  g and h are given by the following set of partial differential 
equations 

3 /,, 
(1 + K:)f" '  + ~ f 

l f , 2 + y _ . h , + g _ X  (f,O.f'  f , , O f )  (10.102) 
2 o x  

( 1 ) h ,  3 - 1 _ ( 1  Oh h ' O f )  1 + -~IC + f h' f' - f") ~h f' -~X ~ ~ + 1CX (2h + (10.103) 

3 1 ( f ,  Og g, O f )  1 g , ,+  f g , =  _ (10.104) 
p-;  . o x  

where primes denote differentiation with respect to 77. The boundary conditions for 
these equations are given by 

f ' - O ,  h + n f " - O ,  g - 1  on 77-0 ,  X ~ > 0  
f - 0 ,  f,__+0, h - ~ 0 ,  g--+0 as 77--+c~, X / > 0  (10.105) 

At this stage we draw attention to the one case when Equations (10.102) - 
(10.105) reduce to a similarity form. The last term in Equation (10.103) may be 
regarded as the forcing term in this set of equations and if it were absent then it 
is possible for the resulting equations to have an X-independent solution. This one 
possibility for a similarity solution to exist is that the term (2h + f")  is identically 
zero. However, it can easily be shown that even when n - �89 then h - - I f "  does 
not give a consistent set of equations. Therefore, one cannot obtain a similarity 
solution in this way. The second possibility is that K: = 0 and in this case the Equa- 
tion (10.103) is decoupled from the Equations (10.102) and (10.104). The resulting 
similarity solutions satisfy the following set of ordinary differential equations 

3 f ,  1 f,2 f" '  + ~ f  - ~ + g - 0 (10.106) 

3 hi 1 h" + -4f - -4hf - 0 (10.107) 

1 g .  3 
+ -4fg' - 0 (10.108) Pr 

which have to be solved subject to the boundary conditions 

f ( O ) = O ,  f'(O) = O, h(O) + nf"(O) = O, g ( O ) = l  (10.109) 
f ' --+O, h - + 0 ,  g - + 0  as r/--+oo 
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and hence the fluid flow and the temperature fields are unaffected by the microrota- 
tion of the fluid. It should be noted that Equations (10'106) and (10.108) represent 
the equations which govern the free convection boundary-layer flow of a Newtonian 
fluid over an isothermal vertical flat plate and are well known, see Section 1.3. On 
the other hand, Equation (10.107) has been solved numerically by Rees and Pop 
(1998) for n - 1 and when P r  ranges from 0.1 to 10 and the profiles of the angular 
velocity h are presented in Figure 10.13. As expected, these profiles remain negative 
and increase from the value f ' ( 0 )  to zero as ~ increases from zero to infinity, see the 
boundary conditions (10.109). On the other hand, we can see from this figure that 
h increases with the increase of P r  for 0 ~ 77 ~< 2 and decreases for 77 ~> 2 when P r  

increases. 

0.0 

-O.2 

-0.4 

-0.6 

-0.8 

-].0 

-1.2 
0 1 2 3 4 5 6 7 8 

Figure 10.13" Profiles, h(y),  o/ the reduced angular veloci ty /or  ~ - 0 and n - 1. 

Further, the full boundary-layer equations were solved numerically by Rees and 
Pop (1998) using the Keller-box method and full details of the numerical procedure 
can be found in this paper. A selection of some of the numerical results for the non- 
dimensional skin friction, f " ( X ,  0), and the rate of the wall heat transfer, g t ( X ,  0), 
are presented (by full lines) in Figures 10.14 and 10.15, respectively, for P r  - 6.7 
(water) and K: - 0, 0.25, 0.5, 0.75 and 1 for the respective cases n - 0, 0.5 and 1. It 

1 

should be noted that  all these curves are plotted against X ~ in order to more easily 
resolve the rapid variation near X - 0 (singularity) and the slow approach to the 
asymptotic solutions, which we will develop further. 

Figure 10.14 shows that the curve corresponding to K: = 0 is a straight line, a 
result which is in accord with our earlier observation that  K: - 0 represents the only 
similarity solution. When the micropolar parameter K: ~= 0 then the form of the 
skin friction variation depends very much on the values of n and K:. It is always 
less than the K: - 0 value for sufficiently small values of X but when n - 0 its 
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Figure 10.14: Variation of the skin friction, f " ( X ,  0), with X�89 for  P r  - 6.7 when 
(a) n - O, (b) n = 0.5, (c) n - 1 and (d) a close-up view of (c) near X = O. The 
numerical solutions are indicated by the solid lines and the asymptotic solutions 

1 and (10.135a) for  n - �89 at large values of X (>> 1) are (10.133a) for  n ~ 
indicated by the broken lines. 

value decreases  f u r t h e r  as X increases,  whe reas  when  n = 1 it even tua l ly  a t t a i n s  an  

a s y m p t o t i c  value  above  the  K: = 0 resul t .  However,  for low values of n the  sp read  

of the  curves for different  values of K: is m u c h  g rea t e r  t h a n  w h e n  n = 1. 

T h e  de ta i l ed  evo lu t ion  of the  wall hea t  t r ans fe r  shown in F igu re  10.15 is a l i t t le  

more  compl i ca t ed  t h a n  the  skin f r ic t ion  curves.  If  we refer  to  the  wall  hea t  t r ans fe r  

in t e rms  of its abso lu t e  value t h e n  the  K: ~ 0 values are  a lways  less t h a n  the  K: = 0 

value and  increase  m o n o t o n i c a l l y  w h e n  n = 0, i m p l y i n g  t h a t  the  presence of the  

m i c r o s t r u c t u r e  r educes  the  wall  hea t  t ransfe r .  However ,  w h e n  n = 1 the  va r ia t ion  

is not  monoton ic ;  t he  wall  hea t  t r ans fe r  genera l ly  r e m a i n s  below the  un i form K: - 0 
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Figure 10.15: Variation of the wall heat transfer, g ' ( X ,  0), with X�89 for  P r  - 6.7 
when (a) n - O, (b) n - 0.5, (c) n - 1 and (d) a close-up view of (c) near 
X - O. The numerical  solut ions are indicated by the solid lines and the asymptot ic  

1 and (10.1355) for  n - ~. at large values of Z (>> 1) solut ions (10.133b) for  n ~ ~ 1 
are indicated by the broken lines. 

value bu t  can become sl ightly g rea te r  locally when  K is sufficiently small .  The  
var ia t ions  of f " ( X ,  0) and g ' ( X ,  0) for P r  = 0.7 (air) and  the  same values of the  
p a r a m e t e r s  n and  E can be found in the  pape r  by Rees and  Pop  (1998). It was 
found t h a t  there  is l i t t le qua l i t a t ive  difference be tween  the  resul ts  for wa te r  and  for 
air, a l t h o u g h  the  deta i led  q u a n t i t a t i v e  resul ts  are qui te  different. 

F igu re  10.16 i l lus t ra tes  the  con tour  plots of the  funct ion  (h + i f , , )  for the  case 
P r  = 0.7, n = 1 and  K: = 1. It  shows the  g radua l  deve lopment ,  as X increases,  of 
a th in ,  near -wal l  layer e m b e d d e d  wi th in  the  ma in  boundary - l aye r .  Indeed,  for the  
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Figure 10.16: Contour plots of the function (h(X, r/) + lf"(X, 71)) for Pr - 0.7, 
I C - 1  and n -1 .  

micropolar Blasius boundary-layer flow, discussed by Rees and Bassom (1996), it 
found that  (h + �89 - 0 when n - 1 and that  (h + ~-.if") - 0 except in a thin WaS 

layer near to the flat plate when n # �89 However, for the present problem, h r - � 8 9  
when n - �89 but Figure 10.16 shows a similar development of a near-wall even layer 

as X increases. In order to examine this near-wall layer in more detail, for K: # 0, 
we make the substi tut ion 

1 
r  h + ~ f "  (10.110) 

into Equations (10.102) - (10.104). Then we have 

( 1 ) fm lf'2 3 f" 1 ( f  'Off 1 + -~IC + g + 1Cr - -~ - -~f + -~X OX 
1 3 1 ( 0r 

(1 + K:)r + 2g'-  2K:Xr - ~ r  -~f r + -~X f ' o x  

1 g,, 3 , 1 (f,  Og _g, Of)  

f,, Of ) ~-~ (10.11I) 

r of ) 
~-~ (10.112) 

(10.113) 

and the boundary condition (10.105) becomes 

, f ' - O ,  r 1 8 9  f", g - 1  on ~?--0, X~>O (10114) 
f - 0  f ' ~ 0 ,  r  g - ~ 0  as ~--+c~, X ) 0  " 

It is readily seen that  for X >> 1, the term 2K:Xr from Equation (10.112) domi- 
nates this equation, unless r is small, since g~ is O(1) as X --+ c~. Therefore, the 
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asymptotic forms of the solution of Equations (10.111) - (10.113), for X >> 1, are 
given by 

1 , 
f ~ F o ( ~ ) ,  g~Go(rl),  r163 (10.115) 

where Fo and Go are given by the following ordinary differential equations 

( 1 + 1 / ( : )  ~'''~0 3 FoF~' _ 1F~2 + ~ + Go -- 0 (10.116) 

1 . 3 , 
praO +-~Foa o - 0 (10.117) 

which have to be solved subject to the boundary conditions 

F 0 ( 0 ) - 0 ,  F ~ ( 0 ) - 0 ,  G 0 ( 0 ) - I  
F~ --+ 0, Go --+ 0 as 77-+ oo (10.118) 

We note that Equations (10.116) - (10.118) can ea;sily be written in terms of the 
classical vertical free convection equations using the transformation 

1 1 

F 0 -  I + ~ E  F ( ~ ,  G 0 - G ( ~ ,  r l -  I + ~ K :  ~ (10.119) 

where F and G satisfy equations which are identical in form to Equations (10.106) 
and (10.108), but where tile Prandtl  number is replaced by (1 + �89 

Further, it is seen from Equation (10.115) that the boundary conditions (10.114) 
for r are not satisfied since the highest derivative in Equation (10.112) was neglected 
when forming the solution for r in Equation (10.115), and hence this is a singular 
perturbation problem. Even without the numerical evidence presented earlier, it is 
clear that there must exist a thin layer, a near-wall layer, which is embedded within 
the main boundary-layer. However, it should be pointed out that the value of n 
plays an important role in determining the size of r in this near-wall layer. When 
n - 1, we have r - 0 at ~ - 0, so that r is O (X -1) in order to match with the form 
given in Equation (10.115), but when n r �89 the boundary conditions (10.114) for r 
state that r is O(1) at 77 - 0. Therefore these cases should be treated separately. 

First, we introduce the near-wall layer variable ( as follows: 

1 

~ - -  fiX ~ (10.120) 

which results from the balancing of the terms 2K:Xr and r in Equation (10.112). 
It is worth pointing out that the comparison of the definition of ~ given by the 
Equation (10.120) with the definition of ~ given in Equation (10.101), shows tha t  

- ~', and therefore the near-wall layer has a constant thickness. Equations (10.111) 



FREE AND MIXED CONVECTION IN NON-NEWTONIAN FLUIDS 365 

- (10.113) then become 

(I + 2K_.) f'" + X-} g + K_.X-Ir = 

X-�89 ( 2 f ,  2 _ ~f3 f , , )  + 1X-}2 (f,O.f'ox f" ~-~fX) (10.121) 

1 _�89 2](:r (1 + ~ ) r  + ~ x  - - 
(1 3 ) 1 . } ( , 0 r 1 6 2  (10"122) 

X-�89 h f ' -  fh' + -~X f - ~  

Prg . 1  -4 �89 fg, l ( f, Og g, O f ) + - -~X�89 0X -OX (10.123) 

where primes now denote differentiation with respect to ~. The boundary conditions 
appropriate to Equations (10.121) - (10.123) at ~ = 0 are given by 

(1),, 
f - - 0 ,  f ' - - 0 ,  g - l ,  r  ~ - n  (10.124) 

and the matching conditions as obtained from the small 7/ (<< 1) limit of the main- 
layer solutions, are used to complete the specification of the boundary conditions. 

1 These matching conditions depend on whether or not n -  ~. 

1 
1 0 . 6 . 1  n 7~ 

In this case the asymptotic solution of Equations (10.111) - (10.113) for X >> 1 is 
sought in the following form: 

f -- Fo(rl) + X -1/;'1 (rl) + . . .  
g --  ~0(7 ] )  -t-- X - � 8 9  G1 (7/) -~- . . .  (10.125a) 

r - x - ~ r  + x - ~  ~ (,7) + . . .  

in the main layer, and the asymptotic solution of Equations (10.121) - (10.123) has 
the form: 

f - X -lf0(~) + X-~ f l (~ )  + . - .  
g - 1 + X-�89 + X-lg l (~ )  + . . .  (10.125b) 

r - r162 + x - ~ r 1 6 2  + . . .  

in the near-wall layer. It should be noted that the equations and boundary conditions 
for F0 and Go are precisely those given by Equations (10.116) - (10.118), while the 
functions F1 and G1 satisfy the following ordinary differential equations: 

1 ) F~" 3 ' ' 1F~)'F1 (10.126) 1 ~- ~](: -t-- G1 - ~ (FoF 1 - FoF~') - z 

3 1 1 1 G~+ FOG'1+ FgG + FIG'o-O (10.127) p---~ ~ 1 ~ 
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which have to be solved subject to the boundary conditions 

F1 (0) -- 0, G1 (0) -- 0 
F~ --+ 0, G1 --+ 0 as r/-+ cr (10.128) 

and the boundary condition for F~ (0) is obtained using the matching procedure. In 
order to do this, we observe that for X >> 1 and 7/<< 1, the functions f and g may 
be expanded as follows: 

1 
f - F o + X - : F l  + .. 

_ [ 1 . 712 1 m - ~ F  0 (01 + g F  o (0)77 3 -1--...] 
- - X  -1 [1Fgt(0)~2 + F[(0)~] + X - 3  [g[iF""o (0)~3 -~- 1Ft'2 1 (0)~2 

g - Go + X-�89 G1 + . . .  

= [c~(0)~ +...] + x--~ [c~(0)~ +...] +. . .  
-- X - 1  [G~(O)~ + . . . ] - [ - X  -1 [ G ~ ( O ) ~ + . . . ]  + . . .  

[ 1 ] 
+ x - � 8 9  F;(O),~ + -~F;'(O),? + . . .  + . . .  

+'"1 +""  
(10.129a) 

(10.129b) 

and these expressions give the required large ~ (>> 1) behaviour for the near-wall 
layer solution (10.125b). 

Further, on substituting the series (10.125a) into Equations (10.121) - (10.123), 
we obtain a system of ordinary differential equations for the functions f0, fl ,  go, gl, 
r and r which can easily be solved analytically, see Rees and Pop (1998). Hence, 
we have 

+ X - ~  - 3 ( 2 + K : ) ( 3  + ~F: (0) + . . .  + �9 �9 Q 

(10.130) 

for ~ >> 1, where 

1 

a0 -- 'i + ~ ' 
(�89 - n) (1 + K:) 

Ao - ~i 1 ~K:(1 - n)] (10.131) 

On comparing expression (10.130) with Equation (10.129a) we obtain 

F~ (O) - -aoAoF~' (O) (10.132) 

and therefore we now have all the boundary conditions in order to be able to solve 
Equations (10.126) and (10.127). 
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From these results we can now determine the skin friction and the wall heat 
transfer as follows: 

02 fo ,02fl ) ~ f (x,  o) - + x - ~  + .. 
0n 2 0 (  2 0 (  2 " r 

( ) = 2 (1 + K:(1 - n)) Fg'(0) + X-�89 + . . .  

0g (X, 0) -- ( 0 g ~  �89 0gl  ) 
or + "  r 

(10.133a) 

= a~(0) + X- �89  a~(o) + . . .  (10.133b) 

where the values of Fg'(0), G~(0), F~'(0) and G~(0) are given in Table 10.4. 

Table 10.4: Variation of Fg'(O), G'o(O), F~'(0) and G i (0) with 1C for Pr = 6.7. 

II 
0.00 0164312 
0.25 0.59216 
O.5O 0.54984 
0.75 0.51418 

,,1.00 0.48355 

o~(O) 1 F;,(o) 
-0.73597 0:65886 
-0.71827 0.58101 
-0.70265 0.51886 
-0.68868 0.46725 
-0.67608 0.42582 

ci(0) ] 
0.97683 
0.90901 
0.85253 
0.80107 
0.76234 

The asymptotic solutions (10.133) are also included in Figures 10.14 and 10.15 
(shown by broken lines). It can be seen that  the agreement between the numerical 
(exact) and the asymptotic approximate solutions is very good. 

1 0 . 6 . 2  n -  1 
2 

It may be shown in this case that  the appropriate expansions for X >> 1 of f ,  g and 
take the form 

1 

f -- Fo(~7) A- X-~- El(r/) A- x - l g 2 ( r ] )  + . . .  

g -- G0(n) A- X - 7  a l  (77) + G2(r/) A-...  
3 

r - x-~q)o(~)  + x - ~  ~)1 (~) + x - 2 ~ 2 ( v )  + . . .  
(10.134a) 

in the main layer, and 

I - x - ' f o ( r  + x - i L ( r  + x - 2 A ( r  + . . .  

g -- 1 + X - �89  + X-lg l (~)  -~- X -392(~) -1- �9 �9 - 

r -- X - 1 r  -+- X - 3 r  -I- X - 2 r  -~- . . . 

(10.134b) 

in the near-wall layer, where F0, Go and r are again given by Equations (10.116) - 
(10.118); F1 = G1 -- r - 0; and F2, G2 and r are given by a system of ordinary 
differential equations, see Rees and Pop (1998). 
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Following the same procedure as that described previously for the n 7~ �89 case, it 
can be shown that the skin friction and the wall heat transfer are now given by 

a (o) ] 
02f (X, 0) - F(~'(0) + X -1 F~'(0) + 2(2 + K~) 
Or/2 

Og (X ,  0) -- G~(0)  -t- X - 1 G ; ( 0 )  -I- . . .  
on 

+ . . .  (10.135a) 

(10.135b) 

where the numerical values of F~'(0) and G~(0) are given in the paper by Rees and 
Pop (1998). 

Using these values then the asymptotic solution (10.135) for n - �89 is also in- 
cluded in Figures 10.14 and 10.15 (shown by broken lines). We can see that the 
agreement of this asymptotic solution with the full numerical solution is very close 
and they are indistinguishable for X ~> 100. 

10.7 Gravity-driven laminar film flow for non- 
Newtonian  power-law fluids along a vertical 
wall 

The theory of fluid flow in thin films has received considerable interest in recent 
years due to its importance in numerous technological applications. Examples of 
particular interest are in chemical engineering, where the mass or heat transfer 
associated with many falling film concepts such as coolers, evaporators and trickling 
filters are very important. This problem has attracted a great deal of interest from 
many investigators over the last three decades and much of the earlier work on this 
topic for both Newtonian and non-Newtonian fluids has been reviewed by Andersson 
and Irgens (1990), but recent contributions have been made by Pop et al. (1996c, 
1997), Andersson and Shang (1998) and Shang and Andersson (1999). We shall 
present here some results developed by Andersson and Irgens (1988) for the steady 
laminar film flow of non-Newtonian power-law fluids down a vertical wall. 

Consider the steady laminar film flow of non-Newtonian power-law fluids down a 
smooth vertical wall, see Figure 10.17, due to Andersson and Irgens (1988). Accord- 
ing to this flow configuration the accelerating film can be divided into the following 

three distinct regions: 

(i) the boundary-layer region, which consists of a developing viscous boundary- 
layer and an external free stream; 

(ii) the fully viscous region, in which the boundary-layer extends to the film sur- 

face; 

(iii) the region of developed flow, in which the streamwise gradients vanish. 
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~-hoo 

Figure 10.17- Physical model and coordinate system. 

10.7.1 B o u n d a r y - l a y e r  r eg ion  

In the boundary-layer region, the governing equation of the two-dimensional motion 
is, see Andersson and Irgens (1988), given by 

U ~x + v-fifty = ue -~x + --p -~y ~ O y (10.136) 

and this equation has to be solved subject to the boundary conditions 

u - - 0 ,  v - 0  on y - -0 ,  x~>0 (10.137a) 

u-+ ue(x) as y-+ 5(x), x/> 0 (10.1375) 

where the boundary-layer thickness 5(x) is smaller than the corresponding film thick- 
ness h(x). The one-dimensional equation of motion for inviscid flow gives 

due 
ue dx -- g (10.138) 

which on using the boundary condition that ue(x) -- 0 at the entrance x - 0, we 
obtain 

1 

ue(x) -- (2gx)~ (10.139) 
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Next, we introduce the similarity variables 

1 

- - - - - u ~  f (z]), cog p 
(co  -1 

1 
/ nq--1 

u[  n y (10.140) 

where co is a non-dimensional constant. 
following ordinary differential equation: 

Equation (10.136) then reduces to the 

con If"l n-1 f ' "  + 
2 n + l  
n + l  

f f "  + 1 - f ' ~  - 0 (10.141a) 

and the boundary conditions (10.137) become 

f ( O ) -  O, f'(O) - O, f '  --+ 1 as ~7 --+ c~ (10.141b) 

It is worth noting that for n - 1 the problem defined by Equations (10.141) re- 
duces to the corresponding Newtonian problem as studied by Andersson and Ytrehus 
(1985). 

10.7 .2  F u l l y  d e v e l o p e d  f low r e g i o n  

In this region the viscous force due to the wall skin friction, namely 

7"w -- #0 
Ou in-1 i)u 
N 0y (10.1421 

exactly balances the gravitational force. Therefore, after integration of the force- 
balance equation, Andersson and Irgens (1988) obtained 

u(y) _ 2n + l 1 -  1 -  y (10.143) 

where h~  and Uc~ are given by 

1 
#o 2 n +  1Q 

h ~ -  P n 

1 

(10.144) 
with Q being the total volumetric flow rate in the film. 

10 .7 .3  F u l l y  v i s c o u s  f low r e g i o n  

In this region there is no external inviscid flow and the boundary-layer interacts 
directly with the free surface. Equation (10.136) applies throughout the film, but 
the boundary condition (10.137b) must be changed into a free surtace condition. To 
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obtain the detailed flow behaviour in the fully viscous region one alternative is to 
use the integral form of Equation (10.136), namely 10 ] 

- - -  + gh (10.145) 
dx P Oyy y=0 

and the appropriate boundary an integral conditions for this equation are as fol- 
lows" 

Ou 
u(x, 0) - 0, = 0 (10.146a) 

Oy y=h(x) 

and 

oo h(x) u(x, y) dy Q 

Andersson and Irgens (1988) used the following fluid velocity profile 

I ( ) 1 - 0  
u(x'Y)--:~-~-)h(x l d  1 - 1  (10.147) 

n + 1 h(x) h(x) 

which satisfies the boundary conditions (10.146a) and the continuity constraint 
(10.146b). On substituting Equation (10.147) into the Equation (10.145), leads 
to the following ordinary differential equation 

I ~2n I ~2n-1 2r 
d_! ~ : 4 (1 + ~) + 8 (1 + ~) + (10.148a) 

1 1] 2 1 1 ] n _ ( 2  1 ~2n+l d~ [2 (1 + ~)~ + { [ (1+  ~)~ + + ~)n } 

which has to be solved subject to the boundary condition 

(10.146b) 

=~0 on ~ = @ (10.148b) 

where ~ and ~ are the non-dimensional streamwise coordinate and the local flow 
depth ratio which are defined as follows: 

x h ( x )  
-- hooRe' ~ -  hoo (10.149) 

with Re being the modified Reynolds number which is given by 

R e - Q  ( ~ ) - 1  (hQ_~2)n-1 (10.150) 

The values ~0 and @, which are the values of ~ and ~ at x = x0, are given by, see 
Andersson and Irgens (1988), 

] _ . f (w) -2 (~+~)  

1 
2n-~-1 

(10.151) 
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where z/5 is the value of 77 at the outer edge of the boundary-layer. Thus, the 
similarity fluid velocity profiles in the boundary-layer region can be written as 

u(oo, hoo ) 

1 n+l[ (2n+l). 
2 n + l  2 n ~0 f'(7/) (10.152) 

where the similarity fluid velocity profiles, f~(r/), were obtained by Andersson and 
Irgens (1988) by solving numerically Equation (10.141) for several values of n with 

3 c 0 ~ .  
In Figure 10.18, the comparison between the similarity profiles (10.152) at ~ = ~0 

(shown by different lines for n - 0.5, 1 and 1.5) and the asymptotic solution (10.143) 
(shown by circles) indicates the adaptation in the fluid velocity that must take place 
in the fully viscous region in Figure 10.17 before the film is fully developed at 
x = XE. Further, Figure 10.18 shows that the similarity solution for the dilatant 
fluids (n = 1.5) at x = x0 does not yet correspond to the fully developed flow 
conditions. The fluid velocities are lower than given by the asymptotic solution 
(10.143), and the liquid film must therefore be subject to a further acceleration 
downstream of the boundary-layer region. However, for the pseudoplastic fluids 
(n = 0.5), the velocity field at x = x0 is rather undeveloped and a considerable 
amount of adaptation is required in order for it to reach the asymptotic solution. 

1.0 

d~~~- 0 .8 -  

0.6- 

0.4- 

0.2- 

~'$1  ~176 i / I  **~ 

/ / : "  
/ // .d~ I I 

I ; '  .0 

I / / .~,- i i ! 
, / / _ . ~ . . . o . . o - v -  I 

i 

~ . 0'.5 1 . 0  ~ 1:5 =~ 2.0 
~ ? 1  

Figure 10.18: Fluid velocity profiles at ~ = ~o, obtained from the similarity solution 
(10.152), and for ~ -+ oo. The solutions for n = 0.5, 1 and 1.5 are indicated by the 
broken, solid and dotted lines, respectively, and the asymptotic solution (10.1~3) 
at each value of n is indicated by the symbols o. 
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Further interesting results on this topic may be found in the recent publications 
by Andersson and Shang (1998) and Shang and Andersson (1999). 
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Convective flows in porous media have been extensively investigated during the 
last several decades and they have included several different physical effects. This 
interest is due to the many practical applications which can be modelled or approx- 
imated as transport phenomena in porous media. These flows appear in a wide 
variety of industrial applications, as well as in many natural circumstances such as 
geothermal extraction, storage of nuclear waste material, ground water flows, in- 
dustrial and agricultural water distribution, oil recovery processes, thermal insula- 
tion engineering, pollutant dispersion in aquifers, cooling of electronic components, 
packed-bed reactors, food processing, casting and welding of manufacturing pro- 
cesses, the dispersion of chemical contaminants in various processes in the chemical 
industry and in the environment, soil pollution, fibrous insulation, liquid metal flow 
through endric structures in alloy casting and even for obtaining approximate solu- 
tions for flow through turbomachinery, to name just a few applications. This topic 
is of vital importance in all these applications, thereby generating the need for a full 
understanding of transport processes through porous media. Comprehensive litera- 
ture surveys concerning these processes can be found in the most recent books by 
Ingham and Pop (1998) and Nield and Bejan (1999) along with the review articles 
included therein. 

Prandtl 's (1904) boundary-layer theory has proved to be of fundamental im- 
portance in Newtonian (non-porous) fluid flow since the Navier-Stokes equations 
can be converted into much more simplified equations which are easier to handle. 
About four decades ago, with the increase of technological importance of trans- 
port phenomena through porous media, similar attempts were made by Wooding 
(1963) to solve equations which govern the fluid flow and heat transfer in porous 
media using the boundary-layer assumptions. Several models were proposed in order 
to explain mathematical and physical aspects associated with convective boundary 
layers in porous media. Among these the Darcy, and a series of its modifications, 
gained much acceptance, see for example Nakayama (1995, 1998). Boundary-layer 
assumptions were successfully applied to these models and much work over the last 
decades has been done on them for a large variety of body geometries and surface 
temperature distributions. 

In this part two of the book we present a review of the very recent research 
papers which are relevant to convective boundary-layer fluid flows in porous media 
past a variety of surfaces, such as fiat surfaces, cylinders and spheres. However, it 
is not possible to discuss all the existing papers, but some of them have been very 
recently reviewed in the excellent articles by Kimura et al. (1997), Bradean et al. 

(1998a), Nakayama (1998), Pop et al. (1998b), Rees (1998), Storesletten (1998), Pop 
and Nakayama (1999) and Pop and Ingham (2000). It should be noted that much 
of the information which is available today on convective flows in porous media is 
restricted to very specialised theoretical studies and a much more detailed knowledge 
of experimental data and theoretical analysis is further required in order to correctly 
interpret the results. 
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Throughout this part of the book we make the following assumptions: 

(i) at sufficiently large velocities the fluid and porous medium are not in local 
thermal equilibrium, i.e. the temperature T--s and Tf in the solid and fluid 
phases are not identically the same; 

(ii) the porous medium is isotropic; 

(iii) radiative effects, viscous dissipation and the work done by pressure changes 
are negligible; 

(iv) the Boussinesq approximation is valid. 

With these assumptions, the basic equations of convective flow in porous media 
are the following, see Nakayama (1995), Nield and Bejan (1999) and Rees and Pop 
(2000): 
Continuity: 

Darcy law: 

Darcy-Forchheimer law: 

V. V - 0 (II.1) 

--~V - pS(-Z)g- Vp (II.2) 

- ; f v l v -  # 

Darcy-Forchheimer extended law: 

o r  

where 

( - V p  + pg) (II.3a) 

B ( I V l ) v -  + pg) g 
(II.3b) 

1 + b* x/~ [VI) V - K ( _ ~ p  + pg) 
v # (II.3c) 

g~ 
B ( ] V I ) - I + b ,  K]V]  or B ( I V I ) - I +  . IVI (II.4) 

v v 

Energy equation when the solid and fluid phases are in local thermal equilibrium: 

OT --2-- 
�9 amV T a - ~  + (V V ) T -  (II.5) 

Energy equations when the solid and fluid phases are not in local thermal equilib- 
rium: 

0Ts (V V) T S ~ksV2TI + h (Ts TS) (II.6) 

�9 0 T s  
(II.7) 
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Concentration equation: 
w 

0C cp-~ + (V. V)-C-  D mV2-C (II.8) 

The Boussinesq approximation in the buoyancy terms of Equations (II.2) and (II.3) is 
given by Equation (I.5) when the thermal gradient dominates over the concentration 
(mass) gradient and by Equation (I.6) when both the thermal and concentration 
(mass) gradients are important. 

In the above equations V is the Darcian or non-Darcian velocity vector, T is the 
temperature, C is the concentration, ~ is the pressure, p is the density, K is the 
permeability of the porous medium, K* is the inertial (or Forchheimer) coefficient, 
b* and b, are empirical constants, ~ is the porosity, a is the heat capacity ratio, h is 
the solid/fluid heat transfer coefficient, O/m i8 the thermal diffusivity of the porous 
medium, Dm is the mass diffusivity of the porous medium and S (5) -- sin (I) where (I) 
is the angle between the outward normal to the body surface and downward vertical 
direction. The relations of Ergun (1952) 

d 2992 1.75 d 
g - K* -- (II.9) 

150 (1 - ~)2, 150 (1 - V) 

illustrate how K and K* vary with 99 and d, the characteristic pore size of the porous 
medium. 



Chapter 11 

Free and  m i x e d  c o n v e c t i o n  
b o u n d a r y - l a y e r  f low over  
ver t i ca l  sur faces  in p o r o u s  
m e d i a  

11.1 I n t r o d u c t i o n  

Free and mixed convection flow over a vertical surface embedded in a fluid-saturated 
porous medium at high values of the Rayleigh number is one of the fundamental and 
classical problems in heat transfer in porous media and has attracted a great deal 
of interest from many investigators, see for example Ingham and Pop (1998) and 
Nield and Bejan (1999) for a detailed reference. Theoretical studies have mainly 
been centred on those cases where the thermal boundary conditions allow the use 
of similarity transformations in order to reduce the governing equations to a system 
of ordinary differential equations. In general, this means that  the heated surface is 
planar and that the imposed temperature or surface heat flux satisfies a power-law, 
of the distance along the surface, distribution. It appears that the first classical 
self-similar solutions for free convection over a vertical flat plate embedded in a 
fluid-saturated porous medium were derived by Cheng and Minkowycz (1977) and 
since then their analysis has been very much refined and generalised. Although 
considerable research efforts have been devoted to the study of this problem, much 
still remains to be done concerning the interaction of the boundary-layer with its 
surrounding porous medium. In particular, there are still several open problems 
concerning a layered porous medium or the effects of nonuniform surface temperature 
or surface heat flux distributions on the free and also mixed convection flows past 
surfaces of different geometries in porous media. 
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11.2 Basic equations 

Consider the steady free convection flow over a permeable vertical semi-infinite fiat 
plate, which is embedded in a fluid-saturated porous medium of uniform temperature 
Too. It is assumed that the plate is subject to a variable wall temperature Tw (x) or a 
variable wall heat flux qw (x) distribution. It is also assumed that the transpiration 
(lateral suction or injection) velocity is ~w (~). In a Cartesian coordinate system 
(~, ~), with the ~-axis being along the plate oriented vertically upward and the y- 
axis normal to it, the continuity, Darcy's law and energy Equations (II.1), (II.2) and 
(II.5) can be written as follows: 

0~ 
+ ~ - 0 (11.1) 

0-~ u y  

u -  tt ~x 

V - -  

v0y 
oT aT f 02T 

+ pg) (11 J2 I 

02T  
+ - ~ /  (11.4) 

where S (5) - 1 for the fiat plate geometry. On using the Boussinesq approximation, 
given by relation (I.5), and eliminating the pressure p from Equations (11.2) and 
(11.3) then we obtain 

O~ OV g K13 OT 
= (11.5) 

Oy 0-~ v Oy 

Equations (11.1), (11.4) and (11.5) have to be solved subject to the boundary con- 
ditions 

~- -0 ,  T - T o o  on 5 - 0 ,  ~ # 0  
- -~w(~)  T - T w ( 5 )  (VWT) o_ff_T__~(~) (VHF) on y - 0  5 ~ 0  

' O y  - -  k m  ' 

~--+0, T--+Tcr as y ~ o c ,  - o c < x < c r  
(11.6) 

The boundary-layer approximations are now applied by assuming that the con- 
vection takes place within a thin layer adjacent to the plate where the changes in 
the physical quantities with respect to ~ are small compared to those with respect 
to ~ or that the modified Rayleigh number Ra is very large (Ra -+ co). With these 
considerations, Equations (11.1), (11.4) and (11.5) reduce to the boundary-layer 
equations which govern the steady free convection flow over a vertical surface which 
is embedded in a fluid-saturated porous medium of the form: 

+ - ~  - 0 (11.7) 
0~ uy 
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-u - g K ~  (-~ - Too) (11.8) 
v 

0~ 0~ o2~ 
~~ + ~Ny - ~ o~ ~ (11.91 

with the boundary conditions (11.6). 
A further simplification of Equations (11.7) - (11.9) is afforded by the introduc- 

tion of the non-dimensional stream function r along with the usual boundary-layer 
variables defined as follows: 
For the variable wall temperature case: 

: 1 y Ra-�89162 T =  T - T o o  
x - - i ,  y -  Ra: - [ ,  r  am ' T* (ll.10a) 

For the variable wall heat flux case: 

x x--i, (;:) y - -  Ra~ , r = Ra- �89 r , T -  Ra5 T* (ll.10b) 

where the modified Rayleigh number for a porous medium is defined as 

R a -  gKf lT*l  (11.11) 
OlmP 

and the characteristic temperature T* is given by 

T* = Tref - Too (VWT) T* : q r e f l  (VHF) (11 12) 
' km 

Having in view the definition (1.18) of the stream function r Equation (11.7) 
is automatically satisfied and, on using Equations (ll .10a) or (ll.10b), Equa- 
tions (11.8) and (11.9) can be written as 

or 
Oy 

0 r  OT 0 r  OT 02T 

Oy Ox Ox Oy Oy 2 

= T (11.13) 

(::.:4) 

and the boundary conditions (11.6) become 

o r  ox - v w ( x )  T = Tw(x) (VWT) OT _ - - - -  , , O--~ -- --qw(x) (VHF) on y - 0 ,  x>~0 
T - + 0  as y - + c ~ ,  -cx~,~x < oo 

(11.15) 
Further transformations which carry along the inherent advantages are as follows: 

For the variable wall temperature case: 

I 1 1 

r -- x :  (T~(x ) ) :  f ( x ,  7/), T ---- T~(x)O(x,  ~), ~1 -- y x - :  (T~(x))�89 (11.16) 
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Equation (11.13) then gives 

T =  0r = T w ( x ) f ' ( x , v )  (11.17) 
Oy 

so that  0 = f ' .  Therefore Equation (11.14) can be written as follows: 

f '"  + l + P(x)  f f "  - P(x ) f '2  - x ( Ox f , ,O f  (11.18a) 

which has to be solved subject to the boundary conditions, (11.15) which can be 
expressed as follows: 

of (x O)+ l+P(z) f (x O) - - M ( x )  f'(x, O) - 1 0 < x < c~ 
X " ~  ~ 2 ~ ~ (11.18b) 

f ' - ~ 0  as 7;-+cc,  0 < x < c c  

For the variable wall heat flux case: 

2 I 1 1 1 

r - x~ (qw(x) )~ / (x ,~) ,  T - x~ (qw(x))�89 7] = yx-~  (qw(X))~ (11.19) 

We now have 

T -- 0 r  1 f ,  
- = x-~ (qw(x))-~ (x,~) (11.20) 

Oy 

and Equation (11.14) becomes 

2 + Q(x) f f ,  l + 2Q(x) f n  ( f t O f f  f ,  Of ) 
f '"  + 3 - 3 = x Ox " Ox (11.2 la) 

which has to be solved subject to the boundary conditions (11.15) which can be 
expressed as follows: 

x ~ ( x , O )  + 2+Q(~) f ( x ,  O) -- - N ( x ) ,  f " (x ,  O) - -1 ,  0 < x < oc 
(11.21b) 

f ' ~ 0  as 77-+c~, 0 < x < c ~  

Here P(x)  and Q(x) take the same expressions as those given in Equation (1.30), 
while i ( x )  and N(x)  are now given by 

1 1 

M(x)  -- Vw(X) Tw(x) ' N(x)  - Vw(X) qw(x) (11.22) 
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11.3 Similarity  so lut ions  of the  boundary- layer  equa- 
t ions for surfaces with  a variable wall t emperature  

11.3 .1  I m p e r m e a b l e  s u r f a c e  

We first consider an impermeable surface subjected to a variable wall temperature 
distribution, T~(x) ,  as given by Equation (1.31). In this case M ( x )  - 0 and P(x )  - 
m so that Equation (ll.18a) reduces to the following ordinary differential equation: 

f,,, + ~1 + m f f , , _  m f,2 _ 0 (11.23a) 

which has to be solved subject to the boundary conditions (11.18b) which become: 

ff! O) = O, f ' (O)  - 1 (11.23b) 
--+0 as ~-+cx~ 

The numerical solution of Equations (11.23) was first performed by Cheng and 
Minkowycz (1977) f o r - � 8 9  < m < 1 and a further investigation of these equations 
was performed by Ingham and Brown (1986) for -�89 < m < 0o. The latter au- 
thors have shown that a solution is possible only for m > - �89 with the solution 
becoming singular as m --+ -�89 This may be verified as follows. First, we integrate 
Equation (11.23a) using Equation (11.235) to give 

f0 ~176 
1 (3m + 1) f,2 f"(0) -- - ~  dr/ (11.24) 

which shows that 

1 1 
f " ( 0 ) < 0  for m > - ~ ,  f"(0) > 0  for m < -  5 (11.25) 

Also, for m < 0 if it is possible for f '  (rl) to be negative for a range of values of ~ then 
there would be a point (~? - ~*, say) in this range that would be a negative minimum 
of f'(77), i.e. f "  (~*) = 0 and f ' "  (~*) > 0. However, it may be seen immediately, 
from Equation (11.23a), that this is not possible. Hence it is concluded that 

f'(77) > 0 for m < 0 (11.26) 

and because f (0) = 0, this condition gives rise to 

f(~) t>0 for 0~<77<c~, m < 0  (11.27) 

On multiplying Equation (11.23a) by f and integrating twice, using the boundary 
conditions (11.23b), gives 

~0 ~176 2(2m + 1) f f,2 d~7 - 1 ( 11.28) 
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Using Equations (11.27) and (11.28) gives rise to (2m + 1) > 0 and therefore it may 
be concluded that  Equations (11.23) has no solution for m < - ~ .  

1 that Equations (11.23) have the exact analytical It is easily seen for m - - 5  
solution 

f(r/) = ~ t a n h  ( ~ 6 )  and f " ( 0 ) - 0  (11.29) 

but for m -  1 the solution is given by 

f (rl) - 1 - e -n  and f"(0) - - 1  (11.30) 

where f"(O) is related to the reduced heat flux at the plate as follows: 

OT (x,  O) x [ -  f"(O)] (11.31) 
~ ~  ~ 2 _ _ ~  

q w ( X ) - -  Oy 

Ingham and Brown (1986) have also obtained asymptotic solutions of Equa- 
tions (11.23) for m near - �89 and 0 and for m >> 1. They found that 

3 

f"(O) - 0.078103 ~ + m + . . .  (11.32a) 

for m near - �89 and 

f"(0) - -0.44375 - 0.85665 m + 0.66943 m 2 A - . . .  (11.32b) 

for m near 0, while there exists dual solutions for 1 < m < cr 
If m is very large, Equations (11.23) can be reduced to 

,,, 1 f,,  f,2 f + ~ f  - -- 0 (11.33) 

and this equation has to be solved subject to the boundary conditions (11.23b). 
Solving this equation numerically it was found that at least two possible solutions 
exist such that  

1 1 

f " ( 0 ) - - 0 . 9 0 6 3 8 m ~ ,  f(c~) = 1.28077m 2 (11.34a) 

and 
1 1 

f"(0) - -0 .91334m~,  f(cr - 0.43365m-~ (11.34b) 

for m >> 1. Although the values of f"(0) on both solutions (11.34) are very close, the 
basic difference between them is that the second solution contains a region within 
the boundary-layer where the fluid velocity f'(r/), or the temperature 0(~), becomes 
negative. It was also reported by Ingham and Brown (1986) that on the second 
branch solution, the numerical solution of Equations (11.23) for m -+ 1 + gives 
f(c~) --+ 0 + and f"(0) --+ - 1 - .  The results obtained by Ingham and Brown (1986) 
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are summarised in Figure 11.1 where the variation of f"(O) as a function of m is 
presented. The numerical solution of Equations (11.231 on the first solution branch 
was obtained for - �89 < m < 5 and it is shown by the solid line in this figure. The 

1 the two and three terms exact solution (11.29), the solution (11.32a) for m ~ - ~ ,  
series solution (11.32b) for m --~ 0 and the asymptotic solution (11.34a) for m >> 1 
are also shown in Figure 11.1. This figure clearly shows that extreme care should 
be taken when dealing with free and mixed convection problems for vertical surfaces 
which are embedded in porous media when the wall temperature varies as a power 
of x. It appears that  not all of the existing published papers in porous media have 
dealt with the existence of dual solutions correctly. 

2 

] f"(o) 

+m) -~ 

-1 " %  \ i 

-1 

-2 

,i , i l l  ii 

~ . \"  " ":~ " - 5 m 2 u.44375- 0.8 665 + 0.66943m 

- o A a 7 5  - o . 8 s 6 6 s  m 

Figure 11.1: Variation of f"(0) with m as obtained numerically (solid line) and 
by asymptotic and series solutions. The symbol �9 shows the position of the exact 
solution (11.291. 

The existence of eigensolutions for the present problem has been investigated by 
1 Banks and Zaturska (19861. They treated these solutions analytically when m -- - ~  

and m - 1, for which closed form solutions (11.291 and (11.30) can be seen to exist, 
while for other values of m the eigensolutions were found numerically. In order to 
do this, Banks and Zaturska (19861 introduced the transformation 

1 1 

[ (  2x ) ]~ [ ( l + m )  ]~ 
x m F(x , r ] )  r i - - y  x m (11.35 / 

r  1 + m  ' 2x  

where on using Equations (11.131 and (11.14), the function F ( x , ~ )  is given by 

F ' "  + F F "  - ~ F ' 2  - (2 - fl) ( F '  OF'Ox F "  OF (11.36a) 
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along with the boundary conditions (11.15) for the VWT case with vw(x) - 0, which 
can be written as follows: 

F(x,  O) = O, F'(x,  O) = l, x~>0 
F ' - + 0  as r/--+oo, x > / 0  (11.36b) 

where the parameter ~ is defined as in Equation (2.147). 
In order to solve Equations (11.36) an initial condition is required and this is 

taken to be of the form F (x0, r/) - g(~), where g(~) satisfies certain requirements. 
Here we assume that ~ ~ 2, since the case/3 - 2 corresponds to m being infinitely 
large. In a similar manner to the relation (11.28), an integral constraint on F(x,  ~) 
also exists and it is given explicitly as follows, see Banks and Zaturska (1986), 

~oo ~176 foo~176 ( OF' F, OF ) 1 (11.37) (2 +/3) F F  '2 dr/+ (2 - / 3 )x  F '  2 F - ~ -  x + ~ d r / -  ~. 

Similarity solutions of Equations (11.36) may be obtained if we ignore the initial 
condition at x0 and write g(x ,  77) = f(r/), where f(~) satisfies the equation 

f,. + f f. /~ f,2 _ O (11.38a) 

and the boundary conditions (11.36b) for f(rl) become 

f ( 0 ) - 0 ,  f ' ( 0 ) - l ,  f ' - + 0  as 7 7 - + ~  (11.38b) 

It should be noted that Equations (11.38) were established by Banks (1983) in the 
context of boundary-layer flow due to a stretching sheet in a viscous fluid and he 
integrated these equations numerically for -1.9999 ~< fl ~< 202. 

Returning to the problem posed by Banks and Zaturska (1986) for Equa- 
tions (11.36), it is formulated as follows: given g(~) is such that F(x,r/)  differs 
only slightly from f(rl), as defined by Equations (11.38), determine the leading- 
order term for F(x,  77) - f ( r l )  as x ~ c~ depending on the value of the parameter ft. 
Thus, F(x,  ri) is taken to have the form 

_ . ' r k  

F(x,  71) - f (71) + x 2-~ Gk(rl) + . . .  (11.39) 

where Gk(rl) satisfies the equation 

a'" / '  ' "ak k + f  +(7k--2/~)  G k + ( 1 - T k )  f - 0  (11.40a) 

together with the homogeneous boundary conditions 

Gk(O) -- O, Gtk(O) -- 0, G~ -+ 0 as 77 --+ ~ (11.40b) 

It can be seen from expression (11.39) that for values of fl and rn which are of 
interest, the convective flow is spatially stable as x -+ c~ if the minimum value in 
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the set ~'k is positive. With f(~) known, Equations (11.40) constitute an eigenvalue 
problem for the eigenvalues ")'k and eigenfunctions Gk. On the other hand, from 
Equations (11.37) and (11.39) we obtain, on equating terms which are O(1) and 
O(x), respectively, 

(2 + ~ - ~/k) f0 cr 

~0 (:~ 
2(2 +/3) f f,2 d r / =  1 (11.41) 

f' (2fC'k + f'Ck) drl = 0 (11.42) 

The condition (11.41) shows that a similarity solution for f (~) does not exist when 
f~ - - 2  (i.e. m - _1).  Further, the integrand in condition (11.42) provides a 
constraint on the eigensolutions. We can infer from this condition that since f(~) 
and f~ (~]) are non-negative for each value of f~ in the range of interest, the integrand is 
of one sign if an eigensolution exists and is also of one sign in the interval 0 ~ 7/< cx). 
Thus, the first eigenvalue is given by 

~/1 = 2 + ~ (11.43) 

which is real and positive for each value of/3 > - 2  (m > -�89 of interest. The deter- 
mination of the first eigenfunction is reduced to a one-point numerical integration 
of Equations (11.40). 

Banks and Zaturska (1986) also found analytical expressions for the eigensolu- 
tions corresponding to some particular values of ft. Thus, for fl - 1 (m = 1) the 
function f(r]) is given by Equation (11.30) and ~1 = 3 with 

Gl(r]) = e f - -  1 + f + 2(1 - f ) [E l ( l )  - E1(1 - f)] (11.44) 

where El(x) is the exponential integral. 

vf2tanh ( ~ )  and "/1-- 1 with 

For /~ - -1 (m -- -�89 then fO?) -- 

GI(~) - tanh2 ( ~ 2 )  (11.45) 

and ~2 = 6 with 

2 [ h s e c h 2 ( ~ 2 )  
a2( ) - - 5  

In sech ( ~ 2 )  + tanh2 ( ~ 2 )  ] (11.46) 

F o r ~ = 0  ( m = 0 )  t h e n - ~ l = 2 a n d  

v (o) = ' i f '  - f ' '  
f"(o) 

(11.47) 
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It should also be noted that  for/~ ~ - 2  + (or m --+ - �89  the eigenvalue problem 
posed by Equations (11.40) - (11.42) is similar to that  of the wall jet, which was 
studied by Riley (1962) where such a fluid flow may be described as neutrally stable. 

Typical results of the analytical and numerical investigations carried out by 
Banks and Zaturska (1986) are given in Table 11.1 and in Figure 11.2. Table 11.1 
shows the second eigenvalue 72 for selected values of f~ and it is observed that  for val- 
ues of/~ considered, all the second eigenvalues are positive and it was demonstrated 
by Banks and Zaturska (1986) to be so for other values of/~ of interest. Further, we 
note that  there is complete agreement between the analytical eigenfunctions (11.44), 
(11.45) and (11.46) for ~ - _+1 and Figure 11.2 shows the results obtained by nu- 
merically integrating Equations (11.40). Therefore, it can be concluded that, for 
m ~- - 1 ,  in the regions where the basic boundary-layer solutions are valid, a l l  the 
convective flows are spatially stable, except the limiting flow when ~ = -2 ,  when 
such a flow may be described as neutrally stable. 

Table 11.1- Second eigenvalues, 72, for some values of/3. 

I ~  I I ~ 1  0 i ~ I 3 I 8 .... I 
I~-~ II 6 I 7 . 6 5 5  1 9 . 1 9 6 1 , 1 : 2 . 1 0 1  . ! 1~:s96 I 

(~) 

2.0 
Gl(f]) 

1.5 

1.0- 

0.5- 

0.0 
0 2 4 6 8 10 1"2 rl 

(b) 

0 . 5 ~  

G2(rl) 2 4 6 8 n 10 12 
0.0 , , , , , , 

-0.5 

-1.0 

-1.5 

Figure 11.2: First and second eigenfunctions, G1 (q) and G2(ri), for some values 
of~. 
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11 .3 .2  P e r m e a b l e  s u r f a c e  

This class of free convective boundary-layer flows in porous media is associated with 
vertical permeable surfaces through which fluids can be injected into the porous 
medium or withdrawn from it, i.e. sucked through the surface. Problems of such 
type were initially treated by Cheng (1977a) and this work was continued by Merkin 
(1978), Minkowycz and Cheng (1982), Govindarajulu and Malarvizhi (1987), Chaud- 
hary et al. (1995b, 1995c) and Magyari and Keller (2000a, 2000b). However, we are 
interested here to show the existence of similarity solutions for a vertical permeable 
surface in a porous medium. This situation occurs when, in addition to Tw(x)  being 
given by expression (1.31), we have 

( V ~ )  m-1 vw(x)  - f~(1 + m) 1 + x 2 (11.48) 

where fw > 0 for injection and fw < 0 for suction (or withdrawal). If we take 

f -  v ~ F ( ~ ) ,  ~ = Vr2~ (11.49) 

Equation (11.23a) then reduces to 

F "l + (m + 1 ) F F "  - 2 m F  '2 - 0 (11.50a) 

and the boundary conditions (11.18b) become 

F(O) = - fw, F ' ( 0 ) -  1 (ll .50b) 
F ' - - + 0  as r  

It was shown by Chaudhary et al. (1995b) that Equations (11.50) have solutions 
only for m > - �89 the same as for the case of fw = 0 (impermeable surface). However, 
an asymptotic solution has been obtained by these authors for fw > 0 (injection) 
when m .-~ - �89 and they obtained the following result, 

F" ( 0 1 -  0.00119 + m  + . . .  ( l.al) 

for m ~ -�89 The variation of F"(0) with m for fw - 1, as obtained from the nu- 
merical integration of Equations (11.50) and from the asymptotic expansion (11.51), 
are shown in Figure 11.3. It is concluded from this figure that  the two curves are in 
good agreement, with the difference becoming smaller, as expected, as m decreases 

1 towards the singular value at m - - ~ .  
A numerical solution of Equations (11.50) for fw - 0, 4, 8 and 12 with m = 0 and 

m - 1 has been also obtained by Chaudhary et al. (1995b) and a plot of the temper- 
ature profiles 0 = F' (r  is given in Figure 11.4. We observe from Figure l l .4(a) that 
when m = 0 a clear two-region structure emerges as the value of fw increases. There 
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10- 

. 

F"(0) 
6- 

2 

0 

- 0 . 5 - 0 . 4 - ( ) . 3 - 0 . 2 - ( } . 1  0:0 
m 

Figure 11.3: Variation of F"(0) with m for fw - 1. The numerical solution is 
indicated by the solid line and the asymptotic expansion (11.51) is indicated by the 
broken line. 

(a) (b) 

1.0 1.0 . . . . . . . .  

F'(~ F'(~ =0, 4, 8, 12 
0.6 0.6 

0.4 0.4 

0.2 0.2 

0.0 . 0.0 
0 4 8 12 16 20 0 5 ' lb 15 2'0 i5 30 

Figure 11.4: Velocity or temperature profiles, F'(~) ,  for (a) rn = 0 and (b) m - 1. 

is a thick inner region, where the temperature is constant (at its surface value) and 
a thinner shear layer at the outer edge where the ambient temperature is attained. 
These profiles are reminiscent of the temperature profiles seen at large distances 
from the leading edge of the plate in the constant surface temperature and fluid 
injection rate problem described by Merkin (1978). For m - 1, we observe from 
Figure l l.4(b) that, although the boundary-layer becomes thicker as the value of fw 
increases, no obvious two-region structure has been set up. These results suggest 
that  the development of the solution for large values of fw  could depend on the value 
of  m .  
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On the other hand, for fw < 0 (suction), Chaudhary et al. (1995b) have shown 
that  Equations (11.50) have a solution even for values of m < - �89 as can be seen 
in Figure 11.5, where the variation of F"(0) as a function of m obtained from a 
numerical solution of these equations for fw - - 1  is given. This figure suggests 
that  a solution exists for m > mc (f~), a critical value of m, where, for fw = - 1 ,  
me .~ -0.5619, and that F"(0) approaches a constant value as m -+ me (shown by 
the broken line). Detailed solutions for strong suction, fw << -1 ,  strong injection, 
fw >> 1, and for m >> 1 were also reported by Chaudhary et al. (1995b). 

2 

1" 

F"(0) : 

0- 

- 1  
I 
I 
I 
I 

-2  " | ' ' i 

-0.6 ' -0.4 ' -6.2 0:0 
m 

Figure 11.5: Variation of F"(O) with m for fw - -1 .  The numerical solution is 
indicated by the solid line and the broken line indicates the value me ~ -0.5619. 

11.4 Simi lar i ty  so lu t ions  of  the  b ou n d ar y - laye r  equa- 
t ions  for surfaces  w i t h  variable wall  heat  flux 

11.4 .1  I m p e r m e a b l e  s u r f a c e  

We assume that qw(x) is given by Equation (1.59), and since Vw(X) - O ,  then N ( x )  
given by Equation (11.22) becomes identically zero, i.e. N ( x )  - O. Thus, Q(x)  

which is given by Equation (1.30) now becomes Q(x)  -- m and Equation (ll.21a) 
reduces to 

f,,, + ~ 2  + m f f,, _ 1 +32m f,2 _ 0 (I 1.52a) 

This equation has to be solved subject to the boundary conditions (11.21b), which 
reduce to, for the present problem, 

= 0 ,  f " ( O ) = - I  
f~?)-+ 0 as ,/--+ oo (11.52b) 
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Integrating Equation (11.52a) once, and using the boundary conditions (11.52b), we 
obtain 

(1 + m) f,2 dr] - 1 (11.53) 

which shows that  in order for Equations (11.52) to have a solution then it is neces- 
sary that  m > - 1 ,  with the solution becoming singular as m -+ -1 .  The problem 
governed by Equations (11.52) has been studied by Merkin and Zhang (1992) who de- 
termined the following asymptotic solutions for the wall temperature 0(0) = if(0), 

2 

f'(O) - 0.72112 (1 + m) -~  + . . .  (11.54a) 

as m --+ - 1 ,  
f ' (0) - 1.2962 - 0.5031m + 0.2313m 2 + . . .  (11.54b) 

for m << 1, and 
1 

f '  (0) - 1.2222 m -  ~ + . . .  (11.54c) 

for m >> 1. Some of the results obtained by Merkin and Zhang (1992) are sum- 
marised in Figure 11.6, where the variation of f ' (0)  as a function of m (by the solid 
line) as obtained from a numerical integration of Equations (11.52), along with the 
asymptotic expansions (11.54) is presented. It can be seen that the three-term ex- 
pansion (11.54b) for small values of m is in good agreement with the numerically 
determined solution, the agreement being better for m > 0 than it is for m < 0. 
Possibly this is to be expected because of the existence of the singularity at m = -1 .  
Also, the large m limit, a~ given by Equation (11.54c), is approached closely for even 
quite moderate values of m. The behaviour of the velocity or temperature profiles 

f'(O) 

',,%. 

�9 , , , . ,  | , . .  ,..,, , . .  

Figure 11.6: Variation of f'(O) with m. The numerical solution is indicated by the 
solid line and the asymptotic expansions (11.54) are indicated by the broken lines. 
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f ' (y)  at m ~ - 1  is depicted in Figure 11.7 for several values of m. These plots 
show that the value of f ' (0) increases with m (in line with Figure 11.6) and the 
boundary-layer becomes thinner as m -+ -1 .  

10 

8 

f'(~) 
6 

m - -0.8, -0.9, 
. m . 

0 1 2 3 

Figure 11.7: Temperature profiles, f'(~), for some values of m. 

11 .4 .2  P e r m e a b l e  s u r f a c e  

In this case, we take 
~ ( ~ )  = f ~ ( 2  + m) ~-~ 

vf ~ x 3 (11.55) 

where fw is again the suction or injection parameter with fw < 0 for suction and 
fw > 0 for injection. If we now make the transformation 

2 

f -- 3~F(~), ~ -  3-�89 (11.56) 

then Equation (11.52a) becomes 

F '"  + (2 + m ) F F " -  (1 + 2m)F  '2 = 0 (11.57~) 

and the boundary conditions (11.21b) become 

F(0) = - f ~ ,  
F '  -+0  as 

F"(0)  - -1 

~-+oo (11.57b) 
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This problem was considered by Chaudhary et al. (1995c). If we integrate Equa- 
tion (11.57a) once and apply boundary conditions (11.57b), we obtain 

1 + (m + 2)fwF'(O) - 3 (m + 1) F '2 d~ (11.58) 

Now for fw > 0 and m > -2 ,  the left hand side of this relation is positive and it 
should be noted that F'(O) must be positive. Hence, Equation (11.58) implies that  
a solution of Equations (11.57) is possible only if m > - 2  for fw > 0 (injection). 
Chaudhary et al. (1995c) showed that Equations (11.57) are singular near m ~ - 1  
and they found that  Ft(0) behaves as follows: 

F'(0) ~ (m + 1) -2 + . . .  (11.59) 

as m --+ -1 .  Figure 11.8 shows the variation of (m + 1)2F'(0) for fw - 1 and for 
decreasing values of m obtained by solving Equations (11.57) numerically (shown by 
the solid line). These results can be seen to be approaching their asymptotic limit 
(shown by the broken line) as given by expression (11.59), as m --+ -1 .  

~-~ 1.2 

"~ 0.8 
+ 

~ 0 . 4  

0 . 0  , " ' |  . . . . . . .  i 

0.0 
m 

Figure 11.8" Variation of (rn + 1) 2 F'(0) with m for fw - 1. The numerical 
solution is indicated by the solid line and the asymptotic limit (11.59) is indicated 
by the broken line. 

For fluid suction, fw < 0, it was established by Chaudhary et al. (1995c) that  
the solution of Equations (11.57) becomes singular as m = mc --+ -2 .  This has 
been found numerically and the variation of me with fw is plotted in Figure 11.9. 
This figure clearly shows that  mc --+ - 2  as Ifwl --+ c~ and mc --+ - 1  as Ifwl -+ 0 
(impermeable plate). 

Solutions for large values of fw were obtained by Chaudhary et al. (1995c), for 
both fw > 0 and fw < 0. For fw > 0 the form of the asymptotic solution is seen 
to depend on the value of m. Solutions for large values of m were also derived and 
these are seen to depend strongly on whether fw is positive or negative. 
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Figure 11.9: Variation o f - m c  wi th - f , v .  

11 .5  C o m b i n e d  h e a t  a n d  m a s s  t r a n s f e r  b y  free  c o n v e c -  

t i o n  o v e r  a v e r t i c a l  s u r f a c e  

Convective flows due to the combined buoyancy effects of thermal and species (con- 
centration) diffusion in a fluid-saturated porous medium have many applications, 
such as, soil pollution, fibrous insulation and nuclear waste disposal. As is well- 
known, the nature of convection flows in porous media due to thermal buoyancy 
alone is well-documented and a large amount of literature exists on this topic. How- 
ever, comparatively less work has been published on the buoyancy induced convec- 
tion flows resulting from the combined buoyancy effects. A review of this topic was 
recently presented by Nield and Bejan (1999). 

Angir~a  et al. (1997) studied numerically the combined heat and mass transfer 
due to free convection adjacent to a vertical surface which is embedded in a porous 
medium with special attention being given to the opposing buoyancy effects which 
are of the same order of magnitude and unequal thermal and species (concentra- 
tion) coefficients. The case of aiding boundary-layer flow for this configuration has 
been studied by several authors and are cited by Angirasa et al. (1997). However, 
of particular interest is the work by Bejan and Khair (1985) which appears to be 
the first paper which has considered the free convection boundary-layer along an 
isothermal vertical surface in a porous medium due to the combined heat and mass 
transfer effect based on the similarity analysis of Cheng and Minkowycz (1977) with 
thermal buoyancy alone. Bejan and Khair (1985) also presented an order of magni- 
tude analysis of the boundary-layer equations using the scale analysis which provide 
functional relations for the Nusselt and Sherwood numbers in various limiting cases. 
Boundary-layer analysis was shown to be invalid when the two buoyancy mechanisms 
oppose each other and then they are of the same order of magnitude. 
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Figure 11.10: Physical model and coordinate system. 

The physical model and the coordinate system under consideration are illustrated 
in Figure 11.10, which represents a vertical flat plate of height l which is embedded in 
a porous medium. The temperature of the plate is Tw and the surface concentration 
is Cw. Far away from the plate these values are Too and Coo, respectively, where 
Tw > Too and Cw > Coo. The buoyancy-driven Darcy flow and transport, adjacent 
to the vertical surface due to the combined effects of the thermal and concentration 
diffusion is described by Equations (II.1), (II.2), (II.5) and (II.8) and can be written 
in non-dimensional form as follows, see Angirasa et al. (1997)" 

Ou Ov 
0x + Oy = 0 (11.60) 

On Ov OT OC 
= + N - -  (11.61) 

Oy Ox Oy Oy 
OT OT OT 1 

+ u - ~  x + you  -- R a V 2 T  (11.62) O-T 

~oOC OC 0T 1 V2 C (11.63) 
-~ O----t + U-~x + v O--y = R aL-----~ 

and these equations have to be solved along with the boundary conditions 

u - - 0 ,  v - - 0 ,  T = I ,  C = I  on y - 0 ,  0 ~ < x < c ~  
(11.64) 

u--+0,  v--+0, T--+0,  C--+0 as y--+c~, 0 ~ < x <  
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The non-dimensional variables in the above equations are defined as follows: 

- -  ~T U t -  t, x - - T ,  y =  , u = u~ ~ 

T -  T-Too C -  v -c ,o  
v = ~ , - A T  , - -  A C  

where Uc = g K ~ A T  and the buoyancy ratio parameter N is defined by expression 
V 

(4.1). We mention again that the magnitude of the parameter N indicates the rela- 
tive strengths of the two buoyancy forces and the algebraic sign provides information 
on the relative direction of the two forces. While the thermal buoyancy always acts 
vertically upward, the species (concentration) buoyancy may act in either vertically 
upward or vertically downward directions. For the case N = 0, the flow is driven by 
thermal buoyancy alone. 

In terms of the non-dimensional stream function r Equation (11.61) can be 
written as follows: 

V2 r _ OT O C  
0-~ + N 0---y- ( 11.66) 

Equations (11.62), (11.63) and (11.66) were solved numerically by Angirasa e t  al. 

(1997) using the Alternating Direction Implicit scheme (ADI) as described by Roache 
(1982). The initial conditions used to march the discretised Equations (11.62) and 
(11.63) are as follows: 

u = 0 ,  v = 0 ,  T = 0 ,  C = 0  at t = 0  for all x , y  (11.67) 

The boundary conditions for these equations are shown in Figure 11.10. The cal- 
culations were very time consuming with typically of the order of 4000 time-steps 
of size 0.001 being required to reach a steady state solution. Other details of the 
numerical method employed to solve this problem can be found in Angirasa et  al. 

(1997). Extensive calculations were performed to obtain steady state flow character- 
istics for a wide range of values of the parameters N ,  L e  and R a .  Special attention 
was paid to the case - 1  < N < 0 since the boundary-layer equations derived from 
Equations (11.60) - (11.63) for R a  --+ oo do not have a similarity solution when 
N < 0, see Bejan and Khair (1985). 

Since the energy and concentration Equations (11.62) and (11.63) are marched 
in time to the asymptotic steady state solution, the effect of the porosity to and the 
ratio of heat capacities cr was first investigated. Table 11.2 presents the computed 
values of the average Nusselt and Sherwood numbers N u  and S h ,  defined by the 
integrals (4.40), for L e  = 1 and two pairs of values of a and ~. We note that there 
is very little difference between N u  and S h .  This is to be expected since the steady 
state equations resulting from Equations (11.62) and (11.63) when o = 0 become 
identical when L e  = 1 and therefore the thermal and concentration fields are equal. 
Additionally, it is seen from these equations that while the transient results axe 
influenced by the values of a and ~o, the steady state solutions are not. Hence, the 
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Table 11.2: Values of the average Nusselt number, Nu ,  and the average Sherwood 
number, s h ,  for Le - 1, N - O, Ra -- 100 and a time step size At  -- 0.001. 

I I  
1' 0'8 [ 0.75 ]] 27.81636951 

1.0 1.0 27.81636182 

Sh 

27.81636985 
27.81636182 

values of a and 99 were set to unity in all the computations without affecting the 
obtained results. 

Figure 11.11 compares the steady numerical solutions obtained for N u  (or Sh)  

with the similarity solutions reported by Bejan and Khair (1985) for Le = 1 and 
R a  = 100 and 1000, respectively. It is seen from this figure that a t  the lower value 
of Ra,  namely 100, the difference between the two results is rather large, especially 
in the range of values - 2  < N < 1, where the similarity solution underpredicts 
the t ransport  rates for all values of N because the mass (concentration) diffusion is 
small. However, for Ra = 1000 there is excellent agreement between the two sets 
of results over a wide range of values of N for which the boundary-layer analysis 
is accurate. These results substantiate the validity and accuracy of the present 
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Figure 11.11: Variation o] N u  (or Sh)  with N for Le - 1 when (a) Ra - 100 
and (b) R a -  1000. The numerical solutions obtained by Angirasa et al. (1997) 
are indicated by the symbols �9 and the similarity solutions reported by Bejan and 
Khair (1985) are indicated by the symbols ... 
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numerical solution and also supports the conclusion of Bejan and Khair (1985) that  
similarity solutions fail in the range - 1  < N < 0 because in this range there is 
no discernible vertical layer structure. Further, Figure 11.11 shows that Nu (or 
Sh) is symmetrical about N = - 1  for Le - 1, except in the range - 1  < N < 0. 
Here, thermal and concentration diffusion dominates and the opposing buoyancy 
forces result in a complex fluid flow. We also note that the value of Nu (or Sh) is 
minimum at N - -1 ,  where there is no fluid flow and the transport process takes 
place entirely by diffusion. The case N = 0 indicates that  convection is due to 
thermal buoyancy alone. 

11.6 Free  convec t ion  
su r faces  

boundary-layer flow over reacting 

Free convection over heated catalytic surfaces which are surrounded by a fluid- 
S~turated porous medium is of importance in the design of equipment used in several 
types of engineering systems. Areas of research in this topic include tubular labora- 
tory reactors, chemical vapour deposition systems, the oxidation of solid materials 
in large containers, the synthesis of ceramic materials by a self-propagating reaction, 
combustion in underground reservoirs for enhanced oil recovery and the reduction 
of hazardous combustion products using catalytic porous beds, among others. Until 
recently this subject has received relatively little attention, see Ene and Polisevski 
(1987), Chao et al. (1996), Merkin and Mahmood (1998), Minto et al. (1998) and 
Mahmood and Merkin (1998). In the latter two papers the authors have studied the 
free convection boundary-layer flow on a vertical surface in a porous medium which is 
driven by an exothermic reaction, based on the assumption that the porous medium 
contains a reactive species A which reacts to form some inert product when in con- 
tact with the vertical surface. In all these papers it has been assumed that there 
is an exothermic catalytic reaction on this surface whereby reactant A is converted 
into an inert product B via the first-order Arrhenius kinetics (4.41). 

Following the procedure described in Section 11.2, we can obtain, from Equa- 
tions (II.1), (II.2), (II.5) and (II.8), the governing steady, boundary-layer equations 
for the problem of free convection over a vertical semi-infinite fiat plate or near the 
lower stagnation point of a cylindrical surface in a porous medium which is driven by 
the combined effects of the thermal and concentration diffusion in non-dimensional 
form as 

or 
Oy 

020 
coy 2 

1 02r 

= OS(x) (11.68) 

or oe or oe 
Oy Ox Ox Oy 

or or or or 
Le coy 2 coy Ox Ox Oy 

(11.70) 
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We assume that the reaction takes place only on the solid surface and can be de- 
scribed schematically by the single first-order Arrhenius kinetics given by expression 
(4.41). It is also assumed that the ambient fluid is at rest and at the constant tem- 
perature Too with reactant A at constant concentration C~.  Equations (11.68) - 
(11.70) have then to be solved subject to the following boundary conditions, see 
Minto et al. (1998), 

, -0 ,  ( ) ( ) o~ - r  i+ee  , o~ = ~ r  ~+~ on y = 0, �9 > 0 

0 - ~ 0 ,  r  as y--+oo, x > 0  
r  0 - - 0 ,  r  on x - - 0 ,  y > 0  

(11.71) 
where c~2 and a are the reactant consumption and activation energy parameters 
which are defined by Equation (4.53). Further, we shall deal with both the cases of 
a vertical semi-infinite flat plate, S(x) - 1, and a stagnation point, S(x) - x. 

11 .6 .1  V e r t i c a l  f la t  p l a t e  

We note that  at the leading edge of the catalytic surface, the flow develops due to 
a constant wall heat flux and this suggests the transformation 

~ Of y 
r  71), O - x ~ - ~ ,  r  77- r (11.72) 

x~ 

On applying this transformation to Equations (11.68) - (11.70), for which S(x) - 1, 
we obtain 

03 f 2 

0~7 ---g + 5 f - -  
02f l ( O f )  2 (O f  c92f  0 2 f o r )  (11.73) 
O~ 2 3 ~ - x O~ OxOq O~ 2 0x 

1 02h 2 Oh (Of  Oh Oh Of )  (11.74) 
Le Orl 2 ~- -3 f -~ - x Or I Ox &l Ox 

with the boundary conditions (11.71) becoming 

. . . .  e x p  ( ) Oh �89 f - O ,  02 f -- h exp z~ z~~ 
b'~ l+ax�89 Of 

f ' - -+0 ,  h - -+ l ,  as ~ - ~ e o  

It results easily from these equations that, for L e -  1, we have 

on r / - 0  

(11.75) 

r y) = 1 -- a2 O(x, y) (11.76) 

and, for convenience, all the results presented in this section will be for this value of 
Le. 
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Minto et al. (1998) first obtained solutions of Equat ions (11.73) - (11.75) in the 
form of a power series in small x (<< 1) and obtained for the wall temperature ,  
0w(x), and surface concentration, Cw(X), the following asymptot ic  expressions 

[ 1 ] 
Ow(x) = 1.29618x~ 1 + 0.73429(1 - a2) x~ + . . .  

1 

Cw(x) -- 1 - 0.73429 o~2x3 - } -  . . .  

(11.77) 

For large values of x (>> 1) there are two cases to be considered, namely when 
the reaction consumption parameter  a2 - 0 and c~ ~ 0, and when c~2 ~ 0 and 
a is arbitrary, and this gives rise to two essentially distinct types of asymptot ic  
solutions. Thus,  for a2 - 0 and a ~ 0, we can obtain for Ow(X) and Cw(X), the 
following asymptot ic  expressions for large values of x (>> 1), see Minto et al. (1998), 

1 ] Ow(x) -- x5 (exp (~) )  1.29618 - 0.85333 (exp (~) )  ~ a - 2 x - ~  + . . .  

r  - -  1 

(11.78) 

However, for a2 # 0 and a arbitrary, we assume tha t  Ow(X) approaches a constant  
value and that  Cw(X) -+ 0 for x >> 1. This suggests the introduction of the variables 

OF y 
r - x�89 O -  0~ ' r  H(x '~) '  ~ -  ~ =! (11.79) 

X 2  

Equations (11.68) - (11.70) then take the form 

03F 1 02F (OF 02F OF O2F) 
0~--- Y + -~ F 0~-- ~ = x O~ OxO~ Ox ~ (11.80) 

1 02H 1 OH (OF OH OF O H )  (11.81) 
Le O~ 2 ~--~F O---( = x 0r Ox Ox -~  

along with the boundary  conditions (11.71) becoming 

( ) Of  1 OH ~ _ 

F - O, x-�89 02F - H  exp ~-~ -5  -- a2 exp O'f on ~ 0 
- - -  O F  , X ~ 1+ a _5~ 

OF o---~- --+0, H - + I ,  as ~--+c~ 

(11.82) 
The form of these boundary  conditions suggests tha t  F and H can be expanded in 

1 

power series of x 2 and thus, for Le - 1, ~2 # 0 and a arbitrary, we have 

[ 3 ( ) 
Ow(x) -- a ;  1 1 - 0.44375 a 2 ~ exp 1 

c t + c t 2  X -  
3 ( ) 

Cw(x) - 0 .44375a 2 2 exp 1 x-�89 + 
a + ~ 2  " " " 

1 ]  
+ " "  (11.83) 

for x >> 1. 
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On the other hand, Minto et al. (1998), have solved numerically the three sets of 
Equations (11.68) - (11.71), (11.73) - (11 .75)  and (11.80) - (11 .82)  using a method 
proposed by Mahmood and Merkin (1988) s tar t ing from x - 0. However, at x - 
0 the first two sets of these equations are singular and in order to remove this 

1 
singularity a new variable ~ - x~ was used in all the numerical computations.  
Figure 11.12 illustrates the variation of 0w(~) for c~2 - 0 (reactant consumption 
neglected) and c~ - 0.0, 0.1, 0.2 and 0.3; here Cw - 1, as can be seen from the 
relation (11.76). This figure clearly shows that  as ~ -+ oc, Ow({) does not approach 
a constant value, but  instead increases towards an infinite value. It is also observed 
that  all the solutions exhibit a two-phase type of behaviour. The initial reaction 
phase starts  at the ambient temperature  on the surface away from the leading edge. 
Initially there is a slow rate of increase in 0w(~) as we move along the surface and then 
0w(~) suddenly starts  to rise sharply. This sudden change in the behaviour of 0w(~) 
can also be observed in Figure 11.13, where the non-dimensional tempera ture  profile 
0(~, 77) is plotted against 77 for ~ -  0.6, 0.65, 0.7, 0.71 and 0.72 when a -  c~2 - 0 .  

10 

4 

2 

0 
0.0 0.4 0.8 1.2 1.6 2.0 

Figure 11.12: Variation of the wall temperature distribution, Ow(~), with ~ for 
c~2 - 0 at several values o] c~. 

Next, we illustrate in Figure 11.14 the variations of Ow(~) and Cw(~) for a2 ~ 0 
(reactant consumption included) and c~ = 0, 0.05, 0.1 and 0.2. These figures show 
that  Ow(~) --+ c~  1 and Cw(~) -+ 0 as ~ --+ c~. It is also seen that  the smaller the 
value of c~, the higher is the rate of increase or decrease of 0w(~) and Cw(~), after 
the initial phase of the reaction at low temperatures.  

Finally, Figures 11.15 and 11.16 compare the numerical solutions of the full 
boundary-layer Equations (11.68) - (11.70), where S(x )  - 1, with those of the 
asymptotic  solutions (11.77), (11.78) and (11.83) in both the cases a2 = 0 and 
c~2 ~ 0, when (~ r 0. Without  going into further details, it should be noted that  



F R E E  AND M I X E D  C O N V E C T I O N  O V E R  V E R T I C A L  SURFACES 405 

(a) 

8 

6 

0 " I  "" " '1 

0.0 2.0 

. . . .  0.71, 0.72 

' 0:4 ' 0:8 ' 1:2 ' 1:6 rl 

Figure 11.13: Temperature profiles, ~(~, 77), for c~ - 22 - 0  at several values of ~. 
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Figure 11.14: Variation of (a) the wall temperature distribution, ~?w(~), and (b) 
the wall concentration distribution, Cw(~), with ~ ]or c~2 - 0.2 at several values of 
Ol. 

bo th  the numer ica l  and  a sympto t i c  solut ions are in very good agreement.  

1 1 . 6 . 2  S t a g n a t i o n  p o i n t  

The p rob lem of free convect ion boundary - l aye r  flow near  the lower s tagna t ion  poin t  

of a two-dimensional  cyl indrical  b o d y  which is immersed  in a porous  medium,  where 
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Figure 11.15" Variation of the wall temperature distribution, logloO~(x), with 
loglo x for a2 - 0 and a - 1. The numerical solution is indicated by the solid line, 
the asymptotic solution (11.77) is indicated by the dotted line and the asymptotic 
solution (11.78) is indicated by the broken line. 
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Figure 11.16: Variation of (a) the wall temperature distribution, Ow(x), and (b) the 
wall concentration distribution, r with loglo x for a2 = 0.1 and a = 0.2. The 
n~merical solution is indicated by the solid line, the asymptotic solution (11.77) 
is indicated by the dotted line and the asymptotic solution (11.83) is indicated by 
the broken line. 

the flow results from the heat released by an exothermic catalytic reaction on the 
cylinder surface, has been treated by Merkin and Mahmood (1998). On noting that  
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in this case S ( x )  - x  and taking 

r -- x f (y), O = O(y), r 1 6 2  (11.84) 

Equations (11.68) -(11.70) reduce to 

f '  -- O, O" Jr- f O l -- 0 (11.85) 

r + Le  f r = 0 

while the boundary conditions (11.71) become 

(11.86) 

f(o) -o ,  0 ' (0)  -- - - a 4 r  e x p  i+ao~ , 

0 ~ 0 ,  r  as 

r  --- OZ2C~4r exp  l+aO~ 

y --~ c~ 
(11.87) 

where the reactant consumption parameter a4 is defined by the relation 

Ol 4 - -  
EQkolCoo ( 

km R T  2 R a  �89 exp - RToo 
(11.88) 

We will now take 

1 1 

f - 0 ~ F ( r / ) ,  0 -0wG(r / ) ,  r 1 6 2  H(rl), r / - 0 ~ y  ( 1.89) 

so that Equations (11.85) and (11.86) become 

F'"  + F F "  - O, H "  + L e F H '  -- 0 (11.90a) 

and the boundary conditions (11.87) give 

F(0) = 0, F ' ( 0 ) =  1, H ( 0 ) -  1 (ll.90b) 
F ' - + 0 ,  H - + 0  as ~7-~c~ 

On integrating numerically Equations (11.90) it was found by Merkin and Mah- 
mood (1998) that 

-G ' (0)  - - F "  (0) -- Co - 0.62756, - - q Y ( O )  -"  C 1  ( L e )  (11.91)  

From the boundary conditions (11.87), we now obtain, after a little algebra, the 
following relation 

3( 
(1 -- a5Ow ) a4 -- CoO ~w exp - 

where C1 . Clearly expression (11.92) requires Ow < 1___ 
O~ 5 " 
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For the case when there is no reactant consumption, i.e. O~ 2 - -  Ol 5 - -  0 then 
Equat ion (11.92) gives 

3( OW ) (11.93) o~4 -- CoO~wexp - 1 + o~Ow 

On differentiating Equation (11.93) with respect to Ow, we find that  the critical 
points ( turning points on the bifurcation diagram where d~4 _ 0) are given by 

, d--r 

(1,2) (c~) - 1 - 3cr • x/1 - 6~ 
w 3ol2 (11.94) 

and, for example, when c~ = 0.02 these turning points have the values 

0 O) - 1.5974, 0 ~ ) -  1565.1 (11.95) 

Further,  for c~2 # 0 the critical points are given by the equation 

0150 ~20w3 -4- ( 2 0 ~ 5 0 ~  . . . .  3c~ 2 2c~5) 02 + (~5 + 2 - 6c 0 0~ 3 0 (11.96) 

On put t ing  (~ = 0 into this equation, we find that  there are critical points at 

_ + 2 i - 4 

4o~5 
for c~5 -7 (: 0 (11.97) 

and we note from this expression that  there is a hysteresis bifurcation, i.e. coincident 
critical points, where c~5 = 1 0 -  4x/6 = 0.2020. To determine where there is a 
hysteresis bifurcation it is necessary to solve Equat ion (11.96) simultaneously with 
the equation 

3c~5~20~ + 2 (2(~5(~ - 3~ 2 - 2~5) Ow + ~5 + 2 - 6(~ -- 0 (11.98) 

Equations (11.96) and (11.98) were solved numerically by Merkin and Mahmood 
(1998) and the results are shown in Figure 11.17. It can be concluded that  for c~ > 0, 
and for values of c~5 below the curve shown in Figure 11.17(a), that multiple solutions 

exist in the region between the upper 0(w 2) and lower 0 O) critical points. Variations 

of 0 O) (c~5) and 0(w 2) (a5) with a5 are shown in Figure l l .17(b)  for a - 0.02, where 
the upper  and lower critical points are given by the values (11.95). 
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Figure 11.17: (a} The solution of Equation (11.96} in the (c~,c~5) plane; (b) Vari- 
ations of O~ ) (c~5) and O~ ) (c~5) for c~ -- 0.02. 

11.7 Free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low over  a ver t i ca l  
sur face  in a l ayered  p o r o u s  m e d i u m  

Rees (1999b) has studied the steady free convection boundary-layer flow from a 
vertical heated surface which is embedded in a porous medium consisting of multiple 
sublayers which are aligned such that  the interfaces are parallel with the surface. 
The first consists of one sublayer sandwiched between the surface and the rest of the 
medium which is uniform and isotropic. The second has two such sublayers and the 
third is composed of an infinite number of sublayers with alternating properties. In 
this section we present results only for the first configuration, i.e. the one sublayer 
configuration. 

Consider a semi-infinite vertical surface at a constant temperature  Tw, which is 
embedded in a porous medium of ambient temperature Too (< T~). The heated 
surface is placed at ~ -  - b  for ~ > 0, where ~ and ~ are the Cartesian coordinates 
measured along and normal to the plate, respectively. In the region ~ > 0 the 
permeability and thermal diffusivity of the medium are constant and equal to K2 
and c~m2, respectively, while in the region lying between ~ - - b  and ~ = 0 the 
porous layer is of permeability K1 and diffusivity C~m~, which are also constant; 
these quantities may or may not be different from K2 and C~m2, respectively. 

The steady, two-dimensional Darcy-Boussinesq equations can be written in non- 
dimensional form, see Rees (1999b), as follows: 

02r 02r (Ki)OOi (11.99) 
Ox---- 5- + Oy 2 - Ra ~ Oy 
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am; 0x 2 + - (11.100) Oy 2 Oy Ox Ox Oy 

where the subscript i denotes which layer is being considered: i - 1 corresponds 
to the near-wall layer, - b  <~ ~ ~ 0, termed region 1, and i = 2 to where ~ >~ 0, 
called region 2. The Rayleigh number R a -  gK2flATb is based on the permeability 

P ' ~ m  2 

and diffusivity of region 2, and therefore the near-wall layer (region 1 boundary- 
layer), is regarded as an imperfection to an otherwise homogeneous and isotropic 
medium. The appropriate boundary and interface conditions for which solutions of 
Equations (11.99) and (11.100) are sought are given by 

r --0, 01 -- 1 on y -  - -1 ,  x > 0 

0r _~ 0, 02 --+ 0 aS y --+ oo, - c~  < x < oo Oy 
0r _ K1 002 ] r --  r  K2-O-~- - - ~  

0 on y x > 0 OqO1 

(11.101) 

The boundary-layer approximation is further invoked by assuming that Ra is 
very large. Thus, the following boundary-layer variables are introduced, for region 
1, 

~21 - Ra~IFI(Y ,~) ,  01 - HI(y,~), x -  Ra~ (11.102) 

which on substitution into Equations (11.99) and (11.100), and letting Ra ~ co, 
then the region 1 boundary-layer equations are found to be of the form: 

02F1 (K1) IOH1 
OY 2 = K22 {-~ (11.103) Oy 

(O~mt)O2Hll~OH1 (OFIOHIOFIOH1) 
am: oY 2 + 2 ~- ~ F1 c3- T = ~�89 Oy O~ O~ Oy (11.104) 

For sumciently large values of { it is to be expected that the region 1 boundary- 
layer will extend well into region 2 and its shape will become similar to that of 
the homogeneous self-similar boundary-layer. Therefore, for region 2, the following 
boundary-layer transformation is introduced: 

1 
r - Ra ~ F2(~, {), 

1 
Ra -~ y 

02 - H2(rl, (), 77 - 1 (11.105) 
X7 

with the region 2 boundary-layer equations becoming 

02F2 0H2 
O~ 2 O~ 

~ 1 OH2 f OF2 c9H2 
0,7 2 z O? ~, &7 0~ 

0F2 0t-I2) 
O~ Ov 

(11.106) 

(11.107) 



FREE AND MIXED CONVECTION OVER VERTICAL SURFACES 411 

The boundary and interface conditions (11.102) also become 

F I = 0 ,  H l = l  on 
OF2 ~ 0, H2 --+0 as O,7 

OF, _ K I ~ -  �89 ~OF= } F1 - F2, K 2 ~  
o n  

HI = tt2, aml Oy 0,7 

7/--+oo, 

y = 0 ,  

f > 0  

- o o < ~  < oo 

, 7 = 0 ,  ~ > 0  

(11.108) 
It is worth mentioning that Equations (11.103), (11.104) and (11.106), (11.107), 
subject to the boundary conditions (11.108), reduce to ordinary differential equations 
when K1 = K2 and am1 = am=. The corresponding equations for the two-sublayers 
and multilayer configuration may be derived in a very similar manner, and they are 
presented in the paper by Rees (1999b). 

When ~ is sufficiently small, the region 1 boundary-layer is contained well within 
the near-wall layer, and the flow is essentially self-similar, so that F1 and H1 take 
the forms 

where 

1 

F1 (y, ~) "~ \ O~mrefgref f(r //1 (y, f) ~ h(() (11.109) 

1 
(Omre K1) y + 1 

- -  g r e f  ~1 ~ m l  

with f(~) and h(r satisfying the equations 

f " = h', 

and the boundary conditions 

f(O) = 0, 
f '  ~ O, 

(11.110) 

1 
h" + ~ f h '  - 0 (11.111a) 

h(0) = 1 ( l l . l l l b )  
h - + 0  as r  

We can now calculate the wall heat transfer 

(OT) = _kmi  A r  ~Ooi ~ (11.l12a) 
q~(~) = - k ~  ~ ~=0 - - T - -  \-b-~y ]~=0 

which for small values of f becomes 

1 

krnrefZ~T C~mrefgl ~-�89 (11.112b) 
qw(~) -- -- b (~mlKref 

A suitable scaled rate of heat transfer Q at the plate, can also be defined as 

( 
Q w ( ~ ) -  kmrefA T - -  c~ml y=o 
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which for small values of ( reduces to 

1 

Qw (OmrefK1) Om 1 h'(0) ( l l . l13b) 

The calculated value of h'(0) in expressions ( l l . l12b)  and ( l l . l13b) is h'(0) - 
f " ( 0 ) - - 0 . 4 4 3 7 5 ,  see Equation (11.32b) for m = 0. 

The two systems of Equations (11.103), (11.104) and (11.106), (11.107), subject 
to the boundary conditions (11.108), were solved numerically by Rees (1999b) using 

g l  and a'~____L~ The the Keller-box method for different values of the parameters ~ am2" 

complete details can be found in Rees' paper and therefore are not repeated here. 
K1 The effect of the parameter ~ on the streamlines and isotherms is shown in Fig- 

K2 ures 11.18 and 11.19 for otto1 = O~m: ~. When K1 - -g--, as shown in Figures ll.18(a) 
and ll .19(a), the fluid is inhibited from moving quickly in region 1, and therefore 
the heat lost from the surface by advection is reduced. Consequently, the region 
1 boundary-layer grows in thickness relatively quickly, as can be seen from Fig- 
ures li .19(a,b) near ~ = 0. The opposite occurs when K1 - 5K2 where the greatly 
increased near-wall permeability causes an enhanced fluid motion, thereby thin- 
ning the boundary-layer, as seen by comparing Figures ll.19(b,c). Much further 
downstream, the two boundary layers are of comparable width and the presence of 
a near-wall sublayer serves only to perturb slightly the shape of the main region 
1 boundary-layer and its rate of heat transfer. We notice that the discontinuous 
shapes of the streamlines in Figure 11.18(c) are due to the interface condit ions- 
although the normal flux fluid velocity must be continuous on physical grounds, 
the tangential flux fluid velocity cannot be continuous as the order of the governing 
partial differential equations is insufficiently high to allow this, see Rees (1999b). 

The variation of the scaled wall heat transfer, Qw(,~), with ~, given by Equa- 
tions (11.113), is shown in Figure 11.20. It is seen that Qw(~) varies monotonically 
as ~ increases and it approaches the value -h ' (0)  of the uniform medium when ~ is 
large given by Equation ( l l . l13b),  namely the horizontal lines in Figure 11.20. 

In common with other types of free-convection boundary layers at large distances 
from the leading edge, i.e. large values of ~ (>> 1), asymptotic solutions for the 
present layering flow configuration were provided by Rees (1999b). The rate of heat 
transfer Qw(~) was found to be given by 

Qw(~) ~ 0.44375 - 0.17094 (Olm2~ (K1 
Otm 1 ,]  K2 

C~m2) A0~_ 1 ln~ + O (~-1) (11.114) 
O/m 1 

for ~ >> 1 where A0 is an undetermined constant and the term In ~ is included due 
to the leading edge shift effect. The last term in this expression contains a constant 
which cannot be obtained using asymptotic methods. Therefore, it is difficult to 
use expression (11.114) to verify the numerical results. However, an examination 
of Figure 11.20 shows that the deviation of Qw(~) from -h'(O) = 0.44375 decays 
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(a) (b) 

,, 

( 

Figure 11 18: Streamlines corresponding to the cases of (a) ~-2 = 0.2, (b) g_t _ 1 
�9 K 2  

and (c) K~2 - 5, when am1 - am2 (Ar - 0.2). The broken line denotes the 
interface between the regions 1 and 2. 
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(a) 

0.9- 

Q~(r - 

0.7- 

0.5 

0 .3 ,  
0 

~ ~ z -  0.1, 0.2, 0.5, 

(b) 

0.6] . . . .  2, 0.5, 1, 2, 5, 10 

t 0.5 
Q~(~) 

0.4 

0.3 

0.2 

I I g , , , i , ,  i,,,,, , 0 . 1  , I l - I I m i ~ im 1 ] 

1 2 3 4 5 0 2 4 6 8 

Figure 11.20: Variation of the scaled wall heat transfer, Qw(~), with ~�89 for (a) 

~ml - am2 and (b) K1 - [(2. 

approximately as ~-1 and this gives some qualitative verification of the theory. A 
more substantial confirmation lies in the fact that  when K1 - K2 and C~m~ -- C~m2, 
i.e. regions 1 and 2 have identical properties, the logarithmic term is absent in 
expression (11.114) and therefore Qw(~) reduces to that  of the classical boundary- 
layer theory, see Equation (11.32b) for m -- 0. 

1 1 . 8  F r e e  c o n v e c t i o n  b o u n d a r y - l a y e r  f l o w  o v e r  a v e r t i c a l  

s u r f a c e  in  a p o r o u s  m e d i u m  u s i n g  a t h e r m a l  n o n -  

e q u i l i b r i u m  m o d e l  

The subject of convective local flow in a fluid-saturated porous medium when the 
solid and fluid phases are not in thermal equilibrium has its origin in two papers by 
Combarnous (1972) and Combarnous and Bories (1974) on the Darcy-B~nard prob- 
lem. The review article by Kuznetsov (1998) gives very detailed information about 
the research on thermal non-equilibrium effects of the fluid flow through a porous 
packed bed. However, it appears that  the problem of free convection on a surface 
which is embedded in a fluid-saturated porous medium using a two-temperature 
model has only been very recently investigated. Rees and Pop (1999) and Rees 
(1999b) have studied the effect of adopting this model to the problem of free con- 
vection boundary-layer flow from a vertical isothermal surface and near the lower 
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stagnation point of a two-dimensional cylindrical body in a porous medium, respec- 
tively. Such a model, which allows the solid and fluid phases not to be in local 
thermal equilibrium, is found to modify substantially the behaviour of the flow rel- 
atively close to the leading edge of a vertical surface where the boundary-layer is 
comprised of two distinct asymptotic regions. We now report on some results ob- 
tained by Rees and Pop (2000) for the case of a vertical surface in a porous medium 
adopting a two-temperature model of microscopic heat transfer. 

Consider the steady flow which is induced by a vertical semi-infinite flat plate 
held at a constant temperature Tw and embedded in a porous medium with ambient 
temperature  Tcr where Tw :> Too. It is assumed that  at sufficiently large Rayleigh 
numbers, and hence sufficiently large velocities, the local thermal equilibrium breaks 
down, so that  the temperatures T I and Ts in the fluid and solid phases are no 
longer identical. The mathematical  formulation of this problem consists then of the 
following non-dimensional equations, obtained from Equations (II.1), (II.2), (II.6) 
and (II.7), 

0O 
V 2 r  R a - ~  (11.115) 

v 2 o  - ~ ( o  - r  

v2r - ~k(r - o) 

A A 

0r oo 0r oo 
o~ o~ o~ o~ 

(11.116) 

(11.117) 

where the non-dimensional variables were defined as 

-2 ^ ~ ^ (pc) f T f - T o o  ~=-[ '  Y - 7 '  r . . . .  ~, o= 
~ k f  A T  

A 

with h and k given by 

m 

T~ - Too 
' r  A T  (11.118) 

"-" -hi2 k = qok: (11.119) 
h =  kl  , (l-~)ks 

The parameter  k is a modified conductivity ratio, and its value is in the range 
10 -5 < k < 10, which covers most practical applications and low values of k generally 
correspond to a relatively poorly conducting fluid such as air in a metallic porous 
medium. 
^ Next, we introduce the usual boundary-layer scalings ~ = x, ~" = Ra�89 and 
r - R a : r  as Ra ~ c~ into Equations (11.115) - (11.117) to obtain the equations 

02r O0 

Oy 2 Oy 

020 
Oy 2 

02r 
Oy 2 

(11.120) 

or oo or oo 
-- H(O - r q (11.121) 

Oy Ox Ox Oy 

= H k ( r  - 0) (11.122) 



FREE AND MIXED CONVECTION OVER VERTICAL SURFACES 417 

where H is defined by 
-- R a i l  (11.123) 

Such a scaling for h, where H - O(1) as R a  -+ co, allows the detailed study 
of how the boundary-layer undergoes the transition from being in strong thermal 
non-equilibrium near the leading edge, to being in thermal equilibrium far from the 
leading edge. 

Under the physical assumptions described above, Equations (11.120) - (11.122) 
have to be solved with the following boundary conditions: 

r  0 = 1 ,  r  on y = 0 ,  x > f 0  
or (11.124) 
Oy ~0, 0--+0, r  as y--+oc, x ) 0  

To solve Equations (11.120) - (11.122), along with the boundary conditions (11.124), 
the classical transformation 

1 y 
r -- x~ f (x, 77), O - O(x, rl), dp - r  ~), 77- ~ (11.125) 

xg 

can be used. Applying this transformation, we obtain 

f ' =  0 (11.126) 

0" = H k x ( r  - O) (11.127) 

1 ( f ,  O0 _ o, O f )  (11 128) 0" + -~ f O' - Hx(O - r + x Oxx ~ 

together with the boundary conditions 

f (x, O) = 0 ,  O(x, O) = l ,  r = 1  (11.129) 
0--+0, r  as rl--+oc 

These equations form a system of parabolic partial differential equations whose 
solution is nonsimilar due to the x-dependent buoyancy force which is induced by 
the terms proportional to H in Equations (11.127) and (11.128). A nonsimilar set of 
partial differential equations of this form is normally solved using a marching finite- 
difference scheme, such as, for example, the Keller-box method. Beginning at the 
leading edge (small x), where the system reduces to an ordinary differential equation, 
the solution at each streamwise station is obtained in turn at increasing distances 
from the leading edge. However, such solutions are typically supplemented by a 
series expansion for small values of x and by an asymptotic analysis for large values 
of x. The former often reveals no further information, except perhaps validating the 
numerical scheme, but the latter often yields insights that may not be immediately 
obvious from the numerical solution. However, the present problem is not of this 
general nature, since when x = 0 then Equation (11.127) cannot be solved with 
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the boundary conditions (11.129). Therefore, this boundary-layer has a double- 
layer structure near the leading edge (small values of x), rather than far from it 
as is often the case encountered in other situations. This considerably complicates 
the numerical integration of Equations (11.126) - (11.129) since it is now essential 
to derive the small x solution very carefully before commencing on the numerical 
integration of these equations. 

In order to do this, Rees and Pop (2000) have considered, for x << 1, the trans- 
formation 

1 

r - x ~ F ( x , y ) ,  0 - O(x ,y ) ,  r - O(x, y) (11.130) 

so that Equations (11.120) - (11.122) become 

1 F l  
x ~  - O ( 1 1 . 1 3 1 )  

~O,,  1 , ( F ,  OO _ o ,  OF ) x~. + -~FO' - Hx~-(0  - O) + x 0--~ ~ (11.132) 

~" = Hk(e2 - O) (11.133) 

Equations (11.126) - (11.129) and (11.131) - (11.133) were solved using the method 
of matched asymptotic expansions and subject to the boundary conditions 

f (x ,  0 ) - 0 ,  O ( x , O ) - l ,  r 0 ) - I  
@ - + 0 ,  q)--~0 as y-+cx~ (11.134) 

The solution is then obtained by assuming the following series expansions: 

f -- fo(r]) + x�89 + xf2(r/) + . . .  
1 

F = Fo (y) + x~- FI(y) + xg2 (y) + . . .  
(11.135) 

for x << 1 and with corresponding expressions for 0, r O and ~. When r/ - O(1) 
and as x --+ 0, we obtain the main boundary-layer which will be termed the inner 
layer. The relatively thick region where y = O(1) is termed the outer layer. 

At O(1) in the inner layer we have 

1 I I I  
f ;  - 0o, 0'o' + -~foOo - O, r - 0 (11.136) 

which gives 

f 0 - - + l . 6 1 6 1 3 - a o  as ~ ? ~ o o  
0~(0) - -0.44378 _= b0, r - 1 (11.137) 

These results suggest that @0(y) = 0 and that the matching conditions for ~0 at 
y - 0 is ~(0) - 1. The equation for ~0(y) in the outer layer is given by 

(~g = H k ~ o  (11.138a) 
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which along with the boundary conditions 

(I)0(0)=l, (I)0-+0 as y ~ o c  (11.138b) 

gives rise to 
(I)o- exp (-x/-Hky) 

This in turn gives 
O -  1 -  v / H k  y + . . . for y < < l  
1 

and on replacing y by x~ r/and letting x --+ 0 this yields 

o - 1 _  + . . .  as r] --> c~ 

(11.139) 

(11.140a) 

(11.140b) 

Thus, the matching condition for r is that r ~ - x / H k  77 as 77 ~ c~. 
Next, at O x~ in the inner layer we have 

1 
f '  -- O1 Of + (foO~ - f;01 + 2flO;) -- 0 1 , -2 

r - o  

which has to be solved subject to the boundary conditions 

(11.141) 

(11.142) 

f l ( 0 )  - -  0, 01(0)  - -  0,  (~1 (0) --  0 ( 1 1 . 1 4 3 )  
O1 -"+ a l , q~ l ~ - x/' H k ~ as 77 -+ c~ 

The solution for r is 
r --  -~/H/~ 77 (11 .144)  

while Equations (11.141) were solved numerically by Rees and Pop (2000) and it 
was found that 

{91 ~ 7.06066 as 7? -+ oc (11.145) 

On solving the corresponding equations for Fo, O1 and (I) 1 in the outer layer we 
obtain 

Fo - �89 + v/a 2 + s )  + � 8 9  l a  2 -b ~ ) e x p  ( -  

O1 - -�89 ( a o -  v/a~ + ~ ) e x p  (-x/-H--ky) 

(bl - - � 8 9  (ao - l a 2 - ~ -  ~ ) y e x p  (-x/-Hky) 

CH- y) 
(11.146) 

for small values of y (<< 1). Now, the asymptotic matching of 01 from Equa- 
tion (11.143) as 77 --+ oc with O1 from Equation (11.146) for y << 1 gives al as 
follows: 1 ( ) 

= -~/ -H-k a o -  + (11.147) al 
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It can be concluded that the temperature field near the leading edge has a two- 
layer structure, with the temperature profile of the solid phase of the medium which 
appears strongly in the outer layer for small values of x. The fluid temperature 

appears only at O/~[x�89 in the outer layer, being confined mainly within the profile 

inner layer. 

Using the above asymptotic results, we can calculate the rates of heat transfer 
for the two fluid and solid phases as follows: 

O0(x,0) ~ b 0 +  ~ 
0--~ 7 : 0 6 0 6 6 x  ~ + . . .  

(11.148a) _ _  1 
0) ~ + Or] ~ " ' "  

for x << 1. 

On the other hand, an asymptotic solution, which is valid for x >> 1, of Equa- 
tions (11.126) - (11.129) in a series of x -~ has been obtained by Rees and Pop (2000). 
It was found that  0 and r become almost identical as x increases and therefore it is 
quite possible that  the difference between them is O (x -1) for x >> 1, with no thin 
sub-layer. The same is true for the fluid and solid rates of heat transfer, where 

1 

00(x,0)  ~ 1 + [b0 +0.043689x -1 lnx + O (x - l ) ]  (11 148b) 0V 

for x >> 1 and the term In x was included due to the leading edge shift. 
Having determined the correct asymptotic solutions for both small and large 

values of x, Equations (11.126) - (11.129) were then solved numerically by Rees 
and Pop (2000) using the Keller-box method for H -- 1 and for various values of k. 

1 . 
The integration is made in terms of ~ = x~ m order to overcome the singularity in 
these equations at x - 0. The solutions obtained are summarised in Figures 11.21 
and 11.22. Figure 11.21 displays the isotherms for the fluid (full lines) and solid 
(broken lines) phases in the coordinates (x,y) for k - 10 -5, 10 -2, 10 -1 , 1 and 
10. It is clearly seen from these figures that a state of local thermal equilibrium, 
indicated by the isotherms for the two phases being virtually coincident, is reached 
relatively close to the leading edge when k is large. A large value of k corresponds to 
the fluid having a high thermal conductivity relative to the solid, thereby allowing 
the fluid properties to dominate the development of the boundary-layer flow. The 
behaviour of the fluid isotherms for very small values of k is distinctive. Close to 
the leading edge the development of the fluid thermal field is unaffected by the large 
temperature  difference between the phases, as can be seen from the isotherm plots for 
k - 10 -5. Furthermore, it is important  to note that the solid phase isotherms do not 
terminate at some point on the y-axis at x - 0. It was also found by Rees and Pop 
(2000) that  the thickness of the boundary-layer at large distances from the leading 

1 

edge is proportional to (1 + ~) ~ and, therefore, when k is large the boundary-layer 
thickness is almost identical to that  of the classical Cheng and Minkowycz (1977) 
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(a) (b) 

0.0 0.00 

_0.041 
I ,~I ,,,,-'"- k = 10 -5, 10 -4, 

-0.3 -0.06 t ]i / '  l0 -3, 10 -~ 

I l / /  
-o.4 -o.o t /f / 

i / i /  . 
-0.5 - 0 . 1 0 ~  

0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Figure 11.22- Variation of the fluid, ae -5-~(~, 0), (broken lines) and solid, or ~(r 
(solid lines) rates of heat transfer with ~ for H = 1 at (a) large values of k and 
(b) very small values of k. 

free convection boundary-layer flow over a vertical surface in a porous medium in 
which local temperature equilibrium is assumed. Further, Figure 11.22 shows the 
variation of the rates of heat transfer ~(~,ae 0) and ~-~ (~, 0) with ~ for both the solid 
and fluid phases for H - 1 and some values of k. It is seen that the solid rate of 
heat transfer increases in magnitude from zero until it becomes the same as that of 
the fluid phase. However, the fluid rate of heat transfer decreases in magnitude as 

1 

increases, varying from b0 at ~ - 0 to b0 (1 + ~)-~ as ~ --+ c~. 

1 1 . 9  M i x e d  c o n v e c t i o n  b o u n d a r y - l a y e r  f l o w  a l o n g  a v e r -  

t i c a l  s u r f a c e  

The problem of mixed convection boundary-layer flow about a vertical impermeable 
surface which is embedded in a porous medium was first studied by Cheng (1977b). 
In fact, he considered a wedge geometry and looked for the possible surface tem- 
perature distributions for which the governing equations have a similarity solution, 
of which the isothermal vertical surface is an example. This problem was later re- 
considered by Merkin (1980) for the case of a constant surface temperature and a 
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constant surface heat flux, respectively. Both the cases of aiding and opposing flows 
were discussed and analysed. 

We consider a semi-infinite vertical impermeable surface which is embedded in 
a porous medium of ambient temperature, Too, over which is flowing vertically a 
uniform stream, Uoo, and which is held at a constant temperature, Tw, or a constant 
wall heat flux, qw. It can easily be shown, on using Equations (11.1) - (11.5), that 
the boundary-layer equations of this problem are given by 

0~ 0~ 
~xx + ~yy = 0 (11.149) 

= Uoo 4- gKI5 ( T -  Too) (11.150) 
/,/ 

~-~x + 5 ~  v = c~m O~ 2 (11.151) 

and these equations have to be solved subject to the boundary conditions 

- -- 0 T _  q~" (CHF) on ~ - 0  E > 0  v - O ,  T =  T~, (CWT), ~ - - k m  

--+Uoo, T ~ T o o  as y--+oo, - o o < g < o o  
(11.152) 

The =t= signs in Equation (11.150) are taken for the aiding (heated plate) and oppos- 
ing (cooled plate) flow cases, respectively. These equations can be further reduced 
to the following non-dimensional equation, see Merkin (1980), 

0 ar 0r 0 2r 0r 0 2r 
Oy 2 = Oy OxOy Oz Oy 2 (11.153a) 

along with the boundary conditions (11.152) becoming 

~  (CWT) Oy 
o__~__+ 1 as 
0V 

02r 
~ - ~ = T 1  (CHF) on 

y--+c~, - o o < x < c ~  

where the mixed convection parameter A is given by 

y - 0 ,  x > 0  

(11.153b) 

)~_ g K f l A T  

Uccv 

Ra 

Pe 
(11.154) 

with A > 0 in the aiding case and A < 0 in the opposing case. 

11.9 .1  

If we take 

C o n s t a n t  wa l l  t e m p e r a t u r e  

r = V/2x�89 f(F/), F/= Y (11.155) 
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then Equation (11.153a) reduces to 

f "  + f f "  -- 0 (11.156a) 

and the boundary conditions (11.153b) become 

f ( 0 ) - 0 ,  I f ( 0 ) - I + A - - A * ,  
f~--+ 1 as 77--+oo 

say 
(11.156b) 

For )~ > 0 solutions of Equations (11.156) can be obtained for all values of A, 
and these were obtained by Cheng (1977b). Then, Merkin (1980) has shown that  for 

< 0, Equations (11.156) have solutions only in the range -1.354 ~ A ~< 0 and for 
in the range -1 .354 < A < - 1  the solution is not unique, there being dual solutions 
fl  and f2 for a given value of A. This can be seen from Figure 11.23(a) where the 
variation of f ' ( 0 )  with A obtained numerically is plotted using a solid line. Also, 
values of f~'(0) and f~(0) are given in Table 11.3 for -1 .354 < ~ < - 1 .  The set 
of solutions f l  emerges from the Blasius solution of Equations (11.156) for A -  - 1 ,  
where f ' ( 0 )  - 0.46960. The other set of solutions f2 have, as can be seen from 
Table 11.3, f~'(O) < f~'(O) for a given A and are such that f~'(O) -+ 0 as )~ ~ -1 ,  i.e. 
the boundary-layer separates from the plate. 

(a) 

- i . o '  -6.5'  o 

- 0 . 5  

f"(O) 
-1.0 

-1.5 

(b) 

0 

5 -200 

f"(O) 

-400 

-600 

"~"-.~ 2b ' 4'0 ' 6'0 A 8'0 1{)0 

\ \  

\ 

Figure 11.23: Variation of f"(O) with ~ (a) in the vicinity of A = 0 and (b) 
for )~ ~> 1. The numerical solution is indicated by the solid line, the asymptotic 
solution (11.160) for IA! << 1 is indicated by the broken line and the asymptotic 
solution (11.163)/or )~ >> 1 is indicated by the dotted line. 

However, Harris et al. (1999) have obtained a further analysis of Equa- 
tions (11.156) for I)~! << 1 and also )~ -~ c~. In the first case, we seek a solution of 
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Table 11.3: Values of fl'(O) and f~'(O) as a function of )~. 

I ~ II s;'(O) 
i ~2i -0'0 0146960 

--1.05 0.46758 

- 1 . 1 0  0.46105 

--1.15 0.44907 

- 1.20 0.43015 

l! f~' (o) 
0.0 
0.00004 
0.00194 
0.00866 
0.02219 , 

I -  ~ i11 s;'(0) 11 s~i!0) 
--~1.25 il 0.40i52 11"0.04539 -1.30 0.35664 0.08497 
-1.35 0.25758 0.17856 
- 1.354 .... 0.22428 0.0 ..... 

this equation of the form: 
oo 

f - E fn  (77) A n (11.157) 
n----O 

where the first three functions fo, fl and f2 are given by the following ordinary 
differential equations 

f~'  + fof~ t -- 0 (11.158a) 
fo(O)-O,  f~(O)--l ,  f ~ - + l  as r]-+oo 

f{" + lo f t '  + f~  f l  -- 0 (11.158b) 
f l (0 ) - -0 ,  f { ( 0 ) - I  f '  , 1 - - ~ 0  aS r l - - ~ o O  

f6" + fof~. ~ + f~  f2 + f l f (  ' = 0 (11.158c) 
12(0) -- O, f;~(O) -- O, y6 -~ 0 as '7 -*  o0 

Solving these equations analytically, we can express the fluid velocity or temperature 
profile as 

(11.159) 
1 ~-~ 1 2 v ~  rl e- 2 erfc + ~e-n 2 -e--rr + O (A 3) 

for JJXJ << 1. This expression gives 

?;(1) 
f " ( 0 ) - -  A I + - A  + O ( A  3) (11.160) 

71" 

for JA[ << 1. The solution given by Equation (11.160) is also shown (by the broken 
line) in Figure 11.23(a). We can see that the small [A ! solution provides an excellent 
approximation to the exact numerical solution. 

The asymptotic solution of Equations (11.156) for large values of A (>> 1) can 
be obtained by introducing the transformation 

1 
f = iX�89 y (~), ~ = A~ y (11.161) 
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where f satisfies the equations 

#11 --~f# 
+ - 0  (11.162) 

7(0)-0, f ' (O) - l ,  f ' ~ O  as ~--+oo 

which describes the free convection boundary-layer flow over a vertical isothermal 
surface embedded in a porous medium. Thus, we have 

f " ( 0 )  ~ (II.163) 

for A >> 1, where Harris et al. (1999) have found that 7"(0) - -0.627555. Equa- 
tion (11.163) is shown in Figure 11.23(b) by the dotted line. Again, it can be seen 
that there is excellent agreement between the numerical and asymptotic solution 
(11.163). 

11.9 .2  C o n s t a n t  wa l l  h e a t  f lux  

This problem, which does not admit similarity solutions, was first solved by Merkin 
(1980). Now, Equation (11.153) is nonsimilar and in order to solve it the following 
transformation is introduced: 

r = y :1= 4xf  (x, r/), 17- Y, (11.164) 
2x.~ 

where f (x ,  rl) is given by the equation 

, Of '  f'"+217f" 2 f ' -  +4x~ (S '2- 2 i f " )  + 4x-~-~-- x =k 8x�89 ( f ,  Of' f , ,Of ) Ox ~ (11.165a) 

which has to be solved subject to the boundary conditions 

f(x: O) - O, f"(x,O) -- - 1  (11.165b) 
f ' - -+O as r / - ~ c ~  

These equations have been solved analytically for small values of x and nu- 
merically for both small and large values of x by Merkin (1980). If we define the 

~KtTAT n~176 wall temperature by Ow(X) - ~,g~ - then this is given by 

Ow(x) - 2x�89 f '(x,  O) (11.166) 

and the non-dimensional fluid slip velocity along the plate, obtained from Equation 
(11.150), is given by the expression 

uw(x) = 1 :i: Ow(x) (11.167) 
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Merkin (1980) has shown that  for x << 1 

,( 1 

Ow(x) = x~ 1.12838 :t: 0.38662 x~ + 0.33872 x + . . .  ) (11.168a) 

for both aiding and opposing cases and for x ~ 1 

1( 
Ow(x) - 1.29618x~ 

1 2 1 

1 - 0.07924 x -  ~ + 0.27321 x -  ~ - A o x -  + . . .  ) (11.168b) 

for the aiding flow case. Here A0 is a constant that  was estimated to be A0 = 0.19 
using the numerical results from Equation (11.165). A comparison of the numerical 
solution with the three term asymptotic solutions (11.168) is given in Tables 11.4 
and 11.5 and we note that there is excellent agreement between these results. 

Table 11.4: Values of the wall temperature distribution, Ow(x), for the case of 
opposing flow. 

" x II Numerical 

0:o o:0 
0.04 0.24462 
0.09 0.38752 
0.16 0.55654 
0.25 0.79220 
0.263 0.83615. 

Series (1i.168a) 

0.0 
0.24385 
0.38246 
0.53489 
0.70316 

. . . . . . . . . .  

[~_ X .... i[ .... Numerical 

I 
' " ' 0 ' .  2 7 5 6  0 . 8 9 1 8 4  

0.2822 0.93089 
0.28556 0.95996 
0.28723 0.98694 
0.28744 0.99687 
0.28745 1.O 

Series (11.168a) 
,. 

m 

w 

Table 11.5- 

aiding flow. 
Values of the wall temperature distribution, 8~(x), for the case of 

x 
0.0 
0.0~ 
0.1t[ 
0.2[ 
0.4~ 
0.6z. 
1.0 
2.2 

.... 

Numerical 

0 :0  
0.3106 
0.4046 
0.4950 
0.6671 
0.7494 
0.9076 
1.2628 

Series (11.168b) 
,, ~ ~.-,:, 

0.0 
0.3129 
0.4112 
0.5099 
0.7166 

m 

x II Numerical 

~ 3 : 0  .... i . 4 3 3 8  
6.0 1.8936 

12.0 2.4828 
66.0 4.7093 

249.0 7.6020 
633.0 10.5644 
889.0 11.8947 

14Ol.O  a.?Zo7 

Series (11.168b) 
, , , ,  

a 

1.9475 
2.5195 
4.7231 
7.6081 

10.5678 
11.8974 
13.9326 

On the other hand, in the opposing flow case, Merkin (1980) has shown numeri- 
cally that  the solution of Equations (11.165) terminates in a singular manner at the 
point x - Xs = 0.28745 and computations could not be continued past this point; 
0w(X) -+ 1 (see Table 11.4) and ~ --~ 0 as x --+ Xs. Further, since in this case uw(x)  
is given by uw(x)  = 1 -  0~(x), we then obtain that  uw(x) -+ 0 as x --+ xs. A flow re- 
versal is indicated at this point with the boundary-layer separating from the surface 
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at x - Xs. The nature of the singularity near x - Xs was also studied by Merkin 
1 

(1980) and he found that u ~ ( x )  and Ow(x) behave like ( X s -  x)~ as x --+ Xs. This 
is suggested by a log-log plot of uw(~) as a function of ~ - Xs - x,  see Figure 11.24 
where the values of uw(~) close to ( - 0 (x = x~) appear to lie on a straight line of 
slope approximately 0.5. Near ~ = 0, 0w(~) is given by 

, , ) Ow(~) = 1 -  1 .1447~ A1 + 1.3575A12~g + 0 .0029A3~ + . . .  (11.169) 

1 
where A1 is a constant. This relation shows that 0w(~) and uw(~) behave as ~ near 
~ - 0 and an estimation of A1 ~ 1.02 can be found on using expression (11.169) and 
Figure 11.24. 

Q 

h0  
O 

-2 

-3  

-4  

5 , ii , 

- 4  '--3 -'2 
log10 

Figure 11.24: Variation o/ the fluid slip velocity along the plate, loglo uw(~), as a 
]unction of loglo ~. The numerical solution is indicated by the symbols . .  

Further, it is worth mentioning that Merkin (1985b) has further studied the 
problem governed by Equations (11.153) when f '(0) = -A*. He studied the be- 
haviours of the lower branch of solutions as ~* -+ 0 from above and the nature of 
these solutions near the singularity point )~* - )~c ~ 0.354. In the latter case it was 
found that  f ' ( 0 )  can be approximated by 

1 

f"(0) = 0.21785 + 0.6191 ( ~  - ~*)~ + . . .  (11.170) 
1 

which shows that the solution of Equations (11.156) behaves as ( ~  - A*)~ near ~* - 
)~. Figure 11.25 shows the variation of J"(0), as calculated from Equation (11.170) 
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0.4 

f"(O) 

0.3 

0.2 

0.1 
. . . . . . . . . . .  

0.50 ' 0.32 ' 0.34 ' 
A* 

Figure 11.25: Variation of f"(O) with A*. The numerical solution is indicated by 
the symbols �9 and the solution given in Equation (11.170) is indicated by the solid 
line. 

(shown by the solid line), as a function of A* and also the values obtained by solving 
Equations (11.156) numerically (shown by dots). It is seen that these results are 
in excellent agreement close to the point ),* - Ac, giving a confirmation of the 
asymptotic solution (11.170). 



Chapter 12 

Free and m i x e d  c o n v e c t i o n  past  
hor izonta l  and inc l ined surfaces 
in porous  m e d i a  

12.1 In troduct ion  

Although convective flows over heated inclined and horizontal surfaces in porous 
media appear in a wide variety of practical applications, and also in many natural 
circumstances, they have not been as extensively studied as convective flows adjacent 
to vertical surfaces. This is mainly due to the fact that convective flows adjacent 
to inclined and horizontal surfaces are more complicated and easily become three- 
dimensional when the plates are of practical (finite) sizes. Cheng and Chang (1976) 
were probably the first to consider the similarity solutions for the free convection 
boundary-layer flow about a heated horizontal impermeable surface embedded in a 
porous medium, where the surface temperature is a power function of the distance 
from the origin. In a subsequent paper, Chang and Cheng (1983) pointed out that 
this boundary-layer approximation is identical to the governing equations for the 
first-order inner problem in a matched asymptotic expansion in which other effects, 
such as fluid entrainment, were taken into consideration. Later Merkin and Zhang 
(1990) have studied in more detail the similarity solutions of Cheng and Chang 
(1976). However, relatively little work exists in the literature on free convection 
heat transfer due to a finite length horizontal surface in a porous medium. Using 
the scale analysis developed by Bejan (1984), Kimura et al. (1985) have analytically 
studied the heat transfer and fluid flow features of the free convection boundary- 
layer near a horizontal cold finite-length plate facing upwards and immersed in a 
porous medium. The boundary-layer features were then confirmed in the Rayleigh 
number range 100 ~ Ra ~ 700 by numerical solutions of the complete Darcy and 
energy equations. Furthermore, Higuera and Weidman (1995) have considered flow 
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in the free convection boundary-layer below a downward-facing horizontal infinite 
strip and circular disk, subject to both constant temperature and constant heat flux 
conditions, in a porous medium; the analogous problem for the boundary-layer flow 
and heat transfer above horizontal circular disk was treated earlier by Merkin and 
Pop (1989). 

The convective flow along inclined surfaces embedded in a fluid-saturated porous 
medium constitutes another important class of problems. Two configurations were 
considered in the literature: one where the component of the buoyancy force along 
the surface aids the flow, and the other one where it opposes the flow. Some analyti- 
cal and numerical solutions of the steady free convection boundary-layer flows above 
a near-horizontal heated surface bounding a porous medium have been simultane- 
ously obtained by Rees and Riley (1985) and Ingham et al. (1985). This generalised 
problem yields the similarity solutions of Cheng and Chang (1976) for the limiting 
case of a horizontal surface. The separation of the boundary-layer and a reverse 
flow region have been shown to exist in the case when the plate is inclined at a 
small negative angle to the horizontal. The case of an arbitrary inclined plate to the 
horizontal has been treated more recently by Pop and Na (1996). Also, Weidman 
and Amberg (1996) reported similarity solutions for the steady mixed convection 
boundary-layer flow along heated inclined surfaces with variable oblique wall suc- 
tion. Their results fall into two distinct categories: class I problems correspond to 
radial source/sink flows interior to a wedge and class II problems pertain to uniform 
rectilinear flow over flat plates. It was found that, except in special cases, solu- 
tions of class I equations must be obtained numerically, whilst all class II equations 
possess explicit analytical solutions encompassing free, mixed or forced convection 
depending on the magnitude of the free stream velocity. 

In this chapter we systematically provide details of the flow and temperature 
fields over inclined and horizontal surfaces in porous media. 

12.2 Basic  equat ions  

Consider a fluid-saturated porous medium which is bounded by a fiat impermeable 
heated plate which is inclined at an angle ~o to the horizontal. We specify the 
temperature of the plate is Tw(5), or the surface heat flux rate at the plate is 
qw(X), whilst the constant ambient temperature is Too. It can be readily shown that 
Equations (II.1), (II.2) and (II.5) can be written in non-dimensional form as, see 
Ingham et al. (1985), 

0 2 r 1 6 2  (0"1 ~ OT ) 
Ox 2 ~ Oy 2 = Ra -~y tan ~o T ~ x  (12.1) 

02T 02T 0r OT 0r OT 
Ox 2 ~ = (12.2) Oy 2 Oy Ox Ox Oy 
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where the Rayleigh number Ra is now defined as Ra - g 3 K l T * l l c ~  and the non- 
o ~ m  v 

dimensional variables are defined by 

x - - i ,  Y - l ' r  'oLin' T -- I T .  I (12.3) 

with T* being a reference temperature or a reference heat flux and it is defined in 
Equation (1.6). The minus sign in Equation (12.1) corresponds to the boundary- 
layer above a heated (or below a cooled) surface, whilst the plus sign is for the flow 
below a heated (or above a cooled) surface. 

Cheng and Chang (1976) showed that when ~p = 0 and Ra is large (>> 1), 
the boundary-layer approximations to the governing equations may be obtained by 
introducing the scaled variables 

�9 A 

x = ~ ,  y = Ra-�89 r R a ~ r  (12.4) 

and ignoring terms which are O / (Ra -~  \ ) relative to the retained terms a s  Ra - +  (X). 

We will now assume that the plate is inclined to the horizontal at a small angle 

(p = 0 ""(Ra-~) with Ra >> 1; positive values of ~ correspond to cases in which the 

leading edge of the plate is at its lowest point. When ~p is positive the buoyancy 
forces aid the flow, whereas when ~p is negative they oppose it. However, when 
the inclination of the plate is positive, both mechanisms produce favourable effec- 
tive pressure gradients, so that the fluid continues to be accelerated along the plate 
to a final state which is described by the Cheng and Minkowycz (1977) classical 
vertical free convection solution. For negative inclinations, although the pressure 
gradient associated with the indirect processes remains favourable, separation of 
the boundary-layer from the plate eventually occurs, since the buoyancy forces now 
oppose the flow. The range of inclinations ~ to be considered here is determined 
by the requirement that the buoyancy term is formally comparable with the in- 
duced pressure gradient along the heated surface. Thus, on introducing expressions 
(12.4) into Equations (12.1) and (12.2) and taking the limit Ra -+ c~, the resulting 
boundary-layer equations are given by 

02r 0T 0T 
o v  = A- 7: (12.5) 

(12.6) 

where A is the inclination parameter which is defined as 

A -- Ra~ t an~  (12.7) 

According to the assumption that the surface is subject to a variable temperature, 
or to a variable heat flux, Equations (12.5) and (12.6) have to be solved subject to 



434 CONVECTIVE FLOWS 

the boundary conditions 

r  0, T - Tw(x) ( V W T )  OT , O--~=--qw(X) (VHF) on y - 0 ,  x > 0  
0r ^ 
o-7 -~0,  T ~ 0  as y - - + ~ ,  - ~ < x < c ~  

(12.8) 
The horizontal configuration (~ - 0) is recovered when A - 0, whilst the vertical 
configuration (~ - ~) corresponds to A -+ c~, in which case the scalings (12.4) 
become inappropriate. 

12.3 Free  c o n v e c t i o n  b o u n d a r y - l a y e r  flow a b o v e  a hori-  
zon ta l  surface  

By setting A -  0 in Equation (12.5), the governing system of boundary-layer equa- 
tions for the horizontal configuration is recovered as 

a2~ aT 

02T 0 r  OT 
A 

0r aT 
a~ a~ a~ a~ a~ 

(12.9) 

(12.10) 

Cheng and Chang (1976) were the first to reduce Equations (12.9) and (12.10) to 
a similarity form when the wall temperature distribution, Tw(x),  is given by the 
expression (1.31). In this case, if we apply the transformation 

r  3 f(r/), T - ' ~ m o ( r l ) ,  ~ - y x ~  (12.11) 

Equations (12.9) and (12.10) reduce to the following ordinary differential equations 

m - 2  
f " + m O +  3 7 7 0 ' -  0 (12.12) 

m + l  
O" + ~ fO' - m f'O - 0 (12.13) 

3 

and the boundary conditions (12.8) in the present case become 

f(0) - O, 0(0) - 1 (12.14) 
f ' - ->0 ,  0 - + 0  as 77--+oo 

The numerical integration of Equations (12.12) -(12.14) has been performed by 
Cheng and Chang (1976) and Chang and Cheng (1983) for 0.5 < m < 2. These 
solutions have been confirmed by Merkin and Zhang (1990) and further calculations 
were performed by these authors for -0 .4  < m < oc. However, it was shown by 
Merkin and Zhang (1990) that there are no solutions of Equations (12.12) - (12.14) 
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for m ~ -0.4.  This may be proved as follows. Suppose that  there exists a solution 
of Equations (12.12)- (12.14) with f ' (0) bounded. On multiplying Equation (12.12) 
by 0 and integrating from 77 = 0 to c~ gives, after some algebra, 

(/0 /0 ) f'(O) = 5m + 2 02 d~ + 2 f f'O dr] (12.15a) 
6 

On the other hand, on integrating Equation (12.12) directly and using the boundary 
conditions (12.14), we obtain 

f'(O) = _ 2 ( m  + 1) 0 dr] (12 15b) 
3 

Since we require all the quantities in the integrands in expressions (12.15) to be pos- 
itive, we come to a contradiction when m < -0.4. Therefore, a solution of this prob- 
lem is possible only for m > -0 .4  with the solution becoming singular (unbounded) 
as m --+ -0.4.  Merkin and Zhang (1990) have made a detailed investigation of the 
nature of the solution near this singularity and found that  

2 

f ' (0)  - 0.135595 (m + 0.4)-~ + . . .  
4 

0'(0) = 0.013961(m +0.41-~ + . . .  
(12.16) 

as m --+ -0.4,  where f ' (0) and 0'(0) are related to the fluid slip velocity along 
the wall uw(x) and the wall heat flux q~(x), respectively. Variations of f '(0) and 
0'(0), obtained by a direct numerical integration of the system of Equations (12.12) 

- (12.14), as a function of m close to m = -0 .4  are shown by the solid lines in 
Figure 12.1. Also shown, by broken lines, are the asymptotic expressions (12.16). 
These figures provide a clear confirmation of the asymptotic theory for m close to 
m -- -0 .4  where the solution of Equations (12.12) - (12.14) is singular. 

The problem of free convection for a downward facing uniformly heated (or, 
equivalently, above a uniformly cooled plate) in a porous media was considered by 
Kimura et al. (1985). They set forth the appropriate boundary-layer scaling for the 
problem and obtained an approximate analytical solution for an isothermal infinite 
strip using an integral method in which the boundary-layer thickness was made to 
vanish at the edge of the strip. They also discussed the influence of this boundary 
condition on their approximate analytical solution, and showed that this agrees with 
the results of a numerical integration for Rayleigh numbers up to 700, of the complete 
equations for a horizontal strip located at the centre of a large closed box which is 
filled with a porous medium. 

Poulikakos and Bejan (1984) studied the penetrative free convection in a porous 
medium bounded by an isothermal horizontal surface heated and cooled from below 
periodically. This configuration is most relevant to understanding the behaviour 
of underground porous layers heated unevenly. Both scale analysis and numerical 
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Figure 12.1" Variation of (a) f'(O), and (b) 0'(0), with m. The numerical solutions 
are indicated by the solid lines and the asymptotic expressions (12.16) are indicated 
by the broken lines. 

solutions were used to solve the governing equations for 1 ~< Rad <~ 100, where 
_Rag is the Rayleigh number based on the half-period d of the wall temperature,  
i.e. the shortest half distance between two hot spots. The results obtained showed 
a row of counter-rotating cells which penetrate the porous medium vertically to 

1 

a distance approximately equal to dRa~. Bradean et al. (1996) investigated this 
harmonic variation in the temperature further and they studied the effect of the far 
field boundary conditions, namely a constant temperature or an adiabatic boundary 
condition, for a large range of values of the Rayleigh number 0 ~< Ra <~ 200 For -~-. 

small values of Ra, an analytical solution has been obtained when the constant 
temperature  is enforced at a finite distance from the plate, which is in excellent 
agreement with the numerical solution obtained using a finite-difference method. 
It was shown that a convective movement sets up in the fluid along the plate in 
the direction of decreasing pressure, i.e. increasing temperature along the plate. 
Therefore, streams in opposite directions develop just above the plate between the 
cold and hot locations. Two adjacent streams meet at a hot location and give rise 
to an upward vertical stream, which turns to fill the vacuum created near the cold 
location giving rise to a row of counter rotating cells near the plate. 

Merkin and Pop (1989) presented an interesting study of the free convection 
boundary-layer flow above a horizontal impermeable circular disk of radius a, which 
is embedded in a porous medium in both the cases when the disk is held at a constant 
temperature  Tw, and when heat is supplied to the convective fluid at a constant 
rate qw, respectively. The boundary-layer singularity appearing at the edge of a 
downward facing heated horizontal plate has been analysed by Higuera and Weidman 
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(1995) and an appropriate boundary condition at the edge of the finite plate was 
established. Both constant temperature  and constant heat flux conditions on the 
downward facing surface of an infinite strip and a circular disk were considered. It 
was shown that  the boundary-layer equations possess a similarity solution for the 
constant temperature  boundary condition, while in the case of constant heat flux no 
similarity solution exists and this problem was solved numerically. Solutions were 
also given by Higuera and Weidman (1995) for a slightly inclined plate. A numerical 
study was presented by Angirasa and Peterson (1998) for the free convection from a 
heated upward facing finite horizontal plate in a porous medium and they found that  
the Rayleigh number range for which two-dimensional flows occur is 40 ~< Ra <~ 600. 
At higher values of Ra the flow is shown to become three-dimensional with multiple 
plume formations and growth. We now present some results of the last three above 
mentioned papers. 

With  the assumption that  the Rayleigh number is very large, the flow and heat 
transfer above the disk is described by the boundary-layer equations which, in non- 
dimensional form, are given by, see Merkin and Pop (1989), 

O ( r u ) _  0 (rw) - O (1217) 
Or 

Ou O0 
Oz = 0----r (12.18) 

O0 O0 020 
-u--~r + w 0---~ = Oz 2 (12.19) 

where r and z measure distances from the central axis of the disk and normal to the 
disk, respectively, and u and w are the fluid velocity components measured along 
the axes r and z with u being positive in the direction of the fluid flow, i.e. towards 
the centre of the disk. 

Equations (12.17) - (12.19) can be solved subject to the boundary conditions 

w - - 0 ,  0 - - 1  (CWT) o A _ _ I  (CHF) on z - 0 ,  0 ~ < r < l  
, o z -  (1220) 

u - + O ,  0 - + 0  as z-+cx~, O ~ r ~ l  

However, we describe here only the first case (CWT),  the second case (CHF) being 
presented in the paper by Merkin and Pop (1989). Near the edge of the disk, r - 1, 
the flow is essentially given by the horizontal flat plate solution with the effects of 
the curvature of the disk giving only a small perturbation.  This suggests applying 
the transformation 

z (1221) r = (1 - s ) ,  o = s ) ,  - 2 
X3 

where x - 1 -  r measures the distance from the edge of the disk and r is the stream 
function defined so that  

1 0r 1 0r 
u - (1 - x) t )z '  w -- - ( 1  - x-------) 0r  (12.22) 
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Equations (12.18) and (12.19) then become 

f .  2 O0 
- -  -~ rl O' - X -~x (12.23) 

O,,+ 3fO, 1 fO ,_  x ( f ,  O0 ,Of)  
- 1----L-~x ~ - 0 ~x (12.24) 

and the boundary conditions (12.20) reduce to 

f (x ,  0 ) - 0 ,  O(x ,O) - i  
f ' --+O, 0 ~ 0  as r/--+c~ (12.25) 

The first a t tempt  at solving Equations (12.23) - (12.25) was to write them in 
finite-difference form in a way similar to that  used successfully by Merkin (1983, 
1985c), for the corresponding problem of a viscous (non-porous) fluid, start ing with 
the known plate solution at x - 0 to advance the solution stepwise towards the 
centre of the disk. However, it was found that the finite-difference scheme quickly 
became unstable. This was somewhat unexpected as the method had worked well 
previously for the boundary-layer flows in porous media. However, in order to solve 
Equations (12.23) - (12.25) Merkin and Pop (1989) obtained a solution in the series 
form of an expansion in small values of x, namely 

O 0  ( X )  

f - ~ xnfn (71), 0 - ~ xnO,~ (77) 
n=0 n--0 

(12.26) 

where the coefficient functions fn07) and On(rl) are given by ordinary differential 
equations, see Merkin and Pop (1989) for more details. The values of fn~ (0), 0"(0) 
and fn(CXZ) obtained are given in Table 12.1 and they give the slip velocity uw, the 
wall heat flux qw and the value of the stream function far from the disk r162 It 
was found that  solutions could be obtained up to the term n = 12, but beyond this 
value the truncation errors introduced into the solution by the lower order terms 

T ab l e  12.1: Values of the coefficient functions f~(O), O~n(O) and fn(cx~) from the 
series (12.26). 

0 1.05575 
1 0.52787 
2 0.52084 
3 0.50042 
4 0.48314 
5 0.46953 
6 0.45863 

o (o) 

-0.43021 
0.08604 
O.03585 
0.01929 
0.01243 
0.00893 
0.00686 

.. 

2.81581 
1.97107 
2.10800 
2.02883 
2.03229 
2.03372 
2.03443 

. . . . . . . . . . . .  

n 

7 
8 

11 
12 

I! f (o) 
0.44966 .... 
0.44211 
0.43563 
0.42998 
0.42498 
0.42053 

o (o) 

0.00551 
0.00457 
0.00388 
0.00336 
0.00295 
0.00262 

....... 

2.03483 
2.03508 
2.03524 
2.03535 
2.03543 
2.03548 

.... _ 
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became too great to obtain a reliable solution since, as can be seen from Table 12.1, 
the series (12.26) is slowly convergent. Therefore, in order to improve the range of 
validity of the series solutions, the Shanks (1955) transformation 

s +isi-, - 

ei ( Si ) - Si +1 + Si- I - 2 Si 
for i -- 1 ,2 , . . . , j  - I (12.27) 

has been used. 
Further, a simple approximate solution of Equations (12.17) - (12.19) was also 

obtained by Merkin and Pop (1989) as follows. Integrating Equation (12.19) once 
between z - 0 and ee, and using Equation (12.17) and the boundary conditions 

(12.25), gives 

) d---~ r uO dz - r0 '(r ,  0) (12.28) 

The approximate profiles for u and 0 which satisfy the boundary conditions (12.20) 
are assumed to be of the form 

d5 z 
u -  d r ( l + ~ ) e x p ( - ~ ) '  0 - e x p ( - ~ ) ,  ~ -  ~(r) (12.29) 

where 5(r) is the boundary-layer thickness. Using expressions (12.29) in Equa- 
tion (12.28) gives the equation for 5(r) as follows" 

d ~rsdS)  4r 
d---~\ dr -3-~ (12.30a1 

which has to be solved subject to the boUndary condition 

5(1) = 0 (12.30b) 

These equations cannot be solved in closed form, but for x = 1 -  r << 1, i.e. close 
to the edge of the disk, we obtain the approximate solution 

2 

5(x) ~ 1.8171x~ (12.31) 

We can now calculate the fluid slip velocity, uw(x) = u(x, 0), and the wall heat 
transfer, qw(x) - -O'(x, 0), which are given for small values of x by 

- 

d5 1 1 2 
dr  = 1.211x-~ + . . . ,  q w ( x ) -  ~ - 0 . 5 5 0 x - ~  + . . .  (12.32a) 

and these solutions can be compared with the exact expressions obtained from the 
series solution (12.26), as 

1 2 

u w ( x ) -  1.056x-~ + . . . ,  qw(X)-  0.430x-~ + . . .  (12.32b) 
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for small values of x. 

Variations of the quantities uw(x) and qw(x) obtained from the series solution 
(12.26), after employing the Shanks transformation (12.27), are illustrated in Fig- 
ure 12.2 (by the solid lines). Also shown (by the broken lines) are the approximate 
values as calculated by solving numerically Equation (12.30). It is seen that the 
approximate values of uw(x) and qw(x) are in reasonable agreement with the exact 
series solutions for x small and this general level of agreement continues across the 
disk. It is also important to note from Figure 12.2 that the curves, as calculated 
from the series solution, are similar in shape to those calculated from the approxi- 
mate solution, and it can therefore be expected that they will have the same general 
functional forms. In particular, the approximate solution can be used to obtain 
information as to how the solution will behave near the centre of the disk, i.e. as 
x -+ 1 (r -+ 0). This was also studied by Merkin and Pop (1989) and they have 
shown that  the solution develops a singularity as x -+ 1 with the  boundary-layer 

having a thickness which is O ~ ~(-lnr)�89 " 
k- J 

(a) (b) 

I 
I 

I 

_ _  

0 0:4 0:6 0:s 
x 

1.0 

qw(X) 

_ , �9 , 

4 

0 
0 o:2 014 0 : 6 0 '  .8 1.0 

x 

Figure 12.2" Variation of (a) uw(x), and (b) q,v(x), with x. The quantities obtained 
from the series solution (12.26) are indicated by the solid lines and the numerical 
solution of Equations (12.30) is indicated by the broken lines. 

The problem of free convection boundary-layer flow over a finite horizontal flat 
plate of characteristic length 1 (the half-width of a two-dimensional strip or the 
radius of a circular disk) which is embedded in a fluid-saturated porous medium 
of ambient temperature T~ facing downward in the direction of gravity has been 
considered by Higuera and Weidman (1995). Both constant temperature Tw and 
constant heat flux qw conditions at the strip surface or circular disk surface were 
considered. The boundary-layer equations governing this problem can be written in 
non-dimensional form as, see Higuera and Weidman (1995), 

02r = xi 00 
Oy 2 -Ox (12.33) 
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020 0r  O0 0r  O0 = xi (12.34) 
Oy Ox Ox Oy Oy 2 

where i - 0 for an infinite strip ( -1  ~< x K 1) and i = 1 for a circular disk 
(0 ~< x ~< 1), respectively. Equations (12.33) and (12.34) have to be solved subject 
to the following boundary conditions: 

r  0 = 1  (CWT) 0 o _ _ 1  (CHF) on y = 0 ,  x > 0  O y - -  
or +0, 0 --~ 0 as y - + c o ,  - c~ < x < oo Oy 

o_~r = 0 ,  0 o = 0  on y - - 0 ,  - l ~ < x ~ < l  for i - - 0 ,  0 ~ x < ~ l  for i - - 1  Oy Ox 
(12.35) 

We now look for a similarity solution of Equations (12.33) and (12.34) of the form 

Y (12.36) r - -  0 - O ( V ) ,  = 

where 6(x) and k(x) are, as yet, unknown functions. Substituting Equation (12.36) 
into Equations (12.33) and (12.34), we obtain 

6x i d5 ) 
f " +  k dx 770'-  0 (12.37) 

0 " +  - -  f -- 0 (1238) 
X i ~X 

From symmetry about the origin, and the assumption made by Kimura et al. (1985) 
that the boundary-layer thickness vanishes at the edge of the plate, then we obtain 
(~ ~ O, k ~ O, d6 dk ~-~ < 0 and ~-~ t> 0 for 0 ~< x ~< 1. Thus, Equations (12.37) and (12.38) 
reduce to ordinary differential equations when 

5x - i d k  - 1, 6x i d6 
d--~- k dx = - 1  (12.39) 

Eliminating k(x) from the Equations (12.39) leads to the following equation for 6(x) 

d( ~-~z 5xi - - x i  (12.40a) 

which has to be solved subject to the boundary conditions (12.35), which reduce to 

d5 
dx(0) - 0, 5(1) - 0 (12.40b) 

On solving the system of Equations (12.40), Higuera and Weidman (1995) found for 
an infinite strip (i = 0), the closed form solutions for 5(x) and k(x) as given by 

(~(X) -- ~0 [2COS (1 COS-1 (1 - 2x2)) - 1] 
1 1 

k(x) = 2 ~  [1 - cos (]  cos -1 (1 - 2x2))] ~ 
(12.41) 



442 C O N V E C T I V E  FLOWS 

where 50 ~ 1.040042. 

For a circular disk (i - 1) no closed form solution of the boundary value prob- 
lem (12.40) can be found but this problem was solved numerically by Higuera and 
Weidman (1995). Results for (f(x) and k(x) for both  the infinite strip and the cir- 
cular plate are presented in Figure 12.3. It can be seen from this figure that  both 
the boundary-layer thickness 5(x) and the scaling function k(x) are greater for an 
infinite strip than for a circular disk. 

1.5 

1.0 

0.5 

0.0 . . . . . .  
0.0 0.2 0.4 0.6 0.8 1.0 

X 

Figure 12.3" Profiles of the boundary-layer thickness, 5(x), and the scaling ]unc- 
tion, k(x), ]or a strip (solid lines) and a disk (broken lines). 

With Equation (12.39) in mind, Equations (12.37) and (12.38) reduce to, for 
i - 0  and i -  1, 

f " -  ~0' - 0 (12.42) 

0"+ fO' - 0 (12.43) 

along with the boundary conditions (12.35) which become 

f(0)  - 0, 0(0) - 1 (12.44) 
f ' - ~ O ,  0 - ~ 0  as ~ - + c c  

On numerically solving Equations (12.42) - (12.44), the non-dimensional slip 
velocity, uw(x), the local wall heat flux, qw(x), and the boundary-layer mass flux, 
rh (x), are given by 

k ( x )  f ' (O)  - , 
1 

qw(x) - -5(x---~0'(0), dn(x) - (27r)ik(x)f (c~) (12.45) 

where f ' (0)  -- 0.9592, 0'(0) - -0.7103 and f(c~)  - 1.5496. 
Nusselt number, Nu,  can be calculated from the expression 

Also, the average 

] N u  = 2 - (x, O) x i na�89 ~Y dx (12.46) 
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and this gives N~ _ 1.024 for the strip (i = 0) and - ~  - 1 538 for the disk (i - 1) 
Ra ~ Ra 

These results show that the average Nusselt number is greater for circular disks than 
for infinite strips. 

Free convection flow past a heated upward facing finite horizontal surface in a 
porous medium has been studied numerically by Angirasa and Peterson (1998) for 
a range of values of Ra. Consider a horizontal surface of length I embedded in an 
extensive fluid-saturated porous medium. It is assumed that the depth of the surface 
is large compared to 1 and the temperature of the surface facing upwards is Tw, which 
is greater than the temperature of the medium Too. The temperature difference 
AT (= Tw -Too)  then induces a buoyancy-driven flow which is characterised by 
horizontal wall-bounded flows from both ends of the surface and a vertical plume at 
the mid-plane. This two-dimensional flow configuration prevails for a specific range 
of values of the Rayleigh number. To study this problem, Angirasa and Peterson 
(1998) have used the following full non-dimensional equations 

0T 
V2r - Ox (12.47) 

0T 0T 0T 1 
O--t + U~x + VOy~ - Ra V2T (12.48) 

The physical boundary conditions of these equations are as follows: 

v - 0 ,  T - 1  on y - 0 ,  0 ~ < x ~ < l  (12.49) 
u ---~ 0, T- -+0  as y - + c o ,  0 ~ x ~ l  

whilst the numerical boundary conditions are shown in Figure 12.4. The domain 
is a rectangle of length unity and of a vertical extent Ymax, which is determined 

0 

li 

II y 

0T) =0, 0 r  T~. = o, ~ ou, N 

"' r ' ' 

x T = I ,  r  

If 

Ii 
C ~  

Ymax 

Figure 12.4: Physical model and coordinate system. 
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by a trial  and error procedure.  The s t ream function on the plate is constant  and 
therefore can be assumed to be zero. Fluid entering the computa t iona l  domain  has 

a t empera tu re  equivalent to tha t  of the ambient ,  and convection is assumed to be 
p redominan t  in the outflow. To just ify the s t ream function bounda ry  condition at 
Ymax, the horizontal  flow at the boundary  must  be zero. 

Finite-difference numerical  solutions of Equat ions  (12.47) and (12.48), subject  to 
the bounda ry  condit ions (12.49), were obtained by Angirasa  and Peterson (1998) by 

applying the Al te rna t ing  Direction Implicit  and Successive Over-Relaxat ion methods  
(ADI-SOR) discussed by Roache (1982). Vorticity and velocity components  were 
evaluated using a central-difference formulat ion and numerical  calculations were 
performed for 10 < Ra < 1000. 
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0.0 0.2 0.4 0.6 0.8 1.0 

Figure 12.5: Streamlines at Cw = 0 when (a) Ra = 10 (r = 0.15, Cmin = 
-0.15, Ar  = 0.025), (b) Ra = 50 (r = 0.15, Cmin = -0.15, Ar  = 0.025), (c) 
Ra = 100 (r = 0.1, Cmin = -0.1,  Ar = 0.02) and (d) Ra = 600 (~2maz = 0.04, 
Cm~, = -0 .04 ,  A r  = 0.005). 
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Figures 12.5 and 12.6 show the streamline and isotherm plots for four values of 
R a ,  namely 10, 50, 100 and 600. It can be seen at R a  - 10 that  there is a significant 
amount of conduction, as demonstrated by the isotherms. The streamline contours 
for this value of R a  suggest no discernible boundary-layer growth from either end of 
the surface. However, as R a  increases, the fluid flow starts horizontally from both 
ends of the surface and turns vertically towards the central plane of the surface. At 
larger values of R a  there is a boundary-layer growth from both ends of the surface, 
and then a plume rises above the central stagnation line and the stream function 
contours and the isotherms are symmetrical about the central line. 

(a) (b) 

0.65 0.6 
�9 0.5 

0.4 0.4 

:: 
�9 0.2 ~ 

o.1 
0.0.0 �9 . 0.0 0.2 0.4 0.6 0.S 1.0 d�89 . . . . . .  0:4 0:6 0.S 1.0 

(c) (d) 0 
0.6 .4 

0.5 
0.3 o~ 

ii o.1 
00 ' '  

0.0 02  0.4 06  0 s  ~0 0.0 o:2 0.4~ 0:6 0 s  1.0 
I I I I  I I I �9 

Figure 12.6: Isotherms for Tw - 1, A T -  0.1 when (a) R a -  10, (b) R a -  50, (c) 
R a -  100 and (d) R a -  600. 

The variation of the local Nusselt number, N u  - -~yy (x, 0), with x is presented 
in Figure 12.7 for some values of R a  in order to determine the region of maximum 
heat transfer rate. As can be seen from this figure, very little heat transfer occurs at 
the central plane, x -- 0.5, but it is rather large within about x - 0.1 of the length on 
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0 
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x 

Figure 12.7: Variation o/ the local Nusselt number, Nu ,  with x. 

either edge of the plate. However, for Ra  > 600 the flow remains unsteady and this 
situation was also studied in detail by Angirasa and Peterson (1998) and therefore 
we do not present these results here. 

1 2 . 4  M i x e d  c o n v e c t i o n  p a s t  a h o r i z o n t a l  f la t  p l a t e  

12 .4 .1  F i n i t e  f la t  p l a t e  

Despite its academic and industrial importance, the problem of mixed convection 
from a horizontal surface in a porous medium has not been as extensively studied 
in comparison to the corresponding free convection case. Cheng (1977c), Prasad 
et al. (1988), Lai and Kulacki (1991) and Aldos et al. (1993a, 1993b, 1994a, 1994b) 
considered some aspects of this problem, such as the effect of a variable wall temper- 
ature distribution and mass flux (suction or injection) on the flow and heat transfer 
characteristics. Very recently, Vynnycky and Pop (1997) have analysed the steady 
mixed convection flow past a horizontal finite flat plate in a porous medium. The 
physical configuration consists of a horizontal flat plate of finite length 1 which is 
embedded in a porous medium at uniform temperature Too. It is assumed that a 
uniform free stream with a velocity U~ is flowing parallel to the plate. The ctlar- 
acteristic temperature of the surface is taken to be Too + AT, with AT > 0 for an 
upward heated surface and AT < 0 for a downward cooled surface, respectively. 
The buoyancy force associated with the temperature AT induces a streamwise pres- 
sure gradient which interacts with the forced convection flow adjacent to the plate. 
However, the pressure distribution across the flow is not affected by the (mainly 
horizontal) motion of the fluid. 

First, the full two-dimensional problem for an arbitrary body surface was formu- 
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lated by Vynnycky and Pop (1997) and then, for reasons of analytical expediency, 
bodies which are symmetrical about the horizontal axis with antisymmetric tem- 
perature distributions were considered. This theory was further applied to the case 
of a flat plate which lies at y - 0, -�89 ~< x ~< �89 In order to solve numerically 
the full momentum (Darcy) and energy equations, they were written in an elliptic 
coordinate system (~, 7/) as follows: 

0 2 r 1 6 2  Ra ( O0 00 ) 
0~2 ~ = - (12.50) 0772 Pe ~ cosh ~ sin77 ~ sinh ~ cos ~/ 

0r 0r 1 [020 020 
077 0-~ O~ 077 = Pe \ - ~  + -~2] (12.51) 

Equations (12.50) and (12.51) have to be solved subject to the appropriate boundary 
conditions posed by Vynnycky and Pop (1997) of the form 

r  0 = 0  on 77=0,~r, ~ > 0  (12.52a) 
r  0 - 1  on ~ = 0 ,  0~<77~r  

and 

{ ( ) ( ) 
for ~ ~r/~<~r 

0 3 _Pey2 -�89 for 0 ~< 77 < 0 = Ayx exp 4Z q- O r r aS ~ ---~ Cx3 

(12.52b) 

B y + z - ~ y 2 + O ( r  -1) for 

y _  ~R~ ~4y~ ~ ~xp - 4~ + ~ - ~  + 0 (~-1) for 

where .A and 13 are constants given by 

71" 0 ~ < ~ < ~  

a s  ~ --+ (:x3 

(12.52c) 

A--a_.cclim [l~a~_/_~2 a (0y0)y=0 dx] ,  B = - ~  2RaA 
(12.53) 

with a being the radius of a semi-circle centred at the origin of the Cartesian co- 
ordinates (x, y). In elliptical coordinates (~, r/), the local and the average Nusselt 
numbers on the upper side of the plate can be expressed as 

2 ( 0 0 ) ,  Nu+_fo~r(O0) d~ (12.54) 
gu+ = sin~ 0-~ ~=0 0-~ ~=0 

Equations (12.50) and (12.51), subject to the boundary conditions (12.52), were 
solved numerically by Vynnycky and Pop (1997) using a control-volume approach 
as proposed by Patankar (1980). The numerical results were checked by comparing 
them with those of Cheng (1977c) and Prasad et al. (1988) for the forced convection 
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limit (Ra - 0). This comparison is given in terms of N u +  in Table 12.2 for a set 
of three values of Pe - 5, 10 and 50 and using a uniform mesh. It is seen that 
the present numerical results satisfactorily fall between the values obtained by the 
previous investigations. It should be noted that  the forced convection similarity 
solution of Cheng (1977c) is given by 

(Y) O ( X , Y ) -  erfc - ~  (12.55) 

1 where Y - Pe�89 and X = x + 3" 

Table 12.2: Comparison of the average Nusselt number, Nu+, for Ra - 0 (zero 
1 heat f lux /or  > 

. . . . . . . .  Cheng (1977c) 
Prasad et  al. (1988) 

Vynnycky and Pop (1997) 
61 x 120 mesh 
91 • 120 mesh 
91 • 150 mesh 

P e  - 5 P e -  10 P e -  50 
, , 

2.523 3.568 7.977 
2.792 3.803 8.376 
2.'642 3.654 7.992 
2.642 3.654 7.994 ' 
2.642 3.654 8.003 

Typical results were obtained by Vynnycky and Pop (1997) for Pe  = 1, 5, 10, 
50 and 100 and IRal - 103, where Ra > 0 denotes a heated plate, while Ra  < 0 a 

cooled plate, respectively. Figure 12.8 shows the development of the streamlines and 
isotherms for Pe  - 5 as the value of Ra V~ increases from negative to positive values. 
Figure 12.8(d) represents the uniform forced convection flow whereas Figure 12.8(e) 
for Ra _ 10 illustrates an acceleration of the flow near the plate, as evidenced P e  

by the clustering of the streamlines and the displacement of the isotherms further 
downstream. An additional feature is the appearance of a separation bubble towards 
the trailing edge of the plate which reattaches to the x-axis further downstream 
beyond the trailing edge. This appears when Ra V~ > 0, but it is still not so large 
that  the magnitude of the buoyancy force wrecks the uniform stream assumption at 
downstream infinity. For Ra V~ ~ 0, the gravitationally induced streamwise pressure 
gradient produces a deceleration of the fluid flow near the plate, to the extent that 
the flow separates and a recirculating eddy, whose length increases with increasing 

Ra forms Furthermore, Figures 12.8(a-c) indicate the extent to which the flow p e  ~ 

has been decelerated by comparison with Figure 12.8(d) in that the isotherms have 
been compressed to lie within an even smaller region in the vicinity of the plate. 

The effect of Ra  and Ra ~-~ on the local Nusselt number, N u + ,  is shown in Fig- 
ures 12.9(a,b) for Pe  - 5 and 100, respectively. Here we can see the development of 
a thermal boundary-layer as Pe  increases for Ra  = 0, with the corresponding rise 
in the values of N u +  and the increase in the asymmetry of the N u +  profiles about 
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( b )  - - -  
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~ ~ . . _ _ _ _ _ _ _  
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Figure 12.8" Streamlines, 0 ~ r ~< 5 (Ar - 0.5) (left hand plots), and isotherms, 
0 < 0 < 1 (AO - 0 1) (right hand plots), for  Re  - 5 when (a) Ra _ --200, (b) �9 - p - g  

R ~ _ - 1 0 0 ,  (c) R ~ _ - - 5 0 ,  (d) R~ - -  - ~ -  ~ = 0 (forced convection) and (e) ~-g - 1 0 R a  The R e  
1 ticks indicate the leading and trailing edges of the plate at x - 4-~, respectively. 
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Figure 12.9: Variation of the local Nusselt number, Nu+, with x when (a) Pe - 5 
and (b) P e -  100. 

x = 0. Consequently, the sharp rise in N u +  near the trailing edge, as a result of 
the approaching discontinuity in the boundary condition, is more pronounced at the 
higher values of Pe.  A more significant feature of the results which should be noted, 
and which is more evident in Figure 12.9(a) than in Figure 12.9(b), is that  for some 
negative values of Ra the heat flux at the plate is higher than that  in the pure forced 
convection solution. For values o f - R a  which are very large and positive, this is not 
surprising since it implies that  the heat transfer as a result of free convection is now 
more effective than that  due to forced convection for that  value of Pe. It should also 
be noted that  even though the plate is being cooled, the trailing edge nevertheless 
serves to accelerate the fluid flow there (since locally yS>~ 0); therefore, it appears 
that  this effect, in addition to the forced convection flow maintains the value of 
N u +  at a greater value for Ra  < 0 than it does for Ra  = 0 for a large portion of 
the plate. However, for Ra  > 0, which is thought of as the flow-accelerating case, 
one might be surprised to see N u +  having a lower value than for Ra = 0, as in the 
case for Ra _ 10 in Figure 12.9(a) in the vicinity of the trailing edge However a 
consideration of the local flow behaviour at different positions of the plate, along 
the same lines as for R a  < 0, indicates that  this interpretation is correct. 
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12 .4 .2  S e m i - i n f i n i t e  f ia t  p l a t e  

Another interesting problem considered by Merkin and Pop (1997) is that of mixed 
convection flow over a semi-infinite horizontal surface in a porous medium based 
on a similarity solution of the boundary-layer equations, assuming that the flow is 
driven by a line heat source of constant heat flux qs (non-dimensional) and the free 
stream is flowing along the plate in the positive x direction with a non-dimensional 
velocity U (~). The problem is governed by Equations (12.9) and (12.10), which 
have to be solved subject to the boundary conditions 

" 0 T - - 0  on ~ 0 ~>~0 r  - ~ - -  y =  , 

o~ ~ U ( ~ ) ,  T ~ O  as y ~ o o ,  x>lO 
(12.56a) 

together with the heat flux integral 

A 

~0 c~ 0r (12.56b) qs -- T--~y 

Equations (12.9) and (12.10), subject to the boundary conditions (12.56), possess 
a similarity solution provided that U (~) takes the form 

U (~) - U0~-�89 (12.57) 

where U0 is a constant. It can easily be shown that the transformation 

- ~  ~ . 1  ~ 1  ~ . ~ .  3 

r  , T = x ~ 0 ( ~ ) ,  ~ - y x - ~  (12.58) 

leads to the ordinary differential equations 

4f"  - 3~0' - 0 = 0 (12.59) 

4 0 ' +  fO = 0 (12.60) 

along with the conditions 

f ( 0 ) = 0 ,  0 ' ( 0 ) = 0  
f~ -+q ,  0 - + c ~  as ~--+c~ 

f o  f 'Odrl  - 1  

(12.61) 

where 
1 

q = Uoqs 2 (12.62) 

It should be noted that Equations (12.59) and (12.60) are equivalent to the equations 
describing the horizontal wall plume which arises from a line thermal source placed 
at the leading edge of an adiabatic horizontal surface in a porous medium, see Shu 
and Pop (1997). Equations (12.59) - (12.61) were solved numerically by Merkin 
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Figure 12.10" Variation of (a) f'(O), and (b) ~(0), with q. The numerical solutions 
are indicated by the solid lines and the asymptotic expansions (12.63)are indicated 
by the broken lines. 

and Pop (1997) and the results are depicted in Figure 12.10, where f'(0) and 0(0) 
have been plot ted as a funct ion of q. The main point to note about  these numerical  

results is tha t  a solution exists only for q >~ q0, where q0 = 1.406 and tha t  for q > q0 
there are two solution branches for each value of q. On the upper  solut ion branch 
f '(O) and  0(0) behave as, see Merkin and Pop (1997), 

1 1 
f'(O) ~ q -  ~ + . . . ,  0(0) --~ t . . .  (12.63) ~.q 

as q -+ c~. The asymptot ic  expansions (12.63) are also shown in Figure 12.10 by 
the broken lines and we can see tha t  there is good agreement with  the numerical ly 
de te rmined  values. Graphs  of the fluid velocity, f'(~?), and the t empera tu re ,  t?(~), 
profiles on the upper  and lower solution branches of Equat ions (12.59) - (12.62) are 
shown in Figure 12.11 for q - 2.7. It is seen tha t  there is a drop in the value of 
f ' (~)  below f~(0) before the asymptot ic  values (12.63) are reached and for the lower 
solution branch this is much more pronounced and this leads to a finite region of 77 
over which f , (~)  < 0. 
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Figure 12.11: (a) The fluid velocity, f'(rl) , and (b) the temperature, 007), profiles 
on the upper and lower solution branches for q - 2.7. 

12.5 Free convect ion  boundary- layer  flow past an in- 
cl ined surface 

The problem of free convection boundary-layer flow past a surface which is slightly 
inclined to the horizontal and bounded by a saturated porous medium has been 
studied by Rees and Riley (1985) and Ingham et al. (1985) for the case of a surface 
of constant temperature Tw, while Kumari et al. (1990b) considered the case of a 
surface with a constant heat flux q~o. The case of an arbitrarily inclined plate of 
constant temperature has been considered by Pop and Na (1996). The governing 
Equations (12.5) and (12.6) for the near-horizontal configuration with a constant 
temperature are such that  the parameter A may be scaled out of the problem by 
the transformation 

where A+ = [A[ and A ~ 0. Thus Equations (12.5) and (12.6) reduce to 

O  =• OT 
Oy 2 Oy Ox 

i)y 2 Oy Ox Ox Oy 

(12.65) 

(12.66) 

where, in Equation (12.65), the + sign is to be taken for an upward (positive) 
inclination and the - sign for a downward (negative) inclination of the plate to the 
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horizontal. The boundary conditions for these equations are as follows- 

r  T - 1  on y - O ,  x > O  

or T - + O  as y--+c~, - c x D < x < c ~  Oy 

o~,Oy__O, T - O  on x - O ,  y > O  

(12.67) 

When the plate is inclined upwards (favourable flow) two series solutions were 
obtained, namely one which is valid near the leading edge and the other which is 
valid at large distances from the leading edge. When the plate is inclined downwards 
(unfavourable flow) the series solution which is valid only near the leading edge was 
obtained. In this case the boundary-layer separates and a region of reverse-flow 
develops. Ingham et al. (1985) have demonstrated that there is no evidence of a 
singularity at the separation point and a mathematical explanation of the behaviour 
at separation was presented. In both the favourable and unfavourable flow cases the 
fluid slip velocity, Uw(X), and the wall heat transfer, qw(X), may be expressed in the 
form 

o o  OO 
1 2 

uw(z) = z -~  E fnf"(0) '  qw(z) z-~  E n , ,, ~ n -- ~ O n (0) (12.68) 
n----O n - - O  

where f - x3. Values of ft n (0) and 0~n (0) are given in Table 1 of the paper by Ingham 
et al. (1985). On the other hand, when the plate is inclined upwards, the asymptotic 
expressions for uw(x) and qw(X) are given by 

1 
Uw(X) - 1 + 0.808x- ~: + O (x -1) 

qw(x) - x ~- [0.4437 + O (x- l ) ]  
(12.69) 

for x >> 1. It is worth mentioning that Ingham et al. (1985) have found that using 
15 terms in the series (12.68) is sufficient for comparing the results with those given 
by the asymptotic solution (12.69) valid at large distances from the leading edge (for 
upward inclinations) and also to investigate in detail the nature of the separation 
(for downward inclinations). However, Recs and Riley (1985) have matched the 
asymptotic solutions by using a numerical solution based on the Keller-box scheme. 

The variation of uw(x)  and qw(X) as a function of x is given by the series (12.68) 
and they are shown in Figure 12.12 for the downward (unfavourable flow) inclina- 
tions of the plate. Figure 12.12(a) indicates that Uw(X) becomes zero, i.e. the flow 
separates, near x = xs = 10 but a more detailed check of the numerical results 
reveals that the boundary-layer separates at xs = 9.863. However, qw(X) is non-zero 
in the vicinity of xs = 10, as can be seen from Figure 12.12(b). Further, it was 
shown by Ingham et al. (1985) that both Uw(X) and qw(X) are regular at Xs = 9.863. 

The development of the fluid velocity and temperature profiles, as determined 
numerically by Rees and Riley (1985), are shown in Figure 12.13 for the case of 
a downwardly inclined plate. Figure 12.13(a) shows that in this unfavourable flow 
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Figure 12.12- Variation of (a) the wall velocity, Uw(X), and (b) the wall heat 
transfer rate, qw(x), with x for downward inclination of the plate (A < O) with 
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Figure 12.13: (a) The fluid velocity, -~n(~,rl), and (b) the temperature, T(~,~), 
profiles for downward inclination of the plate (A < 0). 

case, the boundary-layer  thickens rapidly and the fluid velocity profiles develop an 
inflexion point as the plate is traversed, suggesting the existence of a region of re- 
versed flow. Rees and Riley (1985) have succeeded in continuing the numerical 
integration of Equations (12.65) and (12.66) into the region where there is reversed 
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flow without encountering any obvious signs of instability in the numerical proce- 
dure. This confirms again that separation is, in general, non-singular for this type 
of problem. Finally, in Figure 12.14 a plot of the streamlines is presented, which 
clearly shows the reverse flow region and the fluid entrainment at the edge of the 
boundary-layer. 

10 

8 

6 

0 10 20 30 40 50 60 
:t" 

Figure 12.14- Streamline plots/or a downward inclination o/the plate (A < 0). 

12.6 M i x e d  convec t ion  b o u n d a r y - l a y e r  flow a long an  in- 
c l ined p e r m e a b l e  surface  

Consider a fiat permeable heated plate which is embedded in a porous medium and 
inclined at an angle ~ to the horizontal. It is assumed that the non-dimensional 
wall temperature is Tw(x), the non-dimensional outer fluid flow velocity is U(x) 
and the non-dimensional mass flux velocity normal to the plate is vw(x). The flow 
configuration is depicted in Figure 12.15. Under the boundary-layer approximation, 
the governing Equations (12.1), (12.2) and (12.4) can be written in non-dimensional 
form as follows: 

= 7:R  N + (12.70) 

0r OT 0r OT 02T 
- (12.71) Oy Ox Ox Oy Oy 2 

which have to be solved subject to the boundary conditions 

r  T-T~(x) on y=0, x>0 
o_~ __+ U(x), T --+ 0 as -+ > 0 (12.72) oy y c~, x 
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~g :!i!i: 

Figure 12.15: Physical model and coordinate system. 

Integrating Equation (12.70) across the boundary-layer from y = 0 to y - c~ and 
taking into account of the boundary conditions (12.72), we obtain 

0 r  = U ( x ) • Ra  T sin ~ + cos ~~xx Oy T d y  (12.73) 

In order to obtain similarity solutions of Equations (12.71) and (12.73), subject 
to the boundary conditions (12.72), Weidman and Amberg (1996) have used the 
generMised similarity variables for r and ~, given by Equation (3.75) and proposed 
by Burde (1994). Introducing these variables into Equations (12.71) and (12.73) 
yields 

f '  = fl-U 4- Ra  sin ~o 0 - cos ~ (flTw)x h ~x~0 + (~'y) 0 
tt tt ~ # # x 

(12.74) 

O" -- /~# (Tw)x f'O -/~ (#xf + ~x) 0', h' - 0 (12.75) 
Tw 

with the boundary conditions (12.72) becoming 

f = _ a 0  0 = 1  on r / = q 0  
,o '  (12.76) 

~0 -+ 0, h - + 0  as ~ -+ cx~ 

Similarity solutions of these equations are possible when the following quantities are 
constant: 

U, ~ Tw fl- ( ~ Tw ) , ~ Tw ~ x , P Tw ( ~,~ ) fl--~ ( Tw ) ~ flax,, fl P x 
# # ,  # x # # x ,  Tw ' 

As in the case of a Newtonian fluid as discussed in Section 3.6, Weidman and 
Amberg (1996) have found that  similarity solutions of Equations (12.74) - (12.76) 
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fall into two distinct categories, namely class I where we have steeply inclined plates, 
and class II where we have steeply inclined plates for which new similarity solutions 
are possible. 

Here we consider the example of a steeply inclined plate: i.e. class I solutions. 
Setting # - 1, the solution of the relevant Equations (12.77) gives 

c~(x) : g ln(x + 1), 1 U ( x )  - qs (12 78) /~(x) = x + 1, T w ( X ) - x + l ,  x + l  " 

where g and qs are non-dimensional constants. This family of solutions describe the 
Darcian mixed convection flow over a steeply inclined, downward facing heated plate 
which forms the upper boundary of a wedge. Equations (12.74) and (12.75) reduce 
now to the following: 

f '  - qs :1: Ra  0 sin ~o (12.79) 

0" + 50' + f 'O - 0 (12.80) 

which have to be solved along with the boundary conditions (12.76) for some speci- 
fication of 7(x). In this section we consider the exact solution of Equations (12.79) 
and (12.80) only in the situation in which qs > 0, and this corresponds to planar 
source flow in a porous medium. If we take the scalings 

1 _ 1 _ 1 

0 - q s b - 2 0 ( ~ ) ,  ~ ? - q s  5~, qs --b2q, - 5 -  b~d, 3'0 - qsS~O, b -  (Rasinqo) 

(12.81) 
then Equations (12.79) and (12.80) reduce to a single equation for the temperature 
field, namely 

~ ' + ~ + ( 1 - 0 ~ 0 - - 0  (12.82a) \ / 

which has to be solved subject to the boundary conditions 

~_q-l~. oil ~-~o~. (12.82b) 
~ ' 0 - + 0  as ~ - + o c  

A 

A _  a Weidman and Amberg (1996) have shown that Equations (12.82) where c - r .  
qY 

consist of the dual family of solutions 

[ , ( 0(0)~" = q 1 - (1 + q~) exp ~" v/6- ~0 (12.83) 

corresponding to radial outflow along a downward facing inclined heated plate form- 
ing one boundary of a wedge which is embedded in a porous medium and this has a 
physically acceptable meaning only for q > 1. This solution is plotted in Figure 12.16 

5 The branch 1 curves (solid lines) and for some values of q with ~0 = 0 and fi" = v~" 
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Figure 12.16: Normalised temperature profiles, ~ for ~ -  ~6 and 7o - O. The o(o)' 
dotted line represents the limiting solution (12.84), the solid lines indicate the 
branch 1 solutions and the broken lines indicate the branch 2 solutions. 

branch 2 curves (broken lines) in the figure correspond to the solution branches de- 
fined by the upper (+) and lower ( - )  signs in Equation (12.83), respectively. In the 
limit q -+ c~, the two branches merge to the common temperature  profile 

A 

~(~) -- exp ( - ~ )  
o(o) 

(12.84) 

The asymptotic solution (12.84) is also shown in Figure 12.16 by the dotted line. We 
note that  these asymptotic profiles are consistent with a linear asymptotic analysis 
of Equations (12.82) in the far field, which shows that solutions for 0 (~) exhibit 

monotonic exponential decay when the discriminant A -- (~-2 _ 4) �89 -- 1-!- is positive 
V ~  

Weidman and Amberg (1996) have further found for q > 1 that  the wall heat transfer 
coefficient gives monotonic variations along each solution branch over the ranges 

4 0'(0) 2 2 0'(0) 
< A < for b r a n c h l ,  < - ~ ~ < 0  for b ranch2  

o(o) v'S o(o) 
(12.85) 

An inspection of the solution (12.83) along the branch 2 shows that  as q -+ 1 + the 
thermal boundary-layer moves away from the wall and becomes a free temperature 
layer residing above an isothermal fluid layer adjacent to the plate; this is best seen 
in the range 1.0 < q < 1.001. Since the streamwise velocity component, given by 
Equation (12.79), is proportional to the temperature,  it can be concluded that  the 
velocity boundary-layer likewise lifts off from the wall as q --+ 1 + and becomes a 
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free shear layer which is interior to the wedge. It is important to mention that 
dual solutions and the boundary-layer lift-off phenomena of this type have been also 
observed in other self-similar flows, for example in the problem of a flat plate which 
moves towards its leading edge at a constant velocity Uw in the opposite direction 
to the oncoming free stream flow Uoo as studied by Hussaini et al. (1986) and Riley 
and Weidman (1989). 



Chapter 13 

C o n j u g a t e  free and m i x e d  
c o n v e c t i o n  over  ver t i ca l  surfaces  
in p o r o u s  m e d i a  

13.1 I n t r o d u c t i o n  

Owing to its fundamental and practical importance, the conjugate coupling heat 
transfer between a convective flow and a solid flat surface of finite thickness which 
is embedded in a porous medium has received an increasing amount of interest 
in recent years. Various approaches have been used to deal with the difficulties 
associated with the simultaneous solutions of hydrodynamic and thermal flows and 
the longitudinal and transversal conduction in the solid surface. Some aspects of this 
coupling phenomena in porous media and the extensive references on the topic can 
be found in the most recent reviews by Kimura et al. (1997) and Pop and Nakayama 
(1999). In particular, Kimura and Pop (1991), Vynnycky and Kimura (1995, 1996), 
Pop et al. (1995a), Pop and Merkin (1995), Lesnic et al. (1995), Higuera and Pop 
(1997), Higuera (1997) and Shu and Pop (1998, 1999) have partially elucidated the 
effects of the appropriate conjugate parameters on the heat conduction in the solid 
wall coupled with free or mixed convection flows adjacent to vertical and horizontal 
flat surfaces, cylinders and spheres which are embedded in a fluid-saturated porous 
medium. It is worth noting that the conduction in the walls can have an important 
effect on the convective flow in many practical situations, especially those concerned 
with the design of thermal insulation processes. 

Likewise for the viscous (non-porous) fluids modelling of the conjugate heat 
transfer problem in porous media may be complicated because of the strong cou- 
pling between the momentum and energy equations in the surrounding medium and 
the solid wall. Two classes of solutions have appeared in the literature, namely 
boundary-layer solutions and direct numerical solutions of the complete governing 
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equations. In the first case, longitudinal heat conduction is neglected in both the 
solid and the ambient fluid, and the resulting parabolic partial differential equa- 
tions are solved numerically using either series expansion methods or finite-difference 
schemes. Also, approximate analytical solutions exist which predict the average sur- 
face temperature and the average Nusselt number for high values of the Ray]eigh 
numbers, i.e. the boundary-layer approximation, see Kimura et al. (1997). 

13.2  C o n j u g a t e  free c o n v e c t i o n  b o u n d a r y - l a y e r  flow 
over  a v e r t i c a l  sur face  

In this section we consider a vertical impermeable flat plate of finite length I and 
thickness b which is adjacent to a semi-infinite fluid-saturated porous medium at 
a uniform ambient temperature Tor We assume that the outer surface (left-hand 
side) of the plate is maintained at a constant temperature To, where To > Too, see 
Figure 6.1. It is also assumed that the boundary-layer approximation holds in the 
convective fluid and that the solid plate is thin relative to its length, i.e. b << 1, 
so that the axial heat conduction in the plate can be neglected. Consequently, the 
temperature profile in the plate can be assumed to be linear and therefore the heat 
flux rate from the plate is given by Equation (6.5). 

Equations (11.7) - (11.9) are non-dimensionalised by introducing the following 
variables: 

( ) x - z ,  y - Ra~- , u -  Ra  -1 LL_ 
O~rn 

I(L) T-Too (13.1) 
T o - T ~  

where L is the convective length of the plate which is defined as 

L = g K fl ( To - Too ) ( b k I ) 2 
yam -~s (13.2) 

Substituting expressions (13.1) into Equations (11.7) - (11.9), we obtain 

0r 
ay  = e 

or ao 0r 0o 0 2o 
Oy Ox Ox Oy Oy 2 

and these equations have to be solved subject to the boundary conditions 

(13.3) 

(13.4) 

r  o0 _ 0 _ 1  on - 0  x > 0  o ~ -  Y , 
0--+0 as y - + o c ,  x > 0  (13.5) 

We notice that Equations (13.3) and (13.4), along with the boundary conditions 
(13.5), do not involve any non-dimensional parameters and hence requires just one 
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solution. The range of applicability of the results for a given physical situation is 
then given, via expression (13.2), as 

O < x -s -- g K ( To - Too ) 
(13.6) 

However, since Equations (13.3) and (13.4) are parabolic, the end x point given by 
expression (13.6) does not enter their solution as no condition is applied at this value 
of x. 

The problem governed by Equations (13.3) and (13.4), along with the boundary 
conditions (13.5), has been formulated by Pop and Merkin (1995) and was solved 
using the same method as for the corresponding viscous (non-porous) fluid problem 
by Merkin and Pop (1996), see Section 6.2. 

13 .2 .1  S m a l l  v a l u e s  o f  a: ( ~  1) 

In this case we use the variables associated with the free convection flow over a 
vertical surface in a porous medium which has a prescribed heat flux rate, see Rees 
and Pop (1995a) or Wright et al. (1996), namely 

2 �89 r/), 77 - y ( 1 3 . 7 )  r  x~ f (x , r ] ) ,  O -  x 
X3 

On substituting these expressions into Equation (13.3) gives h - ~ and then Equa- 
tion (13.4) becomes 

_ _  o3 y ~- f ~ -- x - (13.8) 
07] 3 -3 0~72 3 ~ O~? OxOT? Ox O~? 2 

which has to be solved subject to the boundary conditions (13.5) which reduce to 
the form: 

f - - O ,  ~---~f~ - 1 -- x�89 ~ on 77--0, x ~ O  
(13.9) 

Of ---~ 0 aS ~---~ 00, X > 0 
O77 

These boundary conditions suggest looking for a solution of f ( x ,  r/) for x << 1 in the 
form: 

OO 

y - ( l a . l O )  

j=O 

where the coefficient function fj(r/) satisfy the following ordinary differential equa- 
tions: 

2 t  t n  
fD"+ ~JoJo - lf ;2 _ 0 (13.11a1 

fo(O)=O, f ; ' ( O ) = - l ,  f ; --+O as r /~cx~ 
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J 

f/(O)--O, f[ '(O)-- ' f~_,(o), f~ ~ o  ~s ,7~o,:, 
(13.11b) 

for i ~> 1. It is interesting to note that Equation (13.11a) describes the free con- 
vection boundary-layer over a vertical surface with a uniform heat flux rate, see 
Equations (11.52) for m = 0. The Equation (13.11b) for the higher-order terms are 
all linear and they have been solved numerically by Pop and Merkin (1995) by a 
shooting method for j = 15 and thus the non-dimensional temperature, Ow(x), at 
the solid-fluid porous medium interface is given by 

15 
! !+3J O~)(x) - ~ f j(O) x (13.12) 

j = 0  

for x << 1. 

13 .2 .2  L a r g e  v a l u e s  o f  x (>> 1) 

The solution for large values of x is a perturbation to the free convection solution 
for an isothermal vertical fiat plate in a porous medium, see Section 11.2. Here we 
use the transformation 

r  x-~f(x,~,  O-- O ( x , ~ ,  r ] -  ~ (13.13) 
X2 

"" of and this gives 0 -  ~-~ and then Equation (13.4) becomes 

03f 1TO' f ( o f  o2f o f  o2f~ 
0----~ + -2~ ~ = x O~ OxO~ Ox O~ 2 ) (13.14a) 

which has to be solved subject to the boundary conditions (13.5) which become 

f -0 ,  o~ 1 -- x -  ~ 3-~ on ~ -- 0, x > 0  
of - (13.14b) 
o--~ -~ 0 as ~ --+ co, x > 0 

Guided by these boundary conditions, we seek a solution of Equations (13.14) for 
x >> 1, by expanding f in the form 

- - 1 1[ ] 
f -- f o ( ~ + x  ~ - ~ ( ~ + x -  r  + . . .  (13.15) 

N 

where f0 and fl are given by the following two sets of ordinary differential equa- 
tions: 

1 7 ~ ,  fD" + ~JoJo = 0 
(13.16a) 

f 0 ( 0 ) = 0 ,  f ~ ( 0 ) = l ,  A - ~ 0  ~s ~ - ~  
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" "  1 "v ]~ t  1 

:~"+~fo + ~ :o~  - -0  

f l (O)  = o, f [ ( o )  = f g ( o ) ,  f~ -~  o as ~ -+  
(13.16b) 

The solution of Equation (13.16a) has been determined in Section 11.3 and it was 
found that f~(0) = -0.44378. Then, it can be shown that  Equation (13.16b) has 
the solution 

fl  -- f ; - -1  (13.17) 

and hence, on using Equation (13.16a), we obtain f{'(0) = f~"(0) = 0. It can also 
be easily shown that r is given by 

A0 f0) 
N 

for some constant A0. Using expressions (13.17) and (13.18), the equation for f2, 
from Equation (13.14), is given by 

f~"+ ~foA + Io]2- 
1 ~ , -  1 ~,2 
~So i~ = Aofo}~'- ~o (13.19a) 

f 2 ( 0 ) = 0 ,  ] ~ ( 0 ) - ~ ' ( 0 ) = 0 ,  ]~--+0 as ~--+cr (13.19b) 

The value of the constant A0 has to be determined by the requirement that Equa- 
tions (13.19) should have a solution. This has been found numerically by Pop and 
Merkin (1995) to be A0 = -0.280246. However, the solution is not fully deter- 
mined at this order as arbitrary multiples of the eigensolution (13.18) can be added, 
as explained by Stewartson (1957). However, it is necessary to check that expres- 
sion (13.18) is the first eigensolution. To do this, we look for a solution of Equa- 
tions (13.14) in the form: 

f = fo (~ + x-'YhFk (~ (13.20) 

where f0 is given by Equation (13.16a) and Fk satisfies 

Fklll " 'II + �89 + " Y ~ h  + (~ - ~) ~'~ = o 

Fk(O)--O, F ; ( 0 ) - - 0 ,  F I - + 0  as r / ~ c r  
(13.21) 

It was found by Pop and Merkin (1995) that 3'1 - 1 is, as expected, the first 
eigenvMue, with the next two being 72 = 3.82791 and 73 - 8.91102. Therefore, the 
expansion (13.15) is correct only up to terms which are O (x- l ) .  

From expressions (13.13) and (13.15), we have 

1 
O(w2)(x) - 1 - 0.44378 x-~  -4-... (13.22) 

for x >> 1. 
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13 .2 .3  N u m e r i c a l  s o l u t i o n  

To obtain a solution which is valid for all values of x, Equations (13.3) and (13.4), 
subject to the boundary conditions (13.5), have to be solved numerically. As for 
the corresponding viscous (non-porous) fluid case discussed in Section 6.2, Pop and 
Merkin (1995) have used a finite-difference method in combination with the continu- 
ous transformation method proposed by Hunt and Wilks (1981). Thus, introducing 
the variables 

2 1 

r - xS(l + x)--~F(x,~), 
1 

O - x-~ (l + x)-�89 ~), ~ _  Y 
1 1 (13.23) 

xS(1 + x)~ 

Equation (13 3) gives H -  OF and Equation (13.4) then becomes �9 ~-r 

oq3F 1 [ ( ~  1~3 ) 02F I(0F) 2] I ( O F O 2 F  OFO2F) 
0r l + a + -2 F 2 3 -5-( - 2 

(13.24a) 
1 

where, to accommodate for the x5 singularity as x --+ 0, we use ~ - x I as the 
streamwise variable. Then boundary conditions (13.5) become 

02F (1 ~3)~OF ~3 �89 F - 0 ,  g-d = ~  + -8 - - ( - (1+  ) on ~ - 0 ,  ~ > 0  
OF o--~--~0 as r ~ > 0  

(13.24b) 

and the non-dimensional wall temperature is given by the expression 

1 

Ow(x) -- ~ (1 + ~3) 3 H(~, 0) (13.25) 

The problem described by the set of equations and boundary conditions (13.24) 
was solved numerically using a finite-difference scheme as described by Merkin 
(1969). Details of the numerical procedure are not presented here as they can be 
found in the paper by Pop and Merkin (1995). 

The variation of the non-dimensional wall temperature 0w(x), as a function of 
x, given by the numerical solution (13.25), is shown in Figure 13.1. The asymptotic 
solution (13.22) for large values of x is also included (by broken lines) in this figure. 
It is seen that Ow(x) increases monotonically with increasing x and there is a strong 
singularity at x - 0. Then, we can see that the asymptotic solution (13.22) gives 
a good estimate for Ow(X), even at quite moderate values of x with the difference 
being about 18% even at x = 1, while at x = 2.5 this difference is reduced to 
approximately 6%. In fact, this agreement can be seen more clearly from Table 13.1, 
where we have compared the values of Ow(X) given by the numerical solution (13.25) 

with the asymptotic limits 0~ ) (x) and O(w2)(x). We can see that there is very good 

agreement between Ow(x) and 0 ~ ) ( x ) u p  to ~ -  1.2 ( x -  1.728). However, the 

difference between Ow(x) and 0~)(x) becomes more pronounced as the value of x 
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Figure 13.1" Variation of the wall temperature distribution, Ow(x), with x. The 
numerical solution (13.25) is indicated by the solid line and the asymptotic solution 
(13.22) is indicated by the broken line. 

1 

Table 13.1: Values of ~w(x) as a function of x and ~ -  x~. 

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 

. . .  

~ Equation 
1. (13.25) 

0.008! 0.2245 
0.064 i 0.3916 
0.216 0.5161 
0.512 0.6095 
1.0 0.6801 
1.728 0.7340 
2.744 0.7848 
4.096 0.8157 
5.832 0.8347 
8.0 0.8557 

15.625 0.8932 
27.0 0.9173 
42.875 0.9336 
64.0 0.9453 

. .  

Equation Equation 
(13.12) (13.22) 

0: 24  
0.3916 
0.5161 
0.6095 
0.6801 
0.7341 
0.7758 
0.8080 
0.8303 
0.8301 

0.5563 
0.6624 
0.7321 
0.7807 
0.8162 
0.8431 
0.8877 
0.9146 
0.9322 
0.9445 

increases further ,  while the values 0~  ) (x) give a reliable es t imate  for large values of 

x, being, for example,  only approx imate ly  1.5% in error at  x = 8.0. 

Finally, Figure  13.2 shows the development  of the  non-dimens ional  t empe ra tu r e  

profile O(x, y) for a range of values of x obta ined numer ica l ly  from Equat ions  (13.24). 

As expected,  these become more  spread out  as the  value of x increases, wi th  the  

value at the  wall t e m p e r a t u r e  increasing, in line wi th  F igure  13.1, for increasing 

values of x. 
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Figure 13.2- Temperature profiles, O(x, y), as a ]unction of y for several values of 
X .  

13.3 Free convect ion  boundary- layer  flow over a vertical  
surface with  N e w t o n i a n  heat ing  

We have seen in the previous sections that the free convection boundary-layer flow 
in porous media is usually modelled by assuming that the flow is driven either by a 
prescribed surface temperature or by a prescribed surface heat flux. However, Lesnic 
et al. (1999) have considered a somewhat different driving mechanism for the free 
convection boundary-layer along a vertical surface in a porous medium in that it is 
assumed that the fluid flow is set up by the heat transfer from a surface such that 
the surface heat flux is proportional to the local surface temperature (Newtonian 
heating), i.e. 

OT 
: - h w T  on ~ - 0 ,  ~ > 0  (13.26) 0y 

where hw is the constant wall heat transfer coefficient. We note that this situation 
was recently considered by Merkin (1994b) and Merkin and Chaudhary (1996) for 
the corresponding problem of a viscous (non-porous) fluid. A similar situation to the 
present problem arises also, as we have seen in the previous section, in conjugate free 
convection boundary-layer flow over a vertical surface in a porous medium. However, 
there is, as we will see later, an essential difference between these problems when 
the solution far downstream is considered. 

We now introduce the non-dimensional variables 

x = - ~ ,  y : h w ~ ,  U - u  c, v Lhw~c O :  Too (13.27) 

where L and Uc are the convective length and velocity scalings which are defined as 
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follows" 
g K f l T ~  2 

g = a m u h 2 ,  Uc = c~mhwL (13.28) 

Using expressions (13.27) in Equations (11.7) - (11.9), we obtain again the Equa- 
tions (13.3) and (13.4) and these equations have to be solved subject to the boundary 
conditions 

r - O, oo _ O) y x o--~ -- - ( 1  + on -- 0, > 0 (13.29) 
0 - + 0  as y -+ co, x > 0  

The solution procedure for Equations (13.3) and (13.4), subject to the boundary 
conditions (13.29), follows closely that  of the conjugate situation described in Sec- 
tion 13.2. 

13 .3 .1  S m a l l  v a l u e s  o f  x (<< 1) 

In this case the corresponding transformed variables are given by the expressions 
(13.7) and the transformed equations, Equations (13.11), where the latter have to 
solved along with the boundary conditions 

fi(O) - O, f['(O) -- - f [_ l (O) ,  f~ --+ 0 as 77 -+ o0 (13.30) 

for i ~> 1. Lesnic et al. (1999) have solved this problem numerically and they have 

found that  the non-dimensional wall temperature 0~ ) (x) is given for i - 7 by the 
expression 

1 2 4 

0~ ) (x) -- 1.2959 x~ + 0.9515 x~ + 0.4429 x + 0.1187 x~ 
5 4 7 + 6.4429 x 10-3x~ -6 .4451  x 10-3x 2 -  9.4502 x 10- x~ + 

for x << 1. 

. . o 

(13.31) 

13 .3 .2  L a r g e  v a l u e s  o f  x (>~ 1) 

In this case we take 

r - xy(x,  y), 0 - ~h(x, y) (13.32) 

so that  Equation (13.3) gives h - o__s and on using this result, Equation (13.4) 
Oy 

reduces to 

( )  0 3 f  + ~ 0 2 f  O f  2 ... 

Oy 3 ~ Oy 2 -  -~y = x Oy OyOx a z  Oy 2 

and the boundary conditions (13.29) become 

f - 0 ,  ~'O~y o~ 1 on y - - 0 ,  x > 0  
--" - -  O y  - -  

--~ as y - - + c r  x > 0  Oy 

(13.33b) 
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These boundary conditions suggest that we look for a solution of the form: 

f ( x ,  y~ -- ~ ( y )  -}- X -1 [q~l ( Y ) l n x  + fl(y)J + . . .  (13.34) 

for x >3> 1, where as before the O (x -a) term includes the eigensolution r  Substi- 
tuting expression (13.34) into Equation (13.33), we obtain 

+ / o 5 , -  - o 

fo(O) -- O, f;'(O) -- - / ; ( 0 ) ,  f ;  --+ 0 as y--+ cx) 
(13.35a) 

(Yl l' -Jr- f o  (/)1 -- f o  (fitl - -  0 

r (o)  - o, r - - r  r ~ o ~s y ~ 

" '"  " '"  " ' I f  . . . .  

f{"  + fo f l  - f ;  f{  - f ;  r  + f ; '  r -- 0 

f l (O)- -O,  f~'(O) -- - f [  (O) - l, f[--+O as y-+c<) 

The analytical solutions of these equations are given by 

(13.35b) 

(13.35c) 

fo -- 1 - - e  -y ,  (~1 -- ao (1 - - e  -y)  
e - - Y  

f~ - ao(1  - y)  - ~ - y  - a o ~ -  + ao {1 + ~-Y [r  (0, ~ - y )  - r ( o ,  1)] + Ao (1 - ~-~)) 
(~3 .36 )  

_ e A o  is an undetermined constant and where a0 e- 1 

fX X) 
F(a x) - e -x x a - '  dx, dF ( a , x )  - - x  a-1 e - x  (13.37) 

' d x  

F being the incomplete Gamma function. Therefore, the solution (13.34) is not fully 
determined to the O (x -1) term since an arbitrary multiple of the eigenfunction r 
may be added. 

For x >> 1 the non-dimensional wall temperature is given by 

e -  ]- lnx + A0 + . . .  (13.38) 

13 .3 .3  N u m e r i c a l  s o l u t i o n  

We shall now obtain a solution of Equations (13.3) and (13.4), subject to the bound- 
ary conditions (13.29), for all values x, starting at x - 0 and proceeding downstream 
until the asymptotic solution (13.32) is attained, using again the method of contin- 
uous transformation as proposed by Hunt and Wilks (1981). Thus, applying the 
transformation 

2 1 2 1 1 
g, -- x~(l + x ) ~ F ( x , ~ ) ,  0 - x~(1 + x ) - ~ H ( x , ~ ) ,  ~ - y x - ~ ( 1  + x)-~ (13.39) 
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OF and F is determined from the equation to Equations (13.3) and (13.4) yields H = ~ 

03F 2 + 3~ 3 F ~  - 
c0r ~ -t- 3 + 3~ 3 0r 2 3 + 3~ 3 - ~  3~ 0r 0r 0~ 0r 2 

(13.40a) 
where the variable ~ - x�89 has been used to accommodate the singularity at x - 0. 
The transformed boundary conditions (13.29) are given by 

(1  _ + F - 0 ,  -ff~-+~ + ) o-~= on ~ - 0 ,  ~ > 0  
OF 0--( --~ 0 as ~ -~ co, ~ > 0  

(13.40b) 
and the scaled wall temperature can be expressed as follows: 

2 

Hw(~) -- ~-I (I -~-~3)-~ Ow(~) (13.41) 

Equations (13.40) have been solved numerically by Lesnic et al. (1999) using a 
modification of the finite-difference method described by Merkin (1976). Figure 13.3 
shows the full numerical solution of these equations for the scaled wall temperature 

1.8 5 

H~(~} 1.41.2.6 ~, 4 

1.0 ! ........... 

0 2 4 6 8 10 

Figure 13.3: Variation of the wall temperature distribution, Hw(~), with ~. The 
numerical solution (13.41) is indicated by the broken line, the small ~ series solu- 
tion (13.~2) is indicated by the solid lines, the 1-term large ~ solution (13.~3a) is 
indicated by the dot-dash line and the 2-term large ~ solution (13.~3b) is indicated 
by the dotted line. 
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(13.41) and also the solution 

6 
h~ ) (~) - (1 + ~3)-~ E f~(0) ~J (13.42) 

j=O 

for ~ << 1, see Equations (13.7), (13.10) and (13.31), and 

h(2) ~2(1  ~3 ~ ~1(~) - + ) (13.43a) 

h(2) __ ~2 ~-3 2 e ~-3 2 
w2 (1 q- ) - 3  -[- ~ - 1  (1 + ) 31n~ (13.43b) 

e - 1  
for ~ >> 1. It can be seen from Figure 13.3 that  as more terms from j = 0 to j = 3 are 
considered in the series (13.42), the bet ter  is the agreement with the full numerical 
solution (13.41) for small values of ~. In fact, we can take j + 1 terms in the series 
(13.42) with good accuracy up to ~ = 0.1, 0.3, 0.7 and 2 for j = 0, 1, 2 and 3, 
respectively. It was found by Lesnic et al. (1999) that  between 4 and 7 terms in the 
series (13.42) are sufficient in order to obtain accurate results for Hw(~) for small 
values of ~. Further, Figure 13.3 shows that  the l - term large ~ solution, namely 
expression (13.43a), approaches asymptotically the full numerical solution (13.41), 
which is seen to tend to unity as ~ --+ ec. However, the 2-term large ~ solution 
(13.43b) approaches better the solution (13.41) as ~ -+ ec and it can be used for 

>~ 2.5 with an error of less than 1%. Lesnic et al. (1999) have also investigated 
the improvement of the convergence of the series (13.31) using the Shanks (1955) 
transformation, which is writ ten in the form 

n-1  n -1  ( e ~ - l )  2 
e j+l  e j - 1  -- 

-- for n - - 1  2 m, j - - n , n + l  2 m - - n  (13.44) ej - -  n-1 n--1 _ 2e~-i , ~ ' ' ' ,  ~ ' ' '~  
ej+ 1 q- e j_  1 

where m - ~i, i - 2, 4 or 6 and ej0 _ ~wA(J) for j -- 0, . . . ,  i. It was found that  only 
when j -- 3 does the Shanks transformation start  to accelerate the convergence of 
the series (13.31), while for higher values of j ,  such as j - 5 or j = 7, the increase 
in the speed of the convergence is not significant. 

Finally, for engineering and practical purposes, an empirical correlation for the 
scaled wall temperature  Hw(() was established by Lesnic et al. (1999) of the form: 

Uw(~) - ~ (1 + A( + B~ 2 + C~ 3 + D~ 4 q- ~5) e 
E + C~ + D~ 2 + ~3 + e - i  l n ( ( +  1) (13.45) 

where 

A = - 5 5 . 9 5 3 1 ,  B = 13.9632, C = 15.9388, D = 11.4071, E = - 0 . 2 9 8 8  
(13.46) 

The comparison made in Figure 13.4 between the empirical expression (13.45) and 
the full numerical solution (13.41) shows that the former approximation can be used 
with confidence in engineering applications over the whole range of values of ~ with 
a 1% to 2% relative error. 
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1.6 

1.2 

0 4 8 12 16 

Figure 13.4: Variation of the wall temperature distribution, H~(~), with ~. The 
numerical solution (13.41) is indicated by the solid line and the empirical expres- 
sion (13.45) is indicated by the broken line. 

13.4 Conjugate  free convect ion  boundary- layer  flow due 
to two porous  media  separated  by a vertical  wall 

We consider the two-dimensional configuration presented schematically in Fig- 
ure 13.5. A thin solid vertical flat plate of finite length l and thickness b sepa- 
rates two semi-infinite spaces which are filled with fluid-saturated porous media at 
different temperatures. The porous medium in the left-hand side of the region of in- 
terest (denoted by the subscript 1) is at a constant temperature Ttoo and the porous 
medium in the right-hand side of the region of interest (denoted by the subscript 2) 
is at a constant temperature T2oo, where/"loo > T2c~. We assume that both porous 
media are isotropic and homogeneous, and that the fluids are incompressible. 

Bejan and Anderson (1981) were the first to present an analytical solution of this 
problem using a linearisation technique originally described by Ostrach (1972) and 
Gill et al. (1965) in the context of buoyancy-induced convection in a viscous fluid. 
In Bejan and Anderson (1981) the contribution of the transversal heat conduction in 
the plate was retained, while the longitudinal conduction was neglected. However, 
Higuera and Pop (1997) considered the heat conduction in both the longitudinal and 
transversal directions and they obtained compact analytical and numerical solutions. 
In what follows we present some basic results of this problem as they were obtained 
by Higuera and Pop (1997) and the method employed is that first proposed by 
Trevifio et al. (1996). 

The governing boundary-layer Equations (11.7) - (11.9) are applied to both 
porous media and they can be written in non-dimensional form, see Higuera and 
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Figure 13.5: Physical model and coordinate system. 

Pop (1997), as follows- 

0r 
Oyi 

0r OOi 0r OOi 020~ 
Oyi Oxi Oxi Oyi Oy 2 

= 0/ (13.47) 

(13.48) 

where i - 1, 2, and the energy equation inside the solid wall is given by 

020s 1 020s 
Ox--- ~ + c20y 2 = 0 (13.49) 

where c -  b. The non-dimensional  variables are defined as 

-2 ~ _ Ts  - T 2 ~  (13.50a) 
x - - - i ,  y - - ~ ,  Os Tlc,:,-T2~ 

for the solid wall, where -2 and ~ are the Cartesian coordinates measured from the 
middle of the wall, see Figure 13.5; 

m 11( b) 01 x l - - x ,  Y l - R a ~ -  ~ - ~  , r  1, (13.50b) 
am1Ra~ Tl oo - T2~ 
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for the downward moving fluid in the boundary-layer on the left-hand side of the 
wall; and 

m 

1 1 ( b~ ~2 02=  T 2 - T 2 c r  
z2 - 1 - x ,  Y 2  - -  - R a ~  -[ \ 2 + , r = 1, 

a m 2 R a ~  Tloo - T2oo 

(13.50c) 
for the upward moving fluid in the boundary-layer on the right-hand side of the 
wall. The Rayleigh numbers for the flows in both the porous media are defined as 
follows: 

gKi f l i  (Tlco - T2c~) l 
R a i  -- (13.51) 

Cl~m i Vi 

Having in view the condition of continuity of the temperatures and heat fluxes 
at the solid (plate)-fluid interfaces, see also Section 6.1, the boundary conditions for 
Equations (13.47) - (13.49) are given by 

Oy -- k(~) om on Y l - 0  y - -  
~)1 -- O, O1 (Xl,  O) --  1 --Os (X, 1) (13.52a) 

r -- O, 

00~ _ _ c 2 0 0 2  

Oy - -  k(1)k(2) Oy2 

02 ( z2 ,  o) - (1 - x2 ,  
__�89 } on y 2 = 0  ( y - - - l )  (13.52b) 

O0~ = 0  
Ox 

Oi -+ O 

on x - 0 , 1  
(13.52c) 

as Yi -+ oo 

The non-dimensional parameters k(1) 
are defined as follows" 

, k (2) and c appearing in these equations 

/ / ( ) k(1)_ ks c k(2)_ kin1 R a l  
- -  kml R a ~  ' -- kin2 Ra2  (13.53) 

We now determine numerically and analytically solutions of the problem posed 
by Equations (13.47) - (13.49) subject to the boundary conditions (13.52) for a range 
of values of the parameters k (1), k (2) and c. These solutions should provide the non- 
dimensional wall (interface) temperature distribution Ow(x) - Ow (k (1), k (2), c , x )  = 

Os (k (1) , k (2) , c, x) and, very importantly, the average Nusselt number, NU,  as follows- 

lifo1 ( ~01~ N u  - na21 - ~ Y l  ] Yl --0 
dxl (13.54) 
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13.4.1 c -+  0 w i t h  k (1) --  0 ( 1 )  

In this case the temperature changes across the wall are O (c 2) and therefore may 
be neglected. Integrating Equation (13.49) across the wall gives, upon imposing the 
boundary conditions (13.52) for the heat flux at y - +�89 and using Equation (13.47) 
to eliminate the fluid temperature 0i, 

k(1) d20s = 02r 1 02r 
dx  2 Oy~ k(2) Oy 2 

y l = 0  

Then, we use the transformation 

y 2 - - 0  

~- Yi r - f+ ( x + ,  77 ) ,  o+ - ( x + , , 7 )  , 77 - 

(13.55) 

(13.56) 

so that Equations (13.47), (13.48), (13.55) and the boundary conditions (13.52) 
become, with O i -  of+ 

Or/ ' 

and 

fi --0~ 

03fi l O2fi (Ofi O2fi O2fi Ofi) 
0-- T + -~fi 0772 = xi Oqi O.~i~i Or72 Oxi (13.57a) 

oI+ _ Of~ = Ow - -  Os on ~ 7 i - 0  x > O  ~; - o,12 
of+ o~--7 -~ 0 as r/i --+ oc, x > 0 

k(1)d20s 
dx 2 

1 0 2 f +  
1 " - -  x ~ 07721 

rh - -0  

dOs 
- -0  on 

dx 

1 02f~ 

r /2--0  

(13.57b) 

(13.58a) 

x - 0 , 1  (13.58b) 

Also, the average Nusselt number, expression (13.54), becomes 

1 

xl 2 dxl (13.59) 

Before presenting numerical solutions of Equations (13.57) and (13.58) it is of 
interest to obtain the asymptotic solutions of these equations for both k (1) large and 
small. 

(i) A s y m p t o t i c  l imit  k (1) --+ c~ 

For k (1) >> 1 it can be seen from Equation (13.58a) that the change of the wall 

(interface) temperature distribution Ow(X)is of O ((k(1)) -1) and this suggests the 
expansion 

0 w -- OwO(X ) -4r --(k(1)) - 1  O w l ( X  ) -I- . . . (13.60) 
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which when substituted into Equations (13.58) gives 

OwO(X) - Oo - constant (13.61) 

Thus, the fluid flows in the boundary layers are self-similar at this leading order. 
Now, a consideration of the boundary conditions (13.57b) suggests looking for a 
solution of Equation (13.57a) of the form 

I1 f2 = --y_ = F(~) (13.62a) 
(1 -00)~  0~ 

where 
1 1 

- (1 - 00) ~ ~1 = 0~ ~/ (13.62b) 

Substituting expressions (13.62) into Equation (13.58a) and integrating the resulting 
equation with respect to x, and using the boundary conditions (13.58b), yields 

2 

Oo - 2 (13.63) 
1 +  (k(2)) ~ 

Alternatively, on using expression (13.62) in Equations (13.57) gives 

1 I I  
F "~ + ~ F F  - 0 ~ 13.64 

F(O)=O,  F ' ( O ) - I ,  F ' - + O  as ( ~ o o  
] 

This equation gives F " ( O )  --  -0.444, see Equation (13.16a), so that the average 
Nusselt number given by expression (13.59) can be expressed as follows: 

N u  3 
, = 0 . s s s  (1 - e0)  ( 1 3 . 6 5 )  

R a ~  

It should be noted that the expressions (13.63) and (13.65) represent the leading 

order terms in the expansion of the solution in powers of (k(1)) -1. It can be seen 

that 0w0 --+ 1 and ~ --+ 0 as k (2) --+ co, while 0w0 -+ 0 and Nu k(2) R~ ~ --+ 0.888 as --+ 

0. These two limits correspond to the cases where the thermal resistance of the 
boundary layers of the two porous media 1 and 2 is negligible and the temperature 
of the plate is very close to Tloo, or T2cr In the particular case in which the 

1 porous media on both sides of the plate are the same, i.e. k (2) - 1, then 0w0 - 

and - - ~  = 0.314. It should be noted that the expression for N u  can be further 

improved by computing more terms in the series (13.60). 
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(ii) A s y m p t o t i c  l imit  k (1) - +  0 

In this case, the longitudinal heat conduction in the solid plate becomes negligible, 
and Equation (13.55) reduces to 

02r 
Oy~ 

Y l  - - 0  

1 (92//)2 
k(2) oy~ 

y 2 - - 0  

(13.66) 

This relation shows that the heat fluxes from the two porous media are locally equal 
to each other and thus both must be finite at the ends of the plate. Thus the balance 

1 of the convection and conduction in Equation (13.48) implies (1 -Ovo, 01) ,'., x 5  for 
1 

x small and (0~, 02) '--, (1 - x)5 for (1 - x) small, and this suggests the use of the 
new transformation 

_ _ y~ ~:~.~ r - ~ f~ (~, ~), e~ - e~ (~, ~), ~ - - -v  k - ' - "  ' - ' - - ]  

W 
Equations (13.47)and (13.48) now become 

03f/ 202f/ 1 ( 0 f / / 2  ( 0 f /  02fi 02f/ 0 2 f / 0 f / )  
o-~ + 3 ov~ a ~ - ~ o~ o~ox~ - o~o~i 0,7~ o~i ( 1 3 6 8 ~ 1  

along with the boundary conditions (13.52), namely 

--- - 2_ 1 . v  

of: (x:, O) x~ (I Xl): 0 w (Xl) f i ( x i ,  O) - O, ~ = - - 

offi (x2, 0) -- x~ - (1 - x2) ~ 0w (1 - x 2 ) ,  O ~  (x i ,  O) = k t 2 ) o ~  (x i ,  O) 
(13.68b) 

0~i +0 as ~7i -+ ~ ,  x i > O  

where 

O~(x) - 
O~(x )  + x -  1 

~(1-~)~ 
The average Nusselt number, given by expression (13.54), now becomes 

(13.68c) 

(13.69) 

Ra~ 0 ~  , : = 0  
dx: (13.70) 

13.4.2 c -+  0 w i t h  k(1) ~= -- 0(I) 

In this case Ow - O(1) to fulfil the boundary conditions (13.52a,b) for the heat 
flux at y -- +�89 The longitudinal heat conduction is again negligible, except in 
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small regions close to the edges of the wall, and thus the transformation (13.67) 
remains appropriate. Equation (13.68a) still holds in both porous media, whilst the 
boundary conditions (13.68b) at ~i - 0  take the form 

f~ - o ,  0--~: - , o~ i  - 

(13.68d) 

where 

0~: (x) -- 1 -Ow :(x' �89 , O--. 2(x ) = Ow (x,-�89 (13.71) 
x :  (1 - x ) ~  

The solution of Equation (13.68a), subject to the boundary conditions (13.68c,d), 
determines Ow~, Ow2, Nu  and the other flow characteristics in the boundary-layer. 

k(:) k(:) There are also two limiting situations to be considered, namely c-W >> 1 and ~ << 
1, respectively. 

k(~) (iii) A s y m p t o t i c  l imit  ~ --+ c ~  

k(1) 
When -W >> 1, the heat fluxes in both porous media remain finite and from Equa- 

tion (13.68d) results in that x�89 -+ 1 - (1 - x)�89 recovering the limit k (1) --+ 0 
of case (ii). 

k(:) (iv) Asymptotic limit ~ -+ 0 

Applying this limit to Equations (13.68d), it is readily seen that the heat flux in the 
porous media tends to zero and therefore Ow (x, �89 -+ 1 and 0z (x,-21-) --+ 0, except 
in_ smallregions near the lower and upper edges of the plate. The scaled functions 
f:  and f2 should now take the form 

.v (k(1) ~ �89 .v (k(1)k(2)) �89 /k(1)~ �89 (k(1)k(2)) �89 

( : 3 . 7 2 )  
On substituting these expressions into Equation (13.68a) gives 

2 GG" 1 G,,2 
a'" --5 = 0 (13.73a) 

along with the boundary conditions (13.68b,c) which become 

G ( 0 ) - 0 ,  G " ( 0 ) - - 1 ,  G ' - ~ 0  as ~ - + c r  (13.73b) 

Equations (13.73) describe the free convection over a vertical plate with a prescribed 
constant heat flux in a porous medium, a problem considered by several authors, 
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for example Rees and Pop (1995a) and Wright et al. (1996), whose solution has the 
property GI(0) - 1.2947. 

The non-dimensional temperature Os(x, y) inside the plate and the average Nus- 
k(1) selt number, for ~ ~ 1, are now given by the expressions 

2 

1 ( k ( 1 ) ) S G ,  [ 1 ( 1 )  ( ) 2 ( 1 ) ]  o ~ ( ~ , y ) - y + i -  - ~  (o) ~ y+~ + k(2) ~(1-~)~ y - ~  +. . .  

(13.74) 
and 

I ( )2 ( N u  _ k (1) _ 3 k (1) g 
1 w Ra~ c2 1 -~ - ~  G'(O) 2) 1 § (13.75) 

1 k(1)Ra~l 1(ks) It should be noted that, since it can be readily seen that d ~ = c ~ , the 

leading order term in the expression (13.75) does not depend on the Rayleigh num- 
ber. 

Equations (13.57), (13.58) and (13.68) have been solved numerically by Higuera 
and Pop (1997) using the finite-difference method as described by Trevifio et al. 
(1996). The non-dimensional wall temperature distribution, Ow(X), as obtained from 
the numerical solution of Equations (13.57) and (13.58), is presented in Figure 13.6 
for k (1) = 0.5, 1, 2 and k (2) - 0.5, 1. Also included in this figure is the variation of 
Ow(X) for k (1) --+ 0, obtained from the solution of Equations (13.68). The streamline 
and isotherm plots of the hot fluid corresponding to k (1) -+ 0 are displayed in 
Figure 13.7 for k (2) - 1, and this corresponds to the same porous media on both sides 

. 0  i , , , 

0.8 

0.6 

0.4 

0.2 

0 0 !  ....... 
o o o4  o o l O 

X 

Figure 13.6: Variation of the wall temperature distribution, Ow(x), with x for 
k (2) - 0.5 and 1 at several values of k (1). 
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Figure 13.7: Streamlines (solid lines) and isotherms (broken lines) in the boundary- 
layer of the hot medium from the solution for k (1) ~ 0 and k (~) - 1. 

of the wall. We observe that  as we approach the asymptotic value k (1) ~ c~, which 
implies that heat conduction along the wall dominates and Ow(x) remains constant, 
being given by expression (13.63). Figure 13.7 also shows that  the longitudinal 
heat conduction has an important  effect, even for moderate values of k (1), rendering 
Ow(x) almost constant for values of k (1) greater than about 0.5. We observe that 
the same trends hold for k (2) - 1 and k (2) - 0 . 5  but  Ow(x) increases with k (2). For 
k (2) >> 1 the problem reduces to that  of a uniform wall temperature and is equal 
to Tlc~, while for k (2) << 1 the wall temperature becomes equal to T2c~. The case 
k (2) - -  1 includes the situation in which the porous media on both sides of the wall 
are the same. It should be noted that  the case k (2) > 1 can be obtained from that  
for k (2) < 1 using the property of the invariance of the problem, see Higuera and 
Pop (1997), and therefore it is not discussed here. 

The average Nusselt number given by expression (13.59), as obtained from the 
numerical solution, is presented in Figure 13.8 for k (2) - 0.5 and 1 and the asymp- 
totic solutions (13.65) and (13.70) for large and small values of k (1) are also included 
(shown by broken lines). It is seen from this figure that  the value of N u  decreases 
as k(1) increases, which is to be expected because increasing k(1) implies making the 
temperature of the solid and each of the fluids the same. 

Further, Figure 13.9 illustrates the variation of Ow(x) with x on both faces of the 
plate for k (2) - 1. The upper curves correspond to the side facing the hot medium 
and the lower curves correspond to the side facing the cold medium, respectively. 
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0.55 

Nu 
~- 0.50 

Ra~ 
........... ,_.__~(2) = 0.5 

0.45 

0.40 
.......... k (2) = 1 

0.35 

0.30 , 
0.001 0.{)1 0'.1 i ~0 

Figure 13.8: Variation of -~_  with k (1) for k (2) - 0.5 and 1. The numerical 
Ral 2 

solution is indicated by the solid line and the asymptotic solutions for large and 
small values of k (1), namely expressions (13.65) and (13.70), respectively, are 
indicated by the broken and dotted lines, respectively. 

1 . 0  - -  

0.8 

0.6 

0.4 
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0.0 
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| | ,, | | " I  
0.2 0.4 0.6 0.8 1.0 
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Figure 13.9- Variation of the wall temperature distribution, Ow(x), with x for 
k (2) - 1. The upper curves correspond to the side of the plate facing the hot 
medium. The solutions for k(1) k(1) -c--~- = 0.5, 1 and --W- -~ oo are indicated by the 
solid, broken and dotted lines, respectively. The asymptotic solutions obtained 
from Equation (13.74) for k(1) - 0 . 1  are indicated by the dot-dash lines. 

k ( 1 )  Resu l t s  for the  two- t e rm  a s y m p t o t i c  expans ion  (13.74) for - -~  = 0.1 ( shown by the  
k(1) d o t - d a s h  lines) a n d  those  for - - ~  >> 1 ( shown by the  d o t t e d  line) are  also inc luded  

in th is  figure. We see t h a t  the re  is a good  a p p r o a c h  of the  numer ica l  resu l t s  to the  
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asymptotic limits. 
k(1) 

Finally, Figure 13.10 displays the variation of N u  with ~ for two values of k (2). 
The numerical results (solid lines), the two-term asymptotic expansion (13.75) for 
k(1) k(1) c2 << 1, and the asymptotic values for 7 -  :>> 1 are all plotted and these show 

k(1) very good agreement, in particular for c-v- very small. We note that N u  is an 
k (1) k(1) 

increasing function of --~, which can be explained by noting that as c-~ increases 
the temperature difference between the sides of the wall decreases, and thus a larger 
fraction of the total temperature falls from Tloo to T2oo occurs across the boundary 
layers, leading to larger heat fluxes. From the data  shown in Figures 13.8 and 
13.10 we conclude that  N u  is maximum for a value of k (1) verifying the condition 
c 2 ~ k (1) ~ 1. Indeed, values of this maximum are provided by the solution of 
Equations (13.68). 

0.5 
Nu 

r 0.4 
Ra~ 

0.3 

0.2 

0.1 

0.0 
0.01 

| 

0:1 1 10 k(1) 
c 2 

k(~) for k (2) Figure 13.10- Variation of N__~u with ~ - 0.5 and 1. The numerical 
na~ 

solution is indicated by solid lines and the asymptotic expansion (13.75) for k(1) --iv- 
small and the asymptotic values for ~(1) c--Z- large are indicated by the dotted and broken 
lines, respectively. 

13.5 Conjugate  mixed  convect ion 
along a vertical  surface 

boundary- layer flow 

This model problem is based on a vertical rectangular plate of length I and thickness 
b, which is embedded in a porous medium and over which is flowing a fluid with a 
uniform velocity U~. The outside surface of the plate is maintained at a constant 
temperature To, while the ambient fluid is at a uniform temperature Too, where 
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To > Too (aiding flow) or To < Too (opposing flow). We assume that the boundary- 
layer approximation holds in the convective fluid and that the solid plate is thin 
relative to its length, i.e. b ~ 1, so that the axial heat conduction in the plate can 
be neglected. Consequently, the temperature profile in the plate can be assumed to 
be linear and therefore the heat flux from the plate is given by Equation (6.5). 

The boundary-layer Equations (11.149) - (11.151) can be written in non- 
dimensional form as follows- 

Ou Ov 
o--; + - o 

u - - l + A O  

O0 O0 020 

(13.76) 

(13.77) 

+ - oy2  (13 .78)  

and these equations have to be solved subject to the boundary conditions 

v - 0 ,  o_A0 = 0 _ 1  on y - 0 ,  x > 0  
oy (13 .79)  

0--+0 as y --+ co, x > 0  

where non-dimensional variables have been defined as 

-~ ~ ~ 1 v T - T o o  
y -  Pe�89 U =  uoo, v -  P e ~ ~  O -  (13.80) x - -  - ~  ~ 

Uoo ' To - Too 

where A is the mixed convection parameter, which is defined by Equation (11.154) 
with Ra  based on To -Too.  We note that Equations (13.76) - (13.79) involve only 
the single parameter A. Further, the physical length 1 of the plate does not appear 
in the non-dimensional variables and therefore I only enters the solution through the 
range of the validity of the solution given by expression (13.6). 

This basic conjugate mixed convection flow problem described by the boundary- 
layer Equations (13.76) - (13.79) has been solved by Pop et al. (1995a) for both 
aiding (A > 0) and opposing (A < 0) flow cases. The strategy consists of providing 
asymptotic solutions for small and large values of x, as well as numerical solutions 
of these equations over a wide range of values of A. 

13.5.1 S m a l l  v a l u e s  o f  x (<< 1) 

The transformed variables appropriate to this case are as follows: 

1 

r - e = Y 
~ 7 - - T  (13.81) 

xi 

Equations (13.76) - (13.78) then become 

1 

f '  = 1 + A x ~ h  

2h" + f h ' -  f ' h  - 2x ( f ,  Oh _ h, Of 

(13.82) 

(13.83) 
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and the boundary conditions (13.79) reduce to 

f - 0 ,  h ' = x � 8 9  on 77=0, x > 0  (13.84) 
h - + 0  as r/--~ oo, x > 0  

These boundary conditions suggest a solution, for small values of x, of the form 

OO Oo 

f - ~ fj(~?)x�89 h -  E hj(~?)x�89 (13.85) 
j=0 j=0 

where the coefficient functions are given by 

f~ -- 1, 2hg + foh~o - f~ho - 0 

fo (O)-O,  h~(O)--1, ho--+O as 77--+oo 
(13.86a) 

i - 1  

/ '  - ~h~_,, 2h" + /0h~-  (i + 1)f~h~ - ~ [(j + 1)hi/' j - ( j  + 2)yj+,h~_j_~] 
j=0 

fi(O) -- O, h~(O) -- hi_l(O), hi --+ O as r/--+oo 
(13.86b) 

with i ~> 1. It is worth mentioning that Equation (13.86a) describes the ordinary 
forced convection flow along a flat plate with a constant heat flux rate in a porous 
medium. 

The exact solutions for f0, h0, f l  and hi may be obtained in terms of the com- 
plementary error function as follows: 

f o - - r ]  
2 ~0 - -~ o~ (~) § ~ e x ,  ( - ~ )  

1 1 ~ 2  )] fl  -- A [1 + ~ r / e x p  ( -'72 7-) - (1 h-~ )erfc (~ 

~ - (_1 § ~) [ (1  § ~)er~c (~) -  ~ e x ~  (-~)] 

(13.87) 
The higher order terms can also be determined analytically but this process is very 
laborious. 

The non-dimensional wall temperature, for x << 1, is given by 

OO 

j=O 
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13.5.2 Large values of x (>> 1) 

For this case we introduce the variables 

r - ~Y(~ ,~ ,  o -  h (z,~, Y 
77- i 

X2 

so that Equations (13.76) - (13.78) become 

? ' -  1 + ~  

2h" + f h '  - 2.. ~'~ 
with the boundary conditions (13.79) becoming 

f - O ,  x - � 8 9  on ~ - 0 ,  

h--+0 as 7/--+oo, 
x > O  

x > O  

(13.89) 

(13.90) 

(13.91) 

(13.92) 

The solution of these equations for large values of x is sought of the form 

? -  fo (~ + ~-�89 71 (~ + ~ - ~ h  (~ + . .  
- ho (~ + x - ~  (~ + z - ~ ~  (~ +. . .  

(13.93) 

where the coefficient functions are determined from the following three sets of equa- 
tions 

f ;  - 1 + ~h0, 2hg + f0h~ - 0 
(13.94~) 

fo (0 ) - -0 ,  ho(0) = 1 ,  ho--+0 as r/--+cxD 

f { --  Ah l , 2h'1 ~ + f oh' 1 - 0  
(13.945) 

f l  (0) -- 0, h~ (0) -- h0(0), hi --~ 0 as r] --~ oo 

F~ - ~Hk, 2H~' + f0H~ + 2~kf~Hk + (1 -- 2~k) h~Fk - 0 
(13.94c) 

Fk (0 ) - -0 ,  Hk(O)--O, Ilk~O as ~/-~oo 

Again, it is worth noting that Equations (13.94a) are equivalent to Equa- 
tions (11.156) for the non-conjugate mixed convection over an isothermal vertical 
flat plate in a porous medium. It is easily verified that  the first eigenvalue is 3'1 = 1 
and therefore its corresponding eigensolution is given by 

F1 - A0 ( f 0 -  ~ ) ,  H 1 -  - A 0 ~  (13.95) 

for some constant A0. Hence the usefulness of asymptotic expansion (13.93) is 
confined to terms up to O (x - l ) .  

The non-dimensional wall temperature, for x >> 1, is given by 

O~)(x) - 1 - hl(O)x -1  -4-... (13.96) 
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13.5 .3  N u m e r i c a l  s o l u t i o n  

To obtain a solution of Equations (13.76) - (13.791 which is valid for all values of x, 
Pop et al. (1995a) have used the method of continuous transformation of Hunt and 
Wilks (19811. This suggests the transformation 

r  0 - ~ ( l + ~ 2 1 - ~ H ( ~ , ~ ) ,  ~ = 7 ,  ~ - x ~  (13.971 
q 

and then Equations (13.771 and (13.781 transform to 

2H" + FH ! 

1 

F '  -- 1 + ~ (1 + ~2)-~ H (13.981 

I + ~ 2 F ' H  - ~ (F 'OH H 'OF) - -  0~ --~ (13.99/ 

and the boundary conditions (13.791 reduce to 

1 

F - 0 ,  H ' - ~ H - ( I + ~ 2 ) ~  on ~ = 0 ,  ~ > 0  (13.100) 
H ~ 0  as ~ --+ c~, ~ > 0  

It should be noted that Equations (13.981 - (13.1001 reduce to Equations (13.821 - 
(13.84) for small values of x and to Equations (13.90) - (13.92) for large values of 
x. The non-dimensional wall temperature is now given by 

1 

Ow(~)- ~ (1 + ~2)-~ H(~, 0) (13.101) 

Equations (13.98) - (13.100) have been solved numerically for different values 
of ~ and ), (both positive and negative). It was found that  for )~ >/ -1 ,  and for 
sufficiently large values of ~, then Ow(~) --~ 1. As expected, the larger the value of 
)~, the longer it is before the asymptotic value of Ow(~) is attained. The calculations 
also showed that, in contrast to the viscous fluid case, see Pop et al. (1996b), at 
large distances from the leading edge the flow does not separate from the plate 
when ~/> -1 .  This situation is also in contrast to all other non-conjugate problems 
in porous media, where there is an opposing flow condition, see Ingham et al. (19851 
and Rees and Riley (19851. However, for ~ < - 1  the fluid always separates from the 
plate. This can be seen from Figure 13.11, where the variation of 0w(~) with ~, as 
given by Equation (13.1011 (shown by solid lines) is presented for various values of 
), < -1 .  Also included in this figure (by broken lines) is expression (13.881 for small 
values of ~. The end points of the curves correspond to the values of ~ - ~s()~), say, 
where the numerical solution terminates and therefore the boundary-layer separates 
from the plate. It is seen from these figures that the small ~ solution is a good 
approximation to the numerical solution but it cannot exactly predict the value of 
~s(),). Figures 13.11(c,d) suggest that  ~s(),) --+ 0 as )~ -+ -c~ .  
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Figure 13.11: Variation of the wall temperature distribution, Ow(~), with ~ for 
(a) A -- -1.1 and (b-d) different ranges of values of A. The numerical solution 
(13.101) is indicated by the solid line. In (a) various terms in the small ~ expansion 
(13.88) are indicated by the broken lines. In (b-d) the 6-term small ~ expansion 
(13.88) is indicated by the broken lines. 

Further ,  we can see from Equat ion (13.77) tha t  

1 
u - 0  on 0 -  A (13.102) 

and the numerical  solution of Equat ions (13.98) - (13.100) showed that  this condition 
holds for 

1 
0~ (~s) - iX (13.103) 

Table 13.2 gives the values of .~s(A) and the corresponding values of O~,(~s) given by 
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EZ3 

T a b l e  13.2:  Values of ~s(A) and Ow (~s) for values of A < - 1 .  

N u m e r i c a l  (13.101) 

S U 
~ 

Series (13.88) 

3.768 

1.818 

1.213 

0.930 

0.762 

0.423 

0.232 

0.123 
5.74 x 10 -2  

2.77 x 10 -2  

1.18 x 10 -2  

1.08 x 10 -2 

5.39 x 10 - 3  

1.07 x 10 - 3  

5.46 x 10 -4  

0.915 

0.838 

0.771 

0.715 

0.666 

0.499 

0.332 

0.199 
9.98 x 10 -2  

4.98 x 10 -2  

3.31 x 10 -2  

1.97 x 10 -2  

0.97 x 10 -3 

1.98 x 10 -3 

9.95 x 10 -4 

m 

1.670 

1.195 

0.930 

0.780 

0.450 

0.255 

0.136 

6.35 x 10 -2 

3.10 x 10 -2 

2.05 x I0 -2 

1.20 x 10 -2 

6.10 x 10 -3 

1.19 x 10 -3 

5.90 x 10 -4 

3.875 

1.300 

0.960 

0.805 

0.475 

0.270 

0.147 
7.00 x l 0  -2  

3.30 x 10 -2  

2.20 x 10 -2  

1.35 x 10 -2  

6.60 x 10 -3  

1.30 x 10 -3  

6.50 x l O  -4  

0.805 

0.738 

0.681 

0.633 

0.590 

0.443 

0.295 

0.177 
8.86 x 10 -2  

4.43 • 10 -2  

2.95 x 10 -2  

1.77 x 10 -2  

8.86 x 10 -3  

1.77 x 10 -3  

8.86 xlO -4 

0.909 

0.833 

0.769 

0.714 

0.666 

0.500 

0.333 

0.200 

0.100 
5.00  x 10 -2  

3.33 x l 0  -2  

2.00 x l 0  -2  

1.00 x 10 -3  

2.00 x l 0  - a  

1.00 x 10 -3  

Equation (13.101). The values o f - ~  are also included in this table in order to check 
the validity of expression (13.103) as to where the flow separates. It is interesting 
to conclude from this table that  the (critical) function t(),), defined as 

t(A) = A ~s(X) (13.104) 

is a decreasing function of A and it appears as though there is a finite limit for t(A) 
as A approaches negative infinity, say t~ The values of t~ are presented in 
Table 13.2 where, for example, for ), - -100,  -500  and -1000, we have t~ - 
-0.539, -0 .537 and -0.536. Therefore, it appears that  -0.536 is very close to 
the correct asymptotic value of t~ as A --+ - co .  This leads us to introduce the 
approximate function 

ti(A) = A ~)(A)  for i ~> 1 (13.105) 

as A -+ - c~ ,  where ~!J) denotes the position of the flow separation given by Equa- 
tion (13.88) for small values of x when using j terms in order to satisfy the condition 

(13.105). The values of~J)(A) for j - 1, 3 and 6 terms are also included in Table 13.2. 
Again, it can be observed that  the values of tj(A) for A -+ - c ~  are given by 

t ~  t ~  t ~  (13.106) 

These values were checked by Pop et al. (1995a) by solving a system of ordinary 
differential equations obtained from Equations (13.86) for small values of ~ when A 
was scaled out by use of the transformation 

fi -- AiFi(~7), h i -  )~iHi(rl) (13.107) 
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o Thus the following values for tj  were obtained 

t ~  t ~  t ~  

t ~ - - 0 . 6 2 6 ,  t ~  t~ - -0.594 (13.108) 

as A -+ -oc ,  and these values are in very good agreement with those given in ex- 
pression (13.106). It is clear from expression (13.108) that the larger the number of 
terms that  are used in the series (13.88), the better does the limit t~ approach the 

exact value t o ~ -0.536 obtained from the numerical solution of Equations (13.98) 
- (13.100). This convergence can be also observed in Figure 13.12, where ~s(A) 
is shown as a function of -A  as obtained from the numerical solutions of Equa- 
tions (13.98) - (13.100) and shown by the broken line. Also shown (by solid lines) 

are ~1), ~3) and ~6), as given in Table 13.2. It is seen that the curves are virtually 
parallel when -A  is large and the full numerical solution is better approached by 
the inclusion of more terms in the series (13.88), which is valid for small values of 
~. Furthermore, we can see that  these curves are almost straight lines for large val- 
ues o f - A ,  illustrating the convergence of the functions t(A), tl(A), t3(A) and t6(A). 
Therefore, it may be postulated that the small x solution of this problem for A < 0 
is a good approximation almost up to the point of separation of the boundary-layer 
from the plate. 

1 

0 o 

hO 
0 

-1 

-2 

-3 

- 4  

logl0(-A) 

Figure 13.12" Variation of loglo ~s(A) as a function of loglo(-A ). The numerical 
solution is indicated by the broken line and the I-, 3- and 6-term expansions from 
series (13.88) (in decreasing order) are indicated by the solid lines. 



Chapter 14 

Free and m i x  ed convec t ion  from 
cyl inders  and spheres  in porous  
med ia  

14.1 Introduct ion  

Heat transfer by free, forced and mixed convection flow from cylinders and spheres 
embedded in fluid-saturated porous media have received much attention because 
of their fundamental nature as well as many engineering applications. Cylindrical 
and spherical geometries arise in power plant stream lines, industrial and agricul- 
tural water distribution lines, buried electrical cables, oil and gas distribution lines, 
storage of nuclear waste, solar collectors, etc. The early studies which have con- 
sidered the problem of immersed cylinders assumed the surrounding medium to be 
purely conductive, see Eckert and Drake (1972). However, the assumption that a 
pure conduction model can be used to calculate the heat losses from an immersed 
cylinder (or pipe) may not be valid for high permeability saturated soil. If the sur- 
rounding medium is permeable to fluid motion, the temperature difference between 
the cylinder (or pipe) and the medium gives rise to a free convection flow. As a 
result, the total heat transfer from the cylinder (or pipe) consists of both conduc- 
tion as well as convection. Generally, the contribution of free convection to the heat 
loss from immersed cylinders is as large, and in some cases larger than, the con- 
tribution of conduction. Fernandez and Schrock (1982), Farouk and Shayer (1988) 
and Facas (1995) were the first to have studied numerically the steady free convec- 
tion from a circular cylinder embedded in a semi-infinite, saturated and permeable 
porous medium, the surface of which is assumed to be horizontal and permeable 
to fluid flow. Cheng (1984) considered the case of an isothermal cylinder which is 
embedded in an infinite fluid-saturated porous medium. Approximate closed-form 
solutions were obtained for the local as well as the average Nusselt number by apply- 
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ing boundary-layer approximation. The results obtained by Facas (1995) in terms 
of the local Nusselt number are in excellent agreement with the boundary-layer so- 
lution obtained by Cheng (1984) and also with the experimental results presented 
in terms of the average Nusselt number by Fernandez and Schrock (1982). 

In the present chapter, we review the state-of-the-art of the steady free and 
mixed convection flow from cylinders (horizontal and vertical) and spheres placed 
in an infinite fluid-saturated porous medium. Although geometrically simple, these 
configurations play an important role in practice but, more importantly, they are 
instructional tools to deepen our understanding of the transport mechanisms which 
could be generalised to complex geometries. The problems description will tacitly 
show the possible topics which need more attention and focus on the future research 
aspects that could be pursued, such as, for example, problems related with flow 
instabilities, transition to turbulence and condensation phenomena in porous me- 
dia. Of particular interest in this chapter is the sphere which seems, at least in 
certain aspects, to be somewhat lagging behind its cylindrical counterpart as far as 
theoretical development is concerned. 

14.2 Free convec t ion  from a horizontal  circular cyl inder  

There has been an increasing interest over the last few years on convective flow 
on heated bodies embedded in a porous medium. In many papers it has been 
assumed that the Rayleigh number is very large and therefore the boundary-layer 
approximations have been employed. The first similarity solutions for free convection 
boundary-layer from a horizontal circular cylinder immersed in a porous medium 
has been obtained by Merkin (1979), while Cheng (1982) considered the case of 
mixed convection flow. In contrast, several papers have investigated the situation 
when the Rayleigh number is small, e.g. Yamamoto (1974) and Sano and Okihara 
(1994) have obtained asymptotic solutions for the free convection about a heated 
sphere in a porous medium when the Rayleigh number is very small. However, 
their solutions have the defect that the pressure does not remain bounded at large 
distances from the sphere. Hardee (1976) used an integral method to study free 
convection boundary-layer flow about an infinitely horizontal isothermal cylinder 
placed in a porous medium of infinite extent and predicted that the local Nusselt 
number varied as 

1 

N u  = 0.465 R a :  (14.1) 

for Ra )~ 1, where Ra is the Rayleigh number based on the diameter of the cylinder. 
However, using the boundary-layer theory, Merkin (1979) has obtained the result 

1 

N u  = 0.565 Ra~ (14.2) 

In order to test these theories, Fand et al. (1987) performed an experimental inves- 
tigation on the heat transfer by free convection from a horizontal circular cylinder 
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in a porous medium which consists of randomly packed glass spheres saturated by 
either water or silicone. They showed that the overall range of the Rayleigh number 
can be divided into two subregions, called 'low' and 'high', in each of which the Nus- 
selt number behaves quite differently. It was demonstrated that the low-Ra region 
corresponds to Darcy flow but in the high-Ra region the flow is non-Darcy and the 
flow model of Forchheimer (1901) is more appropriate. In the limiting case of very 
high Rayleigh number, in which the boundary-layer equations may be assumed to 
hold, Ingham (1986a) modified the theory of Merkin (1979) in order to deal with 
the non-Darcian effects and found 

1 

N u  ..~ Ra~ (14.3) g *  c~m 

where D is the diameter of the cylinder and K* is the inertial or Forchheimer coeffi- 
cient defined in Equation (II.9). This shows that the Nusselt number is proportional 
to the Rayleigh number raised to the power �88 for non-Darcy flow whereas it is to 
the 1 power for Darcy flow. 

In a very thorough numerical and analytical paper, Ingham and Pop (1987) have 
investigated the steady free convection about a heated horizontal circular cylinder 
of radius a embedded in a fluid-saturated porous medium. The temperature of the 
cylinder is Tw and that of the ambient medium is Too, where Tw > Too, see Fig- 
ure 14.1. The governing Equations (II.1), (II.2) and (II.5), expressed in cylindrical 
polar coordinates (r, O), can be written in non-dimensional form, see Ingham and 
Pop (1987), as follows: 

1 0~b 1 02r 0T OTcosO 02r ~- - -t - - -  sin O -~ (14.4) 
Or - - - ~ -  r -~r  r 2 002 Or O0 r 

:: iiiiiiiii!:i !ii!iiii!iii :: 

':i?i??i??l?!ii?i!?:: 

Figure 14.1: Physical model and coordinate system. 
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02T 107' 1 0 2 T  Ra ( Or OT Or OT ) 
0 r + - = ( 1 4 . 5 )  r-~r r 2 002 r Or O0 O0 Or 

which have to be solved subject to the boundary  and symmet ry  (at 0 - ~r) conditions 

r  T - 1  on r - l ,  0 < ~ 0 ~  

u - ~ 0 ,  v - ~ 0 ,  T - - + 0  as r - + c ~ ,  0 ~ 0 ~  

r  0 T _ 0  on 0 - - 0 ,  r ,  l ~ < r < c r  
O0 - -  

(14.6) 

0 ~  1 0 r  
where the s t ream function r is defined by u -  -~- and v - r 00" 

In order to perform calculations in a finite domain,  ra ther  than  an infinite one 
where the location of the outer boundary  condition needs careful adjus tment ,  the 
t ransformat ion 

1 
X - - (14.7) 

r 

has been employed. However, this t ransformat ion leads to the s t ream function 
becoming infinite at X - 0 since al though the fluid velocity components  u and v 
might tend to zero as r --+ cc (or X -+ 0), this does not imply tha t  the s t ream 
function likewise tends to zero. On the other hand,  on applying the outer boundary  
conditions (14.6) at a finite distance from the cylinder one of the major  difficulties 
in obtaining an accurate solution is the development of the plume in which the fluid 
near the cylinder moves towards the upper  surface of the cylinder (0 - 180 ~ and 
is expelled in a radial jet, see Cheng (1985). In the plume region, where Ra is very 
large, Wooding (1963) has produced the solution of the form 

-- Olm ( Ra~ ) ~ Bo t anh  (1B0 ~) 

- Too - Ao (Ra~)-~ ~B2o sech 2 (1B0~) 
~.- 1 

x 

1 

where A0 = q~ and B0 - (9)~ 5 and ~ are the coordinates along and normal  to 
pCp Otm 

the plume, respectively, and R a ~ -  gK~qsx ~ c p  " 
From expressions (14.8) it is concluded tha t  

1 1 
r  T ~ r ~  as r - - + c c  (14.9) 

within the plume. This leads us to write 

4 2 
r - r~f(r,O), T - r~g(r,O) (14.10a) 

o r  
4 

r  X -~F(X ,O) ,  T -  X -~G(X ,O)  (14.10b) 
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so that 
F- -~X,  T ~ X  as X - - + 0  (14.11) 

and therefore the infinity boundary conditions are easily implemented. 
Substitution of the transformations (14.7) and (14.10) into Equations (14.4) and 

(14.5) gives 

1 [ OG(OG2 5 X OF 16 cO2F - X - ~  cos - X 
3 ~ + 9 F +  00-- ~ -  0 - ~  OX 3 

1 X OG 4 02G 
3 -~-~+-9G+ 002 = 

RaX_~  [ OF ( OG 2 G ) OG ( OF 
o x  3 x - o x  

X 2 02F 
OX 2 

X 2 02G 
OX 2 

c) sioo] (14.12/ 

4 F  3x)] 
(14.13) 

and the boundary conditions (14.6) become 

F = 0, G = 1 on X = 1, 0 ~< 0 <~ 7r 
F - ~ 0 ,  G - + 0  as X -~0,  0~<0~<7r 

OG F - 0 ,  -6-0=0 on 0 - 0 , 7 r ,  0 ~ < X ~ < I  
(14.14) 

In order to deal with the solution of Equations (14.4) and (14.5) for the full range 
of Rayleigh numbers, a solution which is valid for very small values of Ra (<< 1) has 
first been obtained by Ingham and Pop (1987). Thus, using a matching procedure 
in which the temperature of the plume (where Ra >> 1) is matched with that of 
the inner thermal field (where Ra << 1) at a particular point along the 5-axis of the 
plume, it was found, after some very detailed algebra, that the local Nusselt number 
and temperature field are given by 

1 In r 
_ N u  ..~ l n R a '  T .-~ 1 -t lnRa (14.15) 

for Ra << 1. 
Next, to solve Equations (14.4) and (14.5) for large but finite values of Ra, it 

is convenient to write these equations in terms of n, e and N, which are defined 
according to 

1 n 
r = l + n, e = Ra-5  , N = - (14.16) 

s 

where n is the non-dimensional radial distance from the surface of the cylinder. 
Thus, we have 

Ou 
00 

u 

l + n  

0 
- -  + ~ [(1 + n )  v] - 0 

Ou 1 Ov ~ 1 OT 
On 1 + n 0 0  : On sin0-~ l + n 0 0 C O S 0  (14.18) 

1 0 T  1 u OT OT = e2 [02T 
i + n  - ~ + V - ~ n  -~n 2-i 1 + n O n  

1 02T] 
(1 + n) 2 0-~ J 

(14.17) 

(14.19) 
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We now look for a solution of these equations where e is small by using the method 
of matched asymptotic expansions, in which each Of the solutions for the fluid ve- 
locity, temperature and stream function are expressed as separate, but locally valid, 
expansions in terms of e developed in the two regions: the outer region far from 
the surface of the cylinder and the inner region (boundary-layer region) close to the 
cylinder. Thus, the outer and inner solutions of Equations (14.17) - (14.19) are 
assumed to take the following form: 
outer region: 

= U~ (n, O) + ~U2 (n, O) + . . .  

V : Vl (n, 0) + eV2 (n, 0) + . . .  
T - T l ( n , O ) +  eT2(n,O) + . . .  (14.20) 

r = o) + o) + . . .  

inner  region: 
u = u l ( N , O )  + eu2(N,O) + . . .  
v - ev l (N,O)  + e2vz(N,O) + . . .  

T - t l ( N ,  O) + et2(U, O) + . . .  (14.21) 

r - er 0) + e2r 0) + . . .  

Substituting the expansions (14.20) and (14.21) into Equations (14.17) - (14.19) and 
equating terms of the same powers of e, it is easy to obtain two sets of equations 
for the outer and inner variables with the corresponding boundary and matching 
conditions. Since the fluid velocity components and temperature are zero at infinity 
then this gives rise to 

U1 ~ 0, V1 ~ 0, T1 ~ 0, T2 -- 0 (14.22) 

On using the equations for the first-order inner approximation, O (e0), we obtain 
that 

r  fl(r/), t l - - t l ( ~ ) ,  u - - N c o s ( 0 )  (14.23) 

where f~ - tl is defined by the equation 

with the boundary conditions 

f l l l  II 1 -{- f l f l  -- 0 (14.24a)  

- 0 I '  , 1 ( 0 ) - 1 ,  f l - -+0  as 7 7 - + ~  (14.24b) 

Ackroyd (1967) first solved this problem and found that 

f;'(0) = -0.62756, fl(c~) - 1.14277 (14.25) 

which gives the first-order approximation for the local Nusselt number, N u l ,  as 

(20-) N u l  = Ra5  [-f~'(0)] cos -0 .62756 R a }  cos (14.26) 
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Further, since 7"2 - 0, it can be easily shown, see Ingham and Pop (1987), that 
the second-order outer stream function ~2 satisfies the Laplace equation 

02 ~I/2 I 0~2 1 02 ~II 2 
On 2 t l + n On ~ ( l + n )  2 002 = 0  (14.27) 

which has to be solved subject to the corresponding boundary and matching condi- 
tions with the inner solution, which have to be obtained with great care due to the 
development of the plume at the upper surface of the cylinder (0 - 180 ~ Since ~2 
tends to infinity as n -~ co, it is convenient to make again the transformation 

1 ~2 - X - } H  (X,O) (14.28) X -  1 +----n' 

Equation (14.27) then becomes 

X2 02H 5 X OH 1_: 02H 
OX 2 3 -OX + - - H  + 002 = 0  (14.29a) 

and the boundary conditions (14.6) reduce to 

2f l (cc)  sin(20-) on X - l ,  O~<O~<r 
H -  0 on X - 0 ,  0 ~ 0 < ~ l r  

0 on 0 = 0 ,  0 ~ < X ~ < I  
1 

2.24376 X (1+  0.0569 X) 5 on 0=7r ,  0 ~ X ~ < I  

(14.29b) 

Similarly, it can be shown that the second-order (inner) boundary-layer equations 
are given by 

02~/)2 _ 2 s i n ( O ) O t 2  (20_) ,  1 c o s 0 t a n ( ~ ) , ,  
0772 -- ~ - 2 tan fl  - ~rl cos2 (20_) fl  (14.30) 

02t2 ~_ f l Ot2 ( ~ )  , Ot2 _ ( 0r fI' 
0--- 7 - -ff~ 2 tan fl  ~ - - 1  + ~fl O0 cos (~) (14.31) 

which have to be solved subject to the boundary and matching conditions 

r - O, t2 - 0 
0r _+ 1 0~2 (0, 0) 
o ,  - a -  , 

on r ] - 0 ,  all 0 

t2 -+ 0 as ~ -+ co, all 0 (14.32) 

where -~n (0, 0) has been obtained by solving numerically Equations (14.29). 
In order to start the numerical integration of Equations (14.30) - (14.32), the 

solution at 0 = 0 (lower surface of the cylinder) has to be known. Thus we write 

= eg  + o t2 = h (v) + 0 (O) (14.33) 
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which on substitution into Equations (14.30) and (14.31) gives 

,__  h I i 1 f ,  
g - f l - - - 4 r l  1 

h" + fl  h r - ( -1  + rill - g) f~ 

(14.34a) 

(14.34b) 

which have to be solved numerically subject to the boundary conditions as deter- 
mined from the boundary conditions (14.32). Starting from the solution given by 
Equations (14.34), a standard marching procedure was employed to solve Equa- 
tions (14.30) -(14.32). 

Having determined the solutions for small and large values of Ra, Equa- 
tions (14.12) - (14.14) were further solved numerically for finite values of Ra using 
a very efficient finite-difference method, which is described in detail by Ingham and 
Pop (1987) and therefore we will not repeat this method here. Numerical calcula- 
tions were performed for Ra = 10 -3, 10 -1, 1, 10, 20, 40, 70, 100, 150, 200, 300 and 
400. 

The variation of the local Nusselt number 

OT 2 / O G ~  
g u -  o r ( r -  l ' O ) - - 5  + ~ x=l (14.35) 

as a function of 0 is shown in Figure 14.2 for various values of Ra. Also shown, by 
the broken line, is the boundary-layer solution (Ra >> 1) as predicted by Merkin 
(1979), namely 

N u - O . 6 2 7 5 6 c o s ( ~ ) R a � 8 9  (14.36) 

0.75 

Nu 
Ra�89 

0.50 

0.25 

0.00 

Ra = 10, 40, 

, i 

0 4 9"o 155 is0 0(o) 

Figure 14.2: Variation of ~ with 0. 
R a T  

indicated by the broken line. 
The boundary-layer solution (14.36) is 
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Figure 14.2 shows that as the value of Ra increases, the general trend is quite 
consistent with the limiting boundary-layer solution (14.36). Further, the approach 
of N u  to the boundary-layer solution is much clearer for smaller values of 0, as we 
would have expected since the boundary-layer emanates from 0 = 0 ~ 

The behaviour of the local Nusselt number near 0 --- 180 ~ looks more complex 
and therefore in Figure 14.3 we have plotted the difference between the local Nusselt 
number given by expression (14.35), as obtained from the numerical solution, and 
that predicted by the boundary-layer solution, i.e. 

N u  - --~ + 
X = l  

-0 .62756cos(20-)  
1 

Ra~ (14.37) 

Also shown in this figure (by broken lines) is the second-order boundary-layer so- 
lution obtained from Equations (14.30) - (14.32). It is clearly seen that as Ra 
increases the second-order boundary-layer solution is being approached everywhere, 
except near 0 = 180 ~ This discrepancy near 0 = 180 ~ is not surprising as the first- 
order (inner) boundary-layer solution and the plume solution were only patched in 
this vicinity. 

1.5 

Nu 

1.0 

0.5 

0.0 

i I 
I 

I 

,& 

Ra = 10, 20, 40, 
150, 2O0, 4OO 

o . . . . .  9"o e ( o )  

Figure 14.3" Variation o] the modified local Nusselt number, Nu, given by Equa- 
tion (14.37), with 0. The limiting solution ]or Ra >> 1, as predicted by the second- 
order boundary-layer solution, is indicated by the broken line. 

Table 14.1 shows the variation of the average Nusselt number, Nu,  which is 
defined by the equation 

1 ~02~ ( ~ _ ~ )  dO-- 2 1~o~ (O~X) 
N u = 2 7r - 3 + -lr dO 

r----1 X--1 
(14.38) 
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Table 14.1- Variation of the average Nusselt number, Nu,  with the Rayleigh num- 
ber. 

i . . , 

Boundary-Layer Solution 
Ra 0.3995171 na �89 

. . . . . .  

1 0.3995 
10 0.2634 
20 1.7867 
40 2.5268 
70 3.3426 
100 3.9952 
150 4.8931 
200 5.6500 
300 6.9198 
400 7.9903 

0.3995171 Ra-} 
+ 0.78 - 1.9 Ra-�89 

" -0.7125 
1.4426 
2.1418 
3.0064 
3.8955 
4.5852 
5.5179 
6.2957 
7.5901 
8.6753 

Numerical Solution 
Ingham and Pop (!987) 

. . . .  0.491 " 
1.578 
2.183 
3.008 
3.888 
4.582 
5.528 
6.322 
7.603 
8.691 

as obtained from the numerical solution of Equations (14.12) - ( 1 4 . 1 4 ) .  

boundary-layer solution (14.23) gives 
The 

7r t t (0)cos ~ dO-O.3995171Ra~-  (14.39) 

and this is also included in this table. At first sight it might be thought  that  
the discrepancy between the boundary-layer solution (14.39) and the numerically 
obtained solution is large. However, if we make the assumption that  the boundary- 
layer results can be extended in the form 

1 1 
N u  - 0.3995171Ra~- + ao + boRa-~ + . . .  (14.40) 

then taking the empirical constants a0 - 0.78 and b0 - -1 .9 ,  the results for N u ,  

see Table 14.1, give excellent agreement with the numerical results. 
Figure 14.4 shows the distribution of N u  with Ra. It can be seen that  the 

boundary-layer solution given by expression (14.39) gives a reasonable approxima- 
tion, even for Ra  as small as 10 -1. Also shown in this figure is the solution which 
was obtained for very small values of Ra  as given by Equations (14.15), which is 

valid only for - I n  (Ra) ~ >> 1. The experimental  results of Fand et al. (1986) for a 

cylinder embedded in a porous medium consisting of randomly packed glass spheres 
of radii 2, 3 and 4 mm in either water or silicone oil at 20~ are also included in 
this figure. It is seen that  the experimental  results are in reasonable agreement with 
the numerical  results when Ra  <~ 10, but  the discrepancy increases as R a  increases 
above about  10. 

Finally, the streamline and isotherm plots in the vicinity of the cylinder are shown 
in Figures 14.5 and 14.6 for Ra  = 40 and 200 and for Ra--+ c~ as obtained from 
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Nu 
3 

Q§ 

: / /  
! 
. : / /  

/ 
/ / /  

, ,  

;_3=-'~i0'_2 i0"_i 100 101 102 
Ra 

Figure 14.4: Variation of the average Nusselt number, Nu,  with Ra. The numer- 
ical solution is indicated by the solid line, the boundary-layer solution (14.39) is 
indicated by the broken line and the small Ra solution (14.15) is indicated by the 
dotted line. The symbols., A and + indicate experimental results obtained using 
spheres of diameter 2, 3 and 4 ram, respectively. 

the numerical solution of the full Equations (14.4) - (14.6) and the boundary-layer 
1 

approximation (14.23). The streamlines are equally spaced at intervals of 0.5 Ra~, 

while the isotherm lines are equally spaced at intervals of 0.15. Figure 14.5(c) 
suggests that there is no evidence of a recirculating zone being developed near the 
surface of the cylinder at 0 - 180 ~ Further, Figure 14.6 shows that as Ra increases, 
the temperature tends to zero everywhere except in the vicinity of the cylinder and 
in the plume, and the width of the plume decreases as predicted. 
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Figure 14.5: Streamlines in the vicinity of the cylinder for (a) Ra  - 40, (b) 
R a -  200 and (c) Ra  -+ oc (boundary-layer solution). 



F R E E  A N D  M I X E D  C O N V E C T I O N  F R O M  C Y L I N D E R S  A N D  S P H E R E S  503 

(a) 
2 

- 1  0 

(b) 

. . . . . .  i 

1 2 - 1  0 

(c) 
2 

, l |  ~ , , 

- 1  0 1 �89 " 

1 2 

Figure  14.6: Isotherms in the vicinity of the cylinder for (a) Ra = 10, (b) Ra = 40 
and (c) Ra = 200. 
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1 4 . 3  F r e e  c o n v e c t i o n  b o u n d a r y - l a y e r  f l o w  o v e r  a v e r t i c a l  

c y l i n d e r  

The free convection boundary-layer flow about an impermeable vertical cylin- 
der which is embedded in a porous medium whose surface temperature varies as 
T w ( x )  - x m, where x is the distance from the leading edge of the cylinder, was first 
studied by Minkowycz and Cheng (1976) and it is, perhaps, the simplest non similar 
axisymmetric flow problem. They showed that it is possible to obtain a similarity 
solution when the temperature of the cylinder varies linearly with x (m - 1) and 
obtained solutions to the governing boundary-layer equations for other temperature 
variations (m ~ 1) by employing both a local similarity and a local non-similarity 
method. Their temperature profiles show that the boundary-layer thickness in- 
creases dramatically as x increases. On the other hand, Merkin (1986) has consid- 
ered in more detail the constant temperature case, rn - 0, for this problem. He 
obtained a numerical solution of the governing parabolic boundary-layer equations 
using a finite-difference method and an asymptotic analysis for large values of x. It 
was found that the boundary-layer evolves into a two-layer structure at large dis- 
tances from the leading edge, appropriate, for example, to a needle-shaped intrusion. 
Other papers which study variations of the present problem include that of Yiicel 
(1984, 1990), Zumari  et al. (1985) and Hossain and Nakayama (1993). However, 
these papers contain only numerical results. 

Bassom and Rees (1996) extended the results obtained by Merkin (1986) by 
considering a range of values of the exponent, m. The governing equations were 
solved numerically using the Keller box method in order to assess the accuracy 
of the results reported by Minkowycz and Cheng (1976) and to compare with the 
asymptotic solutions. We shall present here some results as obtained by Bassom 
and Rees (1996). 

The equations governing the boundary-layer on an impermeable vertical cylinder 
of radius a, which is embedded in a saturated porous medium are, see Minkowycz 
and Cheng (1976), 

0 0 ( ~ ) +  ( ~ )  - 0 (14.41) 

- g K f l  ( T  - Too) (14.42) 
y 

g -z + - + (14.43) 

which have to be solved subject to the boundary conditions 

~ - 0 ,  T - T o o + A T ~  m on g - a  (14.44) 
T -+ Too as ~ --~ c~ 

To obtain a solution starting at the leading edge, B a s s o m  and Rees (1996) in- 
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troduced the following variables 

1 ~2 a 2,~_1 

T* r -- �89 amRa ~f (~, rl), T - Too = 4--~ 0 (~, rl) 
(14.45) 

where the Rayleigh number is now defined as 

Ra - gKflT* a (14.46) 
4mare b, 

and T* = AT(a Ra) TM. Also, the stream function r is defined by Equations (7.92). 
of Using expressions (14.45), Equation (14.42) then reduces to 0 -  ~-~ and the Equa- 

tion (14.43) becomes 

i)3 f ( 1 )  02 f l (Of O2 f 02 f Of ) (14.47a ) 
(1 + ~,~) ~ + ( +  ~f  o,72 = ~ o,7 o,lo~ o,72 o~ 

while the boundary conditions (14.44) become 

Of ~2m Of ~ 0 as r/--+ c~ (14.47b) f ( r  0, ~--~ (r 0) -- ' 0 - ~ -  

Equations (14.47) show that, for m > 0, the solution is zero at the leading edge 
of the cylinder and thus it is necessary to redefine the variables ~, r /and f in order 
to avoid this difficulty. These variables were defined by Bassom and Rees (1996) as 
follows: 

X -- ~ l - m ,  y _ r l ~ m  f _ X1--  ~ F (Z, Y) (14.48) 

with Equations (14.47) becoming 

(1 + XY) 03F ( 
OY3 + x + 

F) 02F 
OY 2 

1 (OF 02F 
-~ (1-  m) X og OXOy 

OF O2F) 1 [ (0F) 2 02F] 
ox or2 + -~'~ 2 -~  - Fog2 

(14.49a) 

OF OF 
F ( X , 0 ) - 0 ,  ~ ( X , 0 ) - I ,  0--Y -~0  as Y ~ c ~  (14.49b) 

To explain the structure of the boundary-layer for large values of ~ there are two 
cases to be considered, namely m > 1 and m < 1, which have been studied in detail 
by Bassom and Rees (1996) and we now present some of their results. 
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14 .3 .1  m ~ 1 

In this case the solution of Equation (14.47a) is sought in the form 

f = ~m (Foo (~) + . . . ) ,  ~ = r/~ TM (14.50) 

where Foo is given by Equation (11.23) with f = Foo (~), i.e. 

Fo m lZ~ TM m F g : -  
o + - - F o o F g ~ o -  0 (14.51) 

F00(0) = 0 ,  Fg0(0 ) = 1, Fg0 -+0  as ~ ~ c ~  

A numerical solution of Equation (14.51) is given in Figure 14.7 for several values 
of m > 1. For very large values of m (>> 1) it is possible to identify the asymptotic 
structure of the boundary-layer which is taken on by F00 (~). This is achieved by 
defining the new variables 

Foo - m-~Poo ( f  ) + . . . ,  ~ - m~r (14.52) 

with Equations (14.51) becoming, at the leading order, 

/~0 m 1 ~ ~!1 ~r 2 
o + ~oo~'oo - Foo - 0  (14.53) 

A A ~ 

/~b0(0)-0, Fg0(0 ) - 1, Fg0-+0 as ~-+oc 

which are the same as Equations (51) and (52) in the paper by Ingham and Brown 
(1986). It is concluded from Equation (14.53) and Figure 14.7 that, whenever rn > 1, 
the flow structure for ~ :>) 1 is relatively simple, with the flow being confined to a 
single region of asymptotic thickness O (~-m) near the cylinder surface. However, 
this simplicity does not exist for m < 1, where we can expect the flow field to take 
a two-layered form. 

1.0- 

Foo(~-~ 8 

0.6- 

0.4 

0.2 

0.0 

m =  1.01 

2, 3, 4, 5 

1 2 3 4 5 . 6  7 8 

Figure 14.7: Profiles of Foo(~) as a function of ~ for some values of rn > 1. 
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14.3.2 m < 1 

Bassom and Rees (1996) now defined the large parameter G according to 

G - ~2(1-m) In G (14.54) 

and sought a solution of Equations (14.47) in the outer boundary-layer region of 
depth O (G-I~) of the form 

f =  ~[F0 (~) + ('n G)- 1F1 (~-) + . . . ]  (14,55) 

where ~ -  -~, and F0 and F1 satisfy ordinary differential equations given in the 
paper by the above named authors. 

On the other hand, in the inner boundary-layer region of depth O (~-1), the 
solution of Equations (14.47) is suggested to have the form 

S -- ~2m-1 IS0 (z) + (ln C ) - '  Sl (z) + (ln G) -2 S2 (z) + . . . ]  (14.56) 

where z = ~ .  Substitution of the expansion (14.56) into Equation (14.47a), the 
imposition of the boundary conditions (14.47b) and suitably matching with the 
outer solutions F0 and F1, it is shown that f0, fl and f2 are given by the following 
expressions: 

So = ~, S~ = z - (1 + z) 1~ (1 + z ) ,  /2 = (1 - a2) S~ (z) (14.57) 

where a 2  - -  a 2  (m) is a constant which has to be determined numerically as part of 

the solution of the equations corresponding to the functions F0 (~-) and/~1 (~-). 
We can now calculate the wall heat flux, which is given by 

02 f ~2 02 f 
o,~2 (~, o) - ~ (~. o) - 

~2 ( a 2 - 1  ) 
lnG - 1 +  lnG + " "  (14.58) 

for ~ >> 1 and m < 1. If we recall the definition (14.54) for large values of the 
parameter G, and on using transformations (14.48), we obtain 

~  0) - x (_ 
OY 2 In G \ 

a2-- 1 ) 
1+  luG + " "  (14.59) 

It is worth pointing out now that, when m :> 1, the asymptotic structure of 
the solution of Equations (14.47) for ~ <~ 1 is very similar to that for the large 
behaviour when m < 1. However, for m > 1 and ~ < 1, the boundary-layer again 
divided into two distinct sublayers, the inner boundary-layer region which is of 
thickness O (~-a) and the outer boundary-layer region which is of extent O (~-IG). 
In the inner boundary-layer region it can be shown that F - O (~m-1) and thus is 
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small. It follows that the details of the analysis are completely analogous to those 
presented above for the case m < 1. However, the most important point is that as 

-+ 0 the thickness of the boundary-layer appears to grow without limit. 
Equations (14.49) were solved numerically by Bassom and Rees (1996) for 0 ~< 

m < 1 and for some values of X. Figure 14.8 presents the development of the 
reduced fluid velocity profiles 0g OV as a function of X for m - 0 and 0.99. It is 
seen that the boundary-layer thickness grows very quickly as X increases. Further, 
the shape of the profiles at Y = 0, which is proportional to the local rate of heat 
transfer, becomes increasingly negative as X increases. These qualitative features 
of the developing profiles are also true for other values of m whenever m < 1. Thus, 
the numerical results confirm the asymptotic prediction of a double boundary-layer 
structure. 

(a) (b) 

v 

1.0 1.0- 

0.8 

0.6 

0.4 

0.2 

0.0 

0.8- 

0.6 

0.4 

0.2 

0.0 
0 

X = 2 0  

0 4 8 12 16 2 4 6 
Y Y 

Figure  14.8: Reduced fluid velocity profiles, OF ( X , Y )  for (a) m - 0 and (b) -6-V 
m - 0.99. 

Table 14.2: 

values of m.  

Comparison of the wall heat flux, 02F (X, 0) at X - 20 for some 

0.0 -0.26168 
0.25 0.64242 
0.5 --0.92475 
0.75 1.14772 
0.99 -1.32463 

Asymptotic 
Solution (14.59) 

Numerical Solution 
of Equations (14.49) % Difference 

2.8614 
2.9780 
3.0644 

-3.1327 
-3.1869 

2.8249 
-3.0889 

3.2939 
3.4644 

-3.6065 
. . . . . . . . . . . . . . . . . . . . .  

1.2 
3.7 
7.4 

10.6 
13.2 
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O 2F (X, 0) for various values Figure 14.9 shows the variation of the wall heat flux, ~ 
of m. The increasing slopes of the temperature profiles depicted in Figure 14.8 are 
reflected in the behaviours shown in Figure 14.9. Table 14.2 gives a comparison 
between Equation (14.59) and the numerically determined values of 02F (X, 0) at 
X = 20. It is clear from this table that  the agreement is very good for m = 0 but 
this agreement deteriorates with increasing values of m. Other details of this theory 
can be found in Bassom and Rees (1996). 

0 

o 

m -  0, 0.25, 0.5, 0.75, 0.9 

4 
0 ' i ' 8 ' 1'2 ' 1'6 ' 2'0 X 

Figure 14.9- Variation of the wall heat flux, 02F (X, 0) with X for some values of 
? T t  . 

14.4 M i x e d  convec t ion  boundary- layer  flow along a ver- 
t ical  cyl inder  

Consider the mixed convection boundary-layer flow along a vertical circular cylinder 
of radius a and constant surface temperature Tw, which is embedded in a fluid- 
saturated porous medium of uniform ambient temperature  Too, where Tw > Tc~ or 
Tw < Too. It is assumed that  a free stream of uniform velocity U~ is flowing past the 
cylinder in the vertical direction. This situation arises, for example, on a needle-like 
intrusion into an aquifer in which there was already set up some general background 
flow. The present problem is described by the boundary-layer Equations (11.150), 
(14.41) and (14.43) which have to be solved subject to the boundary conditions 

--0, T - T ~  on P = a ,  0 E x < c ~  
(14.60) 

--+ Uc~, T -+ Too as ~ -+ c~, 0 ~ x < cx~ 

On introducing the non-dimensional variables 

- a P e x ,  ~ - a r, ~ - a m a  r (x, r) , T - Too -- AT0 (x, r) (14.61) 
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we obtain 

1 0r  
= 1 + A9 (14.62) 

r Or 
1 ( 0 r  0 r  020 100 
r -~r Ox Ox -~r -- Or 2 ! (14.63) r Or 

which have to be solved subject to the boundary conditions 

r  9 - 1  on r = l ,  0 ~ < x < o c  (14.64) 
o_~ ~ r ,  0 - + 0  as r - + c r  Or 0 ~ < x < o c  

The problem governed by Equations (14.62) - (14.64) has been studied by Merkin 
and Pop (1987) and it was solved both analytically and numerically in the manner 
as described below. We determine first the solution for small values of the mixed 
convection parameter A, namely IAI << 1 (forced convection limit). In this case we 
look for a solution by expanding r and 9 in a series of the form 

r -- r (X,F)+ ~r (X, r) + . . .  
O -- O0 (~, ~)+ ~O~ (~, ~ ) + . . .  

(14.65) 

with r given by 
1 0r 
r o--r-= 1 (14.66) 

and subject to the boundary conditions (14.64). This gives 

1 3 
r = ~r (14.67) 

which is just the stream function for the outer forced convection flow of uniform 
velocity U~. On using expression (14.67), Equation (14.63) gives 

OOo 0200 1 09o 
Ox Or 2 + (14.68a) r Or 

which has to be solved subject to the boundary conditions 

0 0 ( x , 0 ) = l ,  00--+0 as r--+oc,  0 < ~ x < o c  (14.68b) 

This is mathematically the same problem as the unsteady heat conduction equations 
from the surface on an infinite circular cylinder and its solution is given by Carslaw 
and Jaeger (1947) as 

2fo~ 0 o - 1 + -  e-  
s2x I0 (sr) Yo (s) - Io (s) Yo (sr) ds 

(14.69) 
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where I0 and Y0 are the Bessel functions of the first- and second-kinds, respectively. 
Now the equations for r and 01 can be easily found and they are given in Merkin 
and Pop (1987). 

Using the results given by expression (14.69), we can determine the local Nusselt 
number Nu, which is given by 

00 
N ~  - - ~ ( ~ ,  ~ = 1) = 

1 1___1 l(x)+ 
(lrx)�89 F- ~ - ~ ~ + 0 (A) (14.70a) 

for x << 1, and 
Nu = 2 2'7 + + 0 (A) (14.70b) 

ln(4x) (ln(4x)) 2 

for x >> 1, where 7 = 0.57722 is Euler's constant. 
We further consider Equations (14.62) - (14.64) near the leading edge (x << 1) 

of the cylinder and fax downstream (x >> 1). 

14.4.1 S m a l l  va lues  o f  x (<< 1) 

Near the leading edge, the boundary-layer is initially of the same form as that on a 
vertical wall, and this suggests making the following transformation: 

r -- (2x)�89 f (~, ~), 
r 2 -  1 

0 - 0 ( ~ , r / ) ,  ~ = ( 8 x ) ~ ,  ~7- ~ (14.71) 

Equations (14.62) - (14.63) then become 

0-L = 1 + At? (14.72) 
077 

020 1 O0 ~ ( O f O0 oq f O0 ) 
0~ - -~  + ] + ~U (~ + f) ~ = 1 -r ~U 0,1 0~ 0~ 0U (14.73) 

and these have to be solved subject to the boundary conditions (14.64) which be- 
come 

f ( ~ , 0 ) = 0 ,  - ~ ( ~ , 0 ) = 1  for ~ > 0  

~ - + 1  0 - + 0  as ~ -+oc ,  ~ > 0  Or/ 

(14.74) 

If we expand f and 0 in powers of small ~ in the form 

f = A ( ,7)+ Cf~ (,7) + . . .  
o = Oo (,7) + ~o~ (,7) + . . .  

(14.75) 

then this leads to the problem, at the leading order, given by Equations (11.156) 
which describes the mixed convection boundary-layer flow along a vertical flat plate 
in a porous medium. It was shown there that Equations (11.156) have a unique 
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solution for ~ > --1, two solutions f o r - 1 . 3 5 4  ~ )~c < ), < - 1  and no solutions 
for A < Ac. Thus, the present mixed convection problem has a solution only when 

>~ ~ and in this case the solution of Equations (14.72) - (14.74) can be obtained 
by the use of the series (14.75) or by a finite-difference solution. This latter case 
has been followed by Merkin and Pop (1987) and they showed that  a stable finite- 
difference solution away from the leading edge can be obtained only if ~/> - 1  and 
in the region Ac ~< A < - 1  there is a region of reversed flow near the cylinder. This, 
perhaps, indicates that  the model of a semi-infinite cylinder is no longer appropriate 
and instead we should in this instance consider a cylinder of finite length, with forced 
convection dominating at one end and free convection dominating at the other. 

The variation of the local Nusselt number as a function of x as calculated from 
the numerical integration of Equations (14.72) - (14.74) for several values of A is 
shown in Figure 14.10. It can be seen that there is a tendency for the curves to 
approach a common limiting form as x increases. As in the free convection case, 
treated previously, a difficulty was encountered in obtaining the numerical solution 
of the present problem for the very large values of x which are required to join onto 
an asymptotic solution. 

Z III 
Nu 

1.5 

1.0 

0.5 

0.0 
0 5 10 15 

x 

Figure 14.10: Variation of the local Nusselt number, Nu,  with x for some values 
of~.  

An approximate method, based on an integrated form of the energy equation 
(14.43), was also used by Merkin and Pop (1987) to solve the present problem for 
all values of x. We note that  this method was found to be satisfactory in the 
related natural  convection problem studied by Merkin (1986). Thus, on integrating 
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Equation (14.63) once and using Equation (14.62), we obtain 

] (oo) (14,o) 
d----x rO (1 + AO) dr = - Orr r=X 

and then an approximate profile for 0 is assumed of the form 

1 - ~ - l n r  for l ~ r < e  M 
0 -- 0 for r ~ e M (14.77) 

where the function M = M ( x )  is as yet unknown. Combining expressions (14.76) 
and (14.77) leads to the ordinary differential equation 

dM 4M 2 
dx - M + M (2M - 1) e TM + 2A [M + 1 + (M - 1) e TM] (14.78a) 

which has to be solved subject to the boundary condition 

M (0) - 0 (14.78b) 

and this gives rise to 

cr 2 n _ l n M n + l  oo 2 n n M n +  1 

- ~ (~ + 11 (~ + 11' + ~ ~ (~ + 11 (~ + 21' (14.~91 
n = l  " n = l  " 

On using expressions (14.70a) and (14.77) for N u  and 0, respectively, we obtain 

1 
N u -  M ( x )  (14.80) 

The variation of N u ,  as given by the expressions (14.79) and (14.80), as a function 
of x are given in Figure 14.11 for various values of A. Again it is seen from this figure 
that, for all values of A considered, the curves of N u  appear to be approaching a 
common limiting form as x --+ o0. This becomes more apparent when we consider 
the behaviour of Equation (14.78a) for x (and M) large and in this case, we have 

dM 
d x  = 2 e - 2 M  (14.81) 

and from which it follows that 

2 
N u  = in(4x) + " "  (14.82a) 

Expression (14.82a) is independent of A and, to leading order, agrees with the asymp- 
totic form given by Equation (14.70b). Also, from Equations (14.79) and (14.80) we 
obtain 

1 

N~ - ~2~ + " "  (~4.82b) 
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Figure 14.11" Variation of the local Nusselt number, Nu, given by Equa- 
tion (14.80), with ln x for some values of A. 

for x << 1. This expression is in reasonable agreement with the values of N u  as 
calculated by solving numerically Equations (14.72) - (14.74) over the range of values 
of A considered. Therefore, it is to be expected that  this approximate method will 
give a reasonable estimate for N u  for all values of x, but better  results are obtained 
as x increases. 

Finally, Merkin and Pop (1987) have obtained a solution of Equations (14.62) - 
(14.64) for large values of x. Without  going into details it was found that  N u  can 
be expressed as 

2 4 1 n 2 -  23' 
N u - l n x  (lnx)2 + . . .  (14.82c) 

for x >> 1. Further, we note that  the expression (14.82c) agrees with expression 
(14.70b) for the purely forced convection limit (A << 1) and the first te rm agrees 
with expression (14.82a) which was obtained from the approximate solution. 

14.5 Horizontal boundary-layer flow past a partially 
heated vertical cylinder 

Consider an infinite vertical cylinder Of radius a which is embedded in a porous 
medium of ambient temperature  Too. A uniform free stream is flowing with velocity 
U~ past the cylinder, see Figure 14.12. The temperature  of the cylinder for ~ > 0 
is held at a constant value of T~ (> Too), whilst for ~ < 0 the cylinder remains 
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U~,T~ 
v 

| a 

w 
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v 

Figure 14.12: Physical model and coordinate system. 

unheated, i.e. at the temperature Tc~. We assume that both the Reynolds and 
Rayleigh numbers of the flow are large so that the boundary-layer approximation is 
valid. Thus, the density stratification within the boundary-layer induces a vertical 
flow, whilst the horizontal flow produces a motion within the boundary-layer around 
the cylinder. This gives rise to a three-dimensional boundary-layer flow. Under 
the Darcy-Boussinesq approximation, the governing equations of this problem in 
cylindrical polar coordinates (~, 9, ~) are given by 

0-~ ~ 10~ 0-~ 
~ + - + -  + = o  

10-~ ~ 0-~ 
= 0  

0-~ gK~ 071 

0-r 0-5 v 0-~ 
O'T ~ OT ~ { 02T 1 0 T  

~-~- + ~ N  +~~zz = ~m ~-~2 + ~-~- ~ 

(14.83) 

(14.84) 

(14.85) 

1 02T 02T~ 
F2 002 t- ~ ]  (14.86) 

where u, v and ~ are the fluid velocity components along the ~, 0 and ~ directions, 
respectively. 

Outside the boundary-layer (outer flow) we introduce the following non- 
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dimensional variables 

- -2 - T - T o o  a a a 
r - - ,  z - - ,  T =  ~ = ~, ~ = ~, a a A T  ' v R e  ~ ~ =  ~ (14.87) 

On substituting expressions (14.87) into Equations (14.83) - (14.86) and assuming 
that R e  is very large (Re  -+ c~), we obtain 

0~ ~ i 0~ 0~  
Or + -r + -r0-0 + - ~  = 0 (14.88) 

1 0~ ~ 0Y 
= 0 (14 .89)  

r O0 r Or 

O5 O~ 

Or O~ 

_ OT ~ OT _ OT 
u-~r + -  + - o  

N 

OT 

Or 
(14.90) 

(14'91) 

where A (> 0) is again the mixed convection parameter as defined in Equation 
(11.154). The associated boundary conditions of Equations (14.88) - (14.91) are 

~ = 0  on r = l ,  all 0 ,~ 
_ } T --+ 0, vcos0 + gs in0  ~ 0 (14.92) 

-+ O, ~ sin 0 - ~ cos 0 -+ 1 as r -+ cr all O, 

given by 

The solution of Equations (14.88) - (14.91) which satisfies the boundary condi- 
tions (14.92) is given by 

( 1 )  ( 1 )  - 
1-~-~ cos0, ~ -  l+~-ff sin0, ~ - 0 ,  T = 0  (14.93) 

It is seen that  the solution (14.93), for the inviscid flow outside the boundary- 
layer, satisfies the boundary condition on the cylinder for Y < 0 and hence only the 
boundary-layer which forms on the cylinder for ~" > 0 should be considered. The 
governing equations for this layer can be obtained by using the following variables: 

1 1 
y _ ( r _ l ) ( G r P r ) ~  _ ( G r P r ) 5  ~ ~ - 

A , u - u  " A , w = ~ ,  z - - ~ ,  T - T  (14.94) 

Equations (14.83) - (14.86) then reduce to 

Ou Ov Ow 
yu ~-:-- + 0-0 + -~z - 0 (14.95) 

C~V 
= 0 (14.96) 

Oy 
Ow 07' 

= (14.97) 
Oy Oy 

OT OT OT 02T 
u--~y + v - ~  + w OZ = Oy 2 (14.98) 
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which have to be solved subject to the boundary conditions 

u = 0 ,  T = I  on y = 0 ,  all 0, z > 0  (14.99a) 

w--+0,  T ~ 0 ,  v ~ 2 s i n 0  as y--+c~,  all 0, z > 0  (14.99b) 

where the conditions (14.99b) arise from matching v, w and T with the outer solution 
(14.93). On using the boundary conditions (14.995), Equations (14.96) and (14.97) 
give 

w = T, v = 2 sin 0 (14.100) 

and the Equations (14.95) and (14.98) reduce to 

OT 
U~y 

Ou OT 
cgy f ~ + 2cos0 0 (14.101) 

o00T Off'O___~ c92T (14.102) + 2 sin 0-:-= + T = Oy 2 

along with the boundary conditions 

u - 0 ,  T = I  on y - 0 ,  all 0, z > 0  (14 103) 
T --+ 0 as y --+ oo, all 0, z :> 0 " 

Before numerically solving Equations (14.101) - (14.103), we look for asymptotic 
solutions which are valid for small and large values of z. 

1 4 . 5 . 1  S m a l l  v a l u e s  o f  z ( ( ( 1 )  

The most appropriate variables to use for small values of z are as follows: 

1 y 
u - z-~U (r/,0, z) ,  T = T (r/,0, z ) ,  r / --  --i- (14.104) 

z~ 

which on substitution into Equations (14.101) and (14.102) gives 

1 ) OT OT OT 02T 
V - ~r/T ~ + 2z s in0-~-  + zT Oz = Or/2- (14.105) 

OU 0'1-' 1 0 T  
+ z ~  - - ~  + 2z cos 0 - 0 (14.106) 

071 Oz 2 

and the boundary conditions (14.103) become 

U = 0 ,  T - - 1  on r l - -0 ,  all O, z > 0  (14.107) 
T -+ 0 as 7/-+ cx), all 0, z > 0 
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Inspection of Equations (14.105) - (14.107) suggests looking for a solution for 
z << 1 of the form 

T - f~ (r/) + z cos 0f~ (7/) + z 2 [sin 20f61 (r / )+ cos 20f6 2 (~7)] 

+z  3 cos 0 [sin 20.f~l (77) + cos 30f~ 2 (7/)] + . . .  

U - 177 [r/f~ (r/) - f0 (7?)] + I cos 0 [yf~ (r/) - 3fl (7?) - 47?] 

+�89 2 {sin 2 0 [~f~l (r/) - 5f21 (~)] + cos 2 0 [rif~2 (77) - 5f22 (r/)] } 

+1Z3  cosO {sin 20[TIf~l (r/) - 7f31 (r])] + cos 2 0[~7f~2 (r/) - 7f32 (r/)] } + . . .  

(14.108) 
where f0, f l ,  f21, etc. satisfy ordinary differential equations which can be found in 
the paper by Ingham and Pop (1986b). Using these results, we can express the local 
Nusselt number Nu as follows: 

N u - (  Pr �89 -7-) 0.44375 + 0.67829 z cos 0 + z 2 (0.85822 sin 2 0 + 0.31209 cos 2 O) 

+z  3 cosO (0.03237 cos 2 0 - 2.51583 sin 2 O) + . . . ]  

(14.109) 
for z << 1. 

14 .5 .2  L a r g e  v a l u e s  o f  z (>> 1) 

At large distances along the cylinder the solution becomes independent of z and 
Equations (14.101) and (14.102) become 

Ou 
0--~ + 2cos0 - 0 (14.110) 

OT OT 02T 
= = ~ (14111) u ~-y + 2 sin 0 O0 Oy 2 

which have to be solved subject to the boundary conditions (14.103). 
(14.110) gives 

u = - 2 y c o s  0 (14.112) 

and in order to solve Equation (14.111) we write 

where To satisfies the ordinary differential equation 

Equation 

(14.113) 

T~' + 2~T~ = 0 (14.114a) 

along with the boundary conditions 

T 0 ( 0 ) = l ,  T0--+0 as ~ - + ~  (14.114b) 
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Hence 
To = erfc ~ (14.115) 

14 .5 .3  L a r g e  v a l u e s  o f z  ( ~ 1 )  o n 0 - - 0  ~ 

From Equations (14.112) and (14.115), we see that  as z -+ oc for 0 = 0 ~ (the forward 
generator of the cylinder) then 

u -+ -2y ,  T -+ erfcy (14.116) 

Assuming that the approach to this solution is of the form 

u = - 2 y  + e-alZu I (y) + . . .  

T = erfcy + e -a~zT 1 (y) + . . .  
(14.117) 

where al is an unknown constant then Equations (14.101) and (14.102) become 

-2yT~ 

?.tll -- a l T 1  - -  0 (14 .118)  

2 _y2 
v ~ U l e  - a lerfcy -- T i (14.119) 

and the boundary conditions (14.103) reduce to 

u l ( 0 ) - 0 ,  T I ( 0 ) - 0 ,  TI--+0 as y - + o c  (14.120) 

This eigenvalue problem has been solved numerically by Ingham and Pop (1986b) 
and it was found that the smallest value of a l is given by 

a l  --  6 .8866  (14 .121)  

Thus, N u  on 0 = 0 ~ has the form 

N u  2 
= + A l e  -6"8866z (14.122) 1 Pe5 ~r~ 

for z >> 1, where A1 is an unknown constant. 
In order to match the analytical solutions, as presented above for small and 

large values of z, the three-dimensional boundary-layer Equations (14.95) - (14.98) 
should be solved numerically. However, it was found most convenient, because of the 
asymptotic forms of the solution, to use Equations (14.105) and (14.106) for z << 1 
and Equations (14.101) and (14.102) for z >> 1. A very efficient finite-difference 
method, which is described in detail in the paper by Ingham and Pop (1986b), was 
used. 

Comparing values of N u  obtained numerically with those given by the expression 
(14.122) at z -- 0.4 suggests that  A1 ~ 0.7255 on 8 - 0 ~ Figure 14.13 shows the 
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Nu 
7 
Pe~ 

3 

2 

1 
o.o 0:5 

1 term 
~ ~ / Z  4 terms and numerical 

0:1 0.2 0:a 0:4 
z 

Figure 14.13: Variation of ~ with z on 0 - 0 ~ The numerical solution and 
P e ~  

the terms from the series (14.109) are indicated by the solid lines, the asymptotic 
2 2 value - ~  as z ~ oo is indicated by the broken line and the approximation ~ + 

0.7255 e -~ss66~ is indicated by the dotted line. 

variation of N u  with z (small) on 0 = 0 ~ obtained numerically and also as predicted 
by Equat ion (14.122) with A~ = 0.7255 and by the series (14.109). The asymptot ic  

2 value N u  ~ - ~  as z ~ (x~ is also included in this figure. We can see that  Equat ion 

(14.122) is a good approximat ion to N u  for values of z >~ 0.2. In order to i l lustrate 
tha t  the asymptot ic  solution presented in the previous section is also very accurate  
for all values of y, Figure 14.14 compares the variation of T1 (y) as a function of y 
obtained by solving Equat ions (14.118) - (14.120) numerically for various values of 

z with the expression 
T1 (y) - (T - erfc y) e -6"s866z (14.123) 

for z >> 1. We see tha t  this expression approaches well the value of T1 (y) determined 

numerically and this confirms the validity of the present method. 
Further,  Figure 14.15 shows the variation of N u  as a function of z on 0 = 180 ~ 

(backward generator  of the cylinder) obtained numerically and given by the series 
(14.109). The analysis presented in Section 14.5.2 shows that  

(0) 
R e }  - ~ cos (14.124) 

for z >> 1. Thus, on 0 = 180 ~ we have that  N u  --+ 0 as z -+ c~ and this is confirmed 
by the numerical  calculations. We also note tha t  the 4 term expansion (14.109) is 
a very good approximat ion  for N u  up to z ~ 0.5 and it may be used even up to 
z ~ 1.0 with good accuracy. 
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o4]/~ 
T,(y) 

' 
02] / I  ' / ~ ~ z - - 0 . 1 ,  0.2, 0.3 

I/~' ~\", 
0.1-[11 \ \ \ \  

o oV . . . . .  
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Figure 14.14: Profiles of T1 (y) given by expression (14.123) (broken line) and also 
determined numerically (solid lines). 

3 

Nu 
7 
Per 

2 

1 3 terms 4 terms 

- - 4 _ _ /  
0. 2 terms 
0.0 015 ~ 1~0 1.5 

Nu with z on 0 -- 180 ~ The terms from the series Figure 14.15: Variation of p~ 

(14.109) are indicated by the solid lines and the numerical solution is indicated by 
the broken line. 
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We also present in Figure 14.16 the variation of N u  with 0 for several values 
of z. The asymptotic solution (14.124), which is valid for large values of z, is also 
presented in this figure. It is seen that for z > 0.4 the asymptotic solution is being 
approached when 0 ~< 90 ~ As the value of z increases, so does the approach to 
the asymptotic solution for larger and larger values of 0. The fact that  Equations 
(14.101) and (14.102) are parabolic in the 0 direction automatically implies that the 
asymptotic solution (14.124) is approached faster for decreasing values of 0. 

3 

Nu 
P J, 

2 

z =0.02 

z = 0.04 

z ~  O_:l 

, ,  i , ~ l  1 

0 4'5 9'0 o (o) i55 

Figure 14.16: Variation of -~_ with O. The numerical solutions are indicated by 
P e  2 

the solid lines and the asymptotic solution (1~.12~), valid as z --+ oe, is indicated 
by the broken line. 

We can also calculate the average Nusselt number N u  from the cylinder using 
the expression 

1 = dOdz  (14.125) 
Pe~ 7rz -~Y y=0 

It was found from the numerical calculations that Nu  may be well approximated by 
the expression 

N u  0.01798 
= 0.71835 + (14.126a) 

Pe~ z 

for z >> 1, and 
N u  

1 
Pe~. 

1 (0.44375 + 0.29258 z 2) (14.126b) 

for z << 1, as obtained from the series solution (14.109). 
Figure 14.17 shows the non-dimensional temperature profiles T on 0 -- 0 ~ 120 ~ 

and 180 ~ for some values of z, along with the asymptotic profiles as given by Equation 
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Figure 14.17: Temperature profiles, T(z ,y ,O),  on (a) 0 = 0 ~ (b) 0 = 120 ~ and 
(c) 0 -- 180 ~ The numerical solutions are indicated by the solid lines and the 
asymptotic profiles (14.116) are indicated by the broken lines. 
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(14.116). Again we observe that the smaller the value of 0, the faster is the approach 
to the asymptotic solution. It is also seen that the boundary-layer increases in 
thickness as the value of 0 increases and as 0 -+ 180 ~ the boundary-layer is of 
infinite thickness, as is indicated by the transformation (14.113). 

Finally, we mention that the present method has been also successfully applied 
by Ingham and Pop (1986b) to the study of the flow and heat transfer from a heated 
semi-infinite horizontal cylinder which is aligned with its axis parallel to a uniform 
flow and which is embedded in a porous medium. 

14.6 Free convect ion past a heated sphere 

Several studies have been performed on the steady free and mixed convection flow 
from a sphere which is embedded in a porous medium over the last few years. In most 
of these studies it has been assumed that Darcy's law holds and that the Rayleigh 
number is small or very large. In the first case, Yamamoto (1974) and Sano and 
Okihara (1994) obtained asymptotic solutions when the surface temperature and 
the surface heat flux are constants. However, these solutions have the deficiency 
that  the pressure does not remain bounded at large distances from the sphere. In 
the second case of very large values of the Rayleigh number or the boundary-layer 
approximation, Merkin (1979), Cheng (1982) and Pop and Yan (1998) have reported 
a simple analytical solution for the steady forced, free or mixed convection flow over 
a sphere in a porous medium. On the other hand, Kumari et al. (1987) have obtained 
numerical solutions for the problem of mixed convection boundary-layer flow over a 
sphere placed in a porous medium using a finite-difference method, while Pop and 
Ingham (1990) have dealt with the second-order boundary solutions. 

In this section we consider a sphere of radius a and constant surface temperature 
Tw which is embedded in a porous medium of ambient temperature Too, where 
Tw > Too. Under the Darcy-Boussinesq approximation, the governing equations can 
be written in non-dimensional form as, see Pop and Ingham (1990), 

0 0 
(r2v sin 0) + (ru sin O) 

Or 
u Ou 1 Ov 

r Or r O0 

0 (~OT) ~ 1 0 (sin -~OT) 
Or r2 v, sinO00 Ovv 

- 0 (14.127) 

OT 07' cos 0 = sin 0 Jr 
Or O0 r 

- R a r  2 V-~r + -   -5g 

(14.128) 

(14.129) 

where (r, 0, r are spherical coordinates with r = 0 at the centre of the sphere and 
0 = 0 ~ (the lower stagnation point of the sphere) in the direction of gravity, and we 
assume that  the flow is symmetrical. If we further introduce the stream function 
defined as 

1 0r  1 0 r  
u -- , v = - ~  (14.130) 

r sin 0 Or r 2 sin 0 O0 
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where u and v are the velocity components along the 0 and r directions, respectively. 
Equations (14.127) and (14.128) then become 

02r  cos 0 0 r  1 0 2 r  (Or/ '  0Tcos0) (14.131) 
Or 2 r 2 O0 ~ r 2 002 = r sin 0 ~ sin 0 -~ 00 r 

0 ( O T )  1 0 ( O T )  Ra (Or Or 
Or r2 -~r -t sinO O0 sinO-o-~- sinO Or O0 O0 Or (14.132) 

The Equations (14.127) - (14.129) or (14.131) and (14.132) have to be solved subject 
to the boundary conditions 

r  T = I  on r = l ,  0 ~ 0 ~ r  

u - + 0 ,  v - + 0 ,  T--+0 as r - + c ~ ,  0 ~ 0 ~ r  

r  0 T _ 0  on 0 - - 0 , ~ ,  l ~ r < c o  00 -- 

(14.133) 

14.6.1 L a r g e  va lues  o f  R a  (>> 1) 

To solve Equations (14.127) - (14.129) and (14.131) - (14.133) for large but finite 
values of Ra, we write these equations in terms of the radial distance n, the inner 
variable N and the parameter e defined by Equation (14.16) and look for a solution 
where e is small by using the method of matched asymptotic expansions, as was 
described in Section 14.2. In the outer region we write 

= U0(n, o) + o) + . . .  

V --- Vo (n, 0) -~- EV1 (n, O) + . . .  
T = To(n, 0) + eT1 (n, 0) + e2T2(n, 0) + . . .  (14.134) 

r = @0(n, 0) + e@l (n, 0) + e2@2(n, 0) + . . .  

whilst in the inner region we write 

U -- s 1 (N, e) + e2u2(N, O) + . . .  
V -- Vl (N, 0) + e v 2 ( N ,  O) + . . .  

T = tl ( i ,  0) + et2(N, 0) + . . .  (14.135) 

r = eel (N, 0) + e2r 0) + . . .  

For the leading order terms of the series (14.134) and (14.135), we obtain the 
classical boundary-layer solution as obtained by Merkin (1979), namely 

U1 --- 0, V1 -- 0, T1 -- 0, ~II1 -- 0 

0 0 
0---0 (Ul sin 0) + ~-~ (vl sin 0) = 0 

Ul = tl sin0 

Otl Otl  0 2 t l  
U l - ~  "~- Vl ON = O N  2 

(14.136) 

(14.137) 

(14.138) 

(14.139) 
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which have to be solved subject to the boundary conditions 

v l - - 0 ,  t 1 - 1  on N - 0 ,  all 0 
ul --+ 0, tl --+ 0 as N --+ c~, all 0 (14.140) 

We now write 

where 

~bl - G (0)  f l  (rl) , t l  - t l  (rl) , rl - N H  (0) 

1 (1 
c (o)  - 3 o - o + 5 

Equations (14.137) -(14.140) then reduce to 

(14.141) 

sin 2 0 
H (0) - G (0) (14.142) 

f~"  + � 8 9  (14.143) 
f l ( 0 ) - - 0 ,  f I ( 0 ) - - l ,  f~--+0 as r/--+ 

which describe the classical problem of free convection boundary-layer flow over a 
vertical isothermal flat plate which is embedded in a porous medium as described 
in Section 11.3. Equations (14.141) - (14.143) give the following expression for the 
local Nusselt number 

1 s in  2 0 
N u  = 0.444 R a  ~ ~ ( 1 4 . 1 4 4 )  

C(0) 

and for the average Nusselt number we have 

1 

N u  - 0.5124 Ra5 (14.145) 

for R a  ~ 1. 

We now look for the solution of the second-order outer and inner approximations. 
Thus, Equation (14.132) for T2 gives 712 - 0 and Equation (14.131) for ~2 reduces 
to the Laplace equation, namely 

02~I/2 cot 0 0~2 1 02~2 
+ = 0 (14.146a) 

On 2 ( l + n )  2 00 ( l + n )  2 002 

and the matching condition with the inner solution gives 

~I'2 - G (0) fl  (c~) on n - 0 (14.146b) 

Clearly 0 = 0 ~ is a streamline, i.e. ~2 = 0, but on the axis 0 = 180 ~ (through the 
upper stagnation point of the sphere) a plume develops and ~2 ~ 0 at the edge of 
the plume. It is known that  the temperature and the fluid velocity of this plume 
have been expressed analytically by Bejan (1984) in the form 

T - Too u 2A~ 

kmy y 1 + 
(14.147) 
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where Raq~ is the Rayleigh number based on the point heat source strength qs, 
1 

1Ra~q~ and is the distance measured from some origin on the axis A~ -0 .141 ,  ~ -  ~ y 
of the plume. 

Further, since the fluid velocity component u given by Equation (14.147) in 
the plume decays inversely with the distance from the sphere, the stream function 
~2 --+ 0 as n --+ (x~, so we make the following transformation 

X _ l + ~2 - X - 2 E  (X, 0) (14.148) 

Equation (14.1461) now becomes 

X2 02E OE 02E OE 
OX 2 2X--ff--~ -~ 002 cot0-0- 0- + 2 E = 0  (14.149a) 

which has to be solved with the boundary conditions 

G ( O ) f l ( o O )  on X - l ,  0 ~ 0 ~ r  
0 on X - 0, 0 ~ 0 ~< 7r 

E -  0 on 0 - 0 ,  0 ~ < X ~ < I  
1 . 7 4 3 X  

1+0.347x on 0--Tr, 0 ~ < X ~ < I  

(14.149b) 

The second-order, inner (boundary-layer) equations obtained from expression 
(14.135) and Equations (14.131) and (14.132) can now written, after some algebra, 
in the form 

02~b2 _ G 0 t 2  sin20 , 
0r/2 ~ +77 H2 Yl 

02t2 1 Ot2 sin 0 , Ot2 1 ,, 1 r]f[" 2 ,, 
O rl------ ~ -t- -~ f l O ~ 7 H 2 f l r = " ~  ~T f l f l ~ -- ~ f l 

(14.150) 

1 0r  
H sin O f {' cOO 

(14.151) 

and are subject to the boundary conditions 

r  t2=-0 on r / - -0 ,  all 0 
o~__~2_ G(0) (14.152) 
0u ~ s -~U2(0 ,0) ,  t 2 ~ 0  as ~--+oc, all 0 

where 

X 2 ( 0 ~ 2 )  (14.153) 
U 2 ( 0 , 0 ) -  sin0 00 v=0 

has to be determined numerically from Equations (14.146). The initial condition for 
Equations (14.150) and (14.151) at 0 - 0 ~ is found by writing 

= ( , )  + O t2 = h (n) + O (O) (14.154) 



528 CONVECTIVE FLOWS 

and this leads to 

,,, 1 ht 1 ~, 
- -  - -  - -  2 --rD1 2 

1 hi 1 . 1 m 
h "  + - - - f [ '  

- y ; ' g  

(14.155a) 

(14.155b) 

with the boundary conditions as determined from the conditions (14.152). 

14.6 .2  S m a l l  v a l u e s  of  R a  (<< 1) 

In order to solve Equations (14.131) - (14.133) for small values of Ra in a finite 
region around the sphere, we write 

r - x- r ' ( x ,  0 ) ,  T = G (X, 0) (14.156) 

with F and G given by the equations 

X 2 02F 
OX 2 

where 

OF O2F OF ( OG 0 G )  (14.157) 
2 X - ~  ~ 002 cot O-o~ + 2g - sin2 0 - X ~ - ~ + c o t 0 - 0 -  0- 

X2 02 G OG 02 G OG OG 
OX, ~ + pX2-o-~ + 002 + cot 0-0- 0- + q-0-~ - 0 (14.158) 

Ra 1 OF Ra ( 2 F  OF)  (14159) 
P - s i n 0 X  2 00 '  q -  sin0 X OX 

and the boundary conditions (14.133) become 

F = 0 ,  G = I  on X = I ,  0 ~ < 0 ~  

F - + 0 ,  G - + 0  as X - + 0 ,  0~<0~< 
F - 0 ,  OG_O on 0 - - 0 ,  u, 0 ~ X ~ I  00 - -  

(14.160) 

Equations (14.146), (14.149), (14 .150) -  (14.152), (14.155)and (14 .157) -  
(14.160) were solved numerically by Pop and Ingham (1990) using a finite-difference 
method which is described in detail by Ingham and Pop (1987). Results are obtained 
for the range of values of Ra between 10 -3 and 200. 

The variation of the local Nusselt number 

0T 
Nu - - O--~(r - 1, 0) (14.161) 

with Ra at 0 = 0 ~ is shown in Table 14.3. Also given in this table is the asymptotic 
solution 

1 
Nu = 0.8875 + 0.320 Ra-~ (14.162) 

as obtained from the first- and second-order boundary-layer calculations. The agree- 
ment is seen to be reasonable, even for values of Ra as low as unity. Further, Fig- 
ure 14.18 shows the variation of Nu as a function of 0 for various values of Ra. It is 
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Table 14.3: Variation of the local Nusselt number, Nu, at 0 - 0 ~ with the Rayleigh 
number, as obtained by Pop and Ingham (1990). 

....... II 1 1 1 0 1 2 0 1  40 ! 7 0 1 1 0 0 1 1 5 0 1  .200 . . . .  

, 

Numerical 1.309 0.999 0.964 0.941 0 .927 0.920 0.914 0.910 
Solution (14.161) 

Asymptotic 1.208 0.989 0.959 0.938 0.926 0.919 
Solution (14.162) 

0.913 0.910 

1 . 0 0  
Nu _"5"-'2- 
Ra5 

0.75 

0.50 

0.25 

0.00 

" " , N ~ , ~ ' ~ R a  = 10, 20, 
" , \ \ \ \  70, 100 

. " ' ~ "  , , , \ \~ .  

0 45 90 1fi5 180 o(o) 

Figure 14.18- Variation of ~ with O. 
Ra~ 

(14.144) is indicated by the broken line. 
The first-order boundary-layer solution 

observed tha t  there  is a smooth  approach to the first-order boundary- layer  solution 
(14.144) as Ra increases and this is in contrast  wi th  the s i tuat ion for a cylindrical 
body, see Ingham and Pop (1987). 

Figure 14.19 shows the variat ion of Nu, which is defined as 

l f o ~ ( O T  ) l f o ~ r ( O G  ) Nu  - 2 -~r  sin 0 dO - ~ ~ sin 0 dO (14.163/ 
r----1 X=I 

with Ra as obta ined from the numerical  solution, the boundary- layer  theory (14.145) 
and the solution obta ined by Yamamoto  (1974), namely  

301 
N u  = 2 + 2520 Ra2 + " "  (14.164) 

for Ra ~ 1. 
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Figure 14.19: Variation of the average Nusselt number, Nu,  with Ra. The numer- 
ical solution is indicated by the broken line, the boundary-layer solution (14.145) 
is indicated by the solid line and the small Ra solution (14.164) is indicated by the 
dotted line. 

It is of interest to note here that  for the case of a sphere which is subject to a 
constant wall heat flux rate, Sano and Okihara (1994) have obtained the following 
expression for N u ,  namely 

217 
N u -  1 + 2880Ra 2 + . . .  (14.165) 

for R a  ~ 1. It is seen from Figure 14.19 that  the numerical and small R a  solutions 
are in excellent agreement but  there is a substantial discrepancy between the nu- 
merical and the boundary-layer solution (14.145). However, if we assume that  the 
boundary-layer solution can be expressed by the correlation equation 

1 1 

N u  - 0.5124Ra~ + ao + boRa-~  (14.166) 

then, taking the empirical constants a0 - 0.855 and b0 - -1 .6 ,  the agreement 
between the results given in Table 14.4 is seen to be excellent. 

Finally, Figure 14.20 illustrates the streamlines pat tern in the vicinity of the 
sphere for R a  - 1, 10 and 100 and the lines are equally spaced. Also shown in 
Figure 14.20(d) is the limiting streamline pat tern  as R a  -+ co (boundary-layer) 
as obtained from the numerical solution of Equations (14.149). We can see from 
Figure 14.20 that  as R a  increases, the boundary-layer solution appears to be ap- 
proached and there is no evidence of a recirculating zone being developed near the 
top (8 - 180 ~ surface of the sphere. A detailed investigation by Ingham et al. (1983) 
into the flow near this point gives no indication to suggest that  such a phenomenon 
is being approached. 



Table 14.4: Variation of the average Nusselt number, Nu ,  with the Rayleigh num- 
ber, as obtained by Pop and Ingham (1990). 

Ra H 
Boundary-Layer 

5.8485 

0.5124 
Solution(14.145) 

. . . . . .  

Asymptotic -0.2103 1.9972 2.8173 3.8718 4.9801 
Solution (14.166) 

Numerical . . . .  
2.1095 2.8483 3.2734 3.9241 5.0030 

Solution (14.163) 
. . . . .  

1.6204 2.2915 3.2407 4.2870 5.1240 6.2756 7.2464 

5.8511 

(a) (b) 

7.0296 8.2454 

7.0304 8.2454 

!1 / 
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(c) (d) 

Figure 14.20: Streamlines in the vicinity of the sphere for (a) Ra = 1, (b) Ra = 10, 
(c) R a -  100 and (d) Ra --> co. 



Chapter 15 

U n s t e a d y  free and m i x e d  
c o n v e c t i o n  in porous  med ia  

15.1 I n t r o d u c t i o n  

Unsteady convective flows in porous media are of considerable interest to the tech- 
nical community due to their frequent occurrence in industrial, technological and 
natural surroundings. The study of these flows caused by sudden changes in the wall 
temperature or surface heat flux open up a wide range of engineering applications 
in such areas as the cooling of electronic equipment, the cooling flow in the combus- 
tion chambers and reactors, etc. The main concern in such flows is the possibility 
that extreme conditions may arise during a start-up or some other transient. Heat 
transfer through rocks or soil, leakage from a vessel with porous insulation around it, 
containment leakage from buried drums, or containment leakage from storage under- 
ground cavities and their consequent transport through geological strata, are other 
important classes of practical problems, where knowledge of the unsteady transport 
of a scalar quantity (mass of a pollutant) is of importance, see Feng and Michaelides 
(1999). Extensive research work has been published during the last two decades on 
transient convective flow over surfaces of particular geometries which are embedded 
in a fluid-saturated porous medium. It appears that  the first paper on transient 
boundary-layer flows in a porous medium is that  of Johnson and Cheng (1978), who 
obtained similarity solutions for specific variations of wall temperatures in both time 
and position. Ingham et al. (1982) have analysed the free convection in a Darcian 
fluid about a suddenly cooled vertical plate and showed that  the steady state con- 
dition is approached with an algebraic decay rather than an exponential decay as 
in similar problems in a Newtonian fluid. Then, Pop and Cheng (1983) and Cheng 
and Pop (1984) have studied the transient free convection boundary-layer over hor- 
izontal and vertical fiat surfaces embedded in a porous medium using an integral 
method. The governing equations are first-order partial differential equations of the 
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hyperbolic type which were solved exactly by the method of characteristics and ap- 
proximately by the method of integral relations. The results based on the method of 
characteristics indicated that during the initial stage when the leading edge effect is 
not being felt, heat is transferred as if by transient one-dimensional heat conduction' 
At a later time, depending on the vertical location, the heat transfer characteristics 
change from transient one-dimensional heat conduction to steady two-dimensional 
convection. 

A related problem for which the comparison between analytical and numerical 
work has been very successful is that of the free convection boundary-layer flow 
over a vertical semi-infinite flat plate in a porous medium, where the temperature 
of the plate, or the heat flux at the plate, is suddenly raised at time t = 0 from 
the ambient temperature Too to a value that is proportional to x m for t > 0, with 
x being the distance measured along the plate. A very consistent theory based on 
this assumption has been developed by Ingham and Brown (1986), and Merkin and 
Zhang (1992) who have also derived the eigensolutions appropriate to the departure 
from the initial unsteady (one-dimensional) solution to the final steady state (two- 
dimensional) solution. 

The recent monograph by Nield and Bejan (1999), and the review articles by 
Bradean et al. (1998a) and Pop et al. (1998b), give extensive references of the topic 
of unsteady convective flow in porous media and a number of specific examples, 
ranging from natural processes to those of technological importance. Motivated 
by the importance of the transient nature of the transport phenomena in porous 
media, we shall review here some external convective flow problems in porous media 
which involve transient responses for bodies such as flat plates, circular cylinders and 
spheres. The new solutions are presented in detail and a general discussion indicates 
a variety of estimates of the boundary data which facilitate the identification of the 
exact numerical solutions. 

15.2 Transient free convect ion boundary- layer  flow 
from a vertical fiat plate suddenly  heated 

Consider a vertical semi-infinite fiat plate which is embedded in a fluid- saturated 
porous medium of uniform ambient temperature Too. We assume that at the time 
t < 0, both the plate and the porous medium are at the uniform temperature 
Too. Then at t - 0 the temperature of the plate, or the heat flux at the plate, is 
suddenly increased to the constant value T w ( >  Too), or qw > 0, respectively, and are 
maintained at these values for t > 0. The unsteady boundary-layer equations are, 
from Equations (II.1), (II.2) and (II.5), given by 

0 ~  0 ~  
+ ~_. - 0 (15 .1)  

u y  
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g K ~  
- ( T - T ~ )  

v 
OT OT OT 02T 

~-~ + ~ ~  + ~ ~  - ~.~ ~ 

(~5.2) 

(15.3) 

which can be written in non-dimensional form as 

0 r  = o 
Oy 

00 0 r  0 r  020 
! 

OT Oy OX OX Oy Oy 2 

(15.4) 

(15.5) 

where the non-dimensional variables are defined as 

) ~ - T - Too o~mRa ~, x = - y - -  Ra�89 y -- �89 (15.6) 
7 -  al 2 l ' ~, r - olmRa r 0 -  T* 

Here T* = Tw - Too when the plate is suddenly heated to a constant temperature 

and T * -  Ra-�89 ( k ~  ~) when the heat flux at the plate is T~ suddenly changed to 

the constant value qw. 
Having in view the physical model considered, the initial and boundary condi- 

tions of Equations (15.4) and (15.5) are given by 

r  0 - 0  for ~ < 0 ,  all x ,y  
r 0, ~) -o  / 

O(x, O, T) -- I (CWT), ~ O e ( x ' 0 ' ~ ) - - 1  (CHF) for ~'>~0, x > / 0  

0--+0 as y-+c<) 
(15.7) 

Combining Equations (15.4) and (15.5), and integrating once the resulting equation, 
we obtain, on using the boundary condition 0e ~--~ -+ 0 as y -+ oc, 

/0 /0 0 02 _ 00 0 0 dy + dy - (15.8) 
07- ~ y:o 

which have to be solved subject to the initial and boundary conditions (15.7). 
Cheng and Pop (1984) solved Equation (15.8) assuming a temperature profile of 

the form 

for the CWT case and 

for the CHF case, where 

0 - erfc 77 (15.9a) 

0 - - ~  5 erfc y (15.9b) 

Y (15.10) 
- ~(x,  t) 
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and 5 is the boundary-layer thickness. Substituting expression (15.9a) into Equa- 
tion (15.8), we obtain, after some algebra, the equation 

05 05 2 
o-; + a 0 ~  = ~ (15.11~) 

which has to be solved subject to the initial and boundary conditions 

5(x ,0) -0  for x>~0 (15.11b) 
5(0 ,~)-0  fo~ ~ > 0  (15.11c) 

where a0 = 2 - v ~  = 0.5857. 
Equation (15.11a) is a first-order, linear, partial differential equation of the hy- 

perbolic type and it has been solved exactly by the method of characteristics and ap- 
proximately by the Ks163 integral method by Cheng and Pop (1984). 
The method of characteristics gives 

5(~) - 2~/~ (15.12~) 

if the initial condition (15.11b) is used, and 

5 ( x ) -  2 1 a  ~ - 2.61x/~ (15.12b) 

if the boundary condition (15.11c) is imposed. It should be noted that the expres- 
sion for 5 changes from Equation (15.12a) to Equation (15.12b) along the limiting 
characteristic 

x 
T -- ~ -- 1.707 X (15.13) 

a 0  

We can now calculate, on using expression (15.9a), the wall heat flux 

~=0 

2 kmT* 1 
5 ~ - - - - [ - - R a ~  (15.14) 

The variation of T with x is presented in Figure 15.1. We see that this equation 
is a straight line which divides the x -  ~- plane into two regions, namely the lower 
region for T < ~-s with 5 given by Equation (15.12a) and the upper region for T > % 
with ~ given by Equation (15.12b) , where Ts is the time taken to reach the steady 
state flow and is given by 

(7 X 2 
~ = (15.15) 

ao Rax  

The variation with x* - x3 
- -  Ra~ of the limiting characteristics for the case of constant 

wall heat flux is also shown in Figure 15.1. 
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1.6 
7" 

1.2 

0.8 

0.4 

0.0 
0.0 

Steady State 

/ -2f  One-Dimensional 
/ Transient Region 

. . . .  i '  ' " '  ~ ' '  ' ' 

0.2 0.4 0:6 0:8 1.0 
X Or X* 

Figure 15.1- The limiting characteristics, 7" - 1.707x and ~" - 1.228x*], for the 
cases of a sudden increase in the wall temperature (solid line) and wall heat flux 
(broken line), respectively. 

Therefore, we have 

( ~ )  k m T * I R a  (15.16) 0 -- erfc 2 , qw(T) -- l ~- r r  

for ~- < Ts (transient flow), and 

0 = erfc (0.3826 ~), qw(x) -- kmT*  (15.17) 

1 

for T ~> Ts (steady state flow) where ~ -- y , -~Raz. Using the expression for qw(x) 
given by Equation (15.17), we can express the local Nusselt number as follows" 

N u  
1 

Ra~ 
= 0.4318 (15.18) 

which is about 1.2% lower than the exact value of 0.444 based on the similarity 
solution found by Cheng and Minkowycz (1977) for the corresponding problem of 
steady state, free convection boundary-layer flow over a vertical plate in a porous 
medium. Therefore, we can conclude that  the agreement between the two solutions 
is very good. 

It is worth noting that  0, as given by expression (15.16), is identical to the exact 
solution for the one-dimensional heat conduction equation in a semi-infinite porous 
medium with an initial temperature  Too when its bounding surface is suddenly raised 
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to a temperature Tw. Thus, during the initial stage when the leading edge effect is 
not felt, the solution for the temperature, or for the fluid velocity field, as given by 
Equation (15.4) is independent of x. Therefore, we identify the lower region (7- ~ 7-s) 
in Figure 15.1 as the transient one-dimensional conduction region and on the other 
hand, Equation (15.17) is valid in the upper region (T ~> Ts). 

Equations (15.11) have been also solved by Cheng and Pop (1984) using the 
method of integral relations and the variation of 5(T) with T is shown in Figure 15.2. 
It is seen that initially 5(T) increases and then it remains constant when the steady 
state flow has been attained. 

/ /  

/ ' ' _ _ 

I / / /  
///_ 

,,, , , ,  

X = I  

X = 0.5 

s 
i 

/ 
/ 

/ 

X=0.1 

T 

Figure 15.2: Variation of the boundary-layer thickness, 5(T), with T in the case of 
a sudden change in wall temperature. The results based on the method of charac- 
teristics and the method of integral relations are indicated by the solid and broken 
lines, respectively. 

Shu and Pop (1998) have studied the transient heat exchange between a vertical 
flat plate of finite thickness b and the free convection boundary-layer over the plate 
which is embedded in a porous medium. It is assumed that at a given time t :> 0 
the right hand side of the plate is suddenly subjected to a uniform heat flux, namely 

qw - ) % ) +  )qll - k s - -  - Oy k l  Oy (15.19) 

whilst the left hand side of the plate is thermally insulated, see Figure 15.3. The 
governing equations are Equations (15.1) - (15.3) along with the energy equation in 
the solid plate 

OTs 02Ts 
Ot = (~s O~ 2 (15.20) 
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q~ (~>o) 

-~y--O "~ 

" "  ~ " 

T~ 

Porous 
Medium 

Figure 15.3: Physical model and coordinate system. 

On int roducing the non-dimensional  variables 

T --  t~ X --  bRa ~ Y , , a fRau,  v = v 

Tf  -Too Ts -Too Ow Tw -Too 
Of --  T* ' Os ---~ T* ' - -  T* 

(15.21) 

where T* - bey and the Rayleigh number  is based on qw Equat ions  (15.1) - (15.3) 
- -  k f  

and (15.20) can be wri t ten as follows: 

OO f OO f 

a u  

Ox 

+ v - -  

(~V 
+ ~yy - 0 (15.22) 

u - Of (15.23) 

OO f 020f  
= (15.24) 

Oy Oy 2 

OO~ 02Os 
= (15.25) 

O r  Oy 2 

and these equat ions have to be solved subject  to the initial and boundary  conditions 

u - 0 ,  v = 0 ,  0 f = 0 ,  O s = O  

v - O ,  Of - Os - Ow(x,r)  on y - 0  

O l - + O  as y ---~ cx) 

00~ = 0  on y - - 1  
Oy 

kOOs 00/ 
O y -  Oy = 1  on y = 0  

for r < 0, all x, y 

for T~>0, X~>0 

(15.26) 
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where the modified conjugate parameter F is defined as 

F = aC~s (15.27) 
c~I 

To obtain a solution of this transient conjugate free convection problem we use 
the Kgrmgn-Pohlhausen integral method, as used by Lachi et al. (1997). Thus, 
on integrating Equations (15.24) and (15.25), and using the boundary conditions 
O0f ay --+ 0 and oo, _+ 0 as y --+ co, we obtain Oy 

/oo OO, O/o o, (oo,) 11  81 
f O G  (OOs~ (15.29) 1-~rdY- -~Y J y=o 

Further, we assume a second-order, Kgrmgn-Pohlhausen temperature profile in the 
fluid-porous medium and in the solid plate with the constraints such that the bound- 
ary conditions, Equations (15.26), hold. Then we have, 

- ( 1 -  

Os -- ~ (1 - ~Ow) y2 + �88 (1 - ~Ow)y + ew (15.30) 

Substituting these expressions into Equations (15.28) and (15.29), we obtain 

1 0  2 
C 0 (aGo)+ (aO~) - 0w (15.31) 

0 ( 2 ~ )  1 ( 2 )  
Or Ow + - ~  -- ~ 1-- -60w (15.32) 

along with the boundary conditions (15.26) which reduce to 

= 0 ,  Ow=O on T = O  or x = O  (15.33) 

For the steady state case ( o  _ 0), we take 5(x, O) - 6o and Ow(x, O) - Ow. Thus, 
Equations (15.31) - (15.33) give 

1 
1 3 

6o(x) - (20x) ~, Owo(x) - (15.34) 

Therefore, 60 differs from that of an infinitely thin flat plate given by expression 
(15.12b). 

Equations (15.31) - (15.33), which are hyperbolic partial quasi-linear differential 
equations, with two characteristic curves, were integrated numerically using the 
method of characteristics. The characteristic equations are given by 
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so tha t  the wave speed in the porous  m e d i u m  is given by 

9(2 + kS) 

5r(4 + 3k5) Ow(X,t) (15.36) 

The interface temperature distribution Ow(x, t) is illustrated in Figure 15.4 for 
F - 1, 5 and 10 wi th  k - 1, 5 and  10. These figures show tha t  a l though the 

value of Ow(x, t) increases cont inuously  wi th  b o t h  increasing values of T and x, its 

slope exhibi ts  a d iscont inui ty  at  ~-s, where the heat  t ransfer  is suddenly  changed. 

This  d iscont inui ty  can be a t t r i b u t e d  to the  presence of an essential s ingular i ty  in 

the governing Equa t ions  (15.22) - (15.25). We also note  tha t  Ow(x,t)  increases 
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Figure 15.4- Profiles of the interface temperature, O~(x,t) ,  for (a) F -  1, k -  10 
as a function of t at several values of x, (b) F - 1, k - 10 as a function of x at 
several values of t and (c) x - 0.1, k = 10 as a function of t at several values of 
F. 
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continuously with time and for large time approaches the corresponding steady state 
value OwO(X), as given by expression (15.34). 

The case of a plate of infinitely small thickness (b - 0) was also treated by Shu 
and Pop (1998), and they found that the results were identical to those found by 
Cheng and Pop (1984) for the case of a vertical surface whose heat flux is suddenly 
changed at time t -  0. 

The general situation when the temperature of a vertical surface which is em- 
bedded in a porous medium is suddenly raised from a temperature Tcr to a value 
that is proportional to x TM for time t ~> 0 has received a very detailed treatment by 
Ingham and Brown (1986). This work was extended by Merkin and Zhang (1992) 
who considered the case when the surface heat flux is proportional to x m for t >~ 0. 
Therefore, Equations (15.4) and (15.5) should now be solved along with the initial 
and boundary conditions 

0 ~ X TM 

r  0 - 0  for ~-<0,  all x,y 

r  : } 
(VWT) o~ _ _ x  TM (VHF) on y - 0, 

Oy-- 
0 - ~ 0  as y - + o c ,  ~->~0, x~>0 

T>~O, x~>0 

(15.37) 

15.2.1 V a r i a b l e  wa l l  t e m p e r a t u r e  

To reduce the number of independent variables in Equations (15.4) and (15.5) from 
three to two, the following new variables are introduced 

r n T 1  m - - 1  
r = x 2 f(r/, z ) ,  r J -  y x  2 , T - -  t x  m-1  (15.38) 

so that Equation (15.4) reduces to 

o = o f  ( 5.39) 

On substituting Equations (15.38) and (15.39) into Equation (15.5), we obtain 

1 - ( 1 - m ) T ~ - ~  OVOT + (1--m)TOT 2 f O-~ 2 + m  N = 0Y 3 

(15.40 ) 
and the initial and boundary conditions (15.37) in the VWT case reduce to 

f - O  for z < O ,  all r/ 

f - O ,  o / _ 1  on r /=O ] (15.40b) 
o , - -  for r~>O 

~  as ~ - + o c  / 
The variables ~/and T are the most appropriate ones to use for studying the final 

decay to the steady state solution, and by setting o _ 0 in Equation (15.40a) leads 
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to the steady state similarity Equations (11.23). However, in the initial period of the 
flow development, the boundary-layer grows as though the wall was infinitely long 
with the effect of the finite leading edge (at x = 0) being felt only at a later time. 
In other words, the solution of Equations (15.40) at T -- 0 describes only the initial 
phase of the development of the flow past a vertical semi-infinite flat plate in a porous 
medium since it does not satisfy the boundary conditions at x = 0 and therefore 
contains no information about the leading edge. This is analogous to the situation in 
the problem of the impulsively started flat plate studied analytically by Stewartson 
(1951, 1973) and numerically by Hall (1969) and Dennis (1972). Consequently, more 
suitable independent variables to use for small values of ~- are as follows: 

~ =  ~ and T (15.41a) 
2r7 

with the independent variable being given by 

1 f - 2T-~F(~, T) (15.41b) 

Using the variables defined in expression (15.41), Equation (15.40a) becomes 

03F 

0r 3 [ 2~ + 4mTF -- 4(1 -- m)T 20F] 02F 

4mT ( O-~~ ) 2 [ OF ] 02 F 
- - 4T 1 - (1 - m)'r-o--~T Or 

(15.42a) 

= 0  

which has to be solved subject to the initial and boundary conditions (15.40b) which 
reduce to 

F = 0  
OF F - 0, a--~- 

a__.~_F _~ 0 ar 

for T < 0 ,  all 

= 1 on ~- -  0 / (15.425) 
for T~>0 

J 
At ~ - 0, Equation (15.42a) reduces to 

F o  !I + 2~F;' = 0 (15.43a) 

where F(~, 0) - F0(~) for all values of m, and the boundary conditions (15.42b) 
may be written as 

F o ( 0 ) - 0 ,  F g ( 0 ) - I  
F g - ~ 0  as ~--+c~ (15.43b) 

The solution of Equations (15.43) is given by 

F(~ - erfc (~ 
1 ( l - e - C  2 ) Fo - ~ erfc (~ + 

(15.44) 
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We have seen in Section 11.3 that  Equations (11.23) have a solution only for 
_ 1 Therefore, for the m > - 1 ,  with the solution becoming singular as m ~ mc - --~. 

numerical solution of Equations (15.40) and (15.42) there are two cases to consider, 
namely m :> 1 and _1  < m < 1, respectively. 

m > l  

i)2 F Since for m > 1 the coefficient of the term ~ remains positive, Equation (15.42a) 
has been numerically integrated by Ingham and Brown (1986) using a step-by-step 
procedure in T until the steady state solution (11.23) was obtained. Hence, starting 
from the solution (15.44), which is valid at -r = 0, Equations (15.42) were solved until 
T -- 1, and then Equations (15.40) were solved from ~- = 1 onwards. It was found 
that  the solution tends to the first steady state solution (~" -+ c~) as obtained in 
Section 11.3, and in no circumstances did the fluid velocity or temperature become 
negative. 

The approach of the unsteady solution to its steady state form can be found by 
looking for a solution of the form 

f (77, ~-) -- f (r/) + T -~g(r/) + . . .  (15.45) 

where f(r/) is the solution of Equations (11.23) and -), is a positive constant to 
be determined. On substi tuting the expansion (15.45) into Equation (15.40a) we 
obtain 

,t l + m g ,  [ l + m  ] f , g  
g Jr 2 f - [ ( m - 1 ) 7 + 2 m ] f ' g ' +  2 ( 1 - m ) v  - 0  (15.46a) 

which has to be solved subject to the boundary conditions (15.40b) which reduce to 

(0)  - 0, g ' ( 0 )  = 0 (15.46b) 
g ~ - + 0  as rl--+ce 

It may be easily verified that for 

3 
~, - 2 -~ (15.47) 

m - - 1  

the solution of Equations (15.46) is given by 

/o ( / o )  g(~7) -- f '  f 1 + m n �9 ~-~ exp 2 f d~ dr/ (15.48) 

1 - - ~ < m ~ l  

02F In this case the coefficient of the term 02~0r in Equation (15.42a) becomes negative 

for a value of m within the range 1 < m < 1. Thus, for a given value of m, 
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Equations (15.42) can be solved numerically up to a part icular value of z, say r*, 
after which point the numerical method breaks down. This solution at time ~ - r* 
is then expressed in terms of the steady state variables rl and T and the method 
used by Ingham and Brown (1986) to match the steady state solution with that  
which is valid at T = ~-*, given by Equations (15.42), was employed using a variation 
of the numerical method first proposed by Dennis (1972). In order to do this it is 
convenient to write Equat ion (15.40a) in the form 

025 . 05" 09 v (15.49) 
0~7 - - - ~  + P--O~ mflZ'2 = q OT 

where 
_ l + m f _ ( l _ m ) Z  .T = ~-~, p 2 

q = 1 - (1--m)T~-~ 
(15.50) 

The boundary  conditions for Equat ion (15.49) are, from Equat ion (15.40b), tha t  
ol  _ 0 at - (a large value of r / t ha t  may f :  0 and -~ - 1 at r ] -  0, whereas ~-~ r/ r]oo 

be varied). 

The numerical solution of Equat ion (15.49) is described in all its details in In- 
gham and Brown (1986) and therefore it is not repeated here. Additionally, they 
have presented a very detailed analysis of the final decay of the unsteady to the 
steady state solution as T -+ C~ for _ 1  < m ~ 1 where it was demonstrated that  
this decay is exponential in nature.  

(a) (b) 

1.0 1.0 

0.s ~ 0.8 

0.6 0.6 

0.4 '~ 0.4 
I lll\ \~,  7-=O.Ol, o.o4, o.1, 

0.0. -- 0.0 
o i g 6 ~7 0 1 2 3 4 

Figure 15.5" Reduced temperature profiles, -~ (r/, v), as a ]unct ion of r 1 for  (a) 

m - 1 and (b) m = 4. The steady state solution as T -+ oc is indicated by the 
broken line. 
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OI at Figure 15.5 shows the distribution of the reduced temperature profiles ~-~ 
various values of ~- for m - 1 and 4. We note from this figure that the steady state 
solution is approached very rapidly but the larger the value of m, the earlier the 
steady state is achieved. The rate at which this steady state solution is reached is 
determined by the value of -7 as given by expression (15.47), which shows that the 
algebraic decay of the unsteady solution to the steady state solution is very fast 
when m -+ 1 +. However, it appears that the steady state solution is reached near 

(a) (b) 

1 . 0 ~ \  1.0 
%- ,, 

0.8 ~' ~ o.8 " 

0.4 l l/k \ \ \" ,"  = 0.01, 0.04, 0.4 "ill \ \ \ ~'\ ~- = 0.01, 0.05, 0.25, 
0.21 \\ " ~ i i  :815 0.2 Ill \ \  ~ \ \  0.5, 0.9, 1 t ~  ~ . 2 5  

o.o ~ o.o . . . . .  - - -  
0 i �89 3 4 0 1 2 3 4 5 6 rl 

(c) ZI,.- x.\\ 

1.0 ~ ~  

~\ \ it, 

o o 

r = 0.01, 0.05, 0.25, 0.5, 

0.0, ---- 
o ~ ~ ~ r/ 

Figure 15.6" Reduced  t e m p e r a t u r e  profiles,  g~(y,T),al as a f u n c t i o n  of  r I f o r  (a)  

m - O, (b) m = -0.2 a n d  (c)  m - -0.425. The  s t eady  s ta te  so lu t ion  as r ~ oo 

is ind ica ted  by the broken  line. 
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T ~ 1 but this is very difficult to verify. 
o f  Further, Figure 15.6 shows the variation of ~-~ with 77 at various values of 1- for 

m = 0, -0 .2  and -0 .425 and it can again be seen that  the steady state solution is 
achieved very quickly with the larger the value of m then the earlier this solution 
is obtained. This observation is confirmed by the results presented in Figure 15.7, 

02 f (0, T) with which shows the variation of the reduced heat flux at the wall, i.e. - ~  
T for some values of m. In conclusion, these results clearly show that a smooth 
transition from the unsteady to the steady state solution takes place for all the 
values of m for which a steady state solution exists. 

3.2 

~ 2.4 

I 

1.6 

0.8 

0.0 

m = -0.425,  -0 .4 ,  -0 .2 ,  
_ ~ 0, 0.25, 1, 2, 4 

0.0 0.5 1.0 1.5 2.0 2.5 
T 

Figure 15 7: Variat ion of  the reduced wall heat f lux,  ~ (0, r) with T. �9 ~-~2  

15 .2 .2  V a r i a b l e  w a l l  h e a t  f lux  

This situation has been treated by Merkin and Zhang (1992), where the variables 
r 0, rl and ~- are now defined as follows- 

2,-,,+~ Of - , - :  2 ( . , - : )  
m+2 ~') O -- x 3 , 7? --  y x  3 r = t x  3 (15 51) r  3 f(~7, , 0~7 ' " 

so that Equations (15.4) and (15.5) become 

2 O f ]  0 2 f  
1 - -  5(1 - -  m ) ~ - ~  cgrlt:9~ - 

[m 3______22 f _ 2 f ~ ( 1 -  m)~" ~Tf ] 02 
O~ 2 

+ ~ 2 m + l  ( O f )  2 = o3f 
Or] 3 

(15.52 ) 
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and the initial and boundary conditions (15.7) become 

f = 0  for r < 0 ,  all 

~ 1 on 77-0 '[ f - 0, on2 = - 
/ O_EF _~ 0 as 7/-+ oo 

077 

for r~>0  
(15.52b) 

By taking ~ - 0 in Equation (15.52a) leads to the steady state boundary- 
layer Equations (11.52), which have a solution only for m > - 1  with the solution 
becoming singular as m -+ mc - -1.  

For the initial development of the solution, we find it convenient to use the 
variables 

f - r F ( ~ , r ) ,  ~ =  ~/: and r (15.53) 
T 2  

and Equation (15.52a) becomes 

[ 2  5]02F [1 
r - g(1 - re)r: O~Or -2( 

2 5 OF] 02F 
+ ~ - ~ F  - 5(1 - ~ ) ~ - b 7  or 

IOF ~ ( 0 F )  2 

+~b7 + ~  ~7 = 

c93F 
Or a 

(15.54) 

while the initial and boundary conditions (15.52b) remain essentially unchanged. At 
r = 0 the Equation (15.54) becomes 

Fo m 1 1 F, l + ~ F ; '  - ~ o - 0  (15.55a) 

where F(~,0) = F0(~) for all values of m, and the boundary conditions (15.52b) 
become 

Fo (0) = 0, F~' (0) - - 1 (15 555) 
F~--+0 as r  

The solution of Equations (15.55) is given by 

2 F(~ - ~ exp ( r 

Fo - - ( 1  + �89 (~)  + ~ e x p  ( - ~ )  + 1  
(~5.56) 

and the reduced wall temperature is given by 

Of 2 
(0, T ) -  ---~_r~ + h.o.t. (15.57) 

077 VTr 

for r ~( 1. 
Equations (15.52) and (15.54) have been integrated numerically by Merkin and 

Zhang (1992), for values of m in the ranges - 1  < m ~ 1 and m > 1, using the same 
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method as that  proposed by Ingham and Brown (1986). Some of the results obtained 
are presented in Figure 15.8, where the variation of ol (0, T) as a function of T for 
a range of values of m is given. This figure shows a similar behaviour for T << 1 
for all values of m, as predicted by Equation (15.57), and also by Equation (15.45) 

3(m+1) 
for T >> 1, where now 7 has the value -~ = 2(m-1)" We further see that  the rate of 

m L . . . _ .  : -0.5, -0.4, -0.3, 
0, 0.5, 1 5, 10 

0 , - - - - - - - - - - - - - - ~ ' ~ ~ - ~  
0 1 2 3 

T 

ol (0, T) with T. Figure-15.8: Variation of  the reduced wall temperature,  -0~ , 

(a) (b) 
1.0 

I~ 0.6 

0.5t \ \ l ,  
[ \ \ % \ : -  0.04, 0.1, 0.4, 0.3 
!, 0 .8 ,2  

o.o 
0 1 2 ~ 3 4 

i 

\\~, 7--  0.0375, 0.1075, 0.3075, 
i \ \ ~  0.5275, 1.4475 

1 2 r/ 3 4 

Figure 15.9: Reduced temperature profiles, ~ T), as a func t ion  of 71 for  (a) 

m = 1 and (b) m - 5. The steady state solution as 7- -4 oc is indicated by the 
broken line. 
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approach of the unsteady solution to the steady state solution (~- --+ oo) decreases 
as the value of m decreases from taking positive to negative values in the range 
of interest. This is also evident in Figures 15.9 and 15.10, which illustrate the 
development of the fluid velocity profiles with ~ for m = 1 and 5, and m = 0, - 0 .4  
and -0 .5 ,  respectively. Figures 15.10(a,b) show that  the fluid velocity profiles have 
a steady progression from the small time to the steady state solution. However, for 
m = - 0 . 5  these profiles have the same values for a range of values of 7] both at 
7- = 0.72 and in the steady state solution. This suggests an 'overshoot'  of the steady 

(a) (b) 

1.2[\ 1.6 

\\',, 

0.6 \ ~ ~ ' k  

l ~, , ' , , ::  o o~, o~, 0 7, 

0.0 . . . .  : 
0 1 2 3 4 5 

b- 
a= 

(c) 
1.8 

t-- 

1.2 

0.6 

0.0 

b- 

0.8 

0.0 

l \ \ 
\ 

~',, 
\ \  \',, 
\ \ \  \ " , r=0.04,  0.18, 0.38, 

0 1 2 3 4 5 

\ ~'\, 

\ \  ~,,,~-oo~, OlO, o~, 

0 1 2 3 4 5 

Figure 15.10: Reduced  t empera tu re  profiles,  ~~ (ri, T),  as a f u n c t i o n  02[ 71 f o r  (a) 

m -- O, (b) m - -0.4 and  (c)  m - -0.5. The  s teady  state  so lu t ion  as 7- --> oo is 
ind ica ted  by the broken line. 
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state solution. 

15.3 Transient  free c o n v e c t i o n  boundary- layer  flow over 
a vert ical  plate  s u b j e c t e d  to a s u d d e n  change  in the  
heat  flux 

Consider a vertical fiat plate embedded in a porous medium of ambient temperature, 
Too, and assume that  the general transient arises from a sudden change in the level 
of energy input flux on the surface of the plate, i.e. a steady input heat flux qw~ is 
changed at time t -  0 to a new steady level qw2 and is maintained at this value for 

> 0. Under this assumption, Equations (15.1) - (15.3) have to be solved subject 
to the initial and boundary conditions 

- -0 ,  ~ - - 0 ,  T - T o o  for t < 0 ,  all x ,y  
- -  O~ 0"1" __ qw2 --  

-- k,~ on y - - 0  for t > 0 ,  ~>~0 / T --+ Too as y -+ c<) 

( 1 5 . 5 s )  

where 

r - v~ (~)5 (~) f(v, ~), 
T - Too  

0(~, ~-) = T* (15.59a) 

1 

, 
2 ~(~(~))~ (15.59b) 

- T *  - - - ~  3 ~ - -  km 

and Rax is the local Rayleigh number based on the flux qw~. The substitution of 
expressions (15.59)into Equation (15.2) gives 9 -  -~ and Equation (15.3) becomes 

Oaf ~- ( i - t -2rO])  02f ( Of) o2f (Of )  2 
Or]--- ~ - - ~ b~O~_+ 2 f - 2 r ~  0 .  2 ~ - 0  (15.60a) 

which has to be solved for r > 0 subject to the boundary conditions (15.58) which 
reduce to 

f ( 0 ,  T)  - -  0 ,  0 2 f  ( 0 ,  T )  - -  qw2 "-- n 
~ q~ (15.60b) 

~ as r ] ~ o o  077 

At time T = 0 the flow is steady and hence f(r], 0) = f0(~]), say, so that, from 
Equation (15.60a), f0(r]) satisfies the steady (outer) boundary-layer equation 

f o I I I  + 2fof~' - f~2 _ 0 (15.61a) 

This problem was first formulated in this way and solved by Harris et al. (1996, 
1997). 

For t > 0, the non-dimensional stream function f and the non-dimensional tem- 
perature 0 are defined according to 
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which has to be solved subject to the boundary conditions (15.58), namely 

f0(0) - 0, f~t(0) - - 1  (15.61b) 
f ~ - + 0  as ~--+oc 

For ~- ~< 1 there exists an inner boundary-layer which is described by Equa- 
tion (15.60a) and outside this layer the flow remains with the initial steady boundary- 
layer profile as given by Equations (15.61). Since the appropriate scale of the in- 

1 

dependent variable z/ is, for small 7- (inner layer), ~-~, we introduce the following 
variables 

f - - T F ( ~  T) ~__ rl ' ' 1 (15.62) 
2~-~ 

in the inner layer. Equation (15.60a) then reduces to 

103F IOF 1 ( 5) 02F 1 ( 3  5 0 F )  O2F 
g 0 ~  3 4 0 s  ~-2 - ~ - + r ~  ~ + ~  ~ - - T ~ - - ~  0~ 2 " 0  (15.63a) 

which has to be solved subject to the boundary conditions (15.60b), which reduce 
to 

02F 
E(0, ~-) - 0, 0~ 2 (0, 7-) - - 4 n  (15.635) 

The solution in this growing inner layer is taken to match the outer steady 
boundary-layer, which at small values of r/(<< 1) can be approximated by the series 
expansion 

1 2 ~r/3 air/5 f0 - a0 r / -  ~r/ + - 6-0 + O (rl 6) (15.64) 

where ao = f~(0) = 0.8987. Substituting the variables (15.62) into expression (15.64) 
then yields, for large values of ~, 

1 4a02~ 3 1 8 F ,-., 2ao~T -~- -- 2~ 2 + ~ T5 -- i-~a 3~5T~ + O (7 -2) (15.65) 

The behaviour within the inner layer as ~ -+ oc is to be matched with the steady 
outer solution (15.65). A solution within the inner layer is assumed of the form 

F - T-�89 + FI(~) + T�89 + ~'F3(~)+ O (~-~) (15.66) 

where Fi(~), for i - 0, 1, 2, 3, satisfy ordinary differential equations subject to the 
boundary conditions (15.63b) and the asymptotic (large values of ~) conditions re- 
sulting from expression (15.66). The solutions for Fi(~) can be obtained in closed 
form so that the temperature in the inner layer is given by 

( 1 ~) 
0 - 2a0r-~ -- 4~ + 4(1 -- 7~) ~ erfc~ ~ e  (15.67) 

' ~/Tr2a~ (T~ +4a2~2~-~ + ---~(1 -7~)e - ;2T + 0 ) 
/ 
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for T ~< 1. Thus the small time solution, which is valid for all values of U, is obtained 
by first writing Equation (15.66) in terms of ~ and subsequently combining it with 
the outer solution (15.64). 
a s  

For T ~ 1 the resulting temperature can be expressed 

0 -  dfOdr/ + ( 1 -  T~) r/erfc ~ - ~e-4---cT�89 -~- ~ e - - a r T  

and the temperature on the plate is given by 

+ o (15.68) 

1 1 
0w(~') -- a0 + ~ (1 - 7~) (--2T~ + a0~'~) + O (T 2) (15.69) 

The transient fluid temperature and the wall temperature effects, which are 
described by the small time solutions (15.68) and (15.69), continue to penetrate 
outwards into the boundary-layer and evolve into a new steady state flow. In order 
to match the small and large time solutions, a very efficient step-by-step method has 
been proposed by Harris et al. (1996, 1997) to solve numerically Equations (15.60). 
This marching technique enables the solution f0(rl) at time T -- 0 to proceed in 
time and gives a complete solution for T ~ ~*, where ~* is the maximum value of T 
reached in the numerical scheme, which is less than T satisfying the condition 

2T~--~(0, T) = 1 (15.70) 

O/ At large times the solution for ~-~ -- 0 is known to approach the steady state profile 
0(ri, c~) associated with the heat flux qw2 at the plate. The solution of the ordi- 
nary differential Equation (15.61), which governs the steady state boundary-layer 
equation, gives 

0(7/, oc) = 7~]f~ (,7~�89 (15.71) 

The variation of the wall temperature distribution Ow(T) with T is shown in 
Figure 15.11 for 7~ = 0.5 and 2. By plotting the steady state profiles, as predicted by 
Equation (15.61), and the appropriate similarity solution (15.71), the transition from 
the initial steady flow (v = 0) to the final steady flow (T -- oo) is clearly illustrated 
in this figure. It can be also seen here that, initially, the effect of the change in 
the surface heat flux at the plate are not felt near the outer edge of the steady 
boundary-layer. Furthermore, it is found that the transient solution develops close 
to the small time solution (15.69) and is graphically almost identical when ~" ~< 0.4 
and T ~< 0.15 for T~ = 0.5 and 2, respectively. At large values of time, the wall 
temperature Ow(~-) approaches the steady state solution (15.71), although it does 
overshoot slightly, and the numerical method breaks down near the local maximum, 
or minimum, of 0w(~), for 7~ > 1 or 7~ < 1, respectively. The temperature profile 
0(~, T) at T -- ~* is displayed in Figure 15.12(a) and it shows that a local turning 
point in 0(7/, T) only occurs near to the wall and for large values of rl the temperature 
is always bounded by the two steady state values at r = 0 and T - c~, respectively. 
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Figure  15.11: Variation of the wall temperature distribution, Ow(T), with ~- for (a) 
7"/= 0.5 and (b) T~ = 2. The numerical solutions are indicated by the solid lines, 
the steady state solution at ~- = O, f[~ (0), is indicated by the dotted line, the steady 
state similarity solution at large ~-, T ~  fO (0), is indicated by the broken line and 
the small time solution (15.69) is indicated by the dot-dash line. 
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15.4 Transient  mixed  convec t ion  boundary- layer  flow 
from a vertical  flat plate  s u d d e n l y  heated  or sud- 
denly  cooled 

In this section we consider the physical model of a vertical flat plate which is em- 
bedded in a fluid-saturated porous medium over which a viscous fluid flows, with a 
constant velocity Uoo and is oriented vertically upward. It is assumed for times t < 0 
that the plate and the surrounding porous medium are at the constant temperature 
Too. Then, at t = 0 the temperature of the plate is suddenly changed to Tw and 
maintained at this value for t > 0. As for the corresponding steady state problem 
discussed in Section 11.9, for Tw > Too the flow is assisting whilst for Tw < Too the 
flow is opposing. The unsteady boundary-layer equations for the present problem 
are Equations (15.1) and (15.3) along with the Darcy momentum equation (11.150). 
The initial and boundary conditions for this problem are given by 

u - U o o ,  v - 0 ,  T = T o o  for t < 0 ,  all x ,y  

v = 0 ,  T = T w  on y = 0  ~ for t~>0,  x > / 0  
u --+ Uo~, T ---> Too as y -+ oo J 

(15.72) 

In order to solve Equations (15.1), (15.3) and (11.150), along with the initial and 
boundary conditions (15.72), we introduce the following transformations 

1 

~x , - , r / -  u 2amZ ~-�89 (15.73) 

for 0 ~ ~ ~< 1. These expressions correspond to the semi-similar transformation 
as proposed by Smith (1967) and used by Bhat tacharyya et al. (1995, 1998). On 
substituting expressions (15.73) into Equation (11.150), we obtain 

o f  
-- 1 + A0 (15.74) 

O~ 

and Equations (15.1) and (15.3) reduce, after some algebra, to a partial differential 
equation which governs the evolution of the function f(~, r/), namely 

03 f _ _ _  ~02f 
0773 [- [~ -[- (1 -- ~ ) I n ( 1  - ~)] ~ 0772 

Of 02f 
+ 2~ ( 1 - ~) In (1 - ~) 0~ 0rl 2 

02 f 
+ (1 - ~) r]0r] 2 

= 2 ~ ( 1 - ~ ) [ 1  

whilst the boundary conditions (15.72) become 

of] o2f 
+ In(1 - ~) ~ 0~c9~7 

(15.75a) 

of f(~, 0) -- 0, D-~(~, 0) -- 1 + A for 0 ~< ~ ~ 1 
~  as ~ - + o o  0 ~ < ~ < 1  (15.75b) 
O~ 



556 CONVECTIVE FLOWS 

and the mixed convection parameter A is defined by expression (11.154). 
The local Nusselt number can be expressed as follows" 

N u  _ -(2~)-�89 00 1 1 0 2 f  p 1  - ~ (~ ,  o) - -~(2~)-~ ~ ( ~ ,  o) (~5.76) 

The problem described by Equations (15.75) has been formulated and solved in 
a very elegant manner by Harris et al. (1999) and we present some of the results 
obtained by these authors. 

15.4.1 Init ial  uns teady  so lut ion at ~ j -  0 

The initial profile at ~ - 0 or T -- 0 can be obtained from Equations (15.75) assuming 
that f(0, r/) - f0(r/), say, where f0(r/) satisfies the ordinary differential system 

f~" + r/f~1 - 0 

fo(O)--O, f ~ ( O ) - l + A  
f ~ l  as ~ c ~  

(15.77) 

The solution of these equations is given by 

fo(~?)--  1 + A erfc (15.78) 

and this profile is shown in Figure 15.13. 

15.4.2 Small  t ime  so lut ion  (7- ~ 1) 

We determine a series solution of Equations (15.75) which is valid for -1- << 1 or, 
equivalently, for small values of ~ (<< 1) of the form 

(x) 

f - E fn(~7)~n (15.79) 
n = O  

where f0(r/) is given by Equation (15.78). Substituting the expansion (15.79) into 
Equations (15.75) leads to the following system of ordinary differential equations for 
the functions fl ,  f2 and f3" 

f[" + rlf['- 2 f~ - rlf~ ~ 

f2" r l f  t ' -  4f~ -- r l f l  + 2 f l f ~ '  - l fo f~ '  -- 2f~ -- 2 f~ f~  + 2 
f 3l!l II + rl f  3 - - 6 f ~  -- o f~  .! + 2 f l f ~ '  1~ t!! - ~JoJ1 + 4f2f~' 

- ~ f ~ f g  - i f o f g  - 4 f 6  - 4 f ~ f 6  - 2 f ~  ~ 
_~_ ! ! 

f o f l  

(15.80a) 
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Figure 15 13: Velocity profiles, of (77, 7- - 0) in the initial unsteady state flow. 
�9 - f f ~  , 

The profiles for aiding flows, pure forced convection (A - O) and opposing flows 
are indicated by the solid, broken and dotted lines, respectively. 

and the boundary conditions (15.73) reduce to 

/~(o) = o, f '(o)  = o 
(15.80b) 

f~ - -~O as r / -+cx)  

for i : 1,2,3. 
dimensional fluid velocity in the form 

On solving analytically these equations we can determine the non- 

+ 4 (3y 2 + 7)r/~ 2 Or/ = l + A e r f c  ~ + 3 - ~ A  96r/~ 

?7 2 

This gives rise to 

02 f (~, O) - A ~ ( 

(15.81) 
+ o (r 

N u = l [ _ � 8 9  1 7 5 ]  
Pe~ ~ ~ 4~�89 - ~ - --~128 § O (~�89 (15.83) 

so that we have the following expression for the local Nusselt number for ( <~ 1- 

~ ~6~ 2 5 ~ ) 1 + ~ + + 1 - ~  + 0 (~4) (15.82) 
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Further, on using the relation ~ = 1 -  e -r 
be expanded in the form 

1 2 

= r  + 6 r 

for ~- << 1, we obtain 

given in Equation (15.73), which can 

+ O (T 4) (15.84) 

~ (  1 5T2 02f  (~-, 0) -- A --1 +--~" + -  
0~? 2 4 96 

1 ~.3) + O (T 4) (15.85) 
128 

Then, the local Nusselt number is given by 

N u  1 ~ / ~x 
..... i ~ = ~ T - ~ + O [  ) T  (15.86) 
Pe~ Vr~ 

for ~- << 1. 
Equations (15.75) were also solved numerically by Harris et al. (1999) using 

a step-by-step method similar to the one described in their previous papers, see 
Harris et al. (1996, 1997). As a result of the analytical solutions given above, and 
the obtained numerical solutions, we present some of the main flow characteristics 
for this problem. 

1 02/ 
The variation of the reduced wall heat flux, -58-~-(T, 0), as a function of ~', 

is shown in Figure 15.14 for some values of A. The small ~- solution (15.85) and 

large 7- solution (--~-~)f"(0) ,  where f " ( 0 ) i s  given by Equations (11.156), are the 

also shown in this figure. It is seen that for the values of A considered, the A- 
independent small time solution clearly provides an accurate initial approximation 
to the numerical solution. Further, this figure shows how the solutions for A > - 1  
all move away fairly rapidly from the curve given by the solution at A = - 1  and pass 
through a minimum point after the forward step-by-step integration breaks down at 
T = 7". For A > 0, both the time of the devia t ionand the time at T = T* reduce 
as A increases. It was found that as A -+ -1 ,  where - 1  < A < 0, the time at which 
the local minimum point is achieved and the time interval over which the ~ = - 1  
solution is traced both increase, whilst the forward integration approach still breaks 
down at ~-* ~ 1, as predicted by the equation 

1 for A:>O 
T* - -  I+A 

1 for A < O  
( 5.87) 

The local minimum also becomes smoother as .k --+ -1 ,  so that it becomes almost 
graphically imperceptible at A = -1 .  The evaluation for A = - 1  thus represents a 

lower limiting solution for the function - ~  02/ (T, 0) - 

Finally, Figure 15.15 shows the variation of N__~ as a function of A, as time T 
Pe~ 

evolves. It is seen that the initial evolution of the local Nusselt number is in excellent 
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Figure 15.14: Variation of the reduced wall heat flux, 1 02f --~ -b~ (T, O) , with r. The 
numerical solutions are indicated by the solid lines, the A-independent small 7 solu- 

(0), 
where f "  (0) is given by Equations (11.156), are indicated by the broken lines. The 
symbol + indicates the time ~'* for the values A - 10, 1, 0.1 and - 1  ~ A < O. 

agreement  wi th  the A-independent small t ime solution (15.86) and we can conclude 
from this figure tha t  at A - - 1 ,  g___~ again provides a l imit ing lower bound for the 

Pe~ 
solution for )~ > - 1 .  At a given value of A, the solution approximately  traces t h e  

= - 1  evolution before breaking away abrup t ly  and reaching values close to the 
final s teady s tate  solution over a very short  t ime interval. This almost constant  

Nu behaviour  of Pe~ N---u-ful' after the deviat ion from the A - - 1  solution, suggests tha t  

can be accurate ly  approximated  by the function ( - - ~ )  f" (0)  for A > 

It is also worth  point ing out tha t  the solution of Equat ions  (15.75) in the special 
case A = 0 (pure convection flow) is given by f(~,  ~/) -- r/ and thus 0(~, y) = 1. 
Therefore, the evolutions shown in Figures 15.14 and 15.15 apparent ly  become inde- 

te rmina te  for A - 0 .  However, the behaviour  of the functions - ~  ~ b-~ (% 0) and - ~  
Ve~ 

at A = 0 can be achieved by a l imit ing process from the small  ~ solutions (15.83) and 
(15.84), and the solutions at ~ = 1. The  curves in Figures 15.14 and 15.15 for A = 0 
can therefore be expected to initially trace along the A = 0.1 curve, deviat ing from 
this curve at  some point  between the points of deviat ion of the >, = -t-0.1 curves. 

a sympto tes  for the curves are then the value V/2 for Figure 15.14, i.e. a re turn  The 
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Figure 15.15: Variation of ~ with r. The numerical solutions are indicated by 
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the solid lines and the A-independent small time solution (15.86) is indicated by 
the dotted line. The symbol + indicates the time r* for the values A - 10, 1, 0.1 
and - 1  ~ A < O. 

1 for Figure  15.15. to the value at ~ -  0, and 

15.5 Transient  free convec t ion  boundary- layer  flow 
from a horizontal  circular cyl inder 

Consider  a horizontal  circular cylinder of radius a which is embedded  in a porous 
m e d i u m  which initially (t < 0) is at the constant  t empe ra tu r e  Too. At t ime t = 0, the 
t e m p e r a t u r e  of the cylinder is suddenly  increased to a constant  value Tw (> Too) and 

is ma in ta ined  at this t empe ra tu r e  thereafter .  We assume polar coordinates  (~, 0), as 
shown in Figure  14.1, and in t roduce the non-dimensional  variables 

t -  Ra  ~, ~, r -  - ~ - lnr,  r  T =  (15.88) 
aa 2 a'  a m R a '  A T  

Equa t ions  (II.1), (II.2) and (II.5) can then  be reduced to the form 

0~-- ~ + - ~  + ~ sin 0 + - ~  cos 0 -- 0 

OT ( Or OT Or OT ) ~-2~ 
0-7 + e-2(  00 O~ O~ O0 -- Ra  

(15.89) 

(0,r o,T  
Y(~ + o0~ ] (la.90) 
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where the stream function r is defined according to 

u - 0 r  0 r  
be' (15.91) 

with the velocity components u and v along the r and 9 directions~ respectively. If 
the symmetry condition at 9 - lr is enforced, the initial and boundary conditions 
for this problem may be written in the form 

r  T - 0  for {/>0,  0 ~ 0 ~ r ,  r < O  

or162  T - 1  on ~ = 0 ,  O~<O~<lrO~<O~<~r / for 
or --+ 0, T --+ 0 as ~ ~ co, 
r  a t _ 0  on 0 - 0 , ~ ,  ~ ) 0  0 0 - -  

r> O 
(15.92) 

The problem governed by Equations (15.89) and (15.90), subject to the bound- 
ary conditions (15.92), has been solved by Ingham et al. (1983). It is of some 
importance to point out that one of the earliest works on the unsteady heat transfer 
from a horizontal circular cylinder which is embedded in a forced convection Darcy 
flow was performed by Sano (1980). He reported asymptotic solutions which were 
valid at large and small values of the Pdclet number in the case when the unsteady 
temperature field is produced by a step change in the wall temperature. Detailed 
analytical solutions of the transient free convection from a horizontal circular cylin- 
der in a porous medium have been obtained by Pop et al. (1993a, 1996a), Tyvand 
(1995) and Sundfcr and Tyvand (1996) using the method of matched asymptotic 
expansions as proposed by Van Dyke (1975). 

We return now to Equations (15.89) and (15.90), along with the initial and 
boundary conditions (15.92), and note that at time t - 0, when the temperature 
of the cylinder is suddenly changed, a boundary-layer of thickness proportional to 

1 

(~a) ~ starts to develop around the cylinder. This suggests the introduction of the 
new variables 

1 

= s r l  , r - s , s - 2 (15.93) 

so that Equations (15.89) and (15.90) become 

02 ~ 82 02 ~ sy l OT OT I 
07/---~ + -O~ + e-  - ~  sin 0 + s ~ cos 0 = 0 (15.94) 

02T s202T OT ( O~ OT O~ OT) 
Or]--- ~ + 002 = 4re 2s" - 2~Te2S'-~ + 4t 09 Or] Or] 09 (15.95) 

The boundary-layer equations are then obtained by setting s - 0  so that we obtain 
the equations 

-- - T s i n 0  (15.96) 
0y 
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02T OT OT ( O~ OT O~ OT ) 
0-- ~ + 2~ 0---- ~ - 4 t - ~  - 4t 00 Or/ Or/ 00 (15.97) 

and the initial and boundary conditions (15.92) remain essentially unchanged. Equa- 
tions (15.96) and (15.97) were solved numerically by Ingham et al. (1983) using the 
series truncation method which is fully described by Collins and Dennis (1973). In 
this method we assume that ~ and T can be expressed as follows 

O0 O0  

= Egn(~l , t )s innO,  T -  f l (~ , t )+  E f n + l ( ~ , t ) c o s n O  (15.98) 
n = l  n = l  

where the functions fn and gn satisfy infinite sets of time-dependent partial dif- 
ferential equations. In practice, the series (15.98) has to be terminated by setting 
identically zero all the terms with a subscript n which is greater than some pre- 
scribed integer no; this defines a series truncation of order no. Thegrea t  advantage 
of this method for this class of problems is that for small values of t the value of no 
is usually very small, with no being increased as time increases. The value of no for 
the present problem was taken to be no = 40. 

Having determined the functions fn, we can express the local non-dimensional 
10T (r 1 0, t) from the expression heat transfer coefficient q w ( O , t ) - - R a - ~  = 

qw(O t ) -  1 Of 1 no 
' 2t 1 \ N  + c~176 ( 5.oo) 

n = 0  ~?------0 

The functions fl ,  gl, f2 and g2 were calculated analytically by Ingham et al. (1983) 
for small values of t (<< 1) so that we have 

1 

qw(O,t) = t-~ (0.56419 + 0.1968tcos 0 + .. .) (15.100) 

Further, Ingham et al. (1983) have studied the flow near the top and bottom stag- 
nation points of the cylinder for small and large values of t. 

At the lower stagnation point ({? = 0 ~ of the cylinder, we write 

= -0g(~, t), T = k(~, t) (15.101) 

where g and k, obtained from Equations (15.96) and (15.97), satisfy the equations 

02k Ok 
+ 2~=- - 

Oy 2 

Og 
0--~ = k (15.102) 

4tOk Ok = -4tg-x-  (15.103) 
0-7 ay  

and the initial and boundary conditions (15.92) reduce to 

k = 0 ,  g = 0  for ~>~0, t < 0  

g = 0 ,  k = l  on ~ - 0  ~ for 
k - - + 0  as  ~ --+ c ~  J t >0 

(15.104) 
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The solution of these equations can be obtained in a power series of small t (<< 1) 
and thus we obtain for qw(t) the expansion given by expression (15.100) with 0 = 0 ~ 

On the other hand, for the fluid flow near the upper stagnation point (0 = 180 ~ 
of the cylinder, we write 

r - - t ) ,  T = K(r/, t) (15.105) 

with G and K satisfying the equations 

OG 
= K (15.106) 

O77 

0 2 K 2?7 OK OK - 4tG OK (15.107) 
O~ - - - ~ +  ~ 4to---[- 0--~ 

which have to be solved subject to the same initial and  boundary conditions given 
by Equation (15.104). Again we can obtain a solution for small values of t with 
qw(t) now being given by expression (15.100) with 0 = 180 ~ 

Both sets of Equations (15.102), (15.103) and (15.106), (15.107), subject to the 
boundary condition (15.104), were solved numerically by Ingham et al. (1983) using 
a modified Crank-Nicolson method described in detail by Ingham and Merkin (1981). 

Finally, the large time solution of the fluid flow near the top and bottom stag- 
nation points of the cylinder can be obtained using the new variables 

1 1 1 
y -  277t~, g (or G ) -  -~ t-~ h(y,t)  (15.108) 

The resulting equation for h is then given by 

03h 02h 02h 
cgy 3 =t= h ~  = (15.109) Oy 2 OyOt 

where T - Oh Here the + sign is for the lower stagnation point and the - sign 0y" 
is for the upper stagnation point of the cylinder. A very detailed analysis of Equa- 
tion (15.109) for large values of the time has been also made by Ingham et al. (1983) 
and therefore we will not repeat it here. 

The temperature  variation with the radial distance r at 0 - 0 ~ 60 ~ and 120 ~ 
as obtained by the series truncation method, for various values of t is shown in 
Figure 15.16. Also shown here is the steady state solution as obtained by Merkin 
(1979). These figures show that the unsteady temperature profiles reach their steady 
state values at t - 4, the maximum difference between the two solutions being about 
3%. This approach is more rapid the smaller the value of 0. For small values of t the 
numerical results are in excellent agreement with the two-term analytical solution 
given by the series (15.98) for all values of 0 up to t ~ 0.5. 

Figure 15.17 shows the variation of the heat transfer coefficient qw(0, t) as a 
function of 0 at various times and also included in this figure is the steady state 
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Figure 15.16: Temperature profiles, T(r,  t), as a /unc t ion  o] r / o r  (a) 0 - 0 ~ and 
(b) 0 - 120 ~ The steady state solution as t -4 cx) is indicated by the broken line. 
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Figure 15.17: Variation of the heat trans/er coefficient, qw(O, t), with 0. The steady 
state solution as t --4 c~ is indicated by the broken line. 

so lu t ion  given by Merk in  (1979). Again,  these  resul t s  show tha t  the  u n s t e a d y  resul t s  

are t e n d i n g  towards  the  s t e a d y  s ta te  solut ion as t increases.  Fu r the r ,  F i g u r e  15.18 

i l lus t ra tes  the  va r i a t ion  of q~v(0, t) wi th  t nea r  0 - 0 ~ and 0 - 180 ~ as o b t a i n e d  
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Figure 15.18: Variation o/ the heat transfer coefficient, q~(0, t), with t when (a) 
t? = 0 ~ (bottom stagnation point) and (b) 0 = 180 ~ (upper stagnation point). The 
numerical solution is indicated by the solid line, the 1-term and 2-term small time 
solutions (15.100) are indicated by the dotted and broken lines, respectively, and 
the steady state value as t -+ oc is indicated by the dot-dash line. 

by solving numerical ly the two sets of Equat ions  (15.102), (15.103) and (15.106), 
(15.107) with the boundary  conditions (15.104). Also included in these figures is 
the small t ime solution (15.100). It can be seen tha t  the analytical  solution is in 
excellent agreement  with the numerical  solution. To continue the numerical solution 
past  t = 4 (the s teady s ta te  value), Equat ion  (15.109) was used. Thus, at 0 = 0 ~ 
qw(O, t) reaches its s teady s ta te  value of qw = 0.6276. However, near 0 = 180 ~ the 
numerical  and small t ime solutions are in very good agreement  up to t ~ 1, as 
can be seen from Figure 15.18(b). The s teady s ta te  s imilari ty solution of Merkin 

(1979) shows tha t  near 0 - 180 ~ the thickness of the boundary- layer  is O ( ~ - e ) ;  

consequently we have the t empera tu re  profiles T ~ 1 for all y = O(1) near 0 = 180 ~ 
This is shown in Figure 15.18(b) by qw -+ 0 as t -+ c~ and confirmed by plots of T 
as a function of r/ (=  -YT) for various values of t as shown in Figure 15.19. From 

2t~ 
this figure we can see tha t  for t >> 1 there are basically two regions, a thick inner 
region where T ~ 1, the thickness of which is growing with  t ime t, and a th inner  
outer region where T changes rapidly from being O(1) to its outer  value of zero. 
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Figure 15.19: Temperature profiles, T(rl, t), as a function o/ rl at 0 - 180 ~ (upper 
stagnation point). 

15.6 Transient  m i x e d  convec t ion  from a horizontal  cir- 
cular cyl inder  

Consider an infinitely long horizontal circular cylinder of radius a, which is embedded 
in a fluid saturated porous medium of ambient temperature  Too. It is assumed that  
there is an upward, or downward, fluid flow past the cylinder with a uniform velocity 
Uoo at large distances from the cylinder and that  polar coordinates (~, 0) are such 
that  ~ -- 0 is the axis of the cylinder and 0 is measured in the downward vertical 
direction, i.e. 0 - 0 ~ corresponds to the upper stagnation point of the cylinder. 
Thus, at time t -  0 the initial flow past the cylinder can be writ ten in terms of the 
s tream function r as 

~ - - t - U ~  ~ _ sinO (15.110) 
r 

for a ~< ~ < cx~ and 0 ~< 0 ~< 27r, where the + sign and - sign correspond to 
the upward and downward flows, respectively. We also assume that  at time t = 
0 the surface of the cylinder is suddenly heated to a constant value Tw (> Too) 
and therefore a two-dimensional mixed convection flow is generated adjacent to the 
surface of the cylinder. The governing Equations (II.1), (II.2) and (II.5) can be 
writ ten in terms of the non-dimensional variables as follows: 

Ra(OT OTs i nO)  (15.111) 
V 2 r  ~ r  sin0-~ 00 r 



UNSTEADY FREE AND MIXED CONVECTION 567 

0T 1 ( 0 r  Or 1 V2 
0-- i -  + - - r Or O0 O0 Or ~ T (15112) 

where V 2 is the Laplacian in polar coordinates (r, 0) and the stream function r is 
given by the relations (7.38) . The non-dimensional variables are defined as follows: 

w 

U~ ~, r - -  r  T =  (15.113) 
t - ~ a'  aUoo' AT 

In order to solve Equations (15.111) and (15.112), along with appropriate initial 
and boundary conditions which will be formulated later, Bradean et al. (1998b) 
introduced the new perturbed stream function r defined as follows: 

(1) 
r  r - -  s i n0+r  0, t) (15.114) 

r 

so that r  at t = 0  for 1 ~< r < ~ and 0 ~< 0 ~ 27r. 
(15.112) then become 

Equations (15.111) and 

Ra(OT 0T s in0)  (15.115) 
V 2 r  -~r sin0-t 00 r 

OTo__{ + -I ( O r OT O r OT ) ~ 
r Or O0 O0 Or :t= E(T)= V2T (15 116) 

where the operator E is defined by 

( 1 )  0 ( 1 ) 0  E = s i n 0  1+  - c o s r  1 -  (15.117) 

We now consider the initial growth of the boundary-layer. In this respect, it is 
convenient to introduce the new variables 

1 --e ~ , r - r (~, 0, t) (15.118) 
Pe~ 

with Equations (15.115) and (15.116) becoming 

0 r  
sin 0 + b - ~  cos 0 (15.119) 

OT Ra ( O~ OT O~ OT ) 
O--T + Re (R + 1) 0~  00 090 0~  =t= E1 (T) - V2T (15.120) 

where 

v ~ -  o~ ~_o ~ o~ ~ 1 - 8 - ~  + o~ + N~-, b -  

[ [ ] sin 0 1 + 1 P e~- cos 0 1 1 o E1 = ~ ( R + i ) 2  - (R+1)2  o~ 

(15.121) 
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For small values of t (<< 1) it is convenient to use the variables 

. v  1 - - "  1 

r -  2 t ~ ,  r  2t~F(O,n,t)  (15.122) 

so that Equations (15.119) and (15.120) become 

OT -OT 
0----~ sin 0 + b-0--~ cos 0 (15.123) 

OT 
4 t - ~  + 

where 

4tRa [' OF OT 

Pe (R + 1) ~, 0~/ 00 

oFo ) 
OOOrl :I=E2(T) 

OT 
- V2T  + 2rl 0~{ (15.124) 

- o - ~ + b ~  +b28-~, b -  2t �89 , 
Pe~(R+l) 

E2--4tsinO[ l+K-4-f (R+I) 21 ] o,o, 1 1 [ (R+I) 21 ]~_~ o _ 2t~Pe~ cos0 1 
(15.125) 

The initial conditions for F and T, namely F0 and To, can be found by solving 
Equations (15.123) and (15.124) at time t -  0, which become 

02To OTo 
Or/2 + 2~ Or/ = 0 (15.126a) 

02 Fo OTo 
- sin0 (15.126b) 

Or/2 Or/ 

which have to be solved subject to the boundary conditions 

Fo(O,O)=O, T o ( 0 , 0 ) - 1  } for 0~<0~<27r (15.126c) 
OFo ~ 0 To -+ O as r] -+ cx:) &? 

Thus, we have 
To - erfc r/ 

(r/ 77 1 ~1)  (15127) F0 - erfc - ~ e  - '2  + sin 0 

Since the flow is symmetrical about the vertical axis of symmetry, we consider 
only the solution for 0 ~< 0 ~< 7r and 0 ~< rl < cx~. Thus, at small times, i.e. 0 < t <~ tp, 
where tp is a time to be specified, the problem reduces to solving Equations (15.123) 
and (15.124) subject to the initial solution (15.127) and the boundary conditions 

F(O,  O, t) - O, T(O,  O, ) - for 

F(O, rl, t) -- 0, o-~-(0, ~7, t) - 0 on 0 - 0, Tr, 
OF o--~ -~ 0, T ~ 0 as r/-+ cx~, 

0 ~< r /<  cxD (15.128) 

for any 0 < t < tp. At large values of time, i.e. for t > tp, the thermal boundary- 
layer thickens and it is appropriate to solve Equations (15.119) and (15.120) subject 
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to the initial conditions given by the solution of Equations (15.123) and (15.124) at 
t - - t p  and the following boundary conditions: 

r  T ( O , O , t ) - I  for 0~<0~Tr  

(o ,  t)  - o,  o r  (o t)  = o o - o,  -bY , 

0--~ --+ 0 T - + O  as ~'-+ c~, 
O F  , 

0 ~ ~ < co (15.129) 

O~<O~<~r 

for any tp < t < oc. 
First, Equations (15.119) and (15.120), along with the boundary conditions 

(15.128), were solved analytically by Bradean et al. (1998b) for small values of t 
using the method of matched asymptotic expansions in a similar way to that de- 
scribed by Pop et al. (1993a) in the free convection configuration. As a result of this 
analysis, we can calculate that the fluid velocity along the surface of the cylinder, 
vw(O,t), the average fluid velocity, ~w(t), and the average Nusselt number, Nu(t) ,  
which are given by 

vw(O,t) - ~ Ra  s inO+ O(t) (15.130a) 

1 ~  ~ 1 ( 2 P e )  
v -w( t ) -  -~r v(O, 0, t) d0 = -~r 1 + ~ + O(t) (15.1305) 

Nu(t )  - 1 fo ~ OT (O 0 t) d O -  1 ~ 1 1 - -~ ~ , , - ~ t - ~  -~ 2v/P e 4Pe----~t~ + O(t) (15.130c) 

where r - -  PeT  r It can be observed from the expressions (15.130a) that the 

direction of the fluid slip velocity along the surface of the cylinder at small values of 
t depends on the values of Pe and Ra. Thus, depending on whether Ra > 2Pe or 
Ra < 2Pe, the direction of the fluid slip velocity along the surface of the cylinder is 
opposite or in the same direction as that of the initial fluid flow past the cylinder. 

Then, Bradean et al. (1998b) have solved the two sets of Equations (15.119), 
(15.120) and (15.123), (15.124) numerically using a fully implicit finite-difference 
method similar to that described by Bradean et al. (1997) for the free convection 
configuration. We next present only some of the results of this study but detailed 
results can be found in Bradean et al. (1998b). 

15.6.1 A i d i n g  f low 

In this case the variation with time of the mean fluid slip velocity, ~w(t), and the 
mean Nusselt number, Nu(t ) ,  is shown in Figure 15.20 for Pe - 70 and Ra = 140. 
The analytical small time solution given by Equation (15.130c) is also included in 
this figure. These results are found to be in very good agreement up to t ~ 1, with 
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Figure 15.20: Variation of (a) the average fluid slip velocity, ~w(t), and (b) the 
average Nusselt number, Nu(t) ,  with t for Pe = 70 and Ra = 140 in the case of 
aiding flow. The numerical solution is indicated by the solid line, the analytical 
small time solution (15.130c) is indicated by the broken line and the symbol �9 
corresponds to a minimum value of Nu(t) .  

this agreement decreasing as Ra increases when Pe is fixed and vice versa. Fig- 

ure 15.20(b) also shows tha t  there is a minimum value of N u ( t )  which is associated 

with a maximum in the thickness of the thermal  boundary-layer  on the upper  sur- 

face of the cylinder just  before convection becomes dominant,  a si tuation that  was 
also observed in the free convection configuration studied by Bradean et al. (1997). 

The streamline and isotherm pat terns  for Pe = 7 and Ra = 140 at different 
values of t are presented in Figure 15.21. It can be seen that  after the initial 
conductive stage, the convective effects become more significant and a plume region 
develops near the upper  surface of the cylinder. The heat penetrates  further upwards 
into the porous medium as t ime increases and the evolution of the isotherm pat terns  
in t ime is qualitatively similar to that  obtained in the free convection case. However, 

the increase in the fluid velocity near the surface of the cylinder gives rise to two 
vortices which are symmetr ical  about  the vertical axis 0 = 7r, as can be seen in 

Figure 15.21. As time increases, these vortices rota te  further upwards and their size 

increases. 

1 5 . 6 . 2  O p p o s i n g  f l o w  

Figure 15.22(a) displays the variation with t of ~w(t) and N u ( t )  for Pe = 7 and 
Ra = 28 and 140, while Figure 15.22(b) is for Pe = 70, and Ra = 70 and 140. The 
analytical  small t ime solution given by Equat ion (15.130a) is also shown in these 
figures. From Figure 15.22(a) it is observed tha t  when Ra > 2Pe, the direction of 
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(a) 

(b) 

(c) I 

i 
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I 

Figure 15.21- Streamlines (left) and isotherms (right) for  P e  - 7 and R a  - 140 
when (a) t - 0.25, (b) t = 0.75, and (c) t = 20, in the case of aiding flow. 
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Figure 15.22: Variation of (a) the average fluid slip velocity, Vw(t), and (b) the 
average Nusselt number, Nu(t) ,  with t for Pe = 70 in the case of opposing flow. 
The numerical solutions are indicated by the solid lines and the analytical small 
time solutions given by Equation (15.130a) are indicated by the broken lines. 

the fluid velocity along the surface of the cylinder is opposite to that  of the external 

flow. In this case, a local min imum in time of N u ( t ) ,  which is a s soc i a t edwi th  a 
max imum in the thickness of the thermal  boundary-layer at the upper  surface of 
the cylinder, is obtained as in the free convection case. However, for Ra  < 2Pe 
the forced convection is dominant  and the only effect of the buoyancy force on the 
fluid flow is to decrease the magni tude of ~w(t). Figure 15.22(a) for Ra = 70 and 
Pe = 70 shows tha t  ~w(t) is in the same direction to that  of the external flow at all 
times. In the forced convection dominated flow, i.e. Ra > Pe, the average Nusselt 
number  and the thickness of the thermal  boundary-layer near the upper  surface of 
the cylinder are monotonic in time, see Figure 15.22(b). 

The streamline and isotherm pat terns  for Ra = 280 and Pe = 70 are shown in 
Figure 15.23. We can see that  two symmetrical  counter rotating cellular pat terns  
develop again near the surface of the cylinder and that  they penetrate  further up- 
wards into the porous medium as time increases, but  only to a finite distance below 
the cylinder. 

Finally, we focus our at tent ion on the case of the steady state mixed convection 
boundary-layer  flow around the cylinder as obtained by Merkin (1979) and Cheng 
(1982) for similar problems. The steady state boundary-layer equations of this 
problem can be wri t ten in non-dimensional form as follows: 

~ t  GQV 
0--~ + 0-~ -- 0 (15.131) 

u = 2(1 + AT)s inx  (15.132) 
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(a) 

(b) 

t I 

Figure 15.23: Streamlines (left) and isotherms (right) ]or Pe  = 70 and Ra = 280 
when (a) t = 6 and (b) t = 40. 

OT OT c92T 
u~--x- x + v 0~ = 0 r  -2 (15.133) 

where x is the non-dimensional  distance along the surface of the cylinder measured 
from the lower or the upper  side of the cylinder in the aiding or opposing flow 
situations,  respectively, ~ is the coordinate  normal  to the  surface of the cylinder 
defined in expression (15.118), u and  v are the velocity components  in the x and 
directions, respectively, and 

R a  
A -  ~ 2P---~ (15.134) 

where the + and - signs correspond to the  upward aiding and downward opposing 
external  flows, respectively. 
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The boundary conditions appropriate to Equations (15.131) - (15.133) are as 
follows: 

v - 0 ,  T - 1  on ~ - 0  (15.135) 
u ~ 2 s i n x ,  T ~ 0  as ~'--+co 

A similarity solution of Equations (15.131) - (15.135) can now be derived using 
a transformation procedure as proposed by Merkin (1979) for the corresponding free 
convection case, namely 

1 (x) 
T - ~ (f '(~) - 1),  ~ - V ~ c o s  ~ (15.136) 

where f satisfies Equations (11.156) and the primes denote differentiation with re- 
spect to ~. From the present numerical solution at time t = 20, Bradean et al. 
(1998b) have obtained N u  = 0.357 for Ra = 140, Pe = 70 and ~ = - 1  and also 
N u  = 2.153 for Ra = 140, Pe = 7 and A = 10. The steady state boundary-layer 
solution (15.136) as determined by Cheng (1977b) is N u  = 0.422 for A = - 1  and 
N u  = 1.930 for )~ = 10, respectively. It can be seen that these results are in rea- 
sonable agreement for relatively low values of Ra and Pe, but on increasing these 
parameters, so that the value of A is held fixed, much better agreement should 
be obtained. As we have seen in Section 11.9, Merkin (1980) has shown that for 
-1.354 ~ ~ < - 1  the solution of Equations (11.156) is not unique, whereas for 

~ -1 .354 no solution of these equations exists. However, the numerical results 
obtained by Bradean et al. (1998b) suggest that a thermal b0undary-layer forms 
adjacent to the surface of the cylinder for any value of ~. Figure 15.23, for the op- 
posing flow situation, shows that  the flow at the edge of the thermal boundary-layer 
becomes entirely different from the enforced external flow as the value of )~ decreases 
below ~ = -1.354. Therefore, for )~ < -1.354, the boundary-layer solution has to 
be determined using another flow boundary condition at the edge of the thermal 
boundary-layer which, unfortunately, is unknown. 

15.7 Transient free convect ion from a sphere 

Relatively little work has been performed on the problem of transient free and mixed 
convection from a sphere in a porous medium and, to our knowledge, there are only 
five recent papers on this problem. Sano and Okihara (1994) have studied the 
transient free convection case using asymptotic solutions in terms of small values 
of the Rayleigh number, Nguyen and Paik (1994) have investigated numerically the 
transient mixed convection from a sphere in a porous medium saturated with water 
using a Chebyshev-Legendre spectral method, whilst Sundfcr and Tyvand (1996) 
have analysed the development of the initial free convection flow by the method 
of matched asymptotic expansions. They have assumed that the Rayleigh number 
Ra is large, but finite, and the solution is obtained for small values of time only. 
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However, Yan et al. (1997) and Yan and Pop (1998) have numerically studied the 
problem of transient free and, respectively, forced convection flow associated with a 
sphere which is embedded in a fluid-saturated porous medium and whose surface is 
suddenly changed to a constant temperature or constant heat flux. We shall present 
some of the most important results obtained by Yan et al. (1997) and Sano and 
O kihara (1994). 

Consider a sphere of radius a, which is immersed in a fluid-saturated porous 
medium of uniform ambient temperature Too. We assume initially (t < 0) that 
the sphere has the same temperature as the porous medium and, at time t - 0, 
it is suddenly heated and subsequently maintained at the constant temperature Tw 
(> Too). A spherical polar coordinate system (~, 0, r with the origin at the centre of 
the sphere, is chosen with 0 - 0 vertically upwards, i.e. the upper pole of the sphere. 
Both the flow and the temperature fields are assumed to be axially symmetrical and 
hence independent of the azimuthal coordinate r Under the Darcy-Boussinesq 
approximation, the governing equations can be written in non-dimensional form as 
follows, see Yan et al. (1997), 

OT 
V 2 r  r s in0  ~rSint?-~ 0T00 cost?)r (15.137) 

OT 

Ot 

where 

! r2sin0 00 Or Or O0 ---Raa V 2 T  + -  -~ (15.138) r - ~ r  t O 0  

02 1 02 cot 0 0 
V2 = Or 2 -~ r 2 002 r O0 (15.139) 

Since the flow experiences large gradients near the surface of the sphere, and 
in particular near its upper pole (O = 0~ Yan et al. (1997) have introduced the 
following transformation 

a ,  c~. + 1 0 = 2 s i n - l #  (15.140) r - l _  x 

where a ,  is a constant which, to some extent, can be used to control the mesh 
density distribution when we set up the finite-difference scheme. Equations (15.137) 
and (15.138) become, in terms of the new variables (x, #), 

V2 r  2 1 - # 2  [ 
1 - �9 - 1 )  

cOT ~, (1 - 2# 2) 0T ] 
x + l } ~ +  4 # ( 1 - x )  0# j  (15.141) 

or 0T) 
Ox O# 

c~,(1 - 2# 2 ) 0 T } ]  
4#(1 - x ) [ (a ,  - 1)x + 1] 0# 

OT (0r 
(1 x)20--~ + - 4 [ ( c ~ , - 1 ) x + 1 1 2 .  O#Ox 

2c~,(1 - x) { 0 T  1 V~T + 
Ra (c~, - 1)x + 1 Ox-x -t- 

(15.142) 
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where 

O-)2 
V 2 - (1 - x)20x 2 

2 ( 1 #  2 ( 0  2 ) 0 a ,  - ) 1 0 
2(1 - x ) ~  x + (15.143) 

4 [ ( a . - 1 ) x + l ]  2 0# 2 # 0 #  

At time t - 0, the sphere is heated to a higher temperature than that of the 
surrounding fluid, so the heat transfer is dominated by diffusion in the initial stages. 
At this early stage of the development of the boundary-layer the thickness of the 1 
heated layer near the surface of the sphere is proportional to t :  and therefore during 

x this initial stage the most convenient variables to use are (r/,#), where r/ - -T- 
t: 

Equations (15.141) and (15.142) are thus transformed as follows: 

2 o , / 1  V3r -- 4# 2 
1 - ~t:  

(Ol, 

.,~ (oT ,oT) 
( 1), o, , ,o~  + 1 - r/t-~ 

- 1 ) ~ / t � 8 9  OT a . ( 1 - 2 #  2) OT I ,~ ~§ ( ) -  (1~.144) 

~ -(1.--- ( ) 0r OT 0r OT 
4#t�89 [ ( a , -  1)~/t�89 + 1] 2 O# Orl Or/O/z 

I 1 I 2o, (i_ ~,:) lOT 1 V2 T + : --:--- _ 
- Ra (a.  - 1)r/t: + 1 t :  0r/ ~- 4# (I- ~t�89 I)tit�89 + i] O# 

(15.145) 

where 

/1 __ Tit1) 2 ( 1 )  2 ( ) (02 2 1-~Tt~ 0 a . ( 1 - # 2 )  02 1 0 
V ~ =  

t ov  2 t~ O~ ~ ~ 2 4 [ ( a . -  1)r/t: +1]  0"2 # 0 #  

(15.146) 
Equations (15.144) and (15.145) have to be solved subject to the initial and 

boundary conditions 

r  T - 0  for 77>0, 0 E # E 1 ,  t E 0  
1 

r - 0, T -  1 (CWT) O T  _ -a . t :  (CHF) on r / -  0, t > 0 (15.147a) &/ -- 

0 e (  0 e ) - - 0  on x - - I  (r l - t � 8 9  T - 0, ~ = o~ 

along with the symmetrical conditions 

r  on # - - 0 , 1 ,  0~<x~<l  / \ ( 0 ~ ~ t - � 8 9  

0 T = 0  on # = 0 ,  0~<x~<l  0 ~ < r l ~ t - :  Ou 
(15.147b) 



UNSTEADY FREE AND MIXED CONVECTION 577 

The corresponding boundary conditions for T at # = 0 (0 -- 0 ~ are not so obvious 
and they were carefully treated by Yan et al. (1997). 

The solution of Equations (15.145) - (15.147) for small values of t can be ex- 
pressed in the CWT case in the form 

r - 4t �89 #2 (1 - #2) fo (r/), T = T0(y) (15.148) 

where f0 and To satisfy the equations 

f~ = o~,Tg, 2Tg' + o~2,Ra 77 Tg - 0 (15.149a) 

and the boundary conditions (15.147b) reduce to 

fo(0) - 0, To(0) - 1 (15.149b) 
f ; - ~ 0 ,  T o ~ 0  as ~ ~  

Equations (15.149) have the solution given by 

(1) 
f0 -- a,77 erfc a*~ Ra~ 2 

To -- erfc ( a*nRa�89 ) 2  

r/2 [l-exp Ro)] 
(15.150) 

Thus, the average Nusselt number, Nu, can be calculated as 

Nu - -27r ~o ~ OT) s in0d0  (15.151) 
- ~ r  r--1 

which gives 
1 

Nu 4 ( l r R a )  ~ ~ (15.152) 

In the CHF case the solution of Equations (15.144) - (15.147) for small values 
of t can now be expressed in the form 

r - 4t# 2 (I - #2) L (r/), T =  a,t~To(~) (15.153) 

where f0 and To are given by the equations 

f~ 2-, "" 2Ra (riT~ To) 0 (15.154a) - -  a , T 0 ,  2 T ~ '  + a ,  - - 

together with the boundary conditions 

N 

fo(0) = 0, Tg(0) = - 1  
f~--+O, To -+0  as U--+oc 

(15.154b) 



578 CONVECTIVE FLOWS 

The solution of Equations (15.154) is given by 

f o - -  (~a +-~-r}2) erfc ( a*,~ Ra�89 ) ~* ( 2 + ~ ~ e x p  - ~  

( ) ( ) T0 - -r /erfc c~.rt Ra�89 2 a2.T12Ra 2 + exp - c ~ , ~  2 

a2.y2Ra ) 1 
4 -~- R'--a 

(15.155) 

and therefore the non-dimensional temperature at the surface of the sphere has the 
expression 

1 

Tw(t) - 2 ~-ffda (15.156) 

for small values of t. 
Equations (15.141) and (15.142), or (15.144) and (15.145), together with the 

boundary conditions (15.147), were solved numerically by Yan et al. (1997) using a 
standard finite-difference scheme which is well described in this paper and therefore 
is not repeated here. Numerical results were obtained for both cases of CWT and 
CHF for 0.01 ~ Ra ~ 200 with a .  = 1, 1.5, 4 and 5. First, Equations (15.144) and 
(15.145) were solved during the early stages of the heat conduction up to time t = 1 
and then the iteration procedure was switched to Equations (15.141) and (15.142) 
for t > 1. 

Figure 15.24 shows the instantaneous streamlines for Ra = 50 at times t = 1, 3, 
6, 10, 15 and 50. In each plot, the left-hand half of each figure is for the CWT case, 
whilst the right-hand half is for the CHF case. It can be seen that the flow fields for 
the two cases considered are quite different from each other, with the fluid flow in 
the vicinity of the sphere at a given time t for the CWT case being much stronger 
than that for the CHF case. In the early stages, the fluid flow is mainly confined 
to the vicinity of the sphere, whilst at later times, due to the convection from the 
sphere, the fluid flow spreads outwards and upwards. From about time t = 10, the 
flow pattern very close to the sphere does not change very much, as can be observed 
from Figures 15.24(a,e,f), but there is a large difference far away from the sphere, 
see Figures 15.24(e,f). The steady state may never be reached, but, after a long 
time, the fluid flow near the sphere approaches its steady state behaviour. 

In order to demonstrate how the heat conduction develops with time, the 
isotherm line T = 0.2 for Ra = 1, 5, 10, 50, 100 and 200 at times t = 1, 3, 6, 
10 and 15 is plotted in Figure 15.25. Again, the left-hand half of each figure is for 
tim CWT case, whilst the right-hand half is for the CHF case. It is seen that, as 
for the streamline plots, the convection of heat is stronger for the CWT case than 
it is for the CHF case. For relatively small values of Ra, for example Ra = 1, even 
at time t = 15, the isothermal line T = 0.2 still appears approximately circular, as 
can be seen from Figure 15.25(a). As the vahm of Ra increases, convection starts 
to become important and for Ra >1 50 we can see a very clear cap of the plume 
at about t -- 10, which travels upwards as the convection process continues. For 
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Figure 15.24: Streamlines  for  Ra  - 50 at various t imes,  namely  (a) t = 1, (b) 
t - 3, (c) t = 6, (d) t - 10, (e) t - 15, and ( f )  t - 50, for  the cases of constant  
temperature ( lef t-hand half)  and heat f lux  (r ight-hand half) .  
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(a) (b) 

(c) 

(e) 

(d) 

(f) 

) 
. . . . .  

F i g u r e  15.25: Isothermal line T = 0.2 for t = 15, 10, 6, 3 and 1 (ordered from 
the top surface of the sphere) when (a) Re  = 1, (b) Ra = 5, (c) Ra = 10, (d) 
Ra = 50, (e) Ra = 100 and (]) Ra = 200. 
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R a  = 1, 5 and 10, the time at which the cap of the plume appears may be greater 
than at t = 50 and this value is the largest time for which the calculations have been 
performed. 

Figure 15.26 illustrates the variation of N u  with t for some values of R a  and 
the small time solutions (15.152) for R a  - 50 and 200 are also included in this 
figure. We can see that these small time solutions give good approximations to the 
full numerical solution obtained from Equations (15.141) and (15.142), or (15.144) 
and (15.145). In addition, it is observed that  the value of N u  settles down very 
quickly after t = 5 and this suggests that  the local heat convection has reached its 
asymptotic steady state value. However, it is interesting to note that, for R a  = 10, 
50, 100 and 200, the value of N u  decreases from its value at time t = 0 and reaches 
a minimum value which is below its steady state value and then it starts to increase 
slightly towards the steady state value. However, if R a  is sufficiently small, then 
N u  monotonically decreases towards its steady state value and the same situation 
occurs for the corresponding problem of a viscous (non-porous) fluid, see Section 9.9. 

320" 

240" 

NU 
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~\\x~ Ra = 1, 5, 10, 50, 
"',, "',,, 100, 200 

. . . . .  

~ ~ "  . . . . .  
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t 

Figure 15.26: Variation of the average Nusselt number, Nu ,  with t for some values 
of Ra. The numerical solutions are indicated by the solid lines and, for the cases 
Ra - 50 and Ra - 200, the small time solutions (15.152) are indicated by the 
broken lines. 

Figure 15.27 shows the variation of N u  with R a  at t - 50, together with the 
steady state results obtained by Yamamoto (1974) for small values of R a  and by 
Pop and Ingham (1990) for very large values of R a  (boundary-layer approximation). 
It can be seen that  the numerical results obtained by Yan et al. (1997) are in very 
good agreement with those reported by Pop and Ingham (1990), and this agreement 
becomes better  as R a  increases, and with those of Yamamoto (1974) for small Ra.  

It is interesting to note that  although the results of Yamamoto (1974) are valid for 
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Figure 15.27: Variation o/ the average Nusselt number, Nu, with Ra for t = 50. 
The numerical result obtained by Yah et al. (1997) is indicated by the solid line 
and the steady state results obtained by Yamamoto (197~), for small values o] Ra, 
and by Pop and Ingham (1990),/or large values o/ Ra, are indicated by the broken 
and dotted lines, respectively. 

Ra ~ 1, these results can be used for values of Ra up to about  2, see Figure 15.28. 
The variation of the surface tempera ture  Tw (0, t) as a function of 0 at different values 
of t is shown in Figure 15.28 for the case of constant  surface heat flux. The first thing 
we observed is tha t  the maximum and minimum surface tempera ture  is always at the 
top (0 = 0 ~ and the bo t tom (0 = 180~ surface of the sphere, respectively. Further,  
it is seen that  for small values of Ra the surface t empera tu re  settles down much more 
slowly than  that  for large values of Ra with Tw(O, t) reaching its asymptot ic  value 
at about  t = 25 and 15 for Ra = 10 and 50, respectively, and for Ra = 50 and 100 
the wall t empera ture  profile at t = 50 is almost identical to that  at t = 15. We also 
observe tha t  the steady state wall t empera ture  for small values of Ra is higher than 
that  for larger values of Ra. 

In order to see details of the tempera ture  dis t r ibut ion at large values of t, Fig- 
ure 15.29 shows the steady isothermal line at t = 50 for Ra = 50 in the vicinity of 
the sphere for both  the C W T  and CHF cases. It is observed from the C W T  case 
that  even at t = 50 the heat front is still very strong. The small bulge behind the 
front represents the oscillation phenomenon observed in the numerical computa t ion  
and this oscillation s tar ts  at about  t = 25. On the other hand, in the CHF case, 
the heat is confined in a much smaller region than  that  in the C W T  case and no 
oscillations in the t empera tu re  are detected up to a t ime t = 50. 

As we have mentioned before, it was observed during the computa t ion  that  for a 
given value of Ra, the t empera tu re  vertically above the sphere along the line 0 = 0 ~ 
star ts  to oscillate as t increases. The time at which the oscillation s tar ts  varies with 
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Figure 15.28: Variation o] the wall temperature distribution, Tw(9, t), with 9 in 
the case of constant wall heat flux (CHF) when (a) Ra - 10, (b) Ra  - 50 and (c) 
R a -  100. 

the value of Ra; the larger the value of Ra ,  the earlier the oscillation starts .  For 
R a  - 100, this  oscillation s ta r t s  at abou t  t - 10 in the cons tant  t e m p e r a t u r e  case, 

see Yan et al. (1997). We believe t ha t  this oscillation p h e n o me n o n  is p robab ly  due to 
a physical  ins tabi l i ty  of the p rob lem and  fur ther  invest igat ions are required to clarify 
this behaviour .  It should be po in ted  out  t ha t  in a similar  invest igat ion of the free 
convection Newton ian  (non-porous)  flow from a sphere  by Riley (1986), oscillations 
in t e m p e r a t u r e  vertically above the sphere  along 0 -  0 ~ are also repor ted  for large 
values of t. 
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Figure 15.29" I s o t h e r m s  f o r  R a  = 50 and t - 50 in the cases of  (a) cons tan t  

sur face  t empera ture  ( C W T )  and (b) cons tan t  surface heat f l ux  ( C H F ) .  



Chapter 16 

N o n - D a r c y  free and mixed  
convect ion  boundary- layer  flow 
in porous  media  

16.1 I n t r o d u c t i o n  

The classical theory of heat and fluid flow within fluid-saturated porous media has 
been developed from studies based on Darcy's law, which is essentially appropriate 
only in very low permeability porous media, or when the Reynolds number based 
on the pore diameter of the media is small. However, the non-Darcy flow situation 
prevails when the Reynolds number and characteristic fluid velocity of the medium 
becomes large. Forchheimer (1901) proposed an additional term to the Darcy equa- 
tion, which is proportional to the square of the fluid velocity, to account for the 
inertia of the fluid flow as it makes its way through the porous medium. This 
pioneering work was followed by many proposals for the correct description of non- 
Darcy flows, such as the work by Ergun (1952), Ward (1969), etc. As a continuing 
effort towards a complete understanding of the transport phenomena in porous me- 
dia, a number of studies have considered various non-Darcian effects on forced, free 
and mixed convection flow in porous media. In particular, Vafai and Tien (1981) 
have analysed the boundary and inertia effects on forced convection flow and heat 
transfer characteristics from a flat plate which is embedded in a porous medium. 

An at tempt to obtain a similarity solution for non-Darcian free convection 
boundary-layer over a vertical flat plate was first made by Plumb and Huenefeld 
(1981) using the model proposed by Ergun (1952). The limiting conditions where 
the Darcy term is negligibly small, namely the Forchheimer (1901) model, has been 
studied by Bejan and Poulikakos (1984) for the free convection boundary-layer over 
a vertical flat plate, by Ingham (1986a) for isothermal two-dimensional and axisym- 
metric bodies of arbitrary shapes and by Nakayama et al. (1990) for non-isothermal 



586 CONVECTIVE FLOWS 

bodies immersed in a porous medium. The model of Ergun (1952) was also employed 
by Vasantha et al. (1986) for a vertical frustum of a cone and by Lai and Kulacki 
(1987), Kumari et el. (1990a, 1990c), Rees (1996) and Hossain and aees (1997) for 
a horizontal flat surface in a porous medium in order to investigate the combined 
effects of the Darcy and the inertia terms. Detailed mathematical relationships on 
the non-Darcian flow phenomena in a porous media can also be found in an excellent 
book and a review article by Nakayama (1995, 1998). 

16.2 Similarity solutions for free convection boundary- 
layer flow over a non-isothermal body of arbi- 
trary shape in a porous medium using the Darcy- 
Forchheimer model 

Consider a heated two-dimensional or axisymmetric body of arbitrary shape which 
is embedded in a fluid-saturated porous medium of ambient temperature Too, as 
shown in Figure 16.1, where x and y are the coordinates measured along the body 
surface and normal to it, respectively, and r*(x) is a function which describes the 
surface of the body. It is assumed that the surface of the body is heated to a 
variable temperature Tw(x). Under the Forchheimer (1901) model and the Boussi- 
nesq approximation, the governing steady boundary-layer equations are obtained 
from Equations (II.1), (II.3a) and (II.5) and can be written as, see Nakayama et al. 
(~990), 

0 0 ( r 'u)+ (r* ~) - 0 
bZ oy 

(16.1) 

! ~g Fluid Temperature 
[[ , , ~ ' ,  "~ Profile 

[ . . ~ . .  %0 

[ !:.. i i . .  Boundary-Layer 

! 

Figure 16.1: Physical model and coordinate system. 
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u2 = f lx /~  (T - Tc~)gx (16.2) 
b* 

OT OT 02T 
+ v-a-- - (Xm (16 3) U-~X c9y2 oy 

where 1 

g ~ - g  1 -  ~ (16 .4)  

and r* = 1 for a two-dimensional body and r* = r(x) for an axisymmetric body, 
respectively. The appropriate boundary conditions for these equations are 

v - 0 ,  T - T w ( x )  on y - 0 ,  x~>0 
T --+ T~ as y --+ c~, x >/0 (16.5) 

According to the technique proposed by Nakayama and Koyama (1987) for the 
Darcy flow model, the following variables are introduces to solve Equations (16.1) - 
(16.3) 

1 
1 

( ' ) '  y /,66/ r  amr* Ra~ I f (x ,q) ,  T - T o o -  ATwe(x,  ~), r] - - 
X 

where 

AT,,  = T w ( x ) - T ~ ,  Rax - gx~/KflATwx2 I(x)  = f o  (ATw) ~ g ~r*2 dx (16.7) 
* 2 ~ 1 

b (~m (AT, o) ~ g~xr*2x 

with Raz being the modified local Rayleigh number for the Forchheimer model and 
r is the stream function defined as 

1 0r 1 0r 
, ~ - ( : 6 . 8 )  

u -  r* Oy r* Ox 

In terms of the new variables, Equations (16.2) and (16.3) are transformed to 

: n,) 0" + (-~ - 

f,2 _ 0 

f O ' - n l f ' O = I x (  f ' O O-~x - o ' O f 

(16.9) 

(16.10) 

and are subject to the boundary conditions (16.5) which become 

f = 0 ,  0 = 1  on r / = 0 ,  x>~0 
O-+0  as 77-+c~, x>~0 

(16.::) 
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where primes denote differentiation with respect to ~ and the function n(x) is given 
by 

n(x) - d (lnATw) (16.12) 
d (lnx) 

Similarity solutions of Equations (16.9) and (16.10) are possible when the lumped 
parameter nI  remains constant. One such obvious case is an isothermal body, which 
has been considered by Ingham (1986a). To seek other possible similarity solutions, 
Nakayama et al. (1990) have written the parameter nI  in the form 

n I -  d (lnATw) f :  (ATw) ~ d~ (16 13) 
5 

d (ln ) (ATe) 

where 
j~0 x 1 - g~r*2dx (16.14) 

Equation (16.13) suggests that similarity solutions of Equations (16.9) and (16.10) 
are possible when the wall temperature distribution ATw varies according to 

ATw ~ ~m (16.15) 

Equation (16.13) then gives 
2 m  

nI  - (16.16) 
2 + 5 m  

and Equations (16.9) and (16.10) can be reduced to the following ordinary differential 
equation 

2 + m  0 ' f ~  ~ 2m t?~ = 0  (1617a) 
0"+  2 (2+5m)  Jo 0~ds-2+5-------~ 

which has to be solved subject to the boundary conditions 

0 = 1  on ~7--0 (16.17b) 
0 - - + 0  a s  ~? --~ c ~  

It should be noted that for rn -- 0, Equation (16.17) reduces to that derived by 
Bejan and Poulikakos (1984) for the non-Darcy free convection boundary-layer flow 
over a vertical flat plate which is embedded in a porous medium. 

Finally, the local Nusselt number, Nu,  may be evaluated as follows: 
1 1 

N u -  Xqw __ ( 1 +  2 m )  ~ [d( ln~)]  ~ 1 kmATw (lnx) Ra~ [-0'(0)] (16.18) 

The present similarity theory with AT~ given by Equation (16.15) has been ap- 
plied by Nakayama et al. (1990) to the free convection boundary-layer over a vertical 
flat plate, a vertical cone pointing downward, a horizontal circular cylinder and a 
sphere. The similarity variable ~ defined by Equation (16.14) for these geometries 
is given by 
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(i) Vertical flat plate (m - n) 

(x) (16 19a) ~-g~l ~ 

(ii) Vertical cone pointing downward ( m -  ~) 

ft 
sin2 (- i f)  

where ft is the half angle at the apex of the cone. 

(iii) Horizontal circular cylinder 

(16.19b) 

~0 r 1 - g�89 (sinr de (16.19c) 

(iv) Sphere 

- g�89 f0r (sine) ~ de (16.19d) 

where l denotes a length scaling, such as a plate length, a cone slant height and the 
radii of a cylinder or a sphere, whilst r is the peripherical angle measured from the 

T lower stagnation point such that T -- r 
The non-dimensional wall heat flux, q~ (~), for the cases mentioned above can 

be defined as follows: 

1 

qw (~) = k m A T  w b, a 2  
(16.2o) 

where ATref is the wall-ambient temperature difference at the trailing edge of the 
plate or cone, or at the upper stagnation point of the cylinder or sphere. It is easily 
shown that q~ (~) varies as 

(i) Vertical flat plate ( m -  n) 

. ( x )  qw (x)  -- F ( n )  -[ 
5 m - 2  

(16.21~) 

(ii) Vertical cone pointing downward ( m -  ~) 

q; (~1 = v h f  g T 
5 r n - - 2  

4 cos�88 ft (16.21b) 
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(iii) Horizontal circular cylinder 

, ( s ine  ) K qw (r - F ( m )  .,~, - - - f -  
sin~ r 1 6 2  

1 5 
sln~ r 1 6 2  

�9 1 
fo  s,n~ r 1 6 2  

when the wall temperature varies as 

( 1 6 . 2 2 a )  

sm-~ r 1 6 2  
= ~r . ~ (16.22b) 

ATref  f0 s ln2 r 

(iv) Sphere 

, ( sin3  ) 
q~ (r - F ( m )  f~ r sin~ r 1 6 2  

when the wall temperature varies as 

( sin0 
fo  sin~ r 1 6 2  

m 

(16.23a) 

sm~ r 1 6 2  
= ~ . ~ ( 1 6 . 2 3 5 )  

ATref fo sm~ r de 

with F ( m )  defined as 
Niz 

- ~ (16 24) 
F ( m )  [d(in ~) ] ~ A 

[d(lnx) ] Ra~ 

The variation of q~ (r given by Equations (16.22) and (16.23) for a horizontal 
circular cylinder and a sphere, with r is shown in Figure 16.2. It is seen that the 
heat flux becomes infinite at r = 0 (the lower stagnation point of the cylinder or 
sphere) for m = 0 (isothermal cylinder and sphere). Itowever, the heat fluxes vanish 
at both r = 0 and r = 7r (the upper stagnation point of the cylinder or sphere) for 
any values of m ~ 0 (nonisothermal bodies). 

It is worth mentioning that  Fand et al. (1986) have carried out an experimental 
study for the free convection over an almost horizontal isothermal circular cylinder 
and reduced the experimental data by considering only the averaged Nusselt number 
(based on the diameter of the cylinder, D = 21 -- 0.0145 m), which in the above 
theory proposed by Nakayama et al. (1990) can be written as follows: 

[(  )1/0 ]( ) ( )1 N u  - 4D ~ 1 7r gK/3ATref D �88 gK/3ATref D 
b* ~ q~ (r de a2 m ~ a 2  

( 1 6 . 2 5 )  

and for the case of water and 3ram diameter glass spheres we have K = 5.6 • 
10 -9 m 2 and b* - 0.64 m -1. The values of N u  are given in Table 16.1 along with the 
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(a) (b) 

1.0] 1.0 
m=O 

m - -  2-- 

0 ~ 7r 
2 r 

0.8 
q~(r 

0.6 

0.4 

0.2 

0.0 

0.8 
q~(r 

0.6 

0.4 

0.2 

0.0 

m = O  

, ,| ~ ' |  , ,,| =, | , 

~ "  7 ] "  0 ~ r 

Figure 16.2: Variation of the local surface heat flux, q~ (r with r for (a) a 
horizontal circular cylinder and (b) a sphere. 

Table 16.1: Values of the average Nusselt number, Nu ,  for a horizontal circular 
cylinder which is embedded in a porous medium. 

c~mv . ~ Equation (16.25) 
62.24 3.029 10.4 

125.00 2.521 11.8 
197.90 2.205 12.8 

. . . . . . . . .  

Fand et al. (1986), Fand et at. (1986), 
Experimental Equation (16.26) 

. . . . . . . . . . . . . . . . . . .  
. . . . . . . .  

7.30 
9.83 

11.40 

4.46 
6.32 
7.95 

experimental data  of Fand et al. (1986) and the values as obtained by Fand et al. 
(1986) from using the Darcy law model, namely 

1 

C~m~ (16.26) 

It can be seen that  the theoretical results of Nakayama et al. (1990) are in reasonably 
good agreement with the experimental data of Fand et al. (1986). We also observe 
that the results based on the Darcy law model, given by Equation (16.26), are much 
smaller than those for a non-Darcy fluid flow model. 
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16.3 N o n - D a r c y  mixed convect ion  boundary- layer  flow 
along a vertical  flat plate in a porous m e d i u m  

Consider the mixed convection flow along a vertical flat plate which is heated or 
cooled to a constant temperature Tw in a fluid-saturated porous medium of ambient 
temperature Tcr and fluid velocity Ucr which is oriented along the plate in the upward 
direction. Assuming that the Boussinesq and boundary-layer approximations hold 
and using the Darcy-Forchheimer extended model, namely Equation (II.3b), the 
governing boundary-layer equations can be written as follows: 

Ou Ov 
Ox +-~y - -0  

u + b,--Ku2 - -  Uc~ + b, ~Ku~ 
1] b, 

OT OT 02T 
~ - ~  + v -~y  - ~ m o y 2 

(16.27) 

:l= g K___flfl ( T - T~  ) (16.28) 
v 

(16.29) 

where the :t: signs in Equation (16.28) denote the assisting (Tw > Too) or oppos- 
ing (Tw < Too) flow, respectively. The appropriate boundary conditions for these 
equations are as follows: 

v - O ,  T - T w  on y - 0 ,  x > / 0  (16.30) 
u--+Uc~, T -4Tc~  as y - + o o ,  x / > 0  

To solve Equations (16.27) - (16.30), Yu et al. (1991) have proposed the following 
similarity variables 

r -- am,~T f (~) 0(77) - T - T~  ( Y ) , [ATi  , ~ ] -  )~7 -x (16.31) 

where ,k7 is given by 
1 

~7 - Pe~ + Rm (16.32) 

and Rm represents a modified non-Darcy mixed convection parameter and is defined 
as follows: 

1 
R m =  1 (16.33) --~+ ~-~. 

Ra~ Ra*~ ~I 

Also Rax and Ra* are the local Darcy-Rayleigh and the local non-Darcy-Rayleigh 
numbers, respectively, which are defined as follows- 

Ra~ - g K f l  IATI x Ra~ = gfl IATI x2 
- amU ' b,a 2 (16.34) 
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Further, the following inertial, ~, and mixed convection, ~, parameters are intro- 
duced: 

1 1 
= . � 8 8  ~ = ~ (16 .35)  

1 + ~1= I + P _ ~  e~ 
Rm Ra~ 

For the limiting case of the Darcy flow model with inertia totally neglected (Ra~: 
ec), then r = 0, whilst ~ = 1 represents the case of the non-Darcy flow limit for 
which inertia is completely dominant (Ra~ ~ 0). The mixed convection parameter 
~, on the other hand, is a measure of the relative intensity of the free convection 
to the forced convection. For the case of pure forced convection (Pex ~ c~) then 

= 0, whereas for the case of pure free convection (Pez = 0) we have ~ = 1. 
Substituting the variables (16.31) into Equations (16.27) - (16.29), we obtain 

the following ordinary differential equations 

2~4f ' f"  + ( 1 -  ~)2(2f,  _ ::k: ~40, (16.36) 

2 0 " +  f 9' -- 0 (16.37) 

and the boundary conditions (16.30) become 

f - - O ,  0 - - 0  on ~ = 0  (16.38) 
f ' ~ ( 1 - ~ )  2, 0-->0 as r / ~ c ~  

The local Nusselt number for this mixed convection flow model can be expressed 
as follows: 

1 

g u  - A7 [-9'(0)] = ~-1 (1 - ~)Ra~z [-9'(0)] 
(16.39) 

= ~-l~Rax �88 [ - 0 ' ( 0 ) ] -  ( 1 -  ~-1)Pe~x [--0'(0)] 

The equations for pure non-Darcy natural convection boundary-layer flow can 
be obtained from Equations (16.36) - (16.38) by letting ~ = 1. The local Nusselt 
number for this natural convection flow is given by 

N u n -  ( 1 -  ~)Ra~ [ - 0 ' ( 0 ) ] -  ~Ra*z �88 [-9'(0)] (16.40) 

On the other hand, the equations for pure non-Darcy forced convection flow are 
obtained from Equations (16.36) - (16.38) by letting ~ - 0. The corresponding local 
forced convection Nusselt number is now obtained as 

1 

Nuf  - Pe~ [-0'(0)] (16.41) 

Equations (16.36) - (16.38) were solved numerically by Yu et al. (1991) using a 
fourth-order Runge-Kutta integration scheme and also using the Keller-box method 
in order to check the accuracy. Values of the local Nusselt number for both Darcy 
( ~ -  0) and non-Darcy ( ~ -  1) free convection limits (~ = 1) are given in Table 16.2 
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Table 16.2- Values of the local Nusselt number for Darcy (~ = O) and non-Darcy 
( ~ -  1) free convection limits. 

Cheng and Minkowycz (1977) 
Plumb and Huenefeld (1981) 
Bejan and Poulikakos (1984) 
Yu et al. (!991) .... 

A= Nu 1 
Ra~ 

Darcy Flow Model 

B - -  N u  
, s  

l~a  x 4 

Non-Darcy Flow Model 
" 0.4440 

0.44390 

0.44388 
. .  

0.494 
0.49380 

. . . . . . .  1 
along with some known results which have been given in the open literature. It can 
be see that  all these results are in excellent agreement. 

The variation of the local Nusselt number, Equation (16.39), with the buoyancy 
1 

parameter  ~ is shown in Figure 16.3 for some values of the inertial parameter ~. 
Pe~ 

It can be seen that the local Nusselt number increases from the forced convection 
limit to the free convection limit for different values of ~ as the buoyancy parameter 

10 2 

Pe~ 

10 ~ 

10 o 

0.7, 0 . 8 , ~  

~ ~ / / / / / A F i l ; ~ n g  

Opposing Flow 

1 0  - 1  . . . . .  r 
10-2 10-'1 100 101 10 2 1 3 

! 

Ral 
! 

Pel 

1 

Figure 16.3: Variation of Nu with n ~  for different values of ~ in the cases of 
Pe~  P e ~  

assisting and opposing flow. 
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1 

Ra{ increases. It is also observed from this figure that for the assisting flow the 
Pe~ 
local Nusselt number decreases as the inertial parameter { increases. However, for 
the opposing flow, the effect is reversed. The decrease of the local Nusselt number 
with the increase of 4 can also be seen in Figure 16.4. For specific mixed convection 
intensities, ~ - 0.1 - 1, the local Nusselt number decreases from the Daxcy limit 
through an intermediate region to the non-Darcy flow limit. 

101 

10 o 
N} 
Ra~ 

10-1 

10-2 

1 0 - 3  ,, I, , , ,,,, 

1 0  - 2  1 0  - 1  I 0  ~ ! 101  1 0  2 

',~ 
Rax 

Figure 16.4: Variation of -~_ with Raf�88 for different values 
Ra~ Ra. 

of . 

Based upon the above theoretical results, and also upon previously published 
correlation equations for a viscous (non-porous) fluid, for example as reported by 
Churchill (1977), it has been established by Yu et al. (1991) the following correlation 
equation for the present problem: 

NuA7 ---- { Ca(1 - ~)~ • [A-m(1 - 4)m + B-m~m]-~  ~'"} } (16.42) 

where n and m are positive quantities and the values of A and B are given in 
Table 16.2 and C is obtained from Equation (16.41) as 

C = N u f  = - 0 ' ( 0 )  (16.43) 
Pe~ 

Equation (16.42) has been written by Yu et al. (1991) in the form 

Y" = 1 + X n (16.44) 
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where 
N u  1 

y = [A-m(1 _ + 
x = 

- r  - r  

and the 4- signs in Equations (16.42) and (16.44) correspond again to assisting and 
opposing flows, respectively. 

Yu et al. (1991) have shown that  over the entire regimes of the flow inertia 
(0 ~< ( < 1) the maximum error between the exact (numerical) values of the local 
Nusselt number given by Equation (16.39) and the approximate correlation Equation 
(16.44) with m - n - 3 is about 11% for assisting flow (0 ~< ~ ~< 1) and about 8% 
for opposing flow (0 ~< ~ < 0.3 before the boundary-layer separates). The maximum 
error in Equation (16.44) can be reduced significantly if different pairs of m and n 
are taken, see Table 2 in the paper by Yu et al. (1991). The comparison between 
the correlated and the numerical results is shown in Figure 16.5 for both assisting 
flow and opposing flow cases with m - n - 3 in Equation (16.44). This figure shows 
good agreement between the correlated and the calculated results. 

. 

Y 
4-  

. 

_ 

_ 

o 1: 
a 1:.2 
v 1:.3 
o C.4 
o I:.5 
i 1:.6 

�9 1:.7 ~4,/y3 
- - -  1 + X 3 

�9 c.8 /~. 

'~ A ~ I _ X  3 
,, ! | 

0 1 2 3 4 5 
X 

Figure 16.5: Comparison between the numerical results for Y, given by Equation 
(16.39) and indicated by the symbols, and the correlated results, given by Equation 
(16.~) and indicated by the solid line. 
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16.4 T r a n s i e n t  n o n - D a r c y  free,  f o r c e d  a n d  m i x e d  con-  
v e c t i o n  b o u n d a r y - l a y e r  flow over  a ver t i ca l  surface  
in a p o r o u s  m e d i u m  

Consider a vertical flat plate which is placed in a non-Darcian fluid-saturated porous 
medium of ambient temperature Too and fluid velocity Uoo where the velocity is ori- 
ented along the plate in the upward direction. It is assumed that the transient 
convection takes place as the wall temperature is suddenly increased from the am- 
bient temperature Too to the constant value Tw, where Tw > Too (assisting flow). 
Under the Boussinesq and boundary-layer approximations, along with the Darcy- 
Forchheimer extended law, namely Equation (II.3c), the governing equations can be 
written as follows: 

Ou Ov 
o~ + N - o 

u + b* X/~u2 . . . .  = Uoo + b* 
V 

OT OT OT 02T 

(16.46) 

V~-Ku~ + gK~  ( T -  T o o )  (16.47) 
V V 

(16.48) 

which have to be solved subject to the initial and boundary conditions 

u - U o o ,  v - 0 ,  T - T o o  at t - 0  for all 

v - 0 ,  T - T w  on y = 0  1 for t > 0, 
u -+ Uc~, T -+ Tc~ as y -+ oo J 

x , y  

x > 0  
(16.49) 

Equation (16.47) can be easily solved for u to give 

{[ ( )] } 2b* ~ (1 + 2Re*)2 + 4Gr * T - Too �89 u -  AT - 1 (16.50) 

where Gr* and Re* are the modified Grashof and Reynolds numbers which are 
defined as follows: 

b*K~ gf lAT b*K�89 Uoo 
Gr * = l] 2 , Re* = (16.51) 

12 

Thus, the slip velocity uw along the wall is given by 

U W  --- 2b*x/~ [(1 + 2Re*) 2 + 4Gr*] �89 - 1 (16.52) 

In order to obtain local similarity solutions of Equations (16.46) - (16.48), sub- 
ject to the boundary conditions (16.49), Nakayama et al. (1991) have used the slip 
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velocity uw, as given by Equation (16.52) and the thermal boundary-layer thickness 
5 as the velocity and length scales. Thus, in this unified treatment of the transient 
boundary-layer flow, the modified P~clet number 

1 

[(1 + 2.e.)2 + 4c .] _1 
Pe~ = UwX = Pex (16.53) 

C~m 2Re* 

is introduced to investigate all possible free, forced and mixed convection cases. It 
can easily be shown that Pe~ transforms into the following limits: 

Forced 
convection regime: Pe~ - Pez  for Pe* - Re .2 >/Gr* 

Darcy free P e -  Rax for 
convection regime: 

Re* << Gr* << 1 

Forchheimer free , ! Re,2 
convection regime: Pe* - Raz  2 for Re* + << Gr* and Gr* >> 1 

(16.54) 
However, only three among these five non-dimensional numbers are independent 
because there exists the following interrelations: 

Gr* Raz  Gr* Ra~ 
Re* = P e x '  Re,2 = p e  2 (16.55) 

Next, in order to determine the length scale 6, Equation (16.48) is integrated 
with respect to y from 0 to c~ to obtain 

~-~0 (T - T~ )  dy + ~ u (T - Tc~) dy - - a m  -~y y=0 (16.56) 

Assuming the following similarity variables 

u T - T~ 
= f ('7), = 0(,~) (16.57a) 

U~ AT 

where 

Equation (16.56) becomes 

Y (16.57b) 
n - 5(t ,  z )  

052 O32 
a ~  + Bouw Ox = Aoam (16.58a) 

which has to be solved subject to the initial and boundary conditions 

5(0, x) = 5(t, O) = 0  for x , t > 0  (16.58b) 
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where Ao and Bo are constants which are given by 

-20'(0)  
Ao = f ~  Odrl' 

Solving Equations (16.58) we obtain 

1 

-- for 
(7  

and 

Bo - f o  fOdrl 
f o  Od~ 

uwBot 
O'X 

<~1 

1 

- for ~> 1 
~t w O ' X  

(16.59) 

(16.60a) 

(16.60b) 

Therefore, the thermal boundary-layer thickness grows as (i ~ t�89 for small times 
1 

(7 << 1), whilst it approaches its steady state value as 5 ~ x~ at large times (~ >> 1). 
The above analysis shows that the appropriate scales Uw and 5 vary according 

to the values of the parameters Re*, Gr* and T. Nakayama et al. (1991) have il- 
lustrated the corresponding solution regimes in a three-dimensional space as shown 
in Figure 16.6. This figure shows the one-dimensional transient solution regime, 
which is free from Re* and Gr*, and the steady state solution regime, which con- 
sists of three distinct sub-regimes corresponding to Equation (16.54), namely the 
forced convection regime, the Darcy free convection regime and the Forchheimer 
free convection regime. 

We return now to solving Equations (16.46) - (16.49). In order to achieve this 
Nakayama et al. (1991) proposed the following variables: 

1 

~ _ x , ~ ? Y  (OZmtII ~ T - T o o  
1 '  r - -  U W  ' f (~ r, 77) 0(~ ~, ,7) - 

( a . ~ t I )  ~ g ' ' ' AT 

(16.63) 

for the steady state solution, where 

Uwt 
T - (16.62) 

O ' X  

1 

for ~- 7> 1 (16.61b) 

for the one-dimensional transient solution, and 

1 (om,) 
5 ~  a for T ~ I  (16.61a) 

However, since the constant B0 is of the order unity and the fact that any leading 
edge effect of the plate propagates at the maximumspeed uw within the boundary- 
layer, the product uwBo may be replaced by uw. Hence, we have 
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f 
Gr* 

t l02 
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/ 
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Figure 16.6" Flow regime map. 

where I is defined as follows" 

I (T) - 1 - e - r  (16.64) 
T 

so that I ..~ 1 for T << 1 and I ~ s for ~- >> 1 respectively. Using expressions (16.63) 
T 

in Equations (16.46) - (16.48) we obtain 

1 

f, = . ~ (16.65) 

[(1 + 2Re*)2 + 4Gr*] ~ - 1  

1 1 r r e  - ~ )  fO '  0" + -2e- tr iO ' + -~ (1 - e -  - 
[00 ( _0 ,  ) _  ( ,  0, ) ]  16"66) _ (~__,) ~+~ s, oo o f  oo o s  ( _ -~ ~ ~ s ~  

and the boundary conditions (16.49) become 

f - - 0 ,  0--  1 on 77--0, ~ > 0 ,  -i->0 (16.67) 
0- -+0  as 77-~oo, ~ > 0 ,  r > 0  
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The local Nusselt number can be expressed as follows: 

N u  r)- �89 
,I_ = (1 - e-  [-0'(~, r, 0)] (16.68) 

Pex 2 

From the general form of Equations (16.65) - (16.67) we can derive the following 
flow situations: 

(i) Small time solution, for T << 1, 

1 O' 0" + ~r/ - 0 ( 1 6 . 6 9 )  

which under the boundary conditions (16.67) yields the solution 

(()) y amt  ~ (16.70) 0 - erfc ~ .... cr 

(ii) Large time or steady state solution, for v >> 1, 

1 
O" + -~fO' - O (16.71) 

along with Equation (16.65) and the corresponding boundary conditions ob- 
tained from (16.67). 

(iii) Intermediate r values for which the similarity solutions of Equation (16.66) 
are given by the following ordinary differential equation 

1 1 (1 - e - z  - Te - ~ )  fO'-- 0 (16.72) o" + ' 

along with Equation (16.65) and the corresponding boundary conditions are 
obtained from Equation (16.67). 

On the other hand, the flow regimes given by Equation (16.54) are described by 
the following similarity equations obtained from Equations (16.65) and (16.66): 

(i) Transient pure forced convection for which Gr* - 0  

1 ( 1 _  re - r )  f - ~, 0" + ~ riO'-- 0 (16.73) 

which gives [ i] 
8 -  erfc (1 - r e - r )  ~ v] (16 74) 

2 
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if the boundary conditions (16.67) are used. In this case, Equation (16.68) 
becomes 

, = ( 1 - e )  ( 1 - ~ - e -  (16.75) 

It was shown by Nakayama and Ebinuma (1990) and Nakayama et al. (1991) 
that tile approximate local Nusselt number expression (16.75) is in good agree- 
ment with the numerical solution (16.68) obtained from Equations (16.65) - 
(16.67). 

(ii) Transient Darcy free convection regime for which Re* << Gr* << 1 

f ' -  0 (16.76) 

1 1 ( l _ e _  r 0" + -~e-~-rlO ' + -~ - Te -~ )  fO'  -- 0 (16.77) 

which has to be solved subject to the boundary conditions 

- 0 ,  0 - 1  on q - 0 ,  r > 0  (1678) 
f 0 ' ~ 0  as r / -+oc,  r > 0  

The local Nusselt number, given 
( Pe*  z - R a z  ) , becomes 

by Equation (16.68) for this Darcy flow case 

N u  
1 

R a ~  
- - ( 1 - e - ~ )  -�89 [--0'(T, 0)] (16.79) 

where 0'(~-, 0) is obtained by numerically solving Equations (16.76) - (16.78). 
The time history of the local Nusselt number, given by Equation (16.79), was 
obtained by Nakayama et al. (1991) and the results obtained are compared in 
Figure 16.7 with the finite-difference numerical solution as obtained by Ingham 
and Brown (1986). 

Returning now to the steady state flow regime, ~- >> 1, we can obtain for the 
three distinct asymptotic limits specified by Equation (16.54), and illustrated in 
Figure 16.6, the following asymptotic formulae" 

(i) Pure forced convection regime 

N u  1 
= (,,6.80) 

Pe~ 

(ii) Darcy free convection regime 

N u  
= 0.444 (16.81) 

R a  2z 
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Ra~ 1 6 [ 

:i:1 .......... 
o.o 0:5 1:o l:a 2'.o 

T 

I 
2.5 

Nu with ~" The solution of Nakayama et al (1991) Figure 16.7: Variation of ~ . 

is indicated by the solid line and the solution of Ingham and Brown (1986) is 
indicated by the broken line. 

(iii) Forchheimer free convection regime 

N u  
- 0.494 (16.82) , !  

Rax 4 

However, for the other three intermediate flow regimes, Nakayama and Pop (1991) 
have proposed the following correlation equations for the steady state local Nusselt 
number: 

(i) Darcy mixed convection 

1 1 
N u  = - - ~  (Pe~ + 0.62 Rax)  ~ (16.83) 

V ~  

(ii) Darcy-Forchheimer free convection 

1 

�9 1 16Gr*-  ( l + 4 G r ) � 8 9  ~ 

N u  - 8Gr* Rax  (1 + 4Gr* ) ~ - 1 2Gr* (16.84) 

(iii) Forchheimer mixed convection 

1 (pe2  + 0.59 n a * )  �88 N u =  - ~  (16.85) 
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The three local Nusselt number expressions, given by Equations (16.83) - (16.85), 
overlap each other as illustrated in Figure 16.8. In order to appreciate the accuracy of 
these expressions, Nakayama and Pop (1991) have shown in Figure 16.9 the variation 
of N___~ given by Equations (16.83) - (16.85) when Gr* is increased and Re* is 

Ra[ 
fixed (Figure 16.9(a)) and when Re* is increased and Gr* is fixed (Figure 16.9(b)), 
respectively. It is seen from Figure 16.9(a) that as one goes along a vertical line 
of constant Re* in Figure 16.6, one enters from the forced convection regime to 
the Darcy free convection regime, then to the Forchheimer free convection regime if 
Re* ~ 1, while one enters to the Forchheimer free convection regime directly from 
the forced convection regime if Re* >> 1. Furthermore, Figure 16.9(a) shows that 
one must match Equation (16.83) with Equation (16.84) to describe the case of small 
Re*, whilst only Equation (16.85) for the Forchheimer mixed convection regime is 
required to describe the case of large Re*. A similar consideration may be given to 
the case in which Re* is increased with Gr* fixed, see Figure 16.9(b). This figure 
shows that Equation (16.83) for the Darcy mixed convection regime and Equation 
(16.85) for the Forchheimer mixed convection regime are just sufficient to describe 
the cases of small and large values of Gr*, respectively. 

I _H~ j ~  
G ,-. I H 

III: Forchheimer F r e e  [ ~ c ~ ' ~ ' /  

] 
V i Darcy-Forchheimer I - ~  - 

' ' F r e e  Cohvection' 1 I J  ;o 1 0  "~'~}' ! ' 2  103 

Convection,St J .~v , 
-- J c b 6 ~ , / - - -  [ i: Forced Convect,on 

lO-S 

Figure 16.8: Flow regime map. 
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where the ~-axis is normal to the plate and is in the upward direction. 
equations have to be solved subject to the boundary conditions 

These 

~ = 0 ,  T - T w ( - ~ )  on y - 0 ,  ~>~0 
--+0, ~--+0, T--+T~ as y--+co, 5~>0 (16.90) 

We now define the following non-dimensional variables 

* - 5  y * - Y  r  r 0* T - T o o  
x - 7'  - -[' am' = AT (16.91) 

Using these variables Equations (16.87) - (16.89) can be written, after some algebra, 
as follows: 

( G r J ] v 2 r  1 + --R-~a 

+ JRa \ Oz* Oz .2 Ox---~Oy*Ox*Oy * + ~ 0y*2J -Raox--; 

(16.92) 

where 

V20, - _ 0r 00" 0r 00" 
. . . . . . . . .  

Oy* Ox* Ox* Oy* 

and Gr is the modified Grashof number which is now defined as follows" 

Gr - pgKK* f lAT 
#2 

(16.93) 

(16.94) 

(16.95) 

The boundary conditions (16.90) become 

~/J* - -  0 ,  O* -~- X *m on y* -- 0, x* ~> 0 
0r ~ 0, OO*Oy. -+ 0, 0* --+ 0 as y* --+ cx~, x* >~ 0 (16.96) 

The boundary-layer equations are found using the new variables defined as fol- 
lows- 

x - x * ,  y - R a � 8 9  r  O -  (16.97) 

Substituting these relations into Equations (16.92) and (16.93), letting Ra -+ c~, 
i.e. the boundary-layer approximation, and retaining only the leading order terms 
of Ra, we obtain 

1 + 
o f  o~ 

o ~" o~o~ o~o~ 
o~ o~o~ o~o~ 

(16.98) 

(16.99) 
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e r  where X - --1- is a constant which can be scaled out of the problem by introducing 
Ra 

the transformation 

~ .  3 A - 2 m  A 2 - - m  A l + r n  A ( 3 + 2 m ) m  

x - - x 1 - 2 m x ,  y - x ~ - ~ m y ,  r 1 6 2  0 = X  ~-2,~ 0 (16.100) 

Thus the problem reduces to solving the equations 

or  02r oo 
1 + 2 ~  Oy 2 = Ox 

020 0r OO 
Oy 2 Oy Ox 

subject to the boundary conditions 

or oo 
Ox Oy 

(16.101) 

(16.102) 

r  9 - x  m on y - 0 ,  x > f 0  
or __+ 0, 9 -+ 0 as y -+ cr x ~> 0 (16.103) 
Oy 

It should be noted that  the transformation (16.100) becomes invalid when m = 
0.5. Further it can also be seen from this transformation that  the boundary-layer 
attains a constant thickness for m -- 2 and this is an upper bound value of m for 
which Equations (16.101) - (16.103) possess a solution. The boundary-layer analysis 
for this problem has been performed by Hossain and Rees (1997) in the three distinct 
cases: 0 ~< m < 0.5, m = 0.5 and 0.5 < m ~< 2. In the first case, where 0 ~< m < 0.5, 
the fluid inertia dominates near the leading edge (0 ~< x ~ 1), but its effect diminishes 
far downstream (x ~> 1). The opposite is true when m > 0.5, in that  the inertia effect 
is absent at the leading edge, but this effect becomes stronger further downstream. 
There is a transition between these two flow regimes for m = 0.5 and the flow is 
self-similar in this case. 

16 .5 .1  0 ~< m < 0.5  

Guided by the Darcy flow regime solution, as first considered by Cheng and Chang 
(1976), we use the following variables: 

~-~ y ~+~ 
- x  3 , y -  2-,~, r  f (~,y) ,  0 -xmg(~ ,77)  (16.104) 

X 3 

Thus the Equations (16.101) and (16.102) can then be writ ten as follows" 

(1 + 2~_1f,) f,,  __ ( 2 - m ) 3  rig ' -  rng - ( 1 - 2 m ) 3  ~_~Og 

l + m  ( 1 - 2 m )  ( Og O f )  
g " + 3 f g' - m f 'g = 3 r f ' - g' ~-~ ~ (16.106) 

(16.105) 



608 CONVECTIVE FLOWS 

and the boundary conditions (16.103) become 

f - 0 ,  9 - 1  on r / - 0 ,  ~>/1  (16.107) 
f ' - + 0 ,  9--+0 as ~--+oc, ~ ) 1  

where primes denote differentiation with respect to r/. 
It is seen from Equation (16.105) that the presence of the (-1 term leads to the 

decrease of the fluid inertial effects as ~ becomes large. However, when ~ is close to 
zero then the fluid inertia is very high and other variables are necessary in this case to 
avoid the term ~-1 from Equation (16.105). Hossain and Rees (1997) have proposed 
the following variables for Equations (16.101) and (16.102) when 0 ~< x ~ 1: 

l -  2m y 2 + m  
X - x ~ , ~ -  a-m, r - x 5 F(X,s O -  xmG(X,~) (16.108) 

x 5 

to obtain 

m G _ ( 1 - 2 m ) x  OG 
5 

2 + m  ( I - 2m) X (F, OG _ G, OF) 
G" + 5 FG' - mF'G - 5 OX ~ (16.110) 

(X + 2F') F" - ( 3 -  m )  (G' (16.109) 

along with the boundary conditions 

F - 0 ,  G - 1  on ~ - 0 ,  0 ~ < X ~ < I  
F ' - + 0 ,  G - + 0  as ~ - + o e ,  0 ~ < X ~ I  (16.111) 

where primes now denote differentiation with respect to ~. 
The two sets of Equations (16.105) -(16.107), and (16.109) - (16.111), have been 

solved numerically by Hossain and Rees (1997) using the Keller-box scheme along 
with an implementation technique proposed by Rees (1998). The particular im- 
plementation proposed by Rees (1998) uses a numerical differentiation procedure to 
generate the Jacobian matrix forming the central Newton-Raphson iteration scheme. 
This allows a much more rapid code development and it reduces the possibility of 
coding errors. 

Figure 16.10 shows the variation of the wall heat transfer as a function of X for 
different values of m. These are presented in two forms: 

G'(X,O) for 0 <~ X ~< 1 and ~--~g'([,0) for ~ >~ 1 (16.112a) 

X�89 for 0 ~< X ~< 1 and g'(~,0) for ~ >~ 1 (16.112b) 

where ~ - X~. The form given in Equation (16.112a) allows the behaviour of the 
heat transfer in the flow inertia dominated regime to be clearly observed, whilst 
Equation (16.112b) clearly shows the approach towards the Darcy-flow regime at 
large distances from the leading edge. It is observed from Figure 16.10 that the 
Darcy flow regime is rapidly established as X increases. 
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Figure 16.10: Variation of the wall heat transfer with X for different values of 
m. The two different forms expressed in Equations (16.112a) and (16.112b) are 
indicated by the broken and solid lines, respectively. 

16 .5 .2  m - - 0 . 5  

In this case it is not possible to scale out the parameter X from Equations (16.98) and 
(16.99). The physical reason for this is that  the induced streamwise fluid velocity 
does not vary with x when m = 0.5 and therefore the fluid inertia may be either 
strong or weak. However, the flow is self-similar in this case and the substitution 

' Y (16 113) r -- x~f(~7) , 0 -  x�89 , ~1-  1 
X 2  

into Equations (16.98) and (16.99) leads to the following ordinary differential equa- 
tions- 

(1 + 2 x f ' )  f "  1 

1 
g" + -~ ( f g ' -  f 'g )  -- 0 

(16.114) 

(16.115) 

which have to be solved subject to the boundary conditions 

f - - O ,  g - -1  on 77--0 
f '  --~ 0, g --+ 0 as 77 -+ cx~ (16.116) 

Equations (16.114) - (16.116) have been solved numerically by Hossain and Rees 
(1997) for the fluid inertia parameter  X in the range from 0 to 100. The variation 
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of f ' (0)  and g'(0) with X is shown in Figure 16.11 where it can be seen that  both 
these quantities decay as X increases. This is due to the fact that  fluid inertia 
serves to thicken the boundary-layer because of the increased effectiveness of the 
conduction from the heated surface which is caused by the decreased advection of 
heat downstream. 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
o lo 

Figure 16.11" Variation o/ the reduced slip velocity, f ' (O),  and the rate o/ heat 

transfer, -g ' (O) ,  with X for  m - 0.5. 

Further, an asymptotic analysis of the solution of Equations (16.114) - (16.116) 
for very large values of X has been performed by Hossain and Rees (1997) and they 
found 

2 gl 
f ' (0) ~ 1.0231X-~, (0) ,-~ -0.8239 X-~ (16.117) 

16 .5 .3  0.5 < m ~ <  2 

In this case the fluid flow near the leading edge is very weak and therefore in this 
region the Darcy flow might be expected. Therefore, the qualitative nature of the 
fluid flow is precisely opposite to the situation when rn < 0.5. Thus, we introduce 
the following variables: 

2rn-- 1 y 1 -t-m 
-- x 3 , 7)--  2--,c, r -- x ~ f ( ~ , r l ) ,  O - -  xmg(~,77) (16.118) 

X 3 

for x ~ 1 and 

X ~ x ~  
2 r n - 1  

3 ~ m  
X 5 

2 + m  
7 / ) - - X  5 - - F ( X ,  ~), (16.119) 

for x /> 1. 
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Equations (16.101) and (16.102) then become 

(1 + 2~f ' )f . (2-m)~ r ig ' -  mg + (1 - 2m)3 ~_~cOg 
l+m (2.~-1) ( ,0g Of) 

g" + - - - - -~  f g' - m f 'g  - 3 ~ f - ~  - g ' - ~  (16.121) 

(16.120) 

which have to be solved subject to the boundary conditions 

f - 0 ,  g - 1  on ~ - 0 ,  0 ~ ~  1 
f ' - -+0 ,  g - + 0  as r/--+co, 0 ~ 4 ~ 1  (16.122) 

and 

( X  -1 -[- 2 F ' )  F "  - 3 - m ~ a ' -  m G +  X 
5 5 o-x 

2+mFG'_mF'G- (2m-1)X(F'OG_G'OF) 
a " +  5 5 o---x ~ (16.124) 

(16.123) 

along with the boundary conditions 

F = 0 ,  G = I  on ~ = 0 ,  X / > I  
F '  --+ 0, G ---> 0 as ~ -+ ec, X i> 1 (16.125) 

Again, Equations (16.120) - (16.122) have been numerically solved by Hossain 
and Rees (1997) in the same way as those for 0 ~ m < 0.5. The wall heat transfer 
rates are given as follows: 

g'(~,0) for ~ ~ 1 and X-�89 for X ~ 1 (16.126a) 

~ g ' ( ~ , 0 )  for ~ ~ 1 and G'(X, 0) for X ~> 1 (16.126b) 

and these are shown in Figure 16.12 for some values of m. Solutions are again 
plotted as a function of ~ in order to see more clearly both the inertia free and 
inertia dominated fluid flow regimes. This figure clearly shows that the effects of 
fluid inertia increase with increasing distance downstream. Thus, far downstream 
the fluid flow and the temperature profiles, as well as the boundary-layer thickness, 
have been changed from what they were with the fluid inertia absent. 
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Figure 16.12: Variation of the wall heat transfer with ~ for different values of 
m. The two different forms expressed in Equations (16.126a) and (16.126b) are 
indicated by the broken and solid lines, respectively. 

16.6 Effects  of  heat  d ispers ion on m i x e d  convec t ion  
boundary- layer  flow past a horizontal  surface 

A great number of heat transfer applications in porous media have been studied 
with the help of a constant coefficient heat conduction model. The terms of Forch- 
heimer and Brinkman, and a variable near wall porosity were added to the Darcy law 
model in order to account for inertia, boundary drag and flow channelling phenom- 
ena, which occur at the higher pore velocities in porous media convection. When 
combined with heat transfer, a constant heat convection coefficient is not appro- 
priate to describe the additional mechanical mixing of fluid particles with different 
temperatures that takes place at such velocities and Kaviany (1995) has shown that 
fluid velocity dependent thermal diffusivities are deemed to better describe these 
processes. There are several theoretical and empirical models which describe the 
spreading of heat when it is being conducted through an isotropic homogeneous 
porous medium and simultaneously transported with a carrier fluid. A counterpart 
for the most popular in groundwater hydrology solute mixing model is represented 
by the Bear-Scheidegger dispersion tensor presented in the book by Bear (1979). A 
similar model was presented by Georgiadis and Catton (1988) and it has been applied 
by Howle and Georgiadis (1994) to free convection predictions. Thiele (1997) has 
used a model in which the total thermal diffusivity tensor comprises both of constant 
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coefficient heat conduction and fluid velocity proportional mechanical heat disper- 
sion for the mixed convection flow past a horizontal surface in a porous medium. In 
what follows we shall present some of the results reported by Thiele (1997) for this 
problem. 

Consider the steady mixed convection flow of velocity Uoo over a heated horizon- 
tal surface of temperature Tw(x)  given by Equation (16.86) which is embedded in 
a fluid-saturated porous medium. Under the usual Boussinesq and boundary-layer 
approximations, the basic equations which govern this problem are given by, see 
Thiele (1997), 

Ou Ov 
O--x + Oyy -- 0 (16.127) 

Ou g K fl OT 
(16.128) --o~ = . o~ 

~ ~  + ~ oy = o~ (~m + Arl~) (16.129) 

and they have to be solved subject to the boundary conditions 

v = O, Tw(x)  = Too + A T x  m on y = 0 ,  x > 0  
u -+ Uoo, T --4 Too as y -4 oo, x > 0 (16.130) 

where AT > 0 (assisting flow) and the y-axis is oriented in the upward direction. 
Further, we introduce the following non-dimensional variables: 

R a ,  Y T - T o o  
-- 3_, 7 7 - - - P e ? c ,  r = DTooPe~f(~,~7),  0(~,71) - (16.131) 

Pe~ x Tw - Too 

where the local P6clet and Rayleigh numbers are defined as follows: 

U ~ x  g K ~ A T x m +  1 
= , n a x  = (16.132) 

Pex  DToo ~'DToo 

and DToo 
given by 

is the transversal component of the thermal dispersion tensor which is 

DToo -- O~m + ATIUc~ (16.133) 

On substituting Equation (16.131) into Equations (16.127) - (16.129), we obtain 

[ ( 1)., i] 
f " - ~ m O +  ra - -~ ~ 0-~ - -~ ~10 (16.134) 

1 , ,  ( ) 
(I - AT)0" + AT (f'O" + f"O') + -~f mf'O m ~ f, O0 o, Of 

(16.135) 
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which has to be solved subject to the boundary conditions (16.130) which become 

f - 0 ,  0 = 1  on 77 -0 ,  ~ > 0  
f ' - - + l ,  0--+0 as 77--+c~, ~ > 0  (16.136) 

where ,~T represents the ratio of the mechanical to total heat dispersion and it is 
defined as follows: 

ATIUc~ AT Pe~  
AT = = (16.137) 

am + ATlUcc 1 + ATPe~  
where Peoo is the P~clet number based on the length scale 1. 

The values , ~ T  - -  0 and AT = 1 correspond to pure stagnant heat conduction 
and pure mechanical heat dispersion, respectively. With AT = 0, we also have the 
case of an arbitrary constant heat conduction coefficient which has been treated 
by Minkowycz et al. (1984) and Aldos et el. (1993a, 1993b). On the other hand, 
the non-similarity variable ~ is called the buoyancy variable and i t  is a measure of 
the relative importance of free to forced convection, its value ~ = 0 corresponds to 
the case of purely forced convection and ~ --+ c~ to pure free convection. The free 
convection limit cannot be treated with the use of the coordinates (~, ~?). Mixed 
convection, with only its forced convection limit which is represented by the (~, r/) 
coordinate system, has been chosen here to elucidate the interdependence of heat 
conduction and dispersion in a heat transfer configuration initiated by an outer flow 
of possibly small velocity and not by buoyancy effects alone. 

Equations (16.134) - (16.136) were numerically solved by Thiele (1997) for some 
values of m, AT and ~ using the Keller-box scheme. Fluid velocity and temperature 
profiles are shown in Figure 16.13 when both the heat transfer mechanisms have 
different intermediate shares in the oncoming flow, i.e. for different values of AT. 
It is seen to have a considerable influence on the prevailing mixing mechanism for 
both the fluid velocity and temperature distributions. 

The local Nusselt number can be expressed as follows: 

N u  
x = -O'(~,0) (16.138) 

Pe~ 

and its variation with ~ is shown in Figure 16.14 for some values of AT when m - 0.5, 
1, 1.5 and 2. We see a strong influence of the heat diffusion/dispersion parameter 
~T on the rate of heat transfer. We observe that the heat transfer rate increases 
with increasing ~-values in the pure stagnant heat conduction limit (AT -- 0), whilst 
it decreases in pure mechanical heat dispersion (AT -- 1). Hence, if stagnant heat 
conduction is the only acting mechanism, the heat flux rate is highest in the free 
convection limit (~ ~ c~), and for pure mechanical heat dispersion it is highest in 
the forced convection limit ( ~ -  0). 

The local Nusselt number as a function of AT is given by 
1 

= A~ [-0 '(r  0)] (16.139) 
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Figure 16.13: Dimensionless temperature, 0(~, 77), and fluid velocity, f ' (~,  ~7), pro- 
files for  (a) m - 0.5 and (b) m - 1.5. The solutions for  AT -- 0 and 1 are indicated 
by the broken and solid lines, respectively. The profile at ~ -- 0 is indicated by the 
dotted line. 

is i l lustrated in Figure 16.15 for some values of m, )~T and ~. The predicted zero 
value of N u  for /~T - -  0 results from the fact that  the free convection limit cannot 
be properly dealt with in the coordinate system (~, ~?). At higher ~-values there is 
a maximum of the heat flux rate for some intermediate AT-values between 0 and 1, 
especially for the larger values of m. The heat transfer grows for stronger density 
coupling (larger ~) at smaller values of AT, whilst it decreases with an increase in 
at values of AT closer to unity. 
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Figure 16.14: Variation o f - ~ _  as given by Equation (16.138) with ~. 
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Figure 16.15" Variation of Nu as given by Equation (16.139) with AT when ~ - 103 
and AT = 0.3 for (a) different values of m at ~ -- 1 (broken lines) and ~ = 20 
(solid lines) and (b) different values of ~ when m = 1. 
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16.7  Free  c o n v e c t i o n  b o u n d a r y - l a y e r  f low from a po in t  
hea t  s o u r c e  e m b e d d e d  in a p o r o u s  m e d i u m  fil led 
w i t h  a n o n - - N e w t o n i a n  p o w e r - l a w  f luid 

Convective flows resulting from concentrated heat sources which are embedded in 
fluid-saturated porous media are of great importance in many applications, such as 
the recovery of petroleum resources, cooling of underground electric cables, environ- 
mental impact of buried heat generating waste, hot-wire anemometry, volcanic erup- 
tions, etc. The fluid flow phenomena can be grouped into two distinct regimes: (i) 
low Rayleigh number regime where the temperature distribution is primarily due to 
the thermal diffusion, and (ii) the high Rayleigh number regime where the fluid flow 
driven by the heat source is a slender vertical plume such that the boundary-layer 
approximation holds. The problems of class (i) were considered by Bejan (1978), 
Hickox and Watts (1980), Hickox (1981), Nield and White (1982), Poulikakos (1985) 
and Larson and Poulikakos (1986) while those of the class (ii) have been studied by 
Wooding (1963), Yih (1965), Bejan (1984), Masuoka et al. (1986), Kumari et al. 

(1988), Ingham (1988), Lai (1990a, 1990b, 1991), Afzal and Salam (1990), Leu and 
Jang (1994, 1995) and Shu and Pop (1997). 

However, all these studies assume that the fluid is a Newtonian Darcian fluid or 
a Newtonian non-Darcian fluid. This assumption is not justified for a large class of 
fluids, such as, for example, crude oils which saturate underground beds, polymer 
solutions in chemical engineering applications, etc. Chen and Chen (1988a, 1988b) 
were the first to consider free convection boundary-layer of a non-Newtonian power- 
law fluid over a vertical flat plate and a horizontal circular cylinder using a power-law 
model proposed by Christopher and Middleman (1965) and Dharmadhikari and Kale 
(1985). This model was also used by Nakayama and Koyama (1991) and Nakayama 

and Shenoy (1993) to study the possible similarity solutions for free and mixed 
convection boundary-layer flow over a nonisothermal body of an arbitrary shape 
which is immersed in a porous medium saturated with a non-Newtonian power- 
law fluid. The same model has been employed by Nakayama (1993a, 1993b) to 

study both the free convection boundary-layer from a point and a horizontal line 
heat source in a porous medium. He showed that the governing equations possess an 
elegant analytical solution for arbitrary values of the power law index and we present 

the results obtained by Nakayama (1993a) for the model problem of free convection 
generated by a point heat source embedded in a saturated porous medium filled with 
a non-Newtonian power-law fluid. 

Consider a point heat source of strength qs which is embedded in a porous 
medium saturated with a non-Newtonian power-law fluid, see Figure 16.16. Un- 

der the Boussinesq and boundary-layer approximations, the basic equations can be 
written as, see Nakayama (1993a), 
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Figure 16.16- Physical model and coordinate system. 
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(16.140) 

where n is the power-law index, #* is the consistency index, K* is the modified 
permeability for the power-law fluid defined as follows- 

n d~o K*- -  6 (3n-~i) (3(1-~v))n+l 
C* ( n~o n dqo 3n+1) (3(1--~o)) n+l 

and C* is a constant which is given by 

Christopher and Middleman (1965) 

Dharmadhikari and Kale (1985) 

(16.143) 

3(1--n--3) 
C* 3 ( 9 n + 3 ) n ( 6 n + l ) ( 1 6 )  lO~+------Y- 

-- 4 8n I O n -  3 7-5 (16.144) 

It should be noted that for a Newtonian fluid (n = 1) C* - 6_ and the two 
' ~ 25 

expressions (16.143) for K* are identical. 
The boundary conditions appropriate to Equations (16.140) - (16.142) are as 

follows: 
v- -O ,  OTor_O on r - - O ,  x>~O (16.145a) 

T - - + T ~  as r ~ o ~  x>/O 

along with the integral constraint condition 

~0 (:x:) 27rpcp u (T - T~)  r dr = qs (16.145b) 

gK*~ ( T -  Too) (16.141) #* 

r Or r-~r (16.142) 
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A scale analysis of Equations (16.140) - (16.142), such as that proposed by Bejan 
(1984), reveals that the centreline temperature, Tc, centreline fluid velocity, uc, and 
the plume diameter, ~, behave as follows- 

I 

Tc - Too ,,~ km x ' uc ~ x R a z  , ~ ~ [ g-K-7-~s = Ra~  ! (16.146) 

where 
1 

O~m~ km (16.147) 

is the modified local Rayleigh number, which is constant for n - 1 (Newtonian fluid). 
1 + n  

It is seen from expressions (16.146) that  3 grows in proportion to x 2~ , as graphically 
illustrated in Figure 16.17, where distinct shapes of  the plume can be observed 
according to the power law index n. It should be noted that the boundary-layer 
type for slender plumes can be obtained if the heat source is strong and therefore 
the local Rayleigh number is sufficient large. However, since R a z  -~ 0 for x --+ c~ 
when n < 1, the boundary-layer analysis for such fluids is valid only in some limited 
region above the source where R a x  is sufficiently greater than unity, see Nakayama 
(1993a). 

(a) (b) (c) 
I ! 

1 

Figure 16.17- Plume shapes for (a) pseudoplastic fluids, n < 1, (b) a Newtonian 
fluid, n : 1, and (c) dilatant fluids, n > 1. 

Based on the scalings defined in Equation (16.146), the following similarity vari- 
ables are introduced 

r 1 

qs 0(7]), y - - n a 2 x  (16.148) r = ~ x f ( ~ ) ,  T -  Too = 
k m x  X 

where the stream function r is defined by Equations (7.93). On substituting these 
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expressions into Equations (16.141) and (16.142) we obtain 

( ~ ) n  = 0 (16.149) 

(~0' + fO) '  - 0 (16.150) 

which have to be solved subject to the boundary and constraint conditions (16.145), 
which become 

f - 0 ,  0 ' - 0  on 7 7 - 0  (16.151a) 
0 --+ O- as rl --+ ~ 

and the integral constraint condition 

co (f~)lTn 
2~/0 ~ d~ - 1 (16.151b) 

Integrating Equation (16.150), and imposing the boundary conditions (16.151a), 
gives 

~0' + 10 - 0 (16.152) 

which in combination with Equation (16.149) leads to the equation 

n ( ~ ? f " -  f ' )  + f f ' -  0 (16.153) 

The solution of this equation is given by 

f 0 ? ) - ( A ~ v ) 2  (16.154) 
1 + (A'~)2 

4n 

where the constant An is determined by using Equation (16.151b) and it has the 
value 

1 

An - n~r23+ n (16.155) 

Therefore, the streamwise fluid velocity and temperature distributions inside the 
plume are given by 

T -  (2A ) 
. _ .  _ _ _  

.... 1 +  1+ 
(16.156) 

and they reduce to those obtained by Masuoka et al. (1986) and Lai (1990b) for 
n = 1 (Newtonian fluid). 

Typical non-dimensional fluid velocity and temperature profiles are displayed 
in Figure 16.18 for n = 0.5, 1 and 1.5. Figure 16.18(a) shows that the dilatant 
fluids (n > 1) make the fluid velocity profile somewhat more peaked, whilst the 
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Figure 16.18" (a) The non-dimensional  fluid velocity, and (b) the non-dimensional 
temperature, profiles. The solutions for n - 0.5, 1 and 1.5 are indicated by the 
dotted, broken and solid lines, respectively. 

pseudoplastic fluids (n < 1) tend to produce more uniform fluid velocity profiles. On 
the other hand, Figure 16.18(b) shows that the temperature profiles become flatter 
and the temperature level is maintained higher as the power-law index decreases. 

Finally, to show the isotherm patterns, we express the temperature distribution 
(16.156) in the form 

T -  (2A n) 
(1 + - ~ r * 2 ( x * ) n - 3 R a )  2n Tref  

(16.157) 

where the non-dimensionM coordinates (x*, r*) are defined as 
x r 

x* = , r* = (16.158) 

kmTref k~T~e~ 

and the modified Rayleigh number is defined as follows: 
1 

- -  (16.159) 
Olin#* kmTref  

The isotherms T.-Tcr = 0.1 generated for n - 0.5, 1 and 1 5 at R a  - 500 and 
Tre f ' 

5000, are plotted in Figure 16.19. This figure shows that a high temperature zone 
expands further for smaller values of n, as may be expected from the fluid velocity 
and temperature profiles shown in Figure 16.17. It can also be seen from Figure 16.19 
that the effect of increasing R a  is to make the plume more slender. 
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Figure 16.19: Isotherms for T-Too ~ e f :  - 0 . 1  when (a) R a -  500 and (b) R a -  5000. 
The solutions for n - 0.5, 1 and 1.5 are indicated by the dotted, broken and solid 
lines, respectively. 
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