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Preface

Mathematical modelling is the process of replacing problems from outside mathemat-
ics by mathematical problems. The subsequent mathematical treatment of this model
by theoretical and/or numerical procedures works as follows:

1. Transition from the outer-mathematics phenomenon to a mathematical descrip-
tion, what at the same time leads to a translation of problems formulated in terms
of the original problem into mathematical problems.

This task forces the scientist or engineer who intends to use mathematical tools
to

– cooperate with experts working in the field the original problem belongs to.
Thus, he has to learn the language of these experts and to understand their
way of thinking (teamwork).

– create or to accept an idealized description of the original phenomena, i.e. an
a-priori-neglection of properties of the original problems which are expected
to be of no great relevance with respect to the questions under consideration.
These simplifications are useful in order to reduce the degree of complexity
of the model as well as of its mathematical treatment.

– identify structures within the idealized problem and to replace these struc-
tures by suitable mathematical structures.

2. Treatment of the mathematical substitute.

This task normally requires

– independent activity of the theoretically working person.

– treatment of the problem by tools of mathematical theory.

– the solution of the particular mathematical problems occuring by the use of
these theoretical tools, i.e differential equations or integral equations, op-
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8 Preface

timal control problems or systems of algebraic equations etc. have to be
solved. Often numerical procedures are the only way to do this and to answer
the particular questions under consideration at least approximately. The er-
ror of the approximate solution compared with the unknown so-called exact
solution does normally not really affect the answer to the original problem,
provided that the numerical method as well as the numerical tools are of suf-
ficiently high accuracy. In this context, it should be realized that the question
for an exact solution does not make sense because of the idelizations men-
tioned above and since the initial data presented with the original problem
normally originate from statistics or from experimental measurements.

3. Retranslation of the results.

The qualitative and quantitative statements received from the mathematical mod-
el need now to be retranslated into the language by which the original problem
was formulated. This means that the results have now to be interpreted with
respect to their real-world-meaning. This process again requires teamwork with
the experts from the beginning.

4. Model check up.

After retranslation, the results have to be checked with respect to their relevance
and accuracy, e.g. by experimental measurements. This work has to be done
by the experts of the original problem. If the mathematical results coincide
sufficiently well with the results of experiments stimulated by the theoretical
forecasts, the mathematical part is over and a new tool to help the physicists,
engineers etc. in similar situations is born.

Otherwise – if no trivial logical or computational errors can be found – the model
has to be revised. In this situation, the gap between mathematical and real results
can only originate from too extensive idealizations in the modelling process.

The development of mathematical models does not only stimulate new experiments
and does not only lead to constructive-prognostic – hence technical – tools for physi-
cists or engineers but is also important from the point of view of the theory of cog-
nition: It allows to understand connections between different elements out of the un-
structured set of observations or – in other words – to create theories.

Fields of applications of mathematical descriptions are well known since centuries in
physics, engineering, also in music etc. In modern biology, medicine, philology and
economy mathematical models are used, too, and this even holds for certain fields of
arts like oriental ornaments.
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This book presents an introduction into models of fluid mechanics, leads to important
properties of fluid flows which can theoretically be derived from the models and shows
some basic ideas for the construction of effective numerical procedures. Hence, all
aspects of theoretical fluid dynamics are addressed, namely modelling, mathematical
theory and numerical methods.

We do not expect the reader to be familiar with a lot of experimental experiences.
The knowledge of some fundamental principles of physics like conservation of mass,
conservation of energy etc. is sufficient. The most important idealization is – contrary
to the molecular structure of materials – the assumption of fluid-continua.

Concerning mathematics, it can help to understand the text more easily if the reader
is acquainted with some basic elements of

– Linear Algebra

– Calculus

– Partial Differential Equations

– Numerical Analysis

– Theory of Complex Functions

– Functional Analysis.

Functional Analysis does only play a role in the somewhat general theory of dis-
cretization algorithms in chapter 6. In this chapter, also the question of the existence
of weak entropy solutions of the problems under consideration is discussed. Physicsts
and engineers are normally not so much interested in the treatment of this problem.
Nevertheless, it had to be included into this presentation in order not to leave this
question open. The non-existence of a solution shows immediately that a model does
not fit the reality if there is a measurable course of physical events. Existence theo-
rems are therefore important not only from the point of view of mathematicians. But,
of course, readers who are not acquainted with some functional analytic terminology
may skip this chapter.

With respect to models and their theoretical treatment as well as with respect to nu-
merical procedures occuring in sections 4.1, 5.3, 6.4 and chapter 7, a brief introduction
into mathematical fluid mechanics like this book can only present basic facts. But the
author hopes that this overview will make young scientists interested in this field and
that it can help people working in institutes and industries to become more familiar
with some fundamental mathematical aspects.
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Finally, I wish to thank several colleagues for suggestions, particularly Thomas Sonar,
who contributed to chapter 7 when we organized a joint course for graduate students1,
and Dr. Michael Breuss, who read the manuscript carefully. Last but not least I thank
the publishers, especially Dr. Alexander Grossmann, for their encouragement.

Rainer Ansorge

Hamburg, September 2002

1Parts of chapters 1 and 5 are translations from parts of sections 25.1, 25.2, 29.9 of: Ansorge and
Oberle: Mathematik für Ingenieure, vol. 2, 2nd ed., Berlin, Wiley-VCH 2000.
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1 Ideal Fluids

1.1 Modelling by Euler’s Equations

Physical laws are mainly derived from conservation principles, such as conservation
of mass, conservation of momentum, conservation of energy.

Let us consider a fluid (gas or liquid) in motion, i.e. the flow of a fluid1, let

u(x, y, z, t) =




u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)




be the velocity and denote by ρ = ρ(x, y, z, t) the density of this fluid at the point
x = (x, y, z) and at the time instant t2.

Let us take out of the fluid at a particular instant t an arbitrary portion of volume W (t)
with surface ∂W (t). The particles of the fluid now move, and assume W (t+ h) to
be the volume at the instant t + h formed by the same particles which had formed
W (t) at the time t.

Moreover, let ϕ = ϕ(x, y, z, t) be one of the functions describing a particular state of
the fluid at the time t at the point x such as mass per unit volume (= density), interior
energy per volume, momentum per volume etc. Hence,

∫
W (t)

ϕd(x, y, z) gives the

full amount of mass or interior energy, momentum etc. of the volume W (t) under
consideration.

1Flows of other materials are eventually included, too, e.g. flow of cars on highways, provided that
the density of cars or particles is sufficiently high.

2Bold letters normally mean vectors or matrices.
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14 1 Ideal Fluids

We ask for the change of
∫

W (t)

ϕd(x, y, z) with respect to time, i.e. for

d

dt

∫

W (t)

ϕ (x, y, z, t) d(x, y, z) . (1.1)

We have

d

dt

∫

W (t)

ϕ(x, y, z, t)d(x, y, z)

= lim
h→0

1
h




∫

W (t+h)

ϕ(ỹ, t+ h)d(y1, y2, y3) −
∫

W (t)

ϕ(x, y, z, t)d(x, y, z)



,

where the change from W (t) to W (t+ h) is obviously given by the mapping

ỹ = x + h · u(x, t) + o(h)

(ỹ = (y1, y2, y3)
T ).

The error term o(h) also depends on x but keeps the property lim
h→0

1
ho(h) = 0 if

differentiated with respect to space provided that these spatial derivatives are bounded.

The transformation of the integral taken over the volume W (t+h) to an integral over
W (t) by substitution requires the integrand to be multiplied by the determinant of this
mapping, i.e. by

∣∣∣∣∣∣∣∣∣

(1 + h ∂xu1) h ∂yu1 h ∂zu1

h ∂xu2 (1 + h ∂yu2) h ∂zu2

h ∂xu3 h ∂yu3 (1 + h ∂zu3)

∣∣∣∣∣∣∣∣∣
+ o(h)

= 1 + h · (∂xu1 + ∂yu2 + ∂zu3) + o(h)

= 1 + h · div u(x, t) + o(h) .
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Taylor expansion of ϕ(ỹ, t+ h) around (x, t) therefore leads to

d

dt

∫

W (t)

ϕ(x, y, z, t) d(x, y, z)

=
∫

W (t)

{∂tϕ+ ϕ div u + 〈 u,∇ϕ 〉} d(x, y, z) . (1.2)

Herewith, ∇v denotes the gradient of a scalar function v, and 〈· , ·〉 means the stan-
dard scalar product of two vectors out of �3.

The product rule of differentiation gives

ϕ div u + 〈 u,∇ϕ 〉 = div (ϕ · u) ,

such that (1.2) leads to the so-called Reynolds’ transport theorem3

d

dt

∫

W (t)

ϕ(x, y, z, t) d(x, y, z) =
∫

W (t)

{∂tϕ+ div(ϕu)} d(x, y, z) . (1.3)

As already mentioned, the dynamics of fluids can be described directly by conser-
vation principles and – as far as gases are concerned – by an additional equation of
state.

1. Conservation of mass: If there are no sources or losses of fluid within the sub-
domain of the flow under consideration, mass remains constant.

Because W (t) and W (t+ h) consist of the same particles, they are of the same mass.
The mass of W (t) is given by

∫
W (t)

ρ(x, y, z, t) d(x, y, z), and therefore

d

dt

∫

W (t)

ρ(x, y, z, t) d(x, y, z) = 0

must hold. Taking (1.3) into account (particularly for ϕ = ρ), this leads to the
requirement

∫

W (t)

{∂tρ+ div(ρu)} d(x, y, z) = 0 .

3Osborne Reynolds (1842 - 1912); Manchester
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Since this has to hold for arbitrary W (t), the integrand has to vanish:

∂tρ + div (ρu) = 0 . (1.4)

This equation is called the continuity equation.

2. Conservation of momentum: Another conservation principle concerns the mo-
mentum of a mass which is defined as

mass × velocity.

Thus,
∫

W (t)

ρu d(x, y, z)

gives the momentum of the mass at time t of the volume W (t) and

q =




q1
q2
q3


 = ρu

describes the density of momentum.

The principle of conservation of momentum, i.e. Newton’s second law

force = mass × acceleration,

now states that the change of momentum with respect to time equals the sum of all
exterior forces acting on the mass of W (t).

In order to describe these exterior forces, we take into account that there exists a
certain pressure p(x, t) at every point x of the fluid and at every instant t. If n
is considered to be the unit vector normal on the surface ∂ W (t) of W (t) and of
outward direction, the fluid outside of W (t) leads to a force acting on W (t) which
is given by

−
∫

∂ W (t)

pn do (do = area element of ∂ W (t)) .

Besides the normal forces per unit of the surface area generated by the pressure, there
exist also tangential forces which act on the surface by friction of the exterior particles
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along the surface. Though this so-called viscosity of a fluid leads to a lot of remark-
able phenomena, we are going to neglect this property at the first step: Instead of real
fluids or viscous fluids we restrict ourselves in this chapter to so-called ideal fluids
or inviscid fluids. This restriction to ideal fluids, particularly to ideal gases, is one of
the idealizations mentioned in the preface.

But there are not only exterior forces per unit of the surface area but also exterior
forces per unit volume, e.g. the weight.

Let us denote these forces per unit volume by k such that Newton’s second law leads
to

d

dt

∫

W (t)

q d(x, y, z) =
∫

W (t)

k (x, y, z, t) d(x, y, z) −
∫

∂W (t)

p · n do .

Thus, by Gauss’ divergence theorem, we find

∫

∂W (t)

pn do =




∫

∂W (t)

pn1 do

∫

∂W (t)

pn2 do

∫

∂W (t)

pn3 do




=




∫

W (t)

∂xp d(x, y, z)

∫

W (t)

∂yp d(x, y, z)

∫

W (t)

∂zp d(x, y, z)




=
∫

W (t)

∇ p d(x, y, z) .

Together with (1.3),

∫

W (t)


∂tq +




div (q1 u)
div (q2 u)
div (q3 u)


− k + ∇ p


 d(x, y, z) = 0

follows.

Again, this has to be valid for every arbitrarily chosen volume W (t). If, moreover,

div (qi u) = 〈 u,∇ qi 〉 + div u · qi
is taken into account,

∂tq + 〈 u,∇ 〉 q + div u · q + ∇ p = k ,



18 1 Ideal Fluids

i.e.

∂tq +
1
ρ

〈 q,∇ 〉 q + div

(
1
ρ

q

)
q + ∇ p = k (1.5)

has to be fulfilled.

The number of equations represented by (1.5) equals the spatial dimension of the flow,
i.e. the number of components of q or u.

By means of the continuity equation, (1.5) can be reformulated as

∂tu + 〈 u,∇ 〉 u + 1
ρ ∇ p = k̂ , (1.6)

where the force k per unit volume has been replaced by the force k̂ = 1
ρ k per unit

mass.

Equation (1.4) together with (1.5) or (1.6) are called Euler’s equations4.

ρ, E, q1, q2, q3

are sometimes called conservative variables whereas ρ, ε, u1, u2, u3 are the prim-
itive variables. Herewith,

E := ρ ε +
ρ

2
‖u‖2 = ρ ε +

‖q‖2

2ρ

gives the total energy per unit volume where ε stands for the interior energy per
unit mass, e.g. heat per unit mass.

ρ

2
‖u‖2

obviously introduces the kinetic energy per unit volume5.

〈 u,∇ 〉 u is called the convection term.

Remark:

Terms of the form ∂tw + 〈 w,∇ 〉 w are in the literature often abbreviated by
Dw

Dt
and are called material time derivatives of the vector valued function w.

4Leonhard Euler (1707 - 1783); Basel, Berlin, St. Peterburg
5‖ · ‖ : 2-norm.
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Next we consider the First Law of Thermodynamics, namely the

3. Conservation of energy.

The change per time unit of the total energy E of the mass of a moving fluid volume
equals the work which is done per time unit against the exterior forces.

This means in the case of ideal fluids

d

dt

∫

W (t)

E(x, y, z, t) d(x, y, z)

=
∫

W (t)

〈
ρ k̂ , u

〉
d(x, y, z) −

∫

∂W (t)

〈 pn,u 〉 do 6 .

The relation

∫

∂W (t)

〈 pn,u 〉 do =
∫

∂W (t)

〈 pu,n 〉 do =
∫

W (t)

div (pu) d(x, y, z)

follows from the Gauss’ divergence theorem, so that (1.3) leads to

∫

W (t)

{
∂tE + div (E · u) + div (p · u) −

〈
ρ k̂ , u

〉}
d(x, y, z) = 0 ∀W (t) .

If k can be neglected because of small gas weight or if k̂ is the weight of the fluid
per unit mass7 and u the velocity of a flow parallel to the earth surface, we get

∂tE + div

(
E + p

ρ
q

)
= 0 . (1.7)

6work = force × length = pressure × area × length =⇒ work
time = force × velocity = pressure ×

area × velocity.
7i.e. ‖k̂‖ = g with the earth acceleration g.
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Explicitly written and neglecting k , the equations (1.4), (1,5) and (1.7) read as

∂tρ+ ∂xq1 + ∂yq2 + ∂zq3 = 0

∂tq1 + ∂x

(
1
ρ
q1q1 + p

)
+ ∂y

(
1
ρ
q1q2

)
+ ∂z

(
1
ρ
q1q3

)
= 0

∂tq2 + ∂x

(
1
ρ
q2q1

)
+ ∂y

(
1
ρ
q2q2 + p

)
+ ∂z

(
1
ρ
q2q3

)
= 0

∂tq3 + ∂x

(
1
ρ
q3q1

)
+ ∂y

(
1
ρ
q3q2

)
+ ∂z

(
1
ρ
q3q3 + p

)
= 0

∂tE + ∂x

(
E + p

ρ
q1

)
+ ∂y

(
E + p

ρ
q2

)
+ ∂z

(
E + p

ρ
q3

)
= 0 .

(1.8)

Hence, we are concerned with a system of equations to be used in order to determine
the functions ρ, q1, q2, q3, E. But we have to realize that there is an additional
seeked function, namely the pressure p. In case of constant density ρ8, i.e. ∂tρ =
0 ∀ (x, y, z), only four conservation variables have to be determined such that the
five equations (1.8) are sufficient. Otherwise, particularly on event of gas flow, a sixth
equation is needed, namely an equation of state. State variables of a gas are

T = temperature, p = pressure, ρ = density, V = volume,

ε = energy/mass, S = entropy/mass ,

and a theorem of thermodynamics says that each of these state variables can uniquely
be expressed in terms of two of the other state variables. Such relations between three
state variables are called equations of state. Thus, p can be expressed by ρ and ε
(hence by ρ,E, q) ; for inviscid so-called γ-gases the relation is given by

p = (γ − 1) ρ ε = (γ − 1)
(
E − ‖q‖2

2ρ

)
(1.9)

with γ = const > 1, such that only the functions ρ, q, E have to be determined.
Herewith, γ is the ratio cp

cV
of the specific heats. If air is concerned, we have

γ ≈ 1.4.

By means of vector valued functions, also systems of differential equations can be
described by a single differential equation. In this way and taking (1.9) into account

8The case of constant density is not necessarily identical with the case of an incompressible flow
defined by div u = 0 because the continuity equation (1.4) is in this situation already fulfilled if the
pair (ρ , u) shows the property ∂tρ + 〈u , ∇ρ〉 = 0, which does not necessarily imply ρ = const.
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as an additional equation, (1.8) can be written as

∂t V + ∂x f1(V ) + ∂y f2(V ) + ∂z f3(V ) = 0 (1.10)

with

V = (ρ, q1, q2, q3, E)T

and with

f1(V ) =




q1

1
ρ
q1q1 + p

1
ρ
q2q1

1
ρ
q3q1

E + p

ρ
q1




,f2(V ) =




q2

1
ρ
q2q1

1
ρ
q2q2 + p

1
ρ
q3q2

E + p

ρ
q2




,f3(V ) =




q3

1
ρ
q3q1

1
ρ
q3q2

1
ρ
q3q3 + p

E + p

ρ
q3




.

The functions f j(V ) are called fluxes.

If J f1, J f2, J f3 are the Jacobians, respectively, (1.10) reads as

∂t V + J f1(V ) · ∂x V + J f2(V ) · ∂y V + J f3(V ) · ∂z V = 0 . (1.11)

Because of their particular meaning in physics, systems of differential equations of
type (1.10) are called systems of conservation laws, even if they do not originate
from physical aspects. Obviously, (1.11) is a quasilinear systems of partial differential
equations of first order.

Such systems have to be completed by initial conditions

V (x, 0) = V 0(x) , (1.12)

where V 0(x) is a prescribed initial state, and by boundary conditions.

If the flow does not depend on time, it is called a stationary or steady-state flow and
initial conditions do not occur. Otherwise, the flow is called an instationary one.
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As far as ideal fluids are concerned, it can be assumed that the fluid flow is tangential
along the surface of a solid body9 fixed in space or along the bank of a river etc. In
this case,

〈u,n〉 = 0 (1.13)

is one of the boundary conditions where n are the outward normal unit vectors along
the surface of the body.

Often there occur symmetries with respect to space such that the number of unknowns
can be reduced, e.g. in the case of rotational symmetry combined with polar coordi-
nates. If there remains only one spatial coordinate, the problem is called one dimen-
sional10. If rectangular space variables are used and if x is the only remaining one,
we end up with the system

∂t V + J f(V ) · ∂x V = 0 (1.14)

with

V =




ρ
q
E


 , f(V ) =




q
1
ρ q

2 + p
E + p

ρ
q




and with the equation of state

p = (γ − 1)
(
E − q2

2ρ

)
.

Hence,

J f(V ) =




0 1 0

− 3 − γ

2
q2

ρ2
(3 − γ)

q

ρ
γ − 1

(γ − 1)
q3

ρ3
− γ

E q

ρ2
γ
E

ρ
− 3(γ − 1)

2
q2

ρ2
γ
q

ρ



.

9e.g. of a wing
10Two or three dimensional problems are defined analogously.



1.1 Modelling by Euler’s Equations 23

As can easily be verified, λ1 =
q

ρ
is a solution of the characteristic equation of

J f(V ) namely of

− λ3 + 3
q

ρ
λ2 −

{
(γ2 − γ + 6)

q2

2ρ2
− γ(γ − 1)

E

ρ

}
λ

+
(
γ2

2
− γ

2
+ 1

)
q3

ρ3
− γ(γ − 1)

E q

ρ2
= 0

The other two eigenvalues of J f(V ) are then the roots of

λ2 − 2q
ρ
λ + (γ2 − γ + 2)

q2

2ρ2
− γ(γ − 1)

E

ρ
= 0 :

λ2,3 =
q

ρ
±

√
q2

ρ2
+ γ(γ − 1)

E

ρ
− (γ2 − γ + 2)

q2

2ρ2

=
q

ρ
±

√
γ(γ − 1)

E

ρ
− γ(γ − 1)

q2

2ρ2

=
q

ρ
±

√
γ(γ − 1)

ρ

[
E − q2

2ρ

]
=

q

ρ
±

√
γ
p

ρ
.

(1.15)

Thus, these eigenvalues are real and different from eachother (p > 0).

Definition:
If all the eigenvalues of a matrix A(x, t,V ) are real and if the matix can be dia-
gonalized, a system of equations

∂t V + A(x, t,V ) ∂x V = 0

is called of hyperbolic type at (x, t,V ). If the eigenvalues are real and different
from eachother so that A can certainly be diagonalized, the system is called strictly
hyperbolic.

So, obviously, (1.14) is strictly hyperbolic for all (x, t,V ) under consideration.

By the way, because of
q

ρ
= u, the velocity of the flow, and because

√
γ p

ρ
describes

the local sound velocity ĉ (cf. (1.67)), the eigenvalues are

λ1 = u, λ2 = u+ ĉ, λ3 = u− ĉ ,
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and have equal signs in case of supersonic flow whereas the subsonic flow is charac-
terized by the fact that one eigenvalue shows a different sign than the others.

Definition:
Let u(x, t0) be the velocity field of a flow at the instant t0 and let x0 be an arbitrary
point of the particular subset of �3 which is occupied by the fluid at this particular
instant. If at this moment the system

[
x′(s) , u(x(s), t0)

]
= 0 11

of ordinary differential equations with the initial condition

x(0) = x0

has a unique solution x = x(s) for each of these points x0, each of the curves

x = x(s) is called a streamline at the instant t0.

Here, the streamlines may be parametrised by the arc length s with s = 0 at the
point x0, such that

〈
x′ , x′〉 = 1 .

Thus, the set of streamlines at an instant t0 shows a snapshot of the flow at this
particular instant. It does not necessarily describe the trajectories along which the
fluid particles move when time goes on. Only if the flow is a stationary one, i.e. if
u , ρ , p , k̂ are independent of time, streamlines and trajectories coincide: A
particle moves along a fixed streamline in the course of time.

1.2 Characteristics and Singularities

As an introductory example for a more general investigation of conservation laws, let
us consider the scalar Burgers’ equation12 without exterior forces

∂tv + ∂x

(
1
2
v2

)
= 0 , (x, t) ∈ Ω , i.e. x ∈ � , t ≥ 0 , (1.16)

which is often studied as a model problem from a theoretical point of view and also
as a test problem for numerical procedures.

11where [· , ·] is the vector product in�3

12J. Burgers: Nederl. Akad. van Wetenschappen 43 (1940), 2-12.
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Here, the flux is given by f(v) = 1
2v

2. If

v0(x) = 1 − x

2
(1.16a)

is chosen as a particular example of an initial condition, the unique and smooth so-
lution13 turns out to be

v(x, t) =
2 − x

2 − t
,

but this solution does only exist locally, namely for 0 ≤ t < 2; for increasing time it
runs into a singularity at t = 2.

As a matter of fact, classical existence and uniqueness theorems for quasilinear par-
tial differential equations of first order with smooth coefficients ensure the unique
existence of a classical smooth solution only in a certain neighbourhood of the initial
manifold, provided that also the initial condition is sufficiently smooth.

The occurence of discontinuities or singularities does not depend on the smoothness
of the fluxes: Assume v(x, t) to be a smooth solution of the problem

∂tv + ∂xf(v) = 0 for x ∈ � , t ≥ 0

v(x, 0) = v0(x)

in a certain neighbourhood immediately above the x-axis. Obviously, this solution is
constant along the straight line

x(t) = x0 + t f ′(v0(x0)) (1.17)

that crosses the x-axis at x0 where x0 ∈ � is chosen arbitrarily. Its value along this
line is therefore v(x(t), t) = v0(x0). This can easily be verified by

d

dt
v(x(t), t) = ∂tv(x(t), t) + ∂xv(x(t), t) · x′(t)

= ∂tv(x, t) + ∂xv(x, t) · f ′(v0(x0))
= ∂tv(x, t) + ∂xv(x, t) · f ′(v(x, t)) = ∂tv + ∂xf(v) = 0 .

These straight lines (1.17), each of which belonging to a particular x0, are called the
characteristics of the given conservation law.

13i.e. v is continuously differentiable
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Figure 1: Formation of discontinuities

In case of x0 < x1, but e.g. 0 < f ′(v0(x1)) < f ′(v0(x0))14, the characteristic
through (x0, 0) intersects the characteristic through (x1, 0) at an instant t1 > 0, so
that at the point of intersection the solution v has to have the value v0(x0) as well as
the value v0(x1) 
= v0(x0). Therefore, a discontinuity will occur at the instant t1 or
even earlier. With respect to fluid dynamics, particularly shocks – discussed later on
– belong to the various types of discontinuities.

Applied to Burgers’ equation (1.16) with the initial function (1.16a), the characteristic
through a point x0 of the x-axis is given by

t = 2
x− x0

2 − x0
,

such that the discontinuity we had found at t = 2 can also immediately be understood
by means of Figure 2.

If systems of conservation laws are considered instead of the scalar case, i.e.

V (x, t) ∈ �m , m ∈ � , ∀ (x, t) ∈ Ω ,

and if only one spatial variable x occurs, a system of characteristics is defined as
follows:

Definition:
If V (x, t) is a solution of (1.10) in the case of only one space variable x , the
one-parameter set

x(i) = x(i)(t, χ) (χ ∈ � : set parameter)

14hence also v0(x0) �= v0(x1)
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Figure 2: Discontinuity of the solution of the Burgers equation

of real curves defined by the ordinary differential equation

ẋ = λi(V (x , t)) (1.18)

for every fixed i (i = 1, . . . ,m) is called the set of i–characteristics of the partic-
ular system that belongs to V . Here, λi(V ) (i = 1, · · · ,m) are the eigenvalues
of the Jacobian J f(V ).

Obviously, this definition coincides in case of m = 1 with the previously presented
definition of characteristics.

Let us finally and exemplarily study the situation of a system of conservation laws if
the system is linear with constant coefficients:

∂tV + A ∂xV = 0 (1.19)

with a constant Jacobian (m,m)-matrix A. Moreover, let us assume the system to be
strictly hyperbolic.
From (1.18), the characteristics turn out to be the set of straight lines given by

x(i)(t) = λi t + x(i)(0) , (i = 1, · · ·m),

and independent of V . Hence, for every fixed i, the characteristics belonging to this
set are parallel.

If S = (s1, s2, · · · , sm) is the matrix whose columns consist of the eigenvectors of
the Jacobian and if Λ denotes the diagonal matrix consisting of the eigenvalues of A,

A = SΛS−1

follows.
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If new variables V̂ are introduced by

V̂ = S−1V ,

the sytem gets the form

∂tV̂ + Λ ∂xV̂ = 0 , V̂ 0 = S−1V 0 . (1.21)

This is a decoupled system:

∂tv̂i + λi ∂xv̂i = 0 , v̂i(x, 0) =
[
S−1V 0(x)

]
i

= v̂i0(x) , (i = 1, · · · ,m) .

Each of the equations of this system is an independent scalar equation called an ad-
vection equation. The solution is

v̂i(x, t) = v̂i0(x− λi t) (i = 1, . . . ,m) . (1.22)

Hence, the state at the instant t moves with velocity λi into positive or negative x–
direction according to the sign of λi, respectively. This is called a wave propagation
where the propagation velocity is described by λi.

Obviously,

V = (s1 . . . sm)




v̂1
...
v̂m


 = v̂1 s1 + v̂2 s2 + . . . + v̂m sm .

Each of the vector valued functions

V (i)(x, t) := v̂i(x, t) · si

solves the system of differential equations because of

∂tV (i) + SΛS−1 ∂xV (i) = ∂tv̂i si + ∂xv̂i λi si

= (∂tv̂i + λi ∂xv̂i) si = 0 .

V (i) (i = 1, · · · ,m) is often called the solution belonging to the i-th set of char-
acteristics and to the given initial value v̂i0(x). Obviously, the vector functions
V (i) (i = 1, · · · ,m) are linearly independent.

Remark:
The fact that a sufficiently smooth solution of a nonlinear initial value problem does
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often only exist in the neighbourhood of the initial manifold −though the correspon-
dent real world process shows a global existence− can’t be accepted by a physicist
or engineer. He insists the mathematician to present a global solution. This forces
the mathematicians to create a more general definition of a solution such that the real
world situation can be described in a satisfactory way. Suitable definitions of weak
solutions will be presented in chapter 2.

Remark:
As far as the scalar linear problem

∂tv + ∂x(a v) = 0 , a = const , (1.23)

is concerned, v often describes a concentration, and the flux then is simply given by
f(v) = a v.

Many physical processes include a further flux of the particular form

−ε ∂xv (ε > 0) ,

proportional to the concentration descent. The transport phenomenon is then mathe-
matically modelled by

∂tv + ∂x (a v − ε ∂xv) = 0, i.e. ∂tv + a ∂xv = ε ∂xxv . (1.24)

Because of the diffusion term on the right hand side, this equation is of parabolic
type. Parabolic equations make their solutions smoother and smoother when time t
increases. Therefore, shocks will be smeared as soon as diffusion occurs.

This effect of parabolic equations can easily be demonstrated by examples like the
following one: The sum

v(x, t) = e
a
2 (x− a

2
t)

∞∑
ν=1

(−1)ν+1 sin(νx)
ν

e−ν2t

converges uniformly for t > 0 because of the factors e−ν2t. This also holds after
multiple termwise differentiations of this sum with respect to t as well as with respect
to x so that v is a sufficiently smooth function for all x ∈ � , t > 0. It solves
(1.24)15 in the classical understanding, but leads for t = 0 to the function

v0(x) = e
a
2
x · w(x)

15in case of ε = 1
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where w(x) represents the Fourier expansion of the 2π-periodic discontinuous func-
tion

w(x) =
{

x
2 for −π < x < π
0 for x = ±π .

The curve described by w(x) is sometimes called a saw blade curve.

1.3 Potential Flows and (Dynamic) Buoyancy

Let us try to investigate the forces acting on solid bodies16 dipped into a fluid flow at
a fixed position. For convenience, we restrict ourselves to stationary flows of inviscid
fluids. Moreover, it will be assumed that the magnitudes of the velocities are such
that the density can be regarded as a costant. Thus, the flow is incompressible and the
partial derivatives with respect to t occuring in (1.8) vanish. The first equation in (1.8)
if written in primitive variables, i.e. the continuity equation (1.4), then reduces to

div u = 0 , (1.25)

where u = (u1(x, y, z), u2(x, y, z), u3(x, y, z))T 17 again stands for the velocity
vector of the flow at the space position x = (x, y, z)T .

The second, third, and fourth equation of (1.8) formulated by means of primitive
variables could be written as the vector valued Euler equation (1.6) and lead in case
of a stationary flow to

〈 u,∇ 〉 u +
1
ρ
∇ p = k̂ . (1.26)

Let us −moreover− assume that the flow is irrotational; this means that the circula-
tion

Z :=
∮

C

u(x) dx (1.27)

vanishes for every closed contour C within every simply connected subdomain of the
flow area. Then u can be derived from a potential φ i.e. there is a scalar function
φ so that

u = ∇φ , (1.28)
16e.g. on a wing of an aircraft
17For the time being, z means the third space variable; it will later denote the complex variable

x + i y, but confusion will certainly not occur.
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and

curl u = 0 (1.29)

holds within this area.

By the way, the vector curl u is often called the vorticity vector or angular velocity
vector, and a trajectory of a field of vorticity vectors is called a vortex line.

Because of (1.28), a flow of this type is called a potential flow, and φ is the so-called
velocity potential.

The fifth equation in (1.8) can be omitted as far as the knowledge of the energy density
E is of no interest.

From (1.29), the relation 〈 u ,∇ 〉 u = 1
2 ∇ (‖u‖2)− [u , curl u] leads together

with (1.26) to

∇
(

1
2
‖u‖2 +

1
ρ
p

)
= k̂ . (1.30)

Formula (1.30) shows that a fluid flow of the particular type under consideration,
namely an approximately stationary, inviscid, incompressible, and irrotational flow
can only exist if the exterior forces are the gradient of a scalar function. In other
words: these forces have to be conservative, i.e. there has to exist a potential Q with
k̂ = −∇Q, such that (1.30) leads to

∇
(

1
2
‖u‖2 +

1
ρ
p + Q

)
= 0 .

i.e. to

1
2
‖u‖2 +

1
ρ
p + Q = const . (1.31)

(1.31) is called the Bernoulli equation18 and is nothing else than the energy conser-
vation law for this particular type of flow. p is called the static pressure, whereas

the term
ρ

2
‖u‖2 i.e. the kinetic energy per volume, is often called the dynamic

pressure.

As far as an incrompressible flow in a circular pipe is concerned, the velocity will
necessarily increase as soon as the diameter of the pipe decreases, and – because of

18Daniel Bernoulli (1700 - 1782); St. Peterburg, Basle
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(1.31) – this will lead to a decreasing pressure within the narrow part of the pipe. This
phenomenon is called the hydrodynamic paradoxon. Applications are carburettors,
jet streams etc.

Remark:
A necessary condition for the existence of the irrotational flow was the conservative
character of the exterior forces. Let us now assume that −vice versa− these forces
are conservative, i.e. k̂ = −∇Q. Morover, let us admit that the flow is even
compressible in the sense of a particular dependence ρ = ρ(p), called a barotropic
flow. Integration of (1.26) along a streamline from a constant point P0 to a variable
point P then leads to

P∫

P0

{
1
2
∇(‖u‖2) + [curl u , u] + ∇Θ + ∇Q

}
ds = 0 ,

with

Θ :=
∫

dp

ρ(p)
,

hence

∇Θ =
1
ρ
∇ p ,

and with

ds =
1

‖u‖ u ds (s = arc length) .

Because P was arbitrary and because of 〈[curl u , u] , u〉 = 0, this result leads to
the generalized Bernoulli equation

1
2
‖u‖2 + Θ + Q = const ,

which in the case of constant density, i.e. Θ =
p

ρ
, seems to coincide completely with

(1.31). But one has to take into account that the constant at the righthand side may



1.3 Potential Flows and (Dynamic) Buoyancy 33

now change from streamline to streamline. Additionally, we find

d

dt
Z =

d

dt

∮

C

u(x) dx =
∮

C

d

dt

〈
u ,

dx

ds

〉
ds

=
∮

C

du

dt
dx +

∮

C

u du

=
∮

C

du

dt
dx =

∮

C

{〈 u ,∇ 〉u} dx

= −
∮

C

{
1
ρ
∇p+ ∇Q

}
dx

= −
∮

C

∇ (Θ +Q) dx = 0.

This is Kelvin’s Theorem19, which says that the circulation along a closed curve in
an inviscid barotropic flow does not change in time.

If irrotational flows of arbitrary type of incompressibility are under consideration,
(1.28) leads together with (1.25) to

∆φ = 0 (1.32)

whereas the continuity equation (1.4) reads for compressible fluids in the case of sta-
tionary flows as

div(ρu) = 0 .

Let us additionally assume the flow to be barotropic. Then, because of

div(ρ u) = ρ div u +
dρ
dp

〈∇p , u〉
and because of

ĉ =

√
dp
dρ

(cf. (1.68)) ,

(1.26) leads to
(

1 −
(u1

ĉ

)2
)
∂xxφ+

(
1 −

(u2

ĉ

)2
)
∂yyφ+

(
1 −

(u3

ĉ

)2
)
∂zzφ

− 2
(u1 u2

ĉ2
· ∂yu1 +

u2 u3

ĉ2
· ∂zu2 +

u3 u1

ĉ2
· ∂xu3

)
= 0 , (1.33)

19Lord Kelvin of Largs (1824 - 1907); Glasgow
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as far as the exterior forces vanish. In this situation, (1.33) generalizes (1.32).

Obviously, (1.33) is a quasilinear partial differential equation of second order for φ,
certainly elliptic if

M :=
‖u‖
ĉ

< 1 , (1.34)

i.e. in areas of subsonic flow.

Definition: M is called the Mach number20.

If particularly a constant flow into x-direction is under consideration which is only
disturbed in the neighbourhood of a slim airfoil21 with a small angle of attack, prod-
ucts of the values ui (i = 2, 3) with each other and with u1 can be neglected
compared with 1. This leads to ‖u‖2 = u1

2 and to a shortened version of (1.33),
namely to

(
1 −

(u1

ĉ

)2
)
∂xxφ+ ∂yyφ+ ∂zzφ = 0 . (1.35)

This equation is hyperbolic in areas of supersonic flow (M > 1), and also the full
equation (1.33) is of hyperbolic type in this case.

Figure 3: Flow around a wing if the angle of attack is small

Let us extend our idealizations by the assumption that the flow under consideration is
a two-dimensional plane flow. This means that one of the components of the veloc-
ity vector u in a rectangular coordinate system, e.g. the component in z-direction,

20Ernst Mach (1838 - 1916); Graz, Praha, Vienna
21cross-section of a wing or another rigid body in a plane parallel to the direction of the flow
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vanishes for all (x, y) ∈ �2 and for all t ≥ 0 :

u3 = 0 . (1.36)

In case of a two-dimensional supersonic flow along a slim airfoile for which (1.35)
holds, Mach’s angle β, determined from

| sinβ| =
1
M

< 1

describes the angle between the characteristics of the wave equation

(1 −M2)∂xxφ+ ∂yyφ = 0

and the flow direction given by the direction of the x-axis. The set of all these char-
acteristics is called Mach’s net. This net plays an important role as far as so-called
methods of characteristics are used in order to establish efficient numerical proce-
dures.

Figure 4: Mach’s net in the case of a linearized supersonic flow (M = const > 1)

The two-dimensional case of rotational symmetry, e.g. flow along a projectile, leads
correspondingly to Mach’s cone.

In the two-dimensional plane situation, (1.29) reads as

curl u =




−∂zu2

∂zu1

∂xu2 − ∂yu1


 = 0 .
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Figure 5: Linearized supersonic flow around a slim rotatory cone

Thus, u1 and u2 are independent of the third spatial variable z :

u =




u1(x, y)
u2(x, y)

0




with

∂xu2 − ∂yu1 = 0 . (1.37)

After introduction of the vector

v :=




−u2(x, y)
u1(x, y)

0


 (1.38)

and by means of the continuity equation (1.25), we receive

curl v =




0

0

∂xu1 + ∂yu2


 =




0

0

div u


 = 0 ,

such that also v can be derived from a potential in simply connected parts of the fluid
area. In other words, there is a scalar function ψ = ψ(x, y) with

−u2 = ∂xψ , u1 = ∂yψ . (1.39)

ψ is called the stream function.



1.3 Potential Flows and (Dynamic) Buoyancy 37

(1.28) leads to

∂xφ = ∂yψ , ∂yφ = − ∂xψ. (1.40)

Obviously, (1.40) can be interpreted as the system of Cauchy–Riemann equations
of the complex function

Ω(z) := φ(x, y) + i ψ(x, y) (1.41)

depending on the complex variable z = x+ i y.

Ω is called the complex velocity potential of the plane potential flow under consid-
eration.

We are going to assume that the first partial derivatives of the functions φ and ψ
are continuous such that Ω turns out to be a holomorphic function, and we intent to
study the forces acting on rigid bodies when dipped into such a fluid flow.

Because we reduced the reality to a plane flow, the rigid body is assumed to be very
long with respect to the direction of the third spatial variable; more precisely, it has to
be of infinite length from the point of view of mathematics. Therefore, the flow around
the contour of the cross section of the body within the (x, y)-plane, e.g. around the
contour of an airfoile of a long wing, is of interest.

We stated that the circulation Z =
∮
C

u dx vanishes as long as the closed contour

C is the boundary of a simply connected domain within the fluid area in the case of a
potential flow. Because of our plane model, C represents a simply closed contour in
the (x, y)-plane, i.e. in �2.

But now, a rigid body with its boundary Γ is dipped into the fluid, e.g. a wing. If its
airfoil is part of the area surrounded by C, this interior domain of C is no longer a
simply connected domain of the fluid area. Hence, the circulationZ around the airfoil
does not necessarily vanish but turns out to fulfill

∮

C

u dx =
∮

Γ

u dx .

In order to proof this relation, we take into account that Γ and C can in a first step
be connected by two auxiliary lines in such a way that two simply connected domains
G1 and G2 with the contours C1 and C2, respectively, will occur. Because of
curl u = 0 in G1 as well as in G2, we see in a second step that

∮

C1

u dx = 0 as well as
∮

C2

u dx = 0
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hold. This leads to

∮

C1

u dx +
∮

C2

u dx = 0

(cf. Figure 6).

Figure 6: Auxiliary step in the computation of the buoyancy generated by plane
potential flows

We realize in a third step that the integrations back and forth along each of the auxil-
iary lines extinguish each other such that

∮

C1

u dx +
∮

C2

u dx =
∮

C

u dx +
∮

−Γ

u dx

results. Here, −Γ denotes the contour of the rigid body if run through in negative
direction, and this ends the proof.

Remark:
It has to be mentioned that the proof given is simplified because Γ does not only pass
through the interior of the domain occupied by the fluid but is part of its boundary. As
a matter of fact, one really has first, roughly speaking, to investigate the case where
Γ is replaced by a line Γε of distance ε from Γ and passing only through the fluid,
and in a next step one has to study the limit situation ε→ 0.

Let Γ now be parametrized by r = r(τ) , 0 ≤ τ ≤ T . Then

Z =

T∫

0

〈 u(r(τ)), ṙ(τ) 〉 dτ =

T∫

0

{
u1 ẋ+ u2 ẏ

}
dτ (1.42)
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holds, and ṙ =
(
ẋ(τ)
ẏ(τ)

)
is a vector tangential to the curve Γ at the point

(x(τ), y(τ)) such that

n :=
1√

ẋ2 + ẏ2

(
ẏ

−ẋ
)

(1.43)

is a normal unit vector of Γ at this point.

According to (1.13), we assume that the velocity of the flow at the surface of the rigid
body is tangential to this surface:

〈 u ,n 〉 = 0 along Γ ,

i.e. u1 ẏ = u2 ẋ. From this and with (1.42), the circulation becomes

Z =

T∫

0

(u1 − i u2) (ẋ+ i ẏ) dτ ,

i.e.

Z =
∫

Γ

w(z) dz , (1.44)

with

w(z) := u1(x, y) − i u2(x, y) . (1.45)

w(z) is a holomorphic function in the whole domain outside the airfoil because (1.39)
yields

∂xu1 = ∂xyψ = ∂yxψ = ∂y(−u2) ,

and because (1.28) leads to

∂yu1 = ∂xyφ = ∂yxφ = −∂x(−u2) ,

i.e. the Cauchy–Riemann equations for the function w(z) are fulfilled.

Hence, also with respect to the computation of the circulation, it is allowed to integrate
along C instead of Γ :

Z =
∫

C

w(z) dz . (1.46)
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Here, we choose C in such a way that it lies in the annulus between two concentric
circles where Kr of radius r surrounds the airfoil and where KR is a circle with
sufficiently great arbitrary radius R > r. Without loss of generality, we assume the
center of the circles to be the origin of the former (x, y)–plane which now became the
complex z–plane.

w(z) can be represented in the annulus – and therefore particularly for every z ∈ C –
by a Laurent series22 around the center z0 = 0 (cf. Figure 7):

w(z) =
+∞∑

ν=−∞
aν z

ν .

Figure 7: Annulus around an airfoil

We know by experience that the fluid flow is often influenced by the rigid body only
in a certain neighbourhood of the contour; the flow around a ship that crosses a calm
lake with constant velocity gives an example. From this point of view we are going to
assume that the velocity u = u(x, y) is constant for |z| → ∞ :

lim
|z|→∞

u(x, y) =
(
u1,∞
u2,∞

)
(1.47)

with constant components u1,∞ and u2,∞ such that

lim
|z|→∞

w(z) = u1,∞ − i u2,∞ .

22Pierre Alphonse Laurent (1813 - 1854); Le Havre
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Because the coefficients aν (ν = 0, ± 1, ± 2, . . .) are constant numbers which do
not depend on R, and because R is allowed to tend to infinity, we find for |z| → ∞
that all the aν with positive index have to vanish.

Hence, the result

lim
|z|→∞

w(z) = a0 = u1,∞ − i u2,∞ . (1.48)

follows.

On the other hand, Cauchy’s formula

a−1 =
1

2π i

∮

C

w(ζ) dζ ,

leads to

Z = 2π i a−1 . (1.49)

The (twodimensional) force K to be calculated caused by the flow and acting on the
rigid body turns out to become

K =
(
K1

K2

)
= −

L∫

0

pn ds

(
[K] =

[force]
[length]

)
, (1.50)

where n is the unit normal vector from (1.43), p denotes the pressure along the surface
of the body caused by the fluid, s measures the arc length along Γ beginning at an
arbitrary point of it, and where L is the total length of Γ. Let us study this force
separately from the other exterior forces acting on the body, i.e. let us assume that the
sum of these other forces vanishes. This leads to a constant potential U in Bernoulli’s
equation (1.31) and therefore to a constant total pressure

p0 :=
ρ

2
‖u‖2 + p .
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Because Γ is a closed contour,
L∫
0

n ds = 023. Therefore,

K = −
L∫

0

{
p0 − ρ

2
‖u‖2

}
n ds =

ρ

2

L∫

0

‖u‖2 n ds ,

i.e.

K1 =
ρ

2

T∫

0

1√
ẋ2 + ẏ2

‖u‖2 ẏ
ds

dτ
dτ ,

K2 = −ρ
2

T∫

0

1√
ẋ2 + ẏ2

‖u‖2 ẋ
ds

dτ
dτ .

The temporary introduction of the complex number

k = K2 + iK1 (1.51)

yields

k = −ρ
2

T∫

0

1√
ẋ2 + ẏ2

‖u‖2 (ẋ− i ẏ) ds
dτ

dτ = −ρ
2

T∫

0

‖u‖2 (ẋ− i ẏ)dτ .

The complex number within the paranthesises on the righthand side of

‖u‖2(ẋ− i ẏ) = (u2
1 + u2

2) (ẋ− i ẏ) = (u1 − i u2) (u1 + i u2) (ẋ− i ẏ)

= w(z) (u1 ẋ+ u2 ẏ + i u2 ẋ− i u1 ẏ)

is not really complex because the imaginary part vanishes (cf. (1.13)). It can therefore
be replaced by its conjugate complex number:

‖u‖2(ẋ+ i ẏ) = w(z) (u1 ẋ+ u2 ẏ − i u2 ẋ+ i u1 ẏ)

= w(z) (u1 − i u2) (ẋ+ i ẏ) = w2(z) ż .

23 ds

dτ
=

p
ẋ2 + ẏ2 , hence

LZ
0

n ds =

TZ
0

1p
ẋ2 + ẏ2

„
ẏ

−ẋ

«
ds

dτ
dτ =

„
y(T ) − y(0)

−x(T ) + x(0)

«
=

„
0
0

«
.
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This leads to

k = −ρ
2

T∫

0

w2(z) ż dτ = −ρ
2

∫

Γ

w2(z) dz .

Because w is holomorph, also w2 is a holomorphic function. Hence,

k = −ρ
2

∫

C

w2(z) dz . (1.52)

But within the annulus we have

w2(z) =
(
a0 +

a−1

z
+

a−2

z2
+ . . .

) (
a0 +

a−1

z
+

a−2

z2
+ . . .

)

= a2
0 + 2

a0 a−1

z
+

A−2

z2
+

A−3

z3
+ . . .

with certain coefficients Aν (ν = −2,−3, . . .).

Cauchy’s residuum formula and (1.52) therefore lead to

k = −ρ
2

2a0 a−1 · 2π i .

Thus, (1.48) and (1.49) yield

k = −ρ (u1,∞ − i u2,∞) Z ,

and because the circulation Z is real (cf. (1.27)), the comparison of the real and
imaginary parts of (1.51) results in

K1 = ρ u2,∞ Z

K2 = −ρ u1,∞ Z .
(1.53)

If particularly u2,∞ = 0 but u1,∞ 
= 0, i.e. if the undisturbed flow is parallel to the
x–axis, and if Z 
= 0, we find a lift K2 
= 0, i.e. there is a force acting on the rigid
body perpendicular to the direction of the flow.

By suitable construction of wings, the airfoils can lead to Z < 0 so that an air-
craft can start against its weight, a hydrofoil can lift in the water etc. Of course,
also Archimedes’ static buoyancy, given by (1.62), has additionally to be taken into
account.
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Remark:
The formulas (1.53) are called Kutta–Zhukovsky buoyancy formulas.24

Remark:
Whereas the first equation in (1.53) describes the buoyancy at least qualitatively in a
correct manner, the result K1 = 0 contradicts real experiences: Also in case of an
incompressible irrotational stationary flow –as more or less realized by calmly running
little rivers– the flow leads to some force affecting the rigid body –e.g. a bridge pier–
parrallel to the flow. Of course, this contradiction results from one of our idealisations,
namely from the assumption of an inviscid and therefore frictionless fluid.
In order to understand what really happens parallel to the flow, we have to reduce these
idealizations. This will later be done by the transition from the Euler equations to the
so-called Navier-Stokes equations and from (1.13) to the so-called no-slip condition

u = 0 along Γ . (1.54)

(1.54) expresses the idea that moving viscous fluids leave a monomolecular non-
moving layer along impermeable walls of solid bodies because of adhesion. Thus,
friction along such surfaces does not mean friction between the fluid and the solid
material but always just friction between fluid particles.
Of course, there are also other boundary conditions where partial slip on the surfaces
occur, e.g. in case of rarefied gas flow, porous walls etc. The tangential component of
the flow is then proportional to the local shear stress.

If (1.33) is reduced to the case of an irrotational, stationary, plane flow, i.e. u3 =
0 , ∂yu1 = ∂xu2, if there are no exterior forces, and if (u1 , u2) is for convenience
replaced by (u , v), we get

(
1 −

(u
ĉ

)2
)
∂xu+

(
1 −

(v
ĉ

)2
)
∂yv − u v

ĉ2
· (∂yu+ ∂xv) = 0 . (1.55)

The u-v-plane is called the hodograph plane.

We assume the equations

u = u(x, y)

v = v(x, y)

to be invertible such that x and y can be expressed by u and v, i.e.

D :=
∣∣∣∣
∂xu ∂yu
∂xv ∂yv

∣∣∣∣ 
= 0 .

24Martin Wilhelm Kutta (1867 - 1927); Stuttgart Nikolai Jegorowitsch Zhukovsky (1847 - 1921);
Moscow
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In other words, it will be assumed that the vectors ∂xu and ∂yu are linearly indepen-
dent.

This leads immediately to

∂xu = D ∂vy , ∂yu = −D ∂vx , ∂xv = −D ∂uy , ∂yv = D ∂ux .

The nonlinear equation (1.55) together with the equation ∂yu = ∂xv for the functions
u(x, y) and v(x, y) of the irrotational flow can so –after division byD– be transformed
into the linear equations

(
1 − v2

ĉ2

)
∂ux +

(
1 − u2

ĉ2

)
∂vy +

u v

ĉ2
(∂vx + ∂uy) = 0

∂vx− ∂uy = 0 (1.56)

for the functions x(u, v) and y(u, v).

The transition from the original equations to the linear equations (1.56) is called
method of hodographs and corresponds to the Legendre transformation in the the-
ory of partial differential equations.

In simply connected domains, x(u) can be derived from a potential Θ, i.e. x =
Θu , y = Θv, because of

curl x(u) = (0, 0, ∂uy − ∂vx)
T = 0 .

(1.56) therefore yields
(

1 − v2

ĉ2

)
∂uuΘ +

(
1 − u2

ĉ2

)
∂vvΘ + 2

u v

ĉ2
∂uvΘ = 0 . (1.57)

If polar coordinates (w = ‖u‖ , α) are used in the hodograph plane, i.e.

u = w cosα , v = w sinα ,

∂u = cosα ∂w − 1
w

sinα ∂α ,

∂v = sinα ∂w +
1
w

cosα ∂α ,

(1.57) turns to the so-called hodograph equation

∂wwΘ +
1
w2

(
1 − w2

ĉ2

)
∂ααΘ +

1
w

(
1 − w2

ĉ2

)
∂wΘ = 0 (1.58)

which does not explicitely contain α.
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If we try to solve (1.58) by the ansatz

Θ(w,α) = g(w) sin(mα) or Θ(w,α) = g(w) cos(mα) (m ∈ �) , (1.59)

we receive for the unknown function g(w) the ordinary differential equation

g′′(w) +
1
w

(
1 − w2

ĉ2

)
g′(w) − m2

w2

(
1 − w2

ĉ2

)
g(w) = 0 . (1.60)

Solutions of the hodograph equation of type (1.59) are called Chapligin solutions25.

Let gm(w) be a solution of (1.60) that belongs to a particular m and let Θm(w,α)
be the solution of (1.59) that corresponds to this solution.

Examples:
m = 0 leads to

g0
′′

g0′
= − 1

w
+
w

ĉ2
,

hence

g0
′ =

c
(0)
1

w
e

1
2

w2

ĉ2 .

The power series of e
1
2

w2

ĉ2 converges uniformly for all values of w. Integration can
therefore be done term by term and yields

g0(w) = c
(0)
1

{
lnw +

∞∑
ν=1

(
w
ĉ

)2ν

2ν+1νν!

}
+ c

(0)
2 .

Here, c(0)
1 and c(0)

2 are arbitrary constants.

Analogously for m = 1 :

g1(w) = c
(1)
1 w + c

(1)
2

{
1
w2

+
w lnw
2ĉ2

+
∞∑

ν=0

w2(ν+1)

2ν+2ĉ2(ν+2)

}
.

Because (1.58) is linear and homogeneous, also all linear combinations of particular
Chapligin solutions solve the equation (1.58). The coefficients of the expansion as
well as the constants c(m)

1 and c(m)
2 have to be chosen in such a way that the expansion

fits the given situation at least approximately.

25C.A. Chapligin: Sci. Ann. Univ. Moscow. Math. Phys. 21 (1904), 1-121
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1.4 Motionless Fluids and Sound Propagation

Obviously, because viscosity does only play a role in moving fluids, the results of this
section are valid for real fluids, too.

Let us −in a first step− consider the case of constant density ρ, approximately realized
in liquids.

In this situation, (1.26) leads for motionless fluids, i.e. for u = 0, to the so-called
hydrostatic equation

k̂ = ∇
(
p

ρ

)
,

and (1.31) becomes

U +
p

ρ
= const .

Let us assume that we do not yet know how the free surface of a motionless liquid
behaves if only the force of gravity and a constant exterior (e.g. atmospheric) pressure
p0 affects this liquid. Hence, the force per mass unit is given by

k̂ = (0, 0, −g)T (g = acceleration of gravity) ,

such that U = g z + const, i.e. ρ g z + p = const. Particularly, if (x, y, z0) is a
point of the surface, ρ g z + p = ρ g z0 + p0 or

ρ g (z − z0) = −(p − p0) = −p̂ (1.61)

holds. Here, p̂ is the overpressure inside the liquid compared with the exterior pres-
sure.

Because of

z0 =
const − p0

ρ g
,

z0 is constant, thus independent of (x, y). In other words, the surface of the liquid is
plane or −more precisely− parallel to the earth surface. If h = z0 − z is the height
of an arbitrarily shaped liquid column, (1.61) gives

ρ g h q = p̂ q ,

where q is the base area of the column.
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The force affecting this base is given by the righthand side of the equation and does
not depend on the form of the column whereas the lefthand side gives the weight of a
cylindrical column of the fluid of the same base area and of the same height.

This phenomenon is called the hydrostatic paradox.

Figure 8: Hydrostatic paradox

We are now going to dip a solid body of volume V and of surface F into a non-moving
liquid.

Obviously, an overall force K with

K = (K1 , K2 , K3)
T = −

∫

F

p n do+ G

affects the body where p is the interior pressure of the liquid. G is the weight of
the body, and n denotes the outward directed normal unit vector at the points of the
surface. Because of G = (0, 0, −G)T , (1.61) yields

K1 = ρ g

∫

F

(z − z0 − p0

ρ g
)n1 do = ρ g

∫

F

〈a , n〉 do

with a := (z − z0 − p0

ρ g
, 0 , 0)

T
. The divergence theorem therefore leads to

K1 = ρ g

∫

V

div a dV = ρ g

∫

V

∂(z − z0)
∂x

dV = 0 .

Analogously: K2 = 0. K3 turns out to be given by

K3 = ρ g

∫

V

∂(z − z0)
∂z

dV −G = ρ g V −G ,
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such that

K = (0, 0, ρ g V −G)T ; . (1.62)

ρ is the density of the liquid (!) so that ρ g V is the weight of the particular part of
the liquid which is displaced by the solid body. Hence, the body is affected by a
force against its weight direction, and this (static) buoyancy equals the weight of the
displaced quantity of the liquid (Archimedes’ principle)26.

In order to study the sound propagation in a fluid, we assume that the fluid does not
move from a macroscopic point of view. Moreover, we will only consider such sound
effects which are due to very small disturbances of the density and of the pressure
within the fluid. So, we do no longer assume the density to be constant but to be of
only small variations.

Let ρ̂ and p̂ be the averages of the density and of the pressure, respectively. Only these
averages are expected to be constant quantities.

The disturbances of the density will be expressed by

ρ = ρ̂ (1 + σ(x, t))

with |σ| 
 1 and with only small spatial derivatives of σ27.

The continuity equation (1.4) then becomes

ρ̂ σt + ρ̂ div ((1 + σ)u) = 0 ,

thus, after division by ρ̂ and taking the assumptions on σ into account,

σt + div u = 0 . (1.64)

Experiments show that the propagation of sound waves occurs more or less in an
adiabatic way, i.e. without gain or loss of heat. The equation of state to be taken into
account therefore reads as

ρ−γ p = const28 (1.65)

such that

p

p̂
=

(
ρ

ρ̂

)γ

= (1 + σ)γ .

26Achimedes (about 220 BC); Syracuse
27Our results do not necessarily hold if the propagation of great variations of the pressure or of the

density are under consideration as they can occur in the case of detonations.
28γ from (1.9)
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Because σ is small,

(1 + σ)γ ≈ 1 + γ σ .

Hence

p = p̂(1 + γ σ) ,

so that
1
ρ
∇p =

p̂ γ

(1 + σ) ρ̂
∇σ . (1.66)

In our model of small disturbances, the velocity of the fluid particles and its spatial
derivatives are so small that higher order terms of these quantities can be neglected
compared with first order terms. In other words, the convection term in (1.6) can be
neglected. Also exterior forces do not play a role in our context.

If then (1.66) is put into (1.6), we find

ut = −γ p̂
ρ̂

∇σ ,

where 1 + σ was approximated by 1.

Forming the divergence of this term followed by a change of the sequence of the time
derivative and the spatial derivatives, we end up with

(div u)t = −γ p̂
ρ̂

∆σ .

This result can be compared with (1.64) when differentiated with respect to t. This
comparisons yields

σtt =
γ p̂

ρ̂
∆ σ ,

a wave equation for σ. It shows that the sound waves propagate within the fluid with
the velocity

ĉ =

√
γ p̂

ρ̂
. (1.67)

Definition: ĉ is called the local sound speed.

Remark: Because of (1.65), ĉ can also be represented by

ĉ =

√
dp
dρ

. (1.68)



2 Weak Solutions of Conservation Laws

2.1 Generalization of what will be called a Solution

As already announced, we are going to discuss in this chapter the introduction of a
suitable globalization of the definition of a conservation law solution. And we do
already know that such a solution can’t be expected to be a smooth function because
we had already realized that discontinuities can arise even from smooth initial states.
Moreover, discontinuities which arose at an instant t0 can move with respect to space
and time as will be seen later. Of course, this also holds if the initial state already
shows one or more discontinuities.

On the other hand, discontinuities which existed at an instant t0 can disappear for
t > t0 as far as a suitable definition of global solutions will be used. Examples will be
presented later. All these phenomena can occur in scalar problems as well as in case
of systems of conservation laws.

We restrict ourselves within this chapter to only one space variable but allow the
solution V = (v1, · · · , vm)T seeked for to consist of more than one component.
Hence, we are going to treat the problem

∂tV + ∂xf(V ) = 0 on Ω = {(x, t) |x ∈ � , t ≥ 0} ,

(2.1)

V (x, 0) = V 0(x) ,

where we will assume for the time being that f is at least one time differentiable.

Example:
Another example of this kind −besides (1.14)− is the system of the so-called shallow
water equations.

These equations describe the shape and the velocity of surface waves as far as shallow
liquids are concerned. Herewith, we consider an idealized situation, namely waves
of an inviscid incompressible liquid travelling only along a canal of low depth whose
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direction coincides with the x-axis whereas the flow of liquid particles into z-direction
can be neglected. This idealization seems to be acceptable if the amplitudes of the
surface waves are small compared with the wave length. The width b of the canal is
assumed to be constant and we ask for the hight h(x, t) of the liquid surface over the
bottom of the canal (cf. Figure 9).

Figure 9: Shallow water flow along a canal

The mass of the fluid within a segment x ≤ ξ ≤ x + ∆x of the canal at the instant t
is given by

m(t) = b ρ

x+∆ x∫

x

h(ξ, t)d ξ .

With (1.3), if ϕ is particularly chosen as ϕ = b ρ h , conservation of mass leads to

d

dt
m(t) = b ρ

d

dt

x+∆ x∫

x

h(ξ, t)d ξ = b ρ

x+∆ x∫

x

{∂th+ ∂x(uh)} d ξ

= 0 ∀ (x , ∆x),

i.e

∂th + ∂x(uh) = 0 .

This replaces the continuity equation in this particular situation.

The momentum of the mass m(t) reads

b ρ

x+∆ x∫

x

u(ξ, t)h(ξ, t) d ξ .
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The forces per length unit occuring from the hydrostatic pressure, namely

b p =

h∫

0

(h− z)ρ g d z = ρ g
h2

2
(g : acceleration of gravity) ,

act on the liquid in the segment under consideration. The principle of conservation of
momentum then leads by means of (1.3), now with ϕ = b ρ uh , to

∂t(ρ hu) + ∂x(ρ hu2) + ∂xp = 0 ,

i.e. to

∂t(hu) + ∂x(hu2 +
h2

2
g) = 0 .

This equation turns out to be Euler’s equation for our example.

If the continuity equation as well as the Euler equation is multiplied by g, if ∂t(hu)
is replaced by ∂thu + h ∂tu, if a variable ψ(x, t) := g h(x, t) is introduced, if the
continuity equation is again taken into account, and finally, if the second equation is
divided by ψ, we find the system of shallow water equations

∂t

(
ψ

u

)
+ ∂x

(
uψ

u2

2 + ψ

)
= 0 .

Obviously, this is in fact a particular system of the type (1.2).

In order to establish now a suitable generalized definition of a weak solution, let us
temporarily assume that there is a smooth solution of problem (2.1) on Ω. Put this
solution into (2.1), then multiply (2.1) by an arbitrary test function Φ ∈ C1

0 (Ω).
Here, C1

0(Ω) is defined to be the set of all functions continuously differentiable on Ω
and with compact support.

Particularly, each of the functions Φ vanishes on the boundary of its support, possibly
with the exception of such parts of the boundary which belong to the x axis.

Now integrate by parts over Ω. As a matter of fact, this is only an integration over the
compact support of Φ, hence over a closed bounded region.

This integration leads to29

∫

Ω

{V ∂t Φ+f(V ) ∂xΦ} d(x, t)+
+∞∫

−∞
V 0(x) Φ(x, 0) dx = 0 ∀Φ ∈ C1

0(Ω). (2.2)

29It should be noted that this reformulation of the problem uses the conservation form of the differen-
tial equation and can’t be generally applied to arbitrary quasilinear partial differential equations.
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Obviously, the left hand side of (2.2) does no longer make sense only for sufficiently
smooth functions V but −for instance− also for all V ∈ Lloc

1 (Ω), i.e. for all vector
valued functions V , whose components can be integrated over compact subsets of Ω
in the sense of Lebesgue.

Let us now forget the way we got (2.2), and let us −vice versa− ask for functions
V ∈ Lloc

1 (Ω) which fulfill (2.2). These functions will be called weak solutions of the
original problem (2.1), and these solutions are no longer necessarily smooth.

On the other hand, our motivation of (2.2) shows that every smooth solution is also a
weak solution.

Vice versa, every weak solution V which is a smooth function in a neighbourhood
D(P0) of a point P0 = (x0, t0), does there not only fulfill (2.2) but also (2.1) in
the classic understanding. Indeed, let Φ ∈ C1

0 (Ω) be an arbitrary test function with
support D(P0). Then

∫

D(P0)

{V ∂t Φ + f(V ) ∂x Φ} d(x, t) +

∞∫

−∞
V 0(x)Φ(x, 0) dx = 0

holds and leads to∫

D(P0)

{∂t V · Φ − ∂t (V Φ) + ∂x f(V ) · Φ − ∂x (f(V ) · Φ)} d(x, t) −

∞∫

−∞
V 0(x) Φ(x, 0) dx = 0 .

By the divergence theorem, the last equation can be written as
∫

D(P0)

{∂t vi + ∂x fi(V )} Φ d(x, t) −
∫

∂D(P0)

(〈(
fi(V )
vi

)
,n

〉)
Φ d (∂D(P0))

−
∞∫

−∞
v0,i(x) Φ(x, 0) dx = 0

(i = 1, · · · ,m) ,

where n denotes the outward normal unit vector on the boundary ∂D(P0) of D(P0)
and where 〈·, ·〉 means the standard �2-scalar product.
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If ∂ D(P0) does not contain points of the x-axis, both boundary integrals vanish
because we have Φ ≡ 0 along ∂D(P0). Otherwise, the first boundary integral turns
into an integral over the particular part of the boundary that belongs to the x-axis
because Φ vanishes along the rest of this boundary. In each of these cases we find

∫

D(P0)

{∂t vi + ∂x fi(V )}Φ d(x, t)

−
∞∫

−∞

{〈(
fi(V )
vi

)
,

(
0
−1

)〉
+ v0,i

}
Φ(x, 0) dx = 0 ,

i.e., for i = 1, · · · ,m,

∫

D(P0)

{∂t V + ∂x f(V )}Φ(x, t) d(x, t)+

∞∫

−∞
{V (x, 0)−V 0(x)}Φ(x, 0) dx = 0.

Since Φ was arbitrary and V was assumed to be smooth, this can only hold if

∂t V + ∂x f(V ) = 0

on D(P0), hence particularly at P0, and if V (x0, 0) = V 0(x0). But because P0

was chosen arbitrarily in its neighbourhood, our assertion follows.

This concept of a weak solution of (2.1) leads to the advantage that the set of admis-
sible solutions can sbe extended considerably. In particular, discontinuous solutions
can be admitted as far as the Lebesgue integrability will not be disturbed.

But there is also a remarkable disadvantage: The uniqueness of the solution as it was
at least guaranteed locally −together with its existence− gets lost. Often there exists
more than one weak solution so that a new question arises: By which procedure can
the particular weak solution answering the originally formulated real world problem
be picked out of the set of all the weak solutions of (2.1) ?

As a matter of fact, the solution or weak solution of a differential equation problem
can often only be described approximately by means of a numerical procedure. Nu-
merical procedures normally consist in discrete models of the original problem, i.e.
in finite dimensional problems whose solutions are expected to lie in a certain neigh-
bourhood of the unknown solution of the original problem. Particularly, we expect
the approximate solution to converge to this unknown solution if the dimension of
the discrete model problem tends to infinity. If convergence of the numerical solution
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to a weak solution of the original problem can be shown, one has to ensure that this
weak solution coincides with the relevant solution instead with one of the other weak
solutions.30

For the time being, let us in the next section study an example where the transition to
a weak formulation does really lead to a loss of uniquenes of the solution.

2.2 Traffic Flow Example with Loss of Uniqueness

As far as a sufficiently dense car traffic is concerned, the density ρ [cars/ml] as well
as the flux f [cars/h] of macroscopic traffic flow models are approximately regarded
as functions defined on a continuum, e.g. for a ≤ x ≤ b. The spatial variable x [mile]
denotes the positions along a oneway lane which is interpreted as a onedimensional
set, and 0 ≤ t <∞.

If there are no approaches or exits and no crossings along the part of the road under
consideration, the conservation of mass, i.e. the constant number of cars, obviously
leads within our continuous model to the demand for the validity of the continuity
equation

∂tρ + ∂xf = 0 (2.3)

with

f = vρ , (2.4)

where v = v(x, t) [ml/h] denotes the speed of the cars at position x at instant t.

(2.3) has to be completed by an initial condition

ρ(x, 0) = ρ0(x) (2.5)

with a given function ρ0 as well as by a spatial boundary condition as far as the part of
the road under consideration can’t be regarded as a lane of infinite length. Moreover,
it should be assumed that −hopefully− friction between cars does not occur.

As by experience, ρ depends above all explicitely on the speed of the cars:

ρ = ρ(v) . (2.6)

30Of course, convergence is a basic requirement and must be accompanied by other important proper-
ties of the numerical procedure in order to make it an applicable method.
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It is an empirically given decreasing and strictly monotone function. Hence, we can
also consider v to be a function of ρ.

Let vf be the mean value of the individual maximal car velocities if the road in front
of a driver is more or less empty. This value is assumed to be a constant, e.g. vf = 80
ml/h.

Obviously, the initial density

ρ0(x) = ρ(v(x, 0))

is known as soon as the initial speed distribution

v(x, 0) = v0(x) (2.7)

is given.

Instead of ρ(v) or of v(ρ), often the graph of

f = v(ρ) · ρ =: f(ρ) (2.8)

is given empirically and turns out to be a strictly concave function called the funda-
mental diagram.

Thus, this traffic flow model leads to an initial value problem for a scalar conservation
law of type (2.1), where V consists of the only one component ρ such that f(V ) =
f(ρ).

Let ρ∗ denote the jam concentration, i.e. the density of cars within a standing con-
gestion. Also this value is assumed to be a constant similar to vf , e.g. ρ∗ = 400
cars/ml.

A most simple f(ρ) model, later used in order to explain exemplarily certain facts and
connections, was given by Greenshields:

f(ρ) = vf · ρ ·
(

1 − ρ

ρ∗

)
. (2.9)

Thus, the flux vanishes or −in other words− there is (almost) no traffic, if the traffic
density vanishes or if the road users stand within a traffic jam.

(2.9) is a concave parabola with its maximum at

(
ρ∗

2
,
vf ρ

∗

4

)
and leads together with

(2.4) to the relation

ρ = ρ∗
(

1 − v

vf

)
.
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Hence, in case of Greenshields’ model, the graph of ρ(v) turns out to be a straight
line.

The more general model for arbitrary fluxes is due to Lighthill & Whitham31.

By means of Greenshields’ model we are going to start from the top of a traffic jam,
i.e.

ρ0(x) =

{
ρ∗ for x < 0

0 for x ≥ 0
(2.10)

for t0 = 0. The top of the traffic jam (red traffic light) is located at x = 0, and we
identify the forward direction of the traffic with the positive direction of the x-axis.

Remark:
Conservation law problems whose initial values are constant on the left hand side of a
discontinuity and constant also on its right hand side are called Riemann-problems32.

With (2.9) and (1.17), the characteristics are given by

1
vf

(x− x0) =
{ −t for x0 < 0
t for x0 ≥ 0

.

Figure 10: Characteristics in case of the dissolution of a traffic jam

31M.J. Lighthill and C.B. Whitham: Proc. Roy. Soc. A 229 (1955), 317-345
32Bernhard Riemann (1826 - 1866); Göttingen
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Obviously, the characteristics do not intersect for t > 0 so that we find immediately

ρ(x, t) =

{
ρ∗ for x < −vf t

0 for x ≥ vf t .

Thus, the question is open how the solution will look like within the hatched region
of Figure 10, i.e. for

−vf t < x < vf t, t > 0 .

It can easily be verified that

ρ1(x, t) :=
{
ρ∗ for x < 0
0 for x ≥ 0

∀ t ≥ 0 (2.11)

is a weak solution of

∂tρ + fv · ∂x

(
ρ(1 − ρ

ρ∗
)
)

= 0 ,

i.e. of the Greenshields type of (2.3) together with the initial condition (2.10), because
the left hand side of (2.2) if realized for our particular flux f leads to

∞∫
0

∞∫
−∞

[
∂tΦ ρ1 + ∂xΦ vf ρ1 (1 − ρ1

ρ∗ )
]
d(x, t) +

∞∫
−∞

Φ(x, 0) ρ0(x) dx

=
∞∫
0

0∫
−∞

ρ∗ ∂tΦ d(x, t) +
0∫

−∞
Φ(x, 0) ρ∗ dx

= ρ∗
0∫

−∞

{∞∫
0

∂tΦ dt+ Φ(x, 0)
}
dx = ρ∗

0∫
−∞

{Φ(x, 0) − Φ(x, 0)} dx = 0 .

In other words, (2.1) is a solution which keeps its initial state: The drivers do not start
though the traffic light switches from red to green. This solution describes a special
situation where the state along the left hand boundary of the hatched region of Figure

10, i.e. along the characteristic t = − x

vf
, is connected with the right hand boundary

t =
x

vf
across a line of discontinuity.

Of course, drivers do not behave this way, so that (2.11) is certainly an unreasonable,
hence irrelevant solution. As a matter of fact, the drivers ride impulse was not yet
introduced into the model.
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But there is also another weak solution of our problem, namely

ρ2(x, t) :=




ρ∗ for x < −vf t , t ≥ 0

ρ∗
vf t − x

2vf t
for −vf t ≤ x ≤ vf t , t > 0

0 for x > vf t , t ≥ 0

, (2.12)

as can also easily be veryfied by elementary integration procedures. Within this solu-
tion the states along the left- and the righthand sides of the hatched region of Figure
10 are continuously connected. Herewith, the density decreases so that this type of a
solution is called a rarefaction wave.

The head of the traffic jam, i.e the the front end of the still standing chain of cars,
withdraws against the direction of the movement of the traffic with speed−vf whereas
the front cars move with speed +vf . Obviously, (2.12) coincides with our experiences
within the bounds of Greenshields’ idealizations. It therefore has to be regarded as the
particular weak solution that fits the circumstances of the given real situation.33

Of course, the loss of uniqueness can also occur if systems of conservation laws in-
stead of scalar situations are concerned.

As a further application of Greenshields’ traffic flow model, let us consider the prop-
agation of the end of a traffic jam opposite to the direction of the movement.

We start from an initial situation at the instant t = 0 where the traffic shows maximal

flux on the left of x = 0, i.e. ρ =
ρ∗

2
, whereas the cars on the right of x = 1

did already stop, i.e. ρ = ρ∗, and where we have a continuous linear transition in
between:

ρ0(x) =




ρ∗

2
for x < 0

ρ∗

2
(1 + x) for 0 ≤ x ≤ 1 .

ρ∗ for x > 1

(2.13)

33This is also an example of a situation mentioned earlier, namely that a solution being continuous for
t > 0 can develop from a discontinuous initial function.
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The characteristics then turn out to be

x = x0 for x0 ≤ 0

t =
1
vf

(
1 − x

x0

)
for 0 < x0 ≤ 1

t =
x− x0

vf
for x0 > 1




. (2.14)

Figure 11: Characteristics at the creation of a traffic jam

This solution ρ(x, t) keeps its continuity for the time 0 ≤ t <
1
vf

. Then suddenly

a discontinuity occurs at t =
1
vf

, and this discontinuity moves for t >
1
vf

along

a not yet known curve Γ. But one knows that this curve takes a course in the left
upper half plane because the characteristics arising from the x-axis on the right of
x0 = 1 certainly intersect with the charactics arising from x0 < 0. As soon as Γ will
be known, the values of ρ given along the characteristics make possible to compute
explicitly a solution ρ(x, t). It is discontinuous along Γ but still an element of Lloc

1 ,
thus really a weak solution.

The drivers do not expect such a discontinuity to crop up, and this often is one of the
reasons of a rear-end collision.

How Γ can be determined will be shown by one of the examples of the next section.
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2.3 The Rankine-Hugoniot Condition

We are going to treat the particular case where a certain discontinuity of a weak solu-
tion V of (2.1) moves continuously along the x-axis. In other words, the set of points
of Ω where these discontinuities occur is a continuous curve Γ in Ω. Here, it can hap-
pen that all the components of V along this way are discontinuous or that this only
holds for some of them. In gas dynamics, often the density is particularly concerned
and forms a shock.

Let P0 = (x0, t0) ∈ Γ with t0 > 0 and assume a bounded neighbourhoodD(P0) ⊂ Ω
of P to exist which does not contain points of the x-axis and where V is smooth
outside Γ34.

Figure 12: Sketch to explain the proof of the Rankine-Hugoniot condition

We decompose D(P0) into the two parts D1 and D2 (cf. Figure 12) each of which we
are going to treat as closed domains.

Taking the smoothness of V in the open domains D1 and D2 into account, we find
on D1 and also on D2 for a particular Φ ∈ C1

0 (Ω) whose compact support coincides

34 The considerations to be formulated here can easily be generalized in order to fit also more com-
plicated situations.
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with D(P0) = D1 ∪D2 the relation

−
∫

Ω

[V ∂tΦ + f(V )∂xΦ] d(x, t) −
∞∫

−∞
V 0(x) Φ(x, 0) dx

= −
∫

D1

[∂t(V Φ) + ∂x(f(V ) Φ)] d(x, t) +
∫

D1

[∂tV Φ + ∂xf(V ) Φ] d(x, t)

−
∫

D2

[∂t(V Φ) + ∂x(f(V ) Φ)] d(x, t) +
∫

D2

[∂tV t Φ + ∂xf(V ) Φ] d(x, t)

= 0 .

Together with the validity of (2.1) in D1 and in D2,

∫

D1

[∂t(V Φ)+∂x(f(V ) Φ)] d(x, t) +
∫

D2

[∂t(V Φ)+∂x(f(V ) Φ)] d(x, t) = 0 .

The divergence theorem applied to each of the components of each of both integrals
then leads to

∫

∂D1

{(V Φ) dx− (f(V ) Φ) dt} +
∫

∂D2

{(V Φ) dx− (f(V ) Φ) dt} = 0 .

Because Φ vanishes on the boundary of its support, i.e. on the boundary ofD, we find

Q2∫

Q1

{(V � Φ) dx− (f(V �) Φ) dt} −
Q2∫

Q1

{(V r Φ) dx− (f(V r) Φ) dt} = 0 ,

where V � denotes the lefthand limits of V along Γ if for every particular fixed value
of t the values of x approach Γ from the left, i.e. V �(x, t) = V (x−0, t) for (x, t) ∈ Γ.
Analogously, V r means the values of V if we approach Γ from the right. The integrals
have to be understood as line integrals along Γ.

Let

[V ] := V � − V r , [f ] := f � − f r := f(V �) − f(V r)

be the jumps.
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Then, obviously,

Q2∫

Q1

{
[V ]

dx

dt
− [f ]

}
Φ dt = 0 ,

where
dx

dt
=: v̂ denotes the velocity by which the discontinuity moves along the x-

axis. Since the test function Φ with support D(P0) was arbitrary and because P0 was
arbitrarily chosen point on Γ, the so-called Rankine-Hugoniot condition

[V ] v̂ = [f ] (2.15)

turns out to hold along Γ componentwise under the conditions we had assumed to be
fulfilled.

(2.15) is also called jump condition, and for every weak solution V there is a partic-
ular velocity: v̂ = v̂(V ).

Example:
If (2.15) is applid to our one dimensional gas flow where

V =




ρ
q
E


 , f =




q

1
ρ
q2 + p

E + p

ρ
q




, (2.16)

and if q = ρ u−with the flow velocity u− is taken into account, we find from the first
component of the jump condition

(ρ� − ρr) v̂ = q� − qr = ρ� u� − ρr ur

i.e.

ρ� (v̂ − u�) = ρr (v̂ − ur) . (2.17)

The second component leads to

(q� − qr) v̂ =
q2�
ρ�

− q2r
ρr

+ p� − pr ,

i.e.

ρ� u�(v̂ − u�) = ρr ur (v̂ − ur) + p� − pr , (2.18)
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and the third component gives

(E� − Er) v̂ = E�
q�
ρ�

− Er
qr
ρr

+ p�
q�
ρ�

− pr
qr
ρr
,

i.e.

E� (v̂ − u�) = Er (v̂ − ur) + p� u� − pr ur . (2.19)

If

u� = ur = v̂ , (2.20)

(2.17) is fulfilled, and (2.18) then gives p� = pr such that also (2.19) is realized.

Hence, in this case, the discontinuity ’swims’ with the flow; this means that there are
no gas particles which cross the point of discontinuity though ρ� = ρr or E� = Er do
not necessarily hold.

The situation described by

q� ρr = qr ρ� , ρ� �= ρr (2.21)

is called contact discontinuity.

Otherwise, u� �= v̂ , ur �= v̂ show that there are gas particles which cross the discon-
tinuity because (2.17) causes in this case that v̂ − u� and v̂ − ur are both positive or
both negative35. This type of discontinuity is called a shock and also the curve Γ is
called a shock or a shock curve. The particular side of the shock where the particles
having already crossed the shock are situated is called the back side of the shock, the
other part is called the front side. If, for instance, v̂ > ur > 0, the righthand side is
the front side, the lefthand side is the back side.

Assume a weak solution to be smooth outside the discontinuity curve Γ, hence to be
outside Γ also a solution of (2.1). The weak formulation (2.2) of the problem under
consideration is then equivalent to the demand that the Rankine-Hugoniot condition
is fulfilled along Γ and that simultaneously the original version of the initial value
problem (2.1) is fulfilled, too. This equivalence follows from the already proven fact
that weak solutions are at the same time classic solutions on domains where these
weak solutions are smooth.

In case of a linear system

∂tV + ∂x(AV ) = 0 ,
35We omit the unnatural case ρ < 0.
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the Rankine-Hugoniot condition leads to

[V ] · v̂ = [AV � − AV r] = A [V ] .

Thus, v̂ is an eigenvalue of A as far as a discontinuity of the initial function occurs,
i.e. as far as [V ] �= 0 turns out to hold for t = 0 and, hence, also for increasing values
of t. This leads to

ẋ = λk for a particular k

since ẋ(t) = v̂ is the differential equation for Γ.

But because of (1.18), this is also the differential equation for the k-th set of character-
istic curves so that discontinuities move along characteristics as far as linear problems
are concerned.

Let us wind up this section by the determination of Γ occuring in Greenshields’ traffic
flow model in case of a traffic jam increasing opposite to the flow direction.

Because of the relation

f� − fr = vf

(
ρ� − ρ2

�

ρ∗
− ρr +

ρ2
r

ρ∗

)

presented in the Greenshields model, and taking (2.15) into account, Γ has to be de-
termined by the differential equation

ẋ =
f� − fr

ρ� − ρr
= vf

(
1 − ρ� + ρr

ρ∗

)
.

From Figure 11, the initial condition reads as

x( 1
vf

) = 0 . (2.22)

Moreover, Figure 11 shows

ρ = ρ∗ for t >
1
vf

along the characteristics coming from the righthand side, and this does not depend on
the location of Γ. Along the vertical characteristics coming from the left side, we find
analogously

ρ =
ρ∗

2
for t >

1
vf

.
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Hence ρ� =
ρ∗

2
, and therefore

ẋ = −vf

2
.

Together with (2.22), the shock turns out to be the straight line

t =
1
vf

(1 − 2x), x ≤ 0 .

Figure 13: Shock when a traffic jam increases

Knowing Γ and the values of ρ along the characteristic curves, a weak solution of our
traffic flow example can now immediately be constructed. Particularly, the propaga-
tion of the end of the congestion against the direction of the cars which have not yet
come to a halt can so be evaluated:

ρ(x, t) =




ρ∗

2
for 0 ≤ t < 1

vf
(1 − 2x), −∞ < x ≤ 0

ρ∗

2
(1 +

x

1 − vf t
) for 0 ≤ t < 1−x

vf
, 0 ≤ x < 1

ρ∗ otherwise .

(2.23)

This solution shows under the assumptions of the Greenshields idelizations and for the
particular initial situation under consideration that the end of the chain of non-moving

cars originally located at x = 1 will be located at x = 0 after
1
vf

time units. From this

very moment on the end of the traffic jam moves with the congestion velocity 1
2vf
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against the direction of the cars still moving, and the transition from the density 1
2vf

of the moving traffic to the density ρ∗ of the set of cars which already came to a halt
occurs very suddenly, at least from the driver’s point of view.

With respect to the first part of our traffic flow model as well as generally, the ques-
tion arises how in case of non-unique weak solutions of (2.1) the particular solution
relevant for answering the real world problem that underlies the mathematical model
can be characterized.

We are going to treat this question in the next chapter.



3 Entropy Conditions

3.1 Entropy in Case of Ideal Fluids

The loss of uniqueness caused by the installation of the concept of weak solutions
leads to the necessity to formulate a criterion by which the physically relevant weak
solution can be picked out of the set of all the weak solutions. We therefore ask for an
additional constraint that characterizes this particular weak solution.

In order to get an idea, let us look again to the important application of conservation
laws to the description of the dynamics of ideal gases. Besides the state equation, we
took into account the conservation of mass, the conservation of momentum and the
conservation of energy. The conservation of energy was formulated by the first law of
thermodynamics, but what we did not yet respect is the second one and its assertion
on the behaviour of the state variable

S = entropy/mass .

Without going into details, it should only be mentioned that the entropy describes a
measure for the probability of the existence of a particular physical state (Boltzmann
statistics in thermodynamics36).

The Second Law of Thermodynamics37 can be stated as follows:

If there is a closed physical system without supply of energy from outside, every phys-
ical process inside the system takes a course such that the entropy does not decrease38,
and it increases if possible39.

Figure 14 shows an example for the validity of the second law, namely a shock tube
divided by a membrane into two parts one of which is filled by a gas whereas the other

36Ludwig Boltzmann (1844 - 1906); Graz, Vienna, Leipzig, Vienna
37R.J.E. Clausius (1822 - 1888); Zurich, Würzburg, Bonn
38e.g.: cf. R. Ansorge und Th. Sonar: ZAMM 77 (1997), 803-821
39irreversible processes

Mathematical Models of Fluiddynamics. Rainer Ansorge

Copyright c© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40397-3
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Figure 14: Example for increasing entropy

one is evacuated. When the membrane will be taken away, parts of the gas will begin
to move into the evacuated part of the tube though all the conservation principles will
also be respected if the gas particles would keep their positions. And as a matter of
fact, the Euler equations will indeed also be fulfilled if nothing would happen. But
this, obviously, does not describe the physically relevant solution as everybody knows
from experience40. The reason is that the equidistribution of the particles over the
whole tube is a state more probable than the initial situation.

In other words, we expect the second law to be a model for the formulation of a
constraint that allows to pick out of the set of weak solutions of a conservation law
system the relevant solution, even if problems of other fields of applications such as
problems of economy models are concerned. In any case, such a constraint will be
called an entropy condition and the solution picked out will be called an entropy
solution, hopefully the only one by the proof of a uniqueness theorem.

Generalizations of the second law in order to find a constraint that does not only work
for physical tasks are due to several authors, particularly to Oleinik and Lax who
started treating this question in a first step for scalar conservation laws.

To understand their ideas, let us look for the situation in gas dynamics, for convenience
in case of a one dimensional flow.

It was already stated in section 1.1 that each of the state variables can uniquely be
expressed in terms of two of the other state variables by means of a so-called equation
of state; a particular example was demonstrated by (1.9).

One result of the theory of thermodynamics leads to the relation

dS =
dε+ p dW̃

T
(3.1)

40By the way, this is an analogue to the situation where a traffic light switches from red to green but
the drivers do not start.
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where W̃ denotes the specific volume W̃ :=
1
ρ

(volume of mass 1).

If we ask particularly for the connection between the three state variables ε, S and
ρ = 1

W̃
, the equation of state belonging to these variables leads to

dε = ∂Sε dS + ∂W̃ ε dW̃ ,

hence with (3.1) to

T dS = ∂Sε dS + ∂W̃ ε dW̃ + p dW̃ = ∂Sε dS + (∂W̃ ε+ p) dW̃ ,

such that

∂Sε = T, ∂W̃ ε = −p (3.2)

follows from the linear independence of dS and dW̃ .

Because of

∂tε = ∂Sε ∂tS + ∂W̃ ε ∂tW̃ = T ∂tS − p ∂W̃ ,

the relation

T ∂tS = ∂tε + p ∂W̃ = ∂tε − p
∂tρ

ρ2

follows. Analogously:

T ∂xS = ∂xε − p
∂xρ

ρ2
.




(3.3)

Denoting the entropy per volume by s := ρS, the quantity ∂ts + ∂x(us) can be
expressed as

∂ts + ∂x(us) = ∂t(ρS) + ∂x((ρu) · S)
= ∂tρ S + ρ ∂tS + ∂x(ρ u) S + ρ u ∂xS

= [∂tρ+ ∂x(ρu)] · S + ρ [∂tS + u ∂xS] .

The first term on the right side vanishes because of the continuity equation, and taking
(3.3) into account the last equation leads to

∂ts + ∂x(u s) =
ρ

T

{(
∂tε− p

∂tρ

ρ2

)
+ u

(
∂xε− p

∂xρ

ρ2

)}
. (3.4)
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The conservation law (1.7) concerning the specific total energy E and formulated in
the particular situation of a one dimensional flow reads as

∂tE + ∂x

(
E + p

ρ
q

)
= 0

or – with E = ρ ε+ ρ
2 u

2, reformulated by means of primitive variables –

∂tρ ε+ ρ ∂tε+
1
2
∂tρ u

2 + ρu ∂tu

+u
{
∂xp+ ∂xρ ε+ ρ ∂xε+

1
2
∂xρ u

2 + ρu ∂xu

}
+
(
ρ ε+

ρ

2
u2 + p

)
∂xu = 0 ,

i.e.

(∂tρ+ ∂x(ρ u))
(
ε+

u2

2

)
+ ρ

(
∂tε+ u∂xε+

p

ρ
∂xu

)

+ ρ u

(
∂tu+

∂xp

ρ
+ u∂xu

)
= 0 . (3.5)

Also in this equation, the first term vanishes because of the continuity equation. The
second conservation law, namely ∂tq + ∂x( q2

ρ + p) = 0, also rewritten by means of
primitive variables, leads to

ρ

(
∂tu+

∂xp

ρ
+ u∂xu

)
+ u (∂tρ+ ∂x(ρ u)) = 0 ,

so that also the third term on the left side of (3.5) disappears, again by means of the
continuity equation. Thus, after division by ρ,

∂tε + u∂xε +
p

ρ
∂xu = 0 , (3.6)

remains, so that the term inside the outer braces in formula (3.4) turns to

− p

ρ
∂xu − p

ρ

∂tρ

ρ
− p

ρ

u ∂xρ

ρ
= − p

ρ2
(∂tρ+ ∂x(ρ u)) = 0 , (3.7)

again because of the continuity equation.

Hence, also s fulfills a conservation law:

∂ts + ∂x(u s) = 0 , (3.8)

and this automatically provided that the Euler equations are fulfilled.
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But we have to take into account that this result required the differentiability properties
to be ensured which we had used in order to derive (3.8). Thus, if the flow is smooth,
section 1.1. shows that the total entropy

∫

W (t)

s d(x, y, z)

of a volume W (t) arbitraryly taken out of the fluid at an arbitrary instant t stays
constant with respect to time. This is known as an isentropic flow.

Equation (3.8) can not be expected to hold if the smoothness assumptions are not ful-
filled. But what can be expected, because of the second main theorem, is the validity
of the inequality

∂ts + ∂x(u s) ≥ 0 (3.9)

in its weak form, i.e.

∫

Ω

(s∂tΦ + u s∂xΦ)d(x, t) +
∫

�

s(x, 0)Φ(x, 0)dx ≤ 0

∀Φ ∈ C1
0 (Ω) with Φ ≥ 0 . (3.10)

Formally and because of its inequality character, (3.9) was multiplied by nonnegative
test functions, then integrated by parts, and finally this ‘derivation’ of (3.10) should
be forgotten.

Equation (3.10) is the entropy condition for the flow under consideration, and the
‘derivation’ shows that it is indeed satisfied automatically provided that the original
conservation laws are fulfilled in the classical understanding. This follows from the
fact that (3.8) was a direct consequence of the Euler equations.

If the weak solution V of the Euler equations is discontinuous, hence not necessarily
unique, (3.10) is really an additional condition.

Remark:
We mention without proof that the physical entropy per volume −s = −s(V ) of gas
dynamics is strictly convex.
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3.2 Generalization of the Entropy Condition

It was Lax41 whose definition of an entropy solution of a general system of conser-
vation laws (2.1) can in the case of one spatial variable and by imitation of the gas
dynamics situation be formulated as follows:

Definition:
A weak solution V = (v1, · · · , vm)T of the system (2.1), i.e. a solution of (2.2),
is called an entropy solution of this system if there is a scalar and strictly convex
function S̃ = S̃(V ) as well as a scalar function F̃ = F̃ (V ) belonging to S̃ so that in
every domain where V is smooth, (2.1) leads automatically to the validity of

∂tS̃(V ) + ∂x F̃ (V ) = 0 , (3.11)

and so that in the non-smooth situation theentropy condition
∫

Ω

{
S̃(V (x, t)) ∂tΦ(x, t) + F̃ (V (x, t)) ∂xΦ(x, t)

}
d(x, t)

+
∫

�

S̃(V 0(x)) Φ(x, 0) dx ≥ 0 ∀Φ ∈ C1
0(Ω) , Φ ≥ 0 (3.12)

is respected.

Remarks:

– S̃ is often also called the entropy functional and F̃ is called the entropy flux.

– In gas dynamics we have S̃ = −s.
– Sometimes we will more specifically talk of Lax entropy solutions because later

also some other definitions will be given.

– (3.12) is often abbreviated by the formulation:

∂tS̃(V ) + ∂xF̃ (V ) ≤ 0 holds weakly.

After the choice of S̃, F̃ is already more or less determined by (3.11). Especially in
the scalar case m = 1 (V = v , f = f) , (3.11) leads for smooth solutions v to

S̃′(v) · ∂tv + F̃ ′(v) ∂xv = 0 ,
41P. Lax, in: Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press

1971
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and therefore with (2.1) to

S̃′(v) {−∂xf(v)} + F̃ ′(v) ∂xv = 0 ,

i.e. to

[−S̃′(v) f ′(v) + F̃ ′(v)] ∂xv = 0 .

Because this must hold automatically independent of the choice of vo(x)42 , the rela-
tion

F̃ ′(v) = S̃′(v) f ′(v)

has to be fulfilled, i.e.

F̃ (v) =

v∫

0

S̃′(α) f ′(α) dα + const . (3.13)

Just the constant is still arbitrary.

If m > 1 and if the function V is smooth, (3.11) yields
〈
∇V S̃ , ∂tV

〉
+
〈
∇V F̃ , ∂xV

〉
= 0 ,

where

∇V = (∂v1 , ∂v2 , · · · , ∂vm)T .

By analogy with m = 1, putting (2.1) into this equation, we find

−
〈
∇V S̃ , J f(V ) ∂xV

〉
+
〈
∇V F̃ , ∂xV

〉
= 0 , i.e.

(∂xV )T
(
∇V F̃ − (J f(V ))T ∇V S̃

)
= 0 .

Again, because this relation must hold for any choice of V 0, S̃ and F̃ have to be
connected by

∇V F̃ − (J f(V ))T ∇V S̃ = 0 , (3.14)

and this is a system of m differential equations for only two functions S̃ , F̃ to be
determined that depends on the m independent variables v1, · · · , vm.

42particularly also for initial functions generating smooth solutions
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Hence,(3.14) does not necessarily have a solution in case of m > 243 so that the
definition of an entropy condition used so far has to be modified suitably. We shall
come back to this question in section 3.3.

But if f(V ) is a gradient, too, i.e.

f(V ) = ∇V k(V )

with a scalar function k(V ), (3.14) turns by the particular choice of S̃(V ) = 1
2 〈V , V 〉

into the system of differential equations

∂viF̃ =
m∑

ν=1

∂vν vik vν = ∂vi

(
m∑

ν=1

∂vνk vν

)
− ∂vik (i = 1, · · · ,m) ,

and this system can be satisfied by several solutions, e.g. by the particular entropy
flux

F̃ (V ) = 〈f(V ) , V 〉 − k(V ) + const . (3.15)

A straight forward formulation of these considerations in case ofm = 1 leads directly
to the particular couple

S̃(v) =
1
2
v2 , F̃ (v) =

v∫

0

f ′(α)αdα + const , (3.16)

but −obviously− also an infinite number of other suitable couples exists.

This fact generates a further question, namely for the entropy solution’s independence
of the choice of the entropy functional S̃.

In order to answer this question, we cite the following theorem whose proof is more or
less just a word-to-word copy of the proof of the Rankine-Hugoniot condition taking
(3.12) into account instead of (2.2):

Theorem 3.1:
Assume that there is a couple S̃ , F̃ of functions belonging to a weak solution V and
fulfilling condition (3.14); let the discontinuities of V form a curve Γ along which
the Rankine-Hugoniot condition holds. Then it can be stated that V is a Lax entropy
solution if and only if the inequality

[S̃] v̂ ≤ [F̃ ] (3.17)

43As far as gas dynamics is concerned, a suitable entropy flux belonging to S̃ = −s exists though
3 ≤ m ≤ 5.
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holds where v̂ is the velocity occuring in the Rankine-Hugoniot condition (2.15), i.e.
the velocity by which the discontinuities move along the x-axis.

As in (2.15), [S̃] := S̃(V �) − S̃(V r) and [F̃ ] := F̃ (V �) − F̃ (V r) denote the
heights of the jumps.

In the scalar case and together with (2.15), (3.17) yields a particular form of the en-
tropy condition equivalent to (3.12), namely

[S̃] [f ]
[v]

≤ [F̃ ], (3.18)

i.e −by means of (3.13)−

S̃(v�) − S̃(vr)
v� − vr

(f(v�) − f(vr)) −
v�∫

vr

S̃′(α) f ′(α) dα ≤ 0. (3.19)

This leads to the following theorem:

Theorem 3.2:
If the entropy functional S̃(v) is strictly convex44 , i.e.

S̃′′(v) > 0 , ∀v ∈ � ,

if also the flux f is strictly convex, and if discontinuities do only occur along smooth
curves Γ which do not intersect in the area under consideration, condition (3.19) does
only hold if and only if along each of these curves Γ the jump relation

v� ≥ vr (3.20)

is respected. In particular, this result shows that all entropy conditions formed by
means of strictly convex functionals S̃ and their entropy fluxes F̃ are equivalent be-
cause these functionals do not play a role within formula (3.20).

PROOF:
The function f̃(v) defined for every fixed value of vr by

f̃(v) :=




S̃(v) − S̃(vr)
v − vr

(f(v) − f(vr)) −
v∫

vr

S̃′(α) f ′(α) dα for v �= vr

0 for v = vr

44as it was up to now asumed to be
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is differentiable, and its derivative reads

f̃ ′(v) =




−
{
S̃′(v) − S̃(v) − S̃(vr)

v − vr

}
·
{
f ′(v) − f(v) − f(vr)

v − vr

}
for v �= vr

0 for v = vr.

The terms within the braces are positive for v > vr and negative for v < vr because
S̃ as well as f are strictly convex. This leads to

f̃ ′(v) < 0 for v �= vr

so that vr is the only value for which f̃ vanishes, and f̃ is strictly monotonously
decreasing for v �= vr. Thus,

f̃(v) > 0 for v < vr , f̃(v) = 0 for v = vr , f̃(v) < 0 for v > vr .

(3.21)

Equation (3.19) implies f̃(v�) ≤ 0, and because of (3.21) this is really equivalent to

v� ≥ vr. (3.22)

�
Remark:
The same arguments if applied to our traffic flow example with its strictly concave
flux f(ρ) would similarly lead to the equivalence of the entropy condition to

ρ� ≤ ρr , 45 (3.23)

and the interpretation of this result shows that car drivers endeavour to smooth a
discontinuous situation as soon as possible, i.e. to come to an equals sign46, or that
they intent to achieve a nondecreasing development of the traffic density close to a
discontinuity in being. In particular, no car driver stops when he notices that there
is a traffic jam in some distance in front of him; he would rather drive to the end of
the jam such that the density there will be increased. The end of the jam, i.e. the
discontinuity, passes over him against his ride direction when he stops.

The particular weak solution (2.11) of our traffic flow example does obviously not
fulfill condition (3.23). In other words, (3.23) represents the driver’s ride impulse and
completes the rough Lighthill-Whitham traffic flow model47.

45The strictly concave case can easily be transformed into a problem with strictly convex flux.
46The discontinuity at the top of a traffic jam is such a situation.
47R. Ansorge: Transpn. Res. 24 B (1990), 133-143
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There is also a geometric characterization of the entropy solution provided that the
flux f is strictly convex:

The Rankine-Hugoniot condition (2.15) together with the mean value theorem yields

v̂ =
f(v�) − f(vr)

v� − vr
= f ′(vr + ϑ(v� − vr)) , (0 < ϑ < 1) ,

and the strict convexity of f together with (3.20) then leads to

f ′(vr) < v̂ < f ′(v�). (3.24)

Thus, if and only if the weak solution is the entropy solution, the ascents of the char-
acteristics (1.17) belonging to this solution cause the characteristics to run into the
shock curves Γ for increasing t instead of leaving them (cf. Figure 15).

Figure 15: Course of the characteristics in case of entropy solutions of scalar prob-
lems as soon as shocks appear

Olga Oleinik did also publish an entropy condition for weak solutions of scalar con-
servation laws, and this already in 195748. It can be formulated as follows:

Definition:
A weak solution v of the scalar problem (2.1) is called an entropy solution in the sense
of Oleinik −or an Oleinik solution− if there is a constant E > 0 so that

v(x+ a, t) − v(x, t)
a

≤ E
t
, ∀ a > 0 , ∀ t > 0 , ∀x ∈ � . (3.25)

Assume the discontinuities of a weak solution of a one-dimensional scalar conser-
vation law to form a curve Γ such that the Rankine-Hugoniot condition (2.15) holds

48O. Oleinik: Usp. Math. Nauk. (N.S.) 12 (1957), 3-73
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along this curve; if then the point (x, t) ∈ Ω (t > 0, fixed) moves to Γ from the left,
the point (x+ a, t) , a > 0 , finally becomes a point right of Γ such that (3.25) states

v(x+ a, t) − v� ≤ E
t
a.

If a now tends to zero,

vr − v� ≤ 0

follows.

Remark:
Thus, an Oleinik solution is a Lax solution, too. If −hopefully− a uniqueness theo-
rem for Lax entropy solutions will be available, the Oleinik solution is also uniquely
determined and equals the Lax solution.

This uniqueness problem for one-dimensional scalar conservation laws will be dis-
cussed in the next section, and also the question concerning a suitable generalization
of the definition of a Lax entropy solution to systems of conservation laws will then
be treated.

Remark:
Another access to the idea of an entropy solution for scalar problems ensues from the
wellknown uniqueness of the solution vε(x, t) of the parabolic problem

∂tv + ∂x f(v) = ε ∂xx v, ε > 0
v(x, 0) = v0(x) ,

if the righthand side of (2.1) is enriched analogously to the linear problem (1.24) by a
diffusion term where the diffusion parameter ε tends to 049.

3.3 Uniqueness of Entropy Solutions

In this section we are going to investigate the uniqueness of the Lax entropy solution.
Lax himself gave the outline of the following theorem:

Theorem 3.3:
Let ṽ and v be two Lax entropy solutions of the scalar form of the conservation law
(2.1) which are piecewise continuous for every fixed t ≥ 0, non-smooth only along

49N.N. Kuznetsov: USSR Comput. Math. Math.Phys. 16 (1976), 105-119
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certain curves Γ, and belonging to initial functions ṽ0 and v0, respectively. The flux
f is assumed to be strictly convex. Then, the distance

‖ṽ(·, t) − v(·, t)‖L1(I)

is monotonously decreasing with respect to t, where theL1-norm has to be understood
as taken over an arbitrary but fixed interval I of the x-axis50.

PROOF: Decompose for every fixed t the interval I into intervals (xν , xν+1)
(ν = 0,±1,±2, · · · ) in such way that ṽ(x, t)−v(x, t) has the sign (−1)ν uniformly
on (xν , xν+1). A decomposition of this type exists because ṽ − v was assumed
to be piecewise continuous with respect to x. Evidently, xν depends on t: xν =
xν(t) (ν = 0,±1,±2, · · · ). Thus,

‖ṽ(·, t) − v(·, t)‖L1(I) =
∑

ν

(−1)ν

xν+1(t)∫

xν(t)

[ṽ(x, t) − v(x, t)] dx. (3.26)

ṽ and v are piecewise smooth on (xν(t) , xν+1(t)), and differentiation with respect
to t yields

d

dt
‖ ṽ(·, t) − v(·, t)‖L1(I) =

∑
ν

(−1)ν

{
[ṽ(xν+1(t), t) − v(xν+1(t), t)]x′ν+1(t)

− [ṽ(xν(t), t) − v(xν(t), t)]x
′
ν(t)

+

xν+1(t)∫

xν(t)

[∂tṽ − ∂tv(x, t)] dx
}
.

With (2.1),

xν+1(t)∫

xν(t)

∂tv(x, t) dx = −
xν+1(t)∫

xν(t)

∂x f(v(x, t)) dx

= −f(v(xν+1(t), t)) + f(v(xν(t), t))

follows; analogously for ṽ.

50Particularly, if then ṽ0 = v0 in L1, i.e. ‖ṽ(·, 0) − v(·, 0)‖L1(I) = 0 for every interval I ,
‖ṽ(·, t) − v(·, t)‖L1(I) = 0 follows for all t ≥ 0, i.e. ṽ = v in L1 at every time level t, and this
means uniqueness.
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Hence,

d

dt
‖ṽ(·, t) − v(·, t)‖L1(I)

=
∑

ν

(−1)ν

{[
ṽ(xν+1(t), t) − v(xν+1(t), t)

]
x

′
ν+1(t)

− [ṽ(xν(t), t) − v(xν(t), t)
]
x

′
ν(t)

− [f(ṽ(xν+1(t), t)) − f(v(xν+1(t), t))
]

+
[
f(ṽ(xν(t), t)) − f(v(xν(t), t))

]}
.

(3.27)

We have to distinguish between two different situations:

i) The function ṽ(·, t0) − v(·, t0) is continuous at xν(t0) 51. Then this function
vanishes at xν(t0), i.e.

ṽ(xν(t0), t0) = v(xν(t0), t0). (3.28)

ii) One of the functions ṽ(x, t0) , v(x, t0) is discontinuous at xν(t0).

We therefore need to sum up on the righthand side of (3.27) only for the particular
numbers ν characterized by the fact that (xν(t), t) or (xν+1(t), t) lie on curves of
discontinuities of ṽ or of v.

Let us at first discuss the case that (xν+1(t), t) lies on a curve of discontinuities
of ṽ whereas v is smooth at this position. The end point xν+1 of the interval
(xν(t), xν+1(t)) has then to be looked upon as xν+1 − 0, i.e. ṽ(xν+1(t), t) = ṽ�. If,
for example, ṽ − v > 0 on (xν , xν+1), hence ṽ − v < 0 on (xν+1, xν+2), then ν is
even and

ṽ� > v� = vr > ṽr (3.29)

because xν+1 has on (xν+1, xν+2) to be looked upon as xν+1 + 0.

This leads to

(−1)ν

{
[ṽ(xν+1(t), t) − v(xν+1(t), t)]x

′
ν+1(t)

−[f(ṽ(xν+1(t), t)) − f(v(xν+1(t), t))]
}

51for the arbitrary fixed value of t0 under consideration
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= (ṽ� − v�)x
′
ν+1(t) − f(u�) + f(v�) .

Because of the smoothness of v at (xν+1(t), t), x = xν+1(t) can only be a point of the
shock curve of ṽ. The Rankine-Hugoniot condition (2.15) therefore makes it possible
to estimate the righthand side of the last equation by

(ṽ� − v�)
f(ṽ�) − f(ṽr)

ṽ� − ṽr
− f(ṽ�) + f(v�)

= (ṽ� − v�)
[
f(ṽ�) − f(ṽr)

ṽ� − ṽr
− f(ṽ�) − f(v�)

ṽ� − v�

]
≤ 0 ,

where it was taken into account that (3.29) yields ṽ� − v� > 0, but that

f(ṽ�) − f(ṽr)
ṽ� − ṽr

− f(ṽ�) − f(v�)
ṽ� − v�

≤ 0 .

Here, the last inequality results from ṽr < v� < ṽ�, also following from (3.29), as
well as from the strict convexity of f (cf. Fig. 16).

Figure 16: Sketch concerning Lax’ uniqueness theorem

A similar result follows if (xν+1(t), t) is a point of a curve which is a set of disconti-
nuities of ṽ as well as of v; in this situation, the inequality

ṽ� > v� > vr > ṽr

has to be taken into account instead of (3.29), and it is this part of the proof where the
jump condition v� > vr applies to.

The same reflections work for the values of ṽ and v at the position (xν(t), t), namely
disappearance or non-positivity of the terms. Here, xν(t) = xr has to be observed in
case of a discontinuity.
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The case ṽ < v on (xν , xν+1) can be treated in the same way. So, indeed,

d

dt
‖ṽ(·, t) − v(·, t)‖L1(I) ≤ 0

follows. �

As already emphasized, in case of systems of conservation laws of more than two
equations, pairs (S̃, F̃ ) of an entropy functional S̃ and an entropy flux F̃ connected
with eachother by (3.14) and appropriate to distinguish an entropy solution from other
weak solutions do not necessarily exist.

We continue treating only one-dimensional problems but we try to formulate a suitable
analog to (3.24) as far as problems are concerned for which the convexity property of
the flux can also suitably be generalized.

Let N ⊂ �
m be a subset of m-dimensional vectors and assume the system (2.1)

to be strictly hyperbolic for all V = (v1, v2, · · · , vm)T ∈ N , i.e. the eigenvalues
λi(V) of the Jacobian J f(V ) are real and different from eachother for all V ∈ N .
Moreover, let f(V ) ∈ C2(N) and

λ1(V ) < λ2(V ) < · · · < λm(V ). (3.30)

The eigenvalues keep this order for all V ∈ N since otherwise a vector V ∈ N
with

λi(V ) = λk(V ) for a pair (i, k) with i �= k

would have to exist because of continuity reasons. But this would contradict the strict
hyperbolicity on N .

The eigenvectors si(V ) (i = 1, 2, · · · ,m) belonging to the eigenvalues λi(V ) (i =
1, 2, · · · ,m), respectively, are linearly independent.

Let V (x, t) be a solution of (2.1) which is smooth on a domain G ⊂ Ω and with

V (x, t) ∈ N , ∀ (x, t) ∈ G .

The i-characteristics x = x(i)(t) corresponding to this solution (cf. (1.18)) are
uniquely determined due to the Picard-Lindeløf theorem if the functions λi(V (x, t))
fulfill a Lipschitz condition with respect to x (i = 1, · · · ,m) and as far as initial
states x(i)(t0) with (x(i)(t0) , t0) ∈ G are prescribed. Of course, there are also exis-
tence and uniqueness theorems with weaker assumptions available, e.g. the existence
theorem of Peano combined with the uniqueness condition of Nagumo.
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Then, along an i-characteristic,

d

dt
V (x(i)(t), t)

= − [Jf(V (x(i)(t), t)) − λi(V (x(i)(t), t)) · I
]
∂xV (x(i)(t), t), (3.31)

where I in this context means the m×m unit matrix.

In case of m = 1, the righthand side of (3.31) vanishes as already observed earlier, so
that V = v is constant along a characteristic which therefore becomes a straight line.

Does an analogon exist for m > 1 ? In other words, does a weak solution V and
does a set of i-characteristics x(i) belonging to this solution exist so that the solution
is constant along these characteristics which, thus, become straight lines?

A positive answer requires in case of ∂xV (x(i)(t), t) �= 0 the validity of the relation

∂xV (x(i)(t), t) = si(V (x(i)(t), t)) ∀ t > 0 52 .

Solutions of this type can really be specified: If we introduce so-called centered
waves V = V ∗, centered at a position P0 = (x0 , t0) ∈ G, i.e. waves of the form

V (x, t) = V ∗
(
x− x0

t− t0

)
(3.32)

with

V ∗(ξ) ∈ N ∩ [C1(�)]m ∀ P = (x, t) ∈ G , ξ :=
x− x0

t− t0
.

These centered waves solve (2.1) if they fulfill

∂tV + ∂x f(V ) = (∂xξ J f(V ∗) + ∂tξ I) V ∗′(ξ) = 0

which can also be described as

(J f(V ∗(ξ)) − ξ I) V ∗′(ξ) = 0 . (3.33)

Hence, for one i ∈ (1, 2, · · · ,m), the pair of relations

V ∗′(ξ) = si (V ∗(ξ)) ,
ξ = λi (V ∗(ξ)) (for all possible values of ξ)

(3.34)

must hold.
52Here, the norm of the vectorfield V is chosen suitably.
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In this case, differentiation of the second equation of (3.34) with respect to ξ together
with the first equation yields (cf. footnote 51)

1 = 〈∇Vλi(V ), si(V )〉 . (3.35)

Definition:
If 〈∇Vλi(V ), si(V )〉 �= 0 holds for all V ∈ N with a set N ⊂ �

m, the i-th
characteristic field (λi(V ) , si(V )) is called genuinely nonlinear on N .

Remark:
Because the scalar case implies λ(V ) = λ(v) = f ′(v) which yields

∇V λ(V ) = f ′′(v) ,

(3.35) can only be fulfilled if f ′′(v) �= 0, and s(v) in this case is a scalar factor
s(v) different from zero. It can be normalized by s(v) = 1

|f ′′(v)| which makes (3.35)

equivalent to f ′′(v) > 0, i.e. to strict convexity of the flux (or, if we normalize by
−1

|f ′′(v)| , to strict concavity).

We are therefore going to look upon (3.35) as the transition announced earlier of the
strict convexity of the flux as defined for scalar problems to the i-th characteristic field
in case of m > 1.

Let us now assume N to be a simply connected domain in �
m. Moreover, let

V 0 ∈ N (V 0 �= 0) be a given state and ξ0 := λi(V 0) . If ξ0 will be used as
starting point with initial condition

V ∗(ξ0) = V 0 , (3.36)

the second equation in (3.34) will obviously be fulfilled at this point ξ0.

The first equation of (3.34) represents a system of ordinary differential equations
where (3.36) is used as its initial condition. We know that there is a unique solution of
this system in a certain neighbourhood of (ξ0 , V 0) provided that the assumptions of
a standard theorem like the Picard-Lindeløf theorem are fulfilled. This solution runs
with respect to V in N , let’s say for ξ0 − a ≤ ξ ≤ ξ0 + a with sufficiently small
a > 0. Also (3.35) then holds for V = V ∗(ξ) because of the assumptions.
Since also the first equation of (3.34) was fulfilled, also (3.33) holds. Integration of
(3.33) together with (3.36) then yields the fact that the second equation of (3.34) is
fulfilled, too, at least for the values of ξ under consideration and if a will be again
somewhat diminished if necessary.
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We conclude that there is a nonvanishing smooth solution V , namely a wave centered
at P0, belonging to a given nonvanishing smooth initial state V 0 and to a particular
integer i, leading to an i-th characteristic field which is genuinely nonlinear on N :

V (x, t) = V ∗
(
x− x0

t− t0

)
, V ∗(λi(V 0)) = V 0 (3.37)

for all (x, t) ∈ Ω with

λi(V 0) − a ≤ x− x0

t− t0
≤ λi(V 0) + a with a > 0 sufficiently small.

(3.38)

Along each of the straight lines

x− x0

t− t0
= c = const

with

λi(V 0) − a ≤ c ≤ λi(V 0) + a

forming a fan, the solution

V ∗
(
x− x0

t− t0

)
= V ∗(c)

is constant.

Figure 17: Fan of i-characteristics of centered waves
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Thus, along these straight lines given by

x(i)(t) = x0 + c(t− t0) ,

the relation
d

dt
V (x(i)(t), t) =

d

dt
V ∗(c) = 0 (3.39)

holds. But because V ∗′(c) is an eigenvector belonging to λi(V ∗(c)), this also applies
to

∂xV (x(i)(t), t) =
1

t− t0
V ∗′(c) .

It follows from (1.18) and (3.33) that the straight lines generating the fan and belong-
ing to this particular integer i are the i-characteristics formed by means of the solution
(3.32) through the point P0, and the centered waves constructed so far are constant
along these lines.

Let us now assume that V 1 is a state in the neighbourhood of V 0. Then, by
continuity arguments, λi(V 1) lies in a neighbourhood of λi(V 0) such that

|λi(V 1) − λi(V 0)| ≤ a

can be fulfilled for all states V 1 sufficiently close to V 0.

If particularly

λi(V 0) < λi(V 1) ≤ λi(V 0) + a 53 ,

we find the result

V ∗
(
x− x0

t− t0

)
= V 0

along the straight lines

t− t0 =
1

λi(V 0)
(x− x0) ,

so that the solution V ∗(ξ) is constant along the lines and equals V 0 if this is its
value at ξ0. The same arguments show that the solution equals V 1 along the straight
lines

t− t0 =
1

λi(V 1)
(x− x0)

if this is its value prescribed at ξ0.

In other words: In case of λi(V 0) < λi(V 1), the state V 0 can be smoothly
connected from the right with the state V 1 by a centered i-rarefaction wave54.

53In case of λi(V
1) < λi(V

0), change the roles of V 1 und V 0.
54cf. also the definition that follows formula (3.43)
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Remark:
In the scalar case and if f is strictly convex, λi(V 0) < λi(V 1) means f ′(v0) <
f ′(v1), hence

v0 < v1 .

In other words: If t is fixed, the states decrease for decreasing x, i.e. from the
right to the left (rarefaction)55. Indeed, if the entropy condition (3.20) is fulfilled, this
rarefaction can only be caused by a continuous process because of v� = vr.

Assume now the system (2.1) to have discontinuous solutions besides or instead of
smooth rarefaction waves, and let us assume that these discontinuities form certain
curves Γ along which the Rankine-Hugoniot condition is satisfied.

We ask again for conditions easy to apply in order to characterize uniquely the phys-
ically relevant entropy solution56.

Here, we restrict ourselves to problems whose characteristic fields are genuinely non-
linear on N = �m57.

A weak solution will be called an entropy solution if it respects a condition of the
following type:

– If initial values are prescribed along a non-characteristic curve, the condition will
only be fulfilled by one weak solution.

– The condition coincides with (3.24) as far as scalar problems are concerned.

If [V ] = V � − V r are the jumps along a curve Γ of discontinuities of a weak
solution moving along the x-axis with speed v̂, let k be the particular integer with

λk(V r) < v̂ < λk+1(V r) , k ∈ {1, 2, · · · ,m− 1} , (3.40)

or v̂ < λ1(V r) or v̂ > λm(V r)58.

In order to determine the m components of V r at P0 ∈ Γ from the given initial
values, only the values of V 0 along the particular characteristics through P0 are
available which show the steeper ascents

1
λk(V 0)

,
1

λk−1(V 0)
, · · · , 1

λ1(V 0)
(cf. Fig. 18)59 .

55If the flux f is a concave function like the flux of the traffic flow model, the word ’left’ has to be
replaced by ’right’ and ’decrease’ by ’increase’.

56Remember that condition (3.12) could not necessarily be applied in case of more than two equations.
57analogously to scalar problems, i.e to m = 1 where only convex fluxes were taken into account
58cf. (3.30)



90 3 Entropy Conditions

If exemplarily a system of decoupled equations is under consideration60, along each
of these k steeper characteristics one and only one of the m components of V r(P0)
can be determined. Hence, m− k informations are missing.

If simultaneously

λj(V �) < v̂ < λj+1(V �) ,

holds, corresponding arguments lead to the result that there are only m − j in-
formations available for the computation of the m components of V �. Hence, j
informations are missing.

Figure 18: Sketch concerning the completeness of informations needed in order to
ensure uniqueness

Thus, m − k + j informations are missing for the unique determination of the two
quantities V � and V r. But m additional informations concerning the relations
between V �, V r and v̂ follow from the Rankine-Hugoniot condition (2.15). One
of them must be used for the elimination of v̂. Thus, the real number of missing
informations is only 1− k + j. In other words, uniqueness can only be expected for

k = j + 1,

i.e., if the relations

λ(V r) < v̂ < λk+1(V r) , λk−1(V �) < v̂ < λk(V �) (3.41)

hold simultaneously.

59The particular choice 0 ∈ Γ in Fig. 18 does not lead to a loss of generality.
60cf. the linear situation (1.19)
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Although this result was only illustrated by an exemplary situation, we accept it as a
hint on a general definition of an entropy solution:

Definition:
V is called an entropy solution if there is an index k for which (3.41) holds. A
discontinuity of this type is then called a k-shock and the inequalities (3.41) are called
entropy inequalities or (Lax-) shock conditions.

(3.41) includes

λk(V r) < v̂ < λk(V �) ,

so that (3.41) really coincides with (3.24) as far as scalar problems are concerned.
Thus, both properties claimed earlier with respect to the formulation of an entropy
condition for weak solutions of systems of conservation laws are respected.

There are some connections between an i-characteristic field and the so-called i-
Riemann-invariant:

Definition:
A scalar function w = w(V ) defined for all V ∈ N ⊂ �m is called an i-Riemann
invariant on N , if

〈∇Vw(V ) , si(V )〉 = 0 ∀ V ∈ N. (3.42)

Remark:
Thus, the property of an i-characteristic field to be genuinely nonlinear, coincides
with the property of λi(V ) not to be an i-Riemann invariant.

If the graph of a centred i-rarefaction wave V is situated in N , its i-Riemann-
invariants are constant. This follows from (3.34):

∂xw (V (x, t)) = 〈∇Vw(V ) , si(V )〉V=V∗(x,t) = 0 (3.43)

and similarly ∂tw (V (x, t)) = 0.

Definition:
If a solution V of the system (2.1) belonging to any initial function V 0 is smooth
on a region G ⊂ Ω , and if all the i-Riemann-invariants w(V (x, t)) are constant on
G, V is called an i-simple wave or an i-rarefaction wave on G.
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3.4 The Ansatz due to Kruzkov

The way used by S.N. Kruzkov61 in order to introduce the idea of a weak solution
of problem (2.1) seems to differ from the idea of Lax. In order to understand the
situation, it is sufficient to restrict the presentation of Kruzkov’s Ansatz to only one-
dimensional scalar problems.

Also Kruzkov tries to find his weak solutions in the space Lloc
1 (Ω) as it was already

done in the Lax definition of a weak solution. Moreover, also the test functions used in
(2.2.) by Lax play a crucial role in Kruzkov’s definition, too, with the one restriction
that these functions now vanish along the whole boundary of their compact support,
i.e. also along parts of the boundary belonging to the x-axis: Φ(x, 0) ≡ 0. This leads
to the necessity to pay regard to the initial function in another way than by the second
integral in formula (2.2).

Kruzkov calls a function v ∈ Lloc
1 (Ω) a weak solution of the problem

∂tv + ∂xf(v) = 0 , v(x, 0) = v0(x) ,

if the following two conditions are fulfilled:

∫

Ω

{
∂tΦ(x, t) |v(x, t) − c| + ∂xΦ(x, t)

sgn(v(x, t) − c) [f(v(x, t)) − f(c)]
}
d(x, t) ≥ 0 (3.44)

∀ Φ ∈ C1
0(Ω) with Φ ≥ 0 and with Φ(x, 0) ≡ 0 , ∀c ∈ �,

and

lim
t→0

∫ R

−R
|v(x, t) − v0(x)| d x = 0 ∀ R ∈ � (t ∈ [0, T ]\ε̃) (3.45)

for a value of T > 0 and for a set ε̃ of measure zero so that v(x, t) is almost
everywhere well defined as a function of x for every fixed t ∈ [0, T ]\ε̃.

Kruzkov could show that there is a unique weak solution in Lloc
1 (Ω) in the sense of

(3.44), (3.45) provided that the flux f is smooth and strictly convex. Smoothness and
strict convexity of the flux were assumptions also made by Oleinik and Lax.

61Soviet Math. Dokl. 10 (1969), 785-788
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Hence, in Kruzkov’s definition, the characterization of an entropy solution does not
consist of an equation (2.2) to be solved for all test functions together with an addi-
tional entropy condition (3.12) but only of an inequality62.

One can say that Kruzkov’s definition already includes an entropy condition.

Indeed, as far as the scalar problem is concerned, the left side of (3.44) corresponds
with (3.12) if Φ(x, 0) = 0 is taken into account, if for every particular constant
c ∈ � the entropy functional S̃(v) will be identified with |v − c| and the entropy
flux F̃ (v) with sgn (v − c) [f(v) − f(c)].

If S̃ and F̃ are chosen in this way, also the connection between these two functions
demanded by (3.13) is kept piecewise, namely for all values of v with the exception
of v = c. Moreover, the particular functional S̃ is also convex as entropy functionals
were expected to be but no longer strictly convex, unfortunately.

On the other hand, there is a somewhat stronger demand than formulated by Lax,
namely that the validity of (3.44) has not only to be ensured for all nonnegative test
functions Φ but at the same time also for all c ∈ �. Thus, (3.45) must now hold for
all test elements

Φ̂ ∈ {(Φ , c) | Φ ∈ C1
0 (Ω) , Φ ≥ 0 , Φ(x, 0) = 0 ; c ∈ �} . (3.46)

It can be shown by more than one chain of evidence that Kruzkov’s weak solution
coincides with the Lax-Oleinik entropy solution provided that the flux is smooth and
strictly convex. One of these chains follows from numerical aspects: There are finite
difference approximations whose numerical solutions converge for decreasing step
sizes to the Lax-Oleinik entropy solution but also −as can be proved by a slightly
different convergence argument− to the Kruzkov solution63.

It should be noted that there are problems from fields of applications where the as-
sumptions on smoothness and strict convexity of the flux are violated. But Kruzkov
together with Panov could show that a unique solution of the problem (3.44), (3.45)
does even exist if f is merely continuous64. Thus, in the scalar situation, the Kruzkov
concept of an entropy solution is more far-reaching.

But one has to pay for the renunciation of convexity and smoothness: It can happen
that one of the properties of the entropy solution vE important from the point of
view of numerical methods gets lost, namely that an initial function v0 with compact

62and of a condition that respects the initial condition in a suitable way
63A non-numerical argument concerning the connection between both definitions can be found in the

paper already mentioned in footnote 38.
64S.N. Kruzkov und E.Y. Panov: Soviet Math.Dokl. 42 (1991), 316-321
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support leads to a compact support of vE(·, t) (for every fixed t > 0) as it is the case
if f is smooth and convex. A test example for this loss is realized by

f(v) =
|v|α
α

with 0 < α < 1,

(3.47)

v0(x) =




0 for x < −1
1 for −1 ≤ x ≤ 0
0 for x > 0

.

The solution reads

vE(x, t) =




0 for t > α(x+ 1)
1 for x < t ≤ α(x+ 1)(

t

x

) 1
1−α

for t ≤ x

(3.48)

(cf. Fig. 19).

Figure 19: Kruzkov-Panov solution (3.48) for 0 ≤ t ≤ α
1−α

Whereas the smooth and strictly convex case behaves hyperbolically, a merely contin-
uous flux can lead to a more parabolic character of the problem. Numerical procedures
for problems of this particular type were under some suitable conditions recently be
developed for the first time by M. Breuss65. Here already the Kruzkov-Panov exam-
ple (3.47) shows that the important CFL-condition (cf. sections 6.1, 7.3) can not be

65M. Breuss: Numerik von Erhaltungsgleichungen in Nicht-Standard-Situationen, PhD-Thesis, Dept.
of Mathematics, University of Hamburg, 2001
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fulfilled as far as explicit finite difference methods (cf. sections 4.1, 6.4, 7.2) are used.
Thus, implicit methods have to be taken into account, and this can really be done
successfully.

Examples of mathematical models of real world problems in fluid mechanics where
standard assumptions like strict hyperbolicity, strict convexity or smootheness of the
fluxes are not necessarily fulfilled occur in the theory of flows through porous media,
e.g. if oil production is concerned:

The scalar so-called non-standard Buckley-Leverett equation

∂tv + ∂x

(
v2

v2 + a(1 − v)2

)
= 0 , a ∈ �

models the displacement of an oleic phase by an aqueous phase in a porous medium.
In this situation, the flux is neither convex nor concave.

Tveito and Winther66 considered theoretically with respect to stability the system

∂ts + ∂xf(s, c) = 0
∂t (sc+ a(c)) + ∂x (c f(s, c)) = 0 ,

which also models the displacement of oil by water in a porous medium. But in this
case, the water is thickened by dissolved polymer in order to increase its viscosity.
The difficulty of this example arises from the fact that the eigenvalues of the Jacobian
are real but can coincide so that the system is hyperbolic but not necessarily strictly
hyperbolic.

66Proc. 3rd Intern. Conf. Hyperb. Probl. (B. Engquist, B. Gustafsson, ed.), (Chartwell-Bratt, Upp-
sala), 888-898 (1991)



4 The Riemann Problem

4.1 Numerical Importance of the Riemann Problem

Treating the traffic jam dissolution example we met the first time with a Riemann
problem. It consisted of a conservation law of type (2.1) together with an initial
function being piecewise constant with certain jumps at isolated positions.

One tool constructed in order to solve differential equations numerically is the so-
called Finite Difference Method (FDM) where one tries the unknown values of the
exact solution at isolated points to be approximated (cf. also chapters 6, 7).

Particularly in case of problem (2.1), we ask for numerical values V
(n)
ν at isolated

positions (xν , tn) of the upper half plane Ω expected to be good approximations for
the values V E(xν , tn) of the exact entropy solution at these points.

A particular possibility for the construction of such FDMs consists of covering the
positive time axis in a first step by a not necessarily equidistant grid {tn | (n =
0, 1, · · · )} of time step sizes ∆tn := tn+1 − tn together with fixing isolated grid
points xν ; (ν = 0,±1,±2, · · · ) along the x-axis. Thus, by the cartesian product of
these two sets, Ω will be covered with a net of grid points parallel to the axes. Also
the step sizes hν := xν+1 −xν don’t need necessarily to be equidistant (cf. Fig. 20).

If the computation of the values V
(n+1)
ν along the time level t = tn+1 does only

use the knowledge of the values V
(n)
ν along the time level before and computed in

the very last step, we call the scheme a one step method. Multi step methods also
include approximate values along earlier levels, but we are going to restrict the present
survey to one step methods.

Let t0 = 0 be the level to start from with approximate initial values

V (0)
ν :=

2
xν+1 − xν−1

1
2
(xν+xν+1)∫

1
2
(xν−1+xν)

V 0(x) d x (ν = 0,±1,±2, · · · ). (4.1)
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Figure 20: Grid of an FDM

It seems to be reasonable to describe the difference between the approximate solution
and the unknown exact solution in terms of the topology of the space forming the
basis of the original problem, which is in the particular situation under consideration
the space L loc

1 (Ω). This difference or truncation error should be estimated using a
suitable norm. Hopefully, these errors will decrease for decreasing step sizes and will
tend to zero sufficiently fast if the step sizes tend to zero. If this holds, the method is
called convergent.

Obviously, a direct comparison of the approximate solution to the exact solution in
terms of the toplology of the original space can take place if the discrete values{
V

(n)
ν

}
of the approximate solution defined only at isolated points can be extended

to the inter grid points suitably, e.g. by

V̂ (x, t) := V (n)
ν for xν−1+xν

2 < x ≤ xν+xν+1

2 , tn ≤ t < tn+1,

(4.2)

(ν = 0,±1,±2, · · · ; n = 0, 1, 2, · · · ).
By this special extension or reconstruction the discrete function now becomes a func-
tion V̂ constant on each of the described rectangles. Hence, V̂ is a step function
on Ω and, thus, an element of Lloc

1 (Ω).

If we restrict V̂ to the time level t = tn, this restricted function V̂ (x, tn) of the
space variable x is a step function, too, from which the one step method together with
the reconstruction now generates V̂ (x, tn+1).

If V̂ (x, tn) is used as an initial function for the original problem in order to generate
a weak solution of the differential equation in (2.1.) for the region t ≥ tn, a Riemann



4.2 The Riemann Problem in the Case of Linear Systems 99

problem comes about. Its exact solution if particularly restricted to the time level
t = tn+1 would lead at the grid points along this level to values which could be
looked upon as approximations to the weak solution of the original problem at these
new level grid points. This idea was for the first time realized by S.K. Godunov67 and
was later often used by other authors as a basic idea for further numerical schemes.
Herewith, effective approximate Riemann solvers were developed including local
linearizations.

We are therefore now going to study the Riemann problem at least in case of linear
problems with constant coefficients.

4.2 The Riemann Problem in the Case of Linear Systems

Let us recall problem (1.19), i.e.

∂tV + A ∂xV = 0 ,

with a constant (m,m)-matrix A, and let us prescribe initial values

V 0(x) =
{

V � for x < 0
V r for x > 0

(4.3)

with constant vectors V � und V r different from each other. It causes no loss of
generality using the origin as the position of the jump.

Assume the problem to be again strictly hyperbolic so that the eigenvalues λi of the
matrix A are real and different from each other. The eigenvectors belonging to these
eigenvalues are then obviously real, too, and linearly independent. Thus, they can be
used as a basis in �

m, and in areas were the solution is smooth, (1.21) and (1.22)
yield

V (x, t) =
m∑

i=1

v̂i0(x− λi t) si (4.4)

with

V̂ 0(x) = (v̂10(x), v̂20(x), · · · , v̂m0(x))
T = S−1V 0(x) .

This leads particularly to

V̂ 0�
(x) =: (w1, w2, · · · , wm)T = S−1V � for x < 0

67Mat. Sb. 47 (1959), 357-393
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and analogously to

V̂ 0r(x) =: (w̃1, w̃2, · · · , w̃m)T = S−1V r for x > 0

with certain constants wi and w̃i.

If the eigenvalues are ordered as in (3.30),

V (x, t) =
k0∑
i=1

w̃i si +
m∑

i=k0+1

wi si (4.5)

follows from (4.4) provided that for a given position (x, t) the first k0 eigenvalues are
the particular ones for which x − λit > 0 (i = 1, 2, · · · , k0), whereas x − λit <
0 (i = k0 + 1, k0 + 2, · · · ,m) holds for the other m− k0 eigenvalues.

Let us now look at the i-characteristics x = λit arising from the jump position and
let t0 > 0 be fixed. Let us move for this fixed t0 from the left to the right along
a line parallel to the x-axis. This line crosses the k0-characteristic at the position
x0 = λk0 t0 (cf. Fig. 21). As soon as this will happen the coefficient w̃k0 in formula
(4.4) has to be replaced by wk0 .

Figure 21: How to solve the linear Riemann problem

The solution V described by (4.5) then obviously jumps. The height of this jump is

[V ]k0(x0, t0) = (wk0 − w̃k0) sk0 (4.6)

and leads to

A [V ]k0(x0, t0) = (wk0 − w̃k0)λk0 sk0 = λk0 [V ]k0(x0, t0). (4.7)
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Figure 22: Characteristic cones of the solution of the linear Riemann problem

We know already that discontinuities move along characteristics as far as linear prob-
lems are concerned. This makes the k0-characteristic line through the jump position
a k0-shock Γk0 if wk0 �= w̃k0 so that (4.7) just becomes the Rankine-Hugoniot
condition (2.15) applied to the special linear situation.

(4.5) and (4.7) yield the result that the solution of our Riemann problem for t > 0
can also be formulated as

V (x, t) = V � −
∑

i
λi<

x
t

(wi − w̃i) si (4.8)

or as

V (x, t) = V r +
∑

i
λi>

x
t

(wi − w̃i) si (4.9)

(cf. Fig. 22).



5 Real Fluids

5.1 The Navier-Stokes Equations Model

An ideal fluid was defined to be a material without friction between neighbouring
particles of different flow velocities, hence without tangential forces along the surfaces
of arbitrary volumes W (t) picked out of the fluid flow. The mathematical model of
ideal fluids can therefore only describe certain particular situations, e.g. flows of
low speeds, low densities, low viscosities or high temperatures etc., and its results can
seriously contradict the reality if such properties are not ensured. The forces acting on
bridge piers parallel to the flow of calmly flowing small rivers were already mentioned
when the Kutta-Zhukovsky formulas were presented in section 1.3.

Thus, if the tangential forces generated by the viscosity play an important role in a
real flow situation they can’t be neglected in a mathematical model expected to be
able to describe the flow in a satisfactory manner.

Let us therefore try to revise the Euler equations model of ideal fluids by taking the
viscosity forces additionally into account in order to generate a model of real fluids.

Reminding the reader to the fact that viscosity in our context always means friction
between fluid particles68, these additional forces can only occur in case of motion, i.e.
for non-vanishing velocity of the flow, and lead then to an additional term within the
conservation law of momentum:

The righthand side of (1.5) consisted of the forces per unit volume k only, and the
part of these forces falling to the volume W (t) therefore was given by

∫

W (t)

k d(x, y, z) .

68cf. (1.54) and its explanation

Mathematical Models of Fluiddynamics. Rainer Ansorge

Copyright c© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40397-3
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Forces generated by friction of the fluid particles on the outside of this volume but
moving along its surface ∂W (t) are obviously proportional to the area of ∂W (t)
and have tangential directions, whereas the forces generated by pressure of the outside
fluid are proportional to this area, too, but directed perpendicular to ∂W (t).

If s = (s1, s2, s3)T are the forces per unit area generated by the outer fluid and acting
on the surface ∂W (t) of an inner volume W (t) arbitrarily picked out of the fluid,
the relation

s = s(t, x, y, z,n) , (x, y, z) ∈ ∂W (t) (5.1)

holds where n is the unit vector normal on ∂W (t) at (x, y, z) ∈ ∂W (t) with
outward direction.

Herewith, s depends linearly on n:

s = (σij) n (5.2)

with σij : (x, y, z, t) → σij(x, y, z, t).

(5.2) follows from the fact that within the conservation law of momentum, now to be
written as

∫

W (t)

{
∂tq +

〈
1
ρ

q,∇
〉

q + div

(
1
ρ

q

)
q

}
d(x, y, z)

=
∫

W (t)

k d(x, y, z) +
∫

∂W (t)

s do ,

the volume terms vanish of a higher order than the surface terms in case ofW (t) → 0.

Here, the stress tensor (σij) is treated like a real (3, 3)–matrix.

Moreover, Euler’s law of vanishing momentum, i.e.

∫

W (t)

[r , k] d(x, y, z) +
∫

∂W (t)

[r , s] do = 0 , (5.3)

r = (x, y, z)T, yields the symmetry of the stress tensor:

σij = σji . (5.4)
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Vanishing friction in case of ideal fluids has to be modelled by σij = 0 for i �= j.
Taking (5.2) into account, this leads to

σ11 = σ22 = σ33 =: −p (pressure)

because the vectors s and n are parallel in this situation. This is a slightly more
general explanation of (1.5.).

As far as real fluids are under consideration, it can be expected the terms σij (i �= j)
to be small, and the terms σii will certainly differ from −p only to a small degree.
We therefore put

σ̃ij =

{
σii + p for i = j

σij for i �= j ,
(5.5)

so that all the σ̃ij are small.

Because of the symmetry of (σij), also the tensor (σ̃ij) is symmetric.

If the exterior forces k per unit volume are replaced by the forces k̂ per unit mass,
∫

W (t)

{
∂tq +

〈
1
ρ

q,∇
〉

q + div

(
1
ρ

q

)
q − ρ k̂

}
d(x, y, z)

= −
∫

∂W (t)

pn do +
∫

∂W (t)

(σ̃ik) n do

follows.

Obviously, if a fluid does not move or if neighbouring particles do not move with
different velocities, friction can’t occur. In modelling the flow, we therefore assume
the terms σ̃ij (i, j = 1, 2, 3) to depend only on the components of the vectors
∇ui (i = 1, 2, 3). Here, we restrict ourselves to so-called Newtonian Fluids, i.e. the
terms σ̃ij depend on the components ∇ui homogeneously and linearly:

σ̃ij =
3∑

µ,ν=1

α(i,j)
µ ν ∂xµuν . (5.5)

Thus, every σ̃ij is a function of the elements of the Jacobian Ju :

σ̃ij : Ju → σ̃ij(Ju) , (5.6)

and the α
(i,j)
µ ν are constants.
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Analogously to the case of ideal fluids where every axis is a main stress axis, we
also expect in our model the relation (5.6) to be independent of orthogonal linear
transformations, i.e.

AT (σ̃ij) A =
(
σ̃ij

(
AT JuA

) )
, ∀A ∈ �(3,3) with AT A = I . (5.7)

It is trivial that the matrix B := div u · I is symmetric, and because it is even a
diagonal matrix whose diagonal elements equal eachother it shows the property

AT B A = B .

The elements bij of B depend on the elements of the Jacobian, i.e. B = (bij(Ju)).
Because of div u = trace Ju and because traces of matrices are invariants of orthog-
onal transformations, also

(
bij
(
AT JuA

) )
= (bij(Ju)) = B

follows.

Thus, B fulfills all the expected demands on (σ̃ij). But also

D := Ju + (Ju)T =: D (Ju)

is symmetric, depends on the elements of the Jacobian in a homogeneous and linear
way and shows the property

AT D A = AT JuA + AT (Ju)T A

= AT JuA +
(
AT JuA

)T
,

i.e. AT D (Ju) A = D
(
(AT JuA)

)
.

Thus, also D fulfills all the demands on (σ̃ij), and therefore also λB + ηD with
arbitrary constants λ, η does so. It can be shown that these are already all types of
matrices which satisfy our demands. Hence,

∫

W (t)

{
∂tq +

〈
1
ρ

q,∇
〉

q + div

(
1
ρ

q

)
q − ρ k̂

}
d(x, y, z)

(5.8)

−
∫

∂W (t)

(−p I + λB + ηD ) n do = 0 .
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By means of the divergence theorem,
∫

∂W (t)

pn do =
∫

W (t)

∇ p d(x, y, z)

and
∫

∂W (t)

B n do =
∫

W (t)




div b1

div b2

div b3


 d(x, y, z)

follow where the bi are the row vectors of B, i.e.
∫

∂W (t)

B n do =
∫

W (t)

∇ (div u) d(x, y, z) ,

and similarly

∫

∂W (t)

D n do =
∫

W (t)




div d1

div d2

div d3


 d(x, y, z)

where

div d1 = 2 ∂x (∂xu1) + ∂y (∂yu1 + ∂xu2) + ∂z (∂zu1 + ∂xu3)

= ∆u1 + ∂xxu1 + ∂xyu2 + ∂xzu3

= ∆u1 + ∂x (div u) .

Analogous formulas hold for div d2 and div d3.

The equation (5.8) therefore reads as

∫

W (t)

{
∂tq +

〈
1
ρ

q ,∇
〉

q + div

(
1
ρ

q

)
q − ρ k̂

+ ∇ p − λ∇(div u) − η∆ u − η∇(div u)

}
d(x, y, z) = 0

for every part W (t) picked arbitrarily out of the volume of the fluid, i.e.

∂t(ρu)+〈u,∇〉 (ρu)+(ρ div u) u−ρk̂+∇ p−(λ+η)∇(div u)−η∆ u = 0
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or

∂tρu + ρ ∂tu + 〈u,∇ ρ〉 u + ρ 〈u ,∇〉 u + (ρ div u) u − ρk̂ + ∇ p

− (λ + η)∇(div u) − η∆ u = 0 .

Because of ρ div u + 〈u,∇ ρ〉 = div(ρu), the relation

{∂tρ+ div(ρu)} u+ρ ∂tu+ρ 〈u,∇〉 u−ρk̂+∇ ρ−(λ+η)∇(div u)−η∆ u = 0

follows, and taking the continuity equation into account, we conclude after division
by ρ with the so-called Navier69 - Stokes70 equations

∂tu + 〈u,∇〉 u − λ+ η

ρ
∇(div u) − η

ρ
∆ u = − 1

ρ
∇ p + k̂ . (5.9)

Here η is called the first viscosity coefficient. Of course, historically there were
several types of arguments leading to the Navier - Stokes equations, and this led to the
convention not to call λ the second viscosity coefficient but ξ := λ + 2

3η. These
coefficients are constants depending on the fluid material as well as on its temperature.
The unit of measurement is g · cm−1 · sec−1 = Poise (cf. footnote 71).

In case of incompressible flows characterized by div u = 0, λ does not occur in
the equations, and if also the exterior forces k̂ do not play a role, the Navier-Stokes
equations are reduced to

∂tu + 〈u,∇〉 u − ν∆ u +
1
ρ
∇ p = 0 , (5.10)

where ν = η
ρ is called the kinematic viscosity.

By similar arguments, the law describing the conservation of energy takes for viscous
flows the form

∂tE+ div ((E + p) u)−λ · div(div u ·u)−η · div
((

Ju + (Ju)T
)

u
)

= 0.

Some of the terms within this equation can be simplified, e.g.

div(div u · u) = 〈∇(div u),u〉 + (div u)2

etc.
69Claude Louis Marie Henri Navier (1785 - 1836); Dijon, Paris
70George Gabriel Stokes (1819 - 1903); Cambridge
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The Navier-Stokes equations model is excellently confirmed by experiments.

An impression of the magnitude of the kinematic viscosity and its sensibility with
respect to temperature is given by the following table:

Material Temperature [ oC] Kinematic
viscosity [cm2/sec]

Mercury 0 0.00125
10 0.00123
20 0.00117

Air 0 0.133
10 0.140
20 0.143

Water 0 0.0178
10 0.0130
20 0.0101

Machine oil 0 7.34
(depending on the 20 3.82

brand; approx.)

In order to study the behaviour of a real ship in the ocean or of a wing in air flow etc.
by means of experiments, engineers normally use a small model of the ship dipped
into a wave canal or a small model of the wing brought into a wind tunnel, respectively.
Let us ask for conditions under which the results of the experiments are in accordance
with the reality. To answer this question it is advisable to use dimensionless quantities.

Let us treat for convenience the case of an incompressible flow:

Assume u0 = (u0 , 0, 0)T to be the flow velocity in a great distance of the solid, i.e.
of the hull of the ship, of the wing etc., let L be a characteristic length of the solid,
e.g. the length of the ship, the length of the wing’s airfoil etc., let T be the time the
fluid needs to cover the stretch of length L with velocity u0, and let P = ρ

2 u0
2 be

the dynamic pressure in a great distance of the solid.

Let us consider the particular case where exterior forces per unit volume can be ne-
glected and let us now introduce the dimensionless quantities

ũ =
1
u0

u , t̃ =
t

T
, p̃ =

p

2P
, x̃ =

x

L
, ỹ =

y

L
, z̃ =

z

L
.
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The incompressible Navier-Stokes equations then turn out to become

∂t̃ũ +
〈
ũ, ∇̃

〉
ũ + ∇̃ p̃ − 1

Re
∆̃ ũ = 0 , (5.11)

where

Re :=
ρ u0 L

η
=

u0 L

ν
(5.12)

is the so-called Reynolds number and

∇̃ := (∂x̃, ∂ỹ, ∂z̃)
T , ∆̃ = ∂x̃x̃ + ∂ỹỹ + ∂z̃z̃ .

Thus, the experiment coincides with real world behaviour of the solid put into the flow
if the Reynolds numbers of both situations coincide. This leaves a great freedom with
respect to the particular choices of u0 , L , ν realized in the experiment. The flows
are then called similar.

In case of η �= 0, the Laplace operator occurs in (5.10) so that this system of equations
now becomes a parabolic system if instationary flows are concerned or an elliptic
system if higher dimensional stationary flow is under consideration, respectively.

The continuity equation as well as the energy conservation law already known from
the model of ideal fluid flows remain unaffected by the viscosity and remain valid.
This also holds for the additional equation of state as far as gas flows are concerned.

There are only a few situations where the Euler equations or the Navier-Stokes equa-
tions can explicitly be solved by wellknown functions. In all the other situations one
has to solve them approximately by means of numerical procedures.

Two of the problems which can be treated explicitly will be studied in the next section,
and both problems are examples of stationary flows.

Remark:
The Navier-Stokes equations do not take the particular additional buoyancy phenom-
enons into account arising in compressible gas flows from density variations caused
by temperature differences between different parts of the gas. In order to respect these
phenomenons, the Navier-Stokes equations have to be enriched by additional terms. If
the enriched equations are also written in a dimensionless form, further dimensionless
parameters besides the Reynolds number occur, particularly the Prandtl number

Pr :=
ν

λ
ρgcp

with the specifiic heat conductivity λ.
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5.2 Drag Force and the Hagen-Poiseuille Law

Viscous flows can be laminar or turbulent. It is laminar if neighbouring fluid par-
ticles move more or less parallel to eachother along stable trajectories, whereas tur-
bulent flows are characterized be a disordered flow that superimposes the main flow.
Thus, the turbulent flow is an instability phenomenon. When Reynolds studied the
flow of liquids through small glass tubes, he noticed that the transition from the lam-
inar to the turbulent state of the flow takes place in a very abrupt way depending on
the parameter that is now called the Reynolds number (cf. (5.11)).

The transition to instabilities will briefly be discussed in the fifth section of this chap-
ter. In this section the flows are assumed to be laminar.

Our first simple application of the Navier-Stokes equations concerns the laminar vis-
cous stationary flow in y-direction of small velocity parallel to a given area δF of
a plain solid plate where this area is part of the (y, z)-plane. Let the fluid be incom-
pressible in the sense of ρ = const. Because of the friction between the fluid particles
moving along and the fluid particles sticking to the rigid body in accordance with the
no-slip condition, there is a force acting on δF . Obviously, this force has only one
component in y-direction, and the velocity is independent of the space variables y and
z:

u = (0, u(x), 0)T with u(0) = 0 (no-slip condition).

The undisturbed velocity of the fluid that passes the surface area at a great distance is
assumed to be constant, i.e. ∂xu(x) → 0 for x → ∞.

Figure 23: Flow along a plain membrane
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Compared with (5.10), the forces per mass unit occuring within the Euler equations
are now enriched by the additional term ν∆ u so that the forces per volume unit are
now modelled by

w =




0
η ∂xxu(x)

0


 . (5.13)

The resistance of the relevant area acting against the flow in a direction parallel to
itself and arising from the friction or −vice versa− the drag force acting on the plate
by the friction of the fluid comes therefore up to be

δF

∞∫

0

w dx =




0
− η ux(0) δF

0


 .

Hence, the drag related to the friction of a laminar flow is given by

W = η ∂xu(0) δF. (5.14)

Coming back to Reynolds’ experiments, let us study as an example the one-dimensi-
onal laminar stationary cylinder-symmetric flow of an incompressible liquid through
a circle-cylindrical pipe of radius R where the gravity force is neglected, where other
outer forces do not occur and where the no-slip condition u = 0 holds at the interior
surface of the pipe (cf. Fig. 24).

Figure 24: Laminar pipe flow

Because of u = (u, 0, 0)T the relations

〈u , ∇〉u = (u∂xu, 0, 0)T
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and

∆ u = (∆u, 0, 0)T , div u = ∂xu

follow.

Taking the continuity equation div u = 0 into account, we find ∂xu ≡ 0, thus also
∂xxu ≡ 0. Hence, (5.8) reduces to

−η
ρ




∆u
0
0


 +

1
ρ




∂xp
∂yp
∂zp


 =




0
0
0


 . (5.15)

This leads to

∂yp ≡ ∂zp ≡ 0, i.e. p = p(x) ,

and therefore to

∆u = ∂yyu+ ∂zzu =
∂xp

η
. (5.16)

The left side of (5.16) is represented by a function that depends only on the variables
y and z, whereas the right side depends only on x. So, ∂xp has to be constant.

The particular case of a flow considered here can therefore only occur if p depends
linearly on x.

If polar coordinates (r, ϕ) are introduced in the (y, z)-plane, and if the cylinder sym-
metry is respected, i.e. u = u(r) independent of ϕ, the well-known transformation
rule

∆u =
1
r
∂r (r ∂ru) +

1
r2
∂ϕϕu

transforms (5.16) into

∂r (r ∂ru) =
∂xp

η
r .

Because p is independent of (y, z), hence independent of (r, ϕ), integration leads to

r ∂ru =
∂xp

η

r2

2
+ c1 (5.17)

with an integration constant c1.
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Besides the no-slip condition u(R) = 0, also the boundary condition

|(∂ru)r=0| < ∞
has to be fulfilled so that c1 has to vanish.

If (5.17) is now integrated,

u(r) =
∂xp

2 η
r2

2
+ c2

results where the constant c2 has to be chosen in such a way that the no-slip condition
is fulfilled. This finally yields the so-called Hagen-Poiseuille law

u(r) = − ∂xp

4 η
(
R2 − r2

)
. (5.18)

For every fixed x, this law shows a parabolic velocity distribution, and the flow follows
the direction of decreasing pressure (cf. Fig 25).

Figure 25: The Hagen-Poiseuille flow through a pipe

The mass that flows through the cross-section Q of the tube per second can now
immediately be determined, namely

M =
∫

Q

ρ u dQ = −
2 π∫

0

R∫

0

ρ ∂xp

4 η
(
R2 − r2

)
r dr dϕ = −π ρ ∂xp

8 η
R4 ,

(5.19)

and is proportional to the 4th power of the radius R though the cross-section only
grows proportinally to its 2nd power.

Remark: This mass flow was discovered by the prussian civil service hydraulic engi-
neer Hagen71 by experiments in 1839 without knowledge of (5.18), and independently

71Gotthilf Heinrich Ludwig Hagen (1797 - 1884); Berlin
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also by the french physiologist Poiseuille72 in 1841 when he was interested in blood
flow. It was also Poiseuille who found formula (5.19). The parabolic velocity distri-
bution was for the first time mentioned in 1845 by Stokes.

The experiments of Hagen and of Poiseuille were realized for small tube diameters
(0.015 - 3.00 mm) and confirmed formula (5.19), thus also the law (5.18) now named
after them. Reynolds used glas tubes of higher diameters up to 10 mm, he alo filled
some dyes into the liquids he worked with, and he found out that there is a critical
value of the parameter which is now called the Reynolds number, and this critical
Reynolds number is characteristic for the transition of the flow from laminar to tur-
bulent. He found Recr = 1160, and he recognized that the Hagen-Poiseuille law
loses its validity in regions of turbulence: The mean flow velocity decreases because
of a higher flow resistance.

The drag force of the laminar Hagen-Poiseuille flow in a part of the cylindric pipe of
length L can be computed by means of (5.14) and of (5.18) in the following way:

W = η 2πRL (∂ru)r=R = η 2πRL
∂xp R

2 η
= π R2 ∆ p , (5.20)

where ∆ p denotes the pressure difference between the two ends of the particular
part of the pipe under consideration.

There are also some other cross sections of ducts for which the Navier-Stokes equa-
tions can be solved analytically under the same assumptions on the flow as in the
Hagen-Poiseuille case (steady, laminar, incompressible, viscous), e.g. for annuli,
equilateral triangles etc.73

Situations similar to the flow of a liquid through narrow ducts occur for other flows
through narrow gaps or slits, e.g. investigation of the flow of lubricating oils in lubri-
cating research called tribology.

As already mentioned, there are only very few examples where the Navier-Stokes
equations can be solved exactly. This led to efforts to simplify these equations wher-
ever this seemed to be suitable. Some of the important developments concerning
simplifications in case of small and of great Reynolds numbers will briefly be dis-
cussed in the next sections. Also for great Reynolds numbers we do not go back to
the Euler equations but preserve some of the structures of the Navier-Stokes equations
and study other suitable simplifications, and the no-slip condition will also be kept in
case of great Reynolds numbers. The case of small Reynolds numbers was particu-
larly investigated by Stokes and led to a model equation nowadays called the Stokes

72Jean Louis Marie Poiseuille (1799 - 1869); Paris
73C.Y. Wang: Ann.Rev.Fluid Mech., 159-177 (1991)
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approximation (cf. (5.25)), whereas theory as well as practical applications of fluid
dynamics for small Reynolds numbers was significantly pressed ahead by Prandtl74

in his boundary layer theory and his wing theory.

5.3 Stokes Approximation and Artificial Time

The difficulties in solving stationary or instationary Navier-Stokes problems or Euler
problems are mainly due to the nonlinearity of the convection term 〈u , ∇〉u.

Another difficulty particularly connected with the case of an incompressible instation-
ary flow is the fact that the pressure p one has to determine besides the velocity u is
not represented in the continuity equation by its time derivative, e.g. by an additional
term κ ∂tp (κ = const). If this would be the case and if a suitable initial pressure
p0 would be prescribed, the instationary problem could be reformulated as a genuine
initial boundary value problem whose differential equation could be written as

∂tϕ − L[ϕ ] = 0 with ϕ = (u1, u2, u3, p)T (5.21)

and could theoretically as well as numerically be treated by means of appropriate
techniques.

Let us assume that the solutions of instationary Navier-Stokes problems converge for
t → ∞ in each case towards the solution of the correspondent stationary problem
independent of the initial function u0.

If this also holds for the instationary problem (5.21) consisting of the Navier-Stokes
equations and of a continuity equation enriched by a physically unjustified additional
time derivative of p, the solution of this manipulated problem must coincide with the
stationary solution of the original Navier-Stokes problem for t → ∞ because of

pt → 0 for t → ∞.

This leads to the following idea of a method for solving the stationary Navier-Stokes
problem:

Introduce an artificial time τ and enrich the stationary Navier-Stokes equations
as well as the continuity equation by adding linear combinations of certain terms in
such a way that after addition of a more or less arbitrary initial function a complete
instationary initial or initial boundary value problem comes into being whose solution

74Ludwig Prandtl (1875 - 1953); Hannover, Göttingen
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is expected to have the property to annul the additional artificial terms for τ → ∞.
In engineering, this concept is called method of artificial compressibility and is
occasionally numerically realized.

Such an artificially enriched stationary problem might look as follows:

−∂τu = 〈u , ∇〉u + ∇ p − 1
Re ∆ u + α∇ div u

−∂τp = β2 div u

}
in Ω, (5.22)

u = u0 on ∂ Ω,

u = u[0], p = p0 for τ = 0,

where u[0] is assumed to coincide with u0 on ∂ Ω. α > 0 and β �= 0 are arbitrary
constants. They should be chosen in such a way that the numerical treatment of the
artificially enriched problem is going to become a method as effective as possible.

Of course, the expected property of the artificially added terms to vanish for increasing
values of τ should be guaranteed by a mathematical proof.

From a numerical point of view, this strategy can lead to an iterative procedure in
order to solve approximately the stationary boundary value problem in the following
way:

Use the more or less arbitrarily added artificial initial function as initial approxima-
tion, i.e.

ϕ[0] :=
(

u[0]

p0

)
. (5.23)

Then discretize (5.22) with respect to the artificial time variable τ using in every step
a suitable step size ∆n τ , e.g. an equidistant step size ∆ τ .

An example for the semi-discrete approximate equation coming into being is the ex-
plicit Euler method

ϕ[n+1] = ϕ [n] − ∆n τ · L[ ϕ [n] ] (n = 0, 1, 2, · · · ) (5.24)

formulated in the style of (5.21). Here, every u[n] is expected to fulfill the boundary
conditions given in (5.22). ϕ[n] will then not only be interpreted as an approximate
solution of the artificial instationary problem on its nth artificial time level but also
as an approximate solution of the stationary problem after the nth iteration step. If
the iteration converges sufficiently fast, it will be stopped after a certain number of n0
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steps, and ϕ[n0](x, y, z) will then be considered to be the final approximate solution
of the stationary problem.

At the beginning, this method was used and justified only heuristically by engineers
who asked the mathematicians for an also mathematical justification. This justifica-
tion could then at least partially be given by a proof of the fact that in case of the
Stokes approximation the solution of (5.22) really converges for τ → ∞ to the so-
lution of the stationary problem75. Here, the truncation errors brought in by additional
space discretizations are left out of account.

The Stokes approximation is developed from the Navier-Stokes equations by omission
of the convective term. This seems to be reasonable in case of incompressible flows
for small Reynolds numbers. Namely, if (5.11) is written as

Re · ∂t̃ũ + Re · 〈ũ , ∇̃〉 ũ + Re · ∇ p̃ − ∆̃ ũ = 0,

one can see that the linear diffusion term dominates the convection term.

If we omit the tildes and if we restrict ourselves to the stationary problem, after ne-
glection of the convection term only

Re · ∇ p − ∆ u = 0 (5.25)

remains. Finally, we replace Re · p by a new quantity p and enrich the system exem-
plarily in the way presented in (5.22). The system then turns out to take the form

∂τu + ∇ p = ∆ u + α∇ div u
∂τp + β2 div u = 0

}
in Ω, (5.26)

u = 0 on ∂ Ω,

u = u[0], p = p0 for τ = 0,

where also the linear structure of (5.25) was taken into account. Because of this
structure, it suffices to show the convergence of u for increasing values of τ to the
stationary solution in case of vanishing exterior forces and of homogeneous boundary
conditions.

The velocity part of the stationary solution of (5.26) then obviously vanishes, i.e.

u ≡ 0,

and the following theorem holds:

75St. Fellehner, Dissertation Hamburg 1995.
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Theorem 5.1:
The solution u of (5.26)76 converges in the sense of the L2-norm for τ → ∞ to the
zero function.77

PROOF: Using the denotations

J u · v = (〈∇u1 , v〉 , 〈∇u2 , v〉 , · · · , 〈∇ud , v〉)T ,

〈J u ,J v〉 =
∑
i,j

∂xjui ∂xjvi,

(p , q) =
∫

Ω

p q dx, ‖p‖Ω =
√

(p , p) in L2(Ω) ,

(u , v) =
∫

Ω

〈u , v〉 dx, ‖u‖Ω =
√

(u , u) in L2
d(Ω) ,

(J u,J v) =
∫

Ω

〈J u , J v〉 dx, ‖J u‖Ω =
√

(J u , J u) in L2
d×d(Ω) ,

taking

div (J u · v) = 〈∆u ,v〉 + 〈J u , J v〉,

into account or −by means of Gauss’ divergence theorem− the relation

(∆ u , v) =
∫

∂ Ω

〈
∂ u

∂ n
, v

〉
d o − (J u , J v), (5.27)

and taking finally also into account that the integral along the boundary vanishes,
(5.26) leads to

1
2
d

dτ

(
‖u‖2

Ω +
1
β2

‖p‖2
Ω

)
= (u , uτ ) +

1
β2

(p , ∂τp)

= (u , −∇ p) + (u ,∆ u) + (u , α∇(div u))

+
1
β2

(p , −β2 div u) (5.28)

= −‖J u‖2
Ω − α ‖div u‖2

Ω.

76For convenience, we omit considerations concerning the behaviour of p.
77Here, it is assumed that there is a unique smooth solution of the artificial instationary problem.
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Thus,

σ(τ) :=
(
‖u‖2

Ω +
1
β2

‖p‖2
Ω

)

decreases monotonously, and this the stronger the greater α78. Hence, ‖u‖Ω and
‖p‖Ω are bounded so that

σ∞ := lim
τ→∞ σ(τ)

exists.

The Poincaré inequality79 then yields in L2
d(Ω)

‖u‖2
Ω ≤ c1 ‖J u‖2

Ω

with a constant c1 > 0 only depending on the domain Ω. Equation (5.27) therefore
leads to

σ′(τ) =
d

d τ

(
‖u‖2

Ω +
1
β2

‖p‖2
Ω

)
≤ −c ‖u‖2

Ω (5.29)

where c = 2
c1
> 0.

Formula (5.29) implies

σ(τ0) − σ∞ ≥ c

∞∫

τ0

‖u‖2
Ω d τ (5.30)

so that particularly the integral on the righthand side exists, i.e. ‖u‖Ω ∈ L2(�+).

But also

d

d τ

(
‖u‖2

Ω

)

is bounded as can be seen by the following arguments:

Differentiate the differential equation in (5.26) with respect to τ which leads in a first
step analogously to (5.29) to

d

d τ

(
‖∂τu‖2

Ω +
1
β2

‖∂τp‖2
Ω

)
≤ −c ‖∂τu‖2

Ω , (5.31)

78This can also be used for numerical purposes.
79cf. e.g. Dautrey-Lions: Mathematical Analysis and Numerical Methods for Science and Technol-

ogy, vol. 2, p. 126
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hence to the boundedness of ‖∂τu‖. Because of

∣∣∣∣
d

d τ

(
‖u‖2

Ω

)∣∣∣∣ = 2 |(u , ∂τu)| ≤ 2 ‖u‖Ω ‖∂τu‖Ω ,

the existence of a constant ω with
∣∣∣∣
d

d τ

(
‖u‖2

Ω

)∣∣∣∣ ≤ ω (5.32)

follows. The inequalities (5.32) and (5.30) then imply

lim
τ→∞ ‖u(τ)‖Ω = 0 .

Otherwise there would exist an ε > 0 and a number τi > τ̃ for every τ̃ > 0 with
‖u(τi)‖2

Ω ≥ ε, and by means of the inequality

−ω (τ − τi) ≤ ‖u(τ)‖2
Ω − ‖u(τi)‖2

Ω ≤ ω (τ − τi) ,

which follows for every τ > τi from (5.32),

‖u(τ)‖2
Ω ≥ ε − ω (τ − τi)

would follow. Thus, also

Ji :=

τi+
ε
ω∫

τi

‖u(τ)‖2
Ω d τ ≥ ε2

ω
− ω

2
ε2

ω2
=

ε2

2ω

would result.

Now, after the choice of a suitable subsequence of the sequence {Ji} the intervals
τi ≤ τ ≤ τi + ε

ω (i = 1, 2, · · · ) could be assumed to be disjunct and would lead to

∑
i

Ji ≤
∞∫

τ1

‖u(τ)‖2
Ω d τ <∞.

This finally would contradict the unboundedness of the partial sums of
∑
i
Ji. �
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5.4 Foundations of the Boundary Layer Theory; Flow
Separation

Let us now look at the other extreme situation of the Navier-Stokes equations written
in the dimensionless form (5.11), namely at the case of great Reynolds numbers par-
ticularly studied by Prandtl. Here, we omit again the tildes used in (5.11), and because
the Reynolds numbers are great, the behaviour of the solutions can be expected not to
differ too much from the solutions of the Euler equations80

Prandtl published his results in 1904 on the International Congress of Mathematicians
in Heidelberg81. Let us now follow his ideas.

Assume a solid to be put into a viscous flow, let the no-slip condition (1.54) hold
along the wall Γ of this solid, i.e. uΓ = 0, omit the influences of exterior forces,
and assume the flow to have been irrotational before the solid was put into it.

Thus, the velocity u could at this time be derived from a potential Φ which fulfills
the potential equation ∆ Φ = 0 because of the incompressibility of the fluid. This
leads to the fact that there was no difference compared to the frictionless situation.

Prandtl restricted his considerations to a piece Γ of the surface of the solid which can
be assumed to be (more or less) plane82, and this plane was then used as (x, y)-plane
in an (x, y, z)-coordinate system. In a great distance of the plane, theoretically for
z → ∞, Prandtl expected the flow to keep its character as a potential flow so that the
Euler equations hold for large values of z.

The idea that the flow could perhaps be irrotational everywhere outside the solid leads
for u �≡ 0 immediately to a contradiction because the problem

∆ Φ = 0 outside the solid,

uΓ = 0 no-slip condition

has only the solution u ≡ 0. We omit the proof and take into account that a jump
from the velocity u = 0 along Γ to a potential flow of a velocity u �= 0 on the

80It took many years to make mathematically sure that the Navier-Stokes solutions are close to the
Euler solutions for small values of η: K. Nickel showed in Arch.Rat.Mech.Anal. 13, 1-14 (1963), that
both solutions can under certain conditions and for η → 0 asymptotically be looked upon as solutions
of the Prandtl boundary layer equations (5.48) presented in this section. This also justified subsequently
Prandtl’s assumption on the small diameter of the boundary layer we are going to use later.

81Verh. d. III. Int.Math.-Kongr. Heidelberg 1904, S. 484-494, Leipzig: Teubner 1905
82W. Tollmien showed that all these considerations also hold for curved surfaces provided that the

curvatures do not vary too much. Cf. Handb. d. Exper.-Physik, IV, part I, 248 ff. (1938).
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outside of the solid is impossible, too, because the existence of the viscosity term does
not allow discontinuities of this type.

Hence, the flow between the surface of the solid and the distant parts of the flow can’t
be irrotational. The domain of this rotational flow is called the boundary layer. Here,
it is more or less open what the word distant means in this context from the point of
view of real applications. In other words: What is the thickness δ of the boundary
layer, i.e. from which distance on can the difference between the real flow and the
original potential flow be neglected ? Of course, the answer depends on a convention.
Often, 1% difference between the velocities is an accepted value.

Prandtl assumed the thickness δ to be small compared with the length L used in
order to write the Navier-Stokes equations in the dimensionless form (5.11), i.e.

δ 
 1 , (5.33)

and he assumed that the transition from the rotational flow to the irrotational potential
flow behaves continuously.

Let all the derivatives occuring in the following considerations exist, let them be con-
tinuous, and let the dimensionless velocity U of the distant potential flow be parallel
to Γ, i.e. parallel to the (x, y)-plane. Hence,

U = U(x, y, t) = (U(x, y, t) , V (x, y, t) , 0)T .

Moreover, the components of U are assumed to be of the same order of magnitude
as the velocity u0 used for the derivation of the dimensionless form (5.11) of the
Navier-Stokes equations so that U and V are of the order 1 of magnitude. Because
of the continuous transition from u = (u, v, w)T to U , the assumptions

u = O(1) and v = O(1) for z → δ (5.34)

with the Landau symbol O are reasonable, and this will certainly also be true along
all the layers parallel to Γ, particularly for x , y → 1 where x and y are the
dimensionless spatial variables in (5.11).

Concerning the spatial derivatives of the u- and v-components parallel to Γ as well
as their time derivatives, Prandtl expected them not to vary very much within the
boundary layer, i.e.

∂tu , ∂tv , ∂xu , ∂yu , ∂xxu , ∂yyu , ∂xv , ∂yv , ∂xxv , ∂yyv = O(1). (5.35)

If additionally the continuity equation div u = 0 is taken into account, (5.35) yields
a further result, namely

∂zw = O(1) for z → δ or for x , y → 1 , (5.36)
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so that the no-slip condition leads to

|w(x, y, z, t)| =
∣∣∣∣∣∣

z∫

0

∂zw(x, y, ζ, t) d ζ

∣∣∣∣∣∣
≤ ‖∂zw‖∞ |z| ,

i.e.

w = O(δ) . (5.37)

Combining assumption (5.33) with the no-slip condition, the mean value theorem
leads inside the boundary layer to

u(x, y, z, t) ≈ ∂zu(x, y, z, t) · z ,

and therefore with (5.34) to

∂zu = O
(

1
δ

)
. (5.38)

Analogously also the relations

∂zv = O
(

1
δ

)
, ∂zzu = O

(
1
δ2

)
, ∂zzv = O

(
1
δ2

)
(5.39)

hold.

We also obtain by the mean value theorem the statement

w(x, y, z, t) = w(0, y, z, t) + ∂xw(ϑx, y, z, t) · x , 0 < ϑ < 1 ,

and because x can grow up to the order 1, (5.37) yields

∂xw = O(δ) (5.40)

and analogously

∂yw , ∂xxw , ∂yyw = O(δ), ∂tw = O(δ) . (5.41)

Moreover, taking (5.36) into account, we additionally find

∂zzw = O
(

1
δ

)
. (5.42)
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Let us now write down separately the three components of (5.11) where we are going
to note down below each of the terms occuring in the equations their particular orders
of magnitude as far as they are already known. Here we follow a representation given
by H. Schlichting in the first edition of his book on boundary-layer theory:83

−∇ p =




∂tu + u ∂xu + v ∂yu + w ∂zu − 1
Re (∂xxu + ∂yyu + ∂zzu)

1 1 1 1 1 δ 1
δ 1 1 1

δ2

∂tv + u ∂xv + v ∂yv + w ∂zv − 1
Re (∂xxv + ∂yyv + ∂zzv)

1 1 1 1 1 δ 1
δ 1 1 1

δ2

∂tw + u ∂xw + v ∂yw + w ∂zw − 1
Re (∂xxw + ∂yyw + ∂zzw)

δ 1 δ 1 δ δ 1 δ δ 1
δ

(5.43)

Of course, the pressure gradient parallel to the plane is assumed to be bounded in all
real applications, i.e.

∂xp , ∂yp = O(1) .

But this implies that the first two equations can only be valid with respect to the order
of magnitude if

Re = O
(

1
δ2

)
, i.e. δ = O

(
1√
Re

)
, (5.44)

and this leads because of the third equation to

∂zp = O(δ) . (5.45)

The equation (5.44) shows that Prandtl’s assumption on a small thickness of the
boundary layer for great Reynolds numbers does not lead to a contradiction.

It also shows that the boundary layer theory can only be accepted as an approximation
for the Navier-Stokes equations in the case of great Reynolds numbers.

83H. Schlichting: Grenzschichttheorie; Karlsruhe, Braun 1951
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Because of

|p(x, y, z, t) − p(x, y, 0, t)| =

∣∣∣∣∣∣

z∫

0

∂zp(x, y, ζ, t) d ζ

∣∣∣∣∣∣
≤ |z| ‖ ∂zp ‖∞ ,

the pressure differences in z-direction within the boundary layer are of order δ2,
hence very small for great Reynolds numbers. We therefore put

∂zp ≡ 0 ,

so that p does approximately not depend on z within the boundary layer:

p = p(x, y, t) . (5.46)

The pressure gradient in the boundary layer thus coincides with the well known pres-
sure gradient of the potential flow outside the boundary layer where the Euler equa-
tions hold. Using dimensionless variables and taking W = 0 into account, we
therefore obtain approximately

∂tU + U ∂xU + V ∂yU = −∂xp

∂tV + U ∂xV + V ∂yV = −∂yp

so that ∂xp and ∂yp are known quantities.

If now all the terms in (5.43) of order δ will be neglected compared with the terms
of order 1, the system of three equations reduces to only two equations, and these
equations read in dimensionless form as

∂tu + u∂xu + v∂yu + w∂zu − ν∂zzu = −1
ρ
∂xp

.

∂tv + u∂xv + v∂yv + w∂zv − ν∂zzv = −1
ρ
∂yp

(5.48) are the Prandtl Boundary Layer Equations added by the incompressibility
condition

∂xu+ ∂yv + ∂zw = 0 . (5.49)
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The velocity component w still remains in the system (5.48) but does now only play
the role of a parameter which will later be fixed by (5.49) and by boundary conditions.
An example of such boundary conditions reads as

u = v = w = 0 for z = 0




u
v
w


 =




U(x, y, t)
V (x, y, t)

0


 for z → ∞ .

z → ∞ and δ 
 L seem to be contradictory but one has to take into account that the
boundary layer is of an infinite thickness from a theoretical point of view, and only
their effective thickness judged from a physical point of view is very small.

If the boundary layer is affected by sucking off or blowing up parts of it, the boundary
conditions have to model these facts, e.g. by replacing the equation w = 0 in (5.50)
by

w = w0(x, y, t) for z = 0 ,

provided that the direction of the sucking or blowing coincides with the w-direction
and that its flow velocity w0 is of order O(δ), i.e.

w0 = O
(

1√
Re

)
.

Otherwise some of the terms expected by Prandtl to be very small can no longer be
neglected.

Besides boundary conditions also initial conditions have to be formulated, and this
not only with respect to time in case of instationary problems but also in every case
with respect to space because the Boundary Layer Equations are of parabolic char-
acter. This parabolicity often includes simplifications as far as the construction of
approximate analytic solutions of the Navier-Stokes equations is desired. But also
with respect to numerical purposes Prandtl’s theory can often make life easier.

If the problem to be treated concerns an instationary flow, the task to begin with is the
formulation of initial conditions with respect to time, i.e. conditions of the type

u(x, y, z, 0) = f1(x, y, z)
v(x, y, z, 0) = f2(x, y, z) ,
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and in every case also with respect to space, i.e. the stipulation of suitable initial
profiles of the u- and v-components of the flow velocity.

There is no general consensus how the initial profiles should look like, but it should
be noticed that the influence of the initial profiles decreases for increasing distance
from the area where these profiles were prescribed. This follows from the parabolic
situation.

These spatial initial conditions may take into consideration that a boundary layer
comes into being only after a certain distance from the edges of the solid put into
the fluid, e.g. from the front edge of a wing:

u(x0, y, z, t) = g11(y, z, t)
v(x0, y, z, t) = g12(y, z, t)

and

u(x, y0, z, t) = g21(x, z, t)
v(x, y0, z, t) = g22(x, z, t) .

Of course, the conditions prescribed should go well together, e.g.

f1(x0, y, z) = g11(y, z, 0) (5.54)

etc.

Many phenomenons of flows taking place along the surface of a solid can quanti-
tatively be explained by means of the boundary layer concept. One of them is the
separation of the boundary layer flow from a curved surface.

Here, we are going to describe this separation briefly and only qualitatively in case
of stationary 2-D flows: Assume an ideal fluid to flow along a curved surface. A
lateral flow with main flow velocity u = (u∞, 0, 0)T , u∞ > 0 , around a circular
cylinder of infinite length whose axis coincides with the z-axis is a 2-D example. The
velocity of particles arriving at the surface of the cylinder increases due to Bernoulli’s
equation (1.31) because they move at first against decreasing pressure. The velocity
then begins to decrease because the pressure grows again. Finally the particles move
behind the cylinder with their original speed (cf. Fig. 26).

In the case of a viscid flow, a certain amount of the kinetic energy of the particles will
be annihilated in the first phase by friction so that there is in the second phase not
enough energy available to bring the particles back to their former speed. It can even
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Figure 26: Ideal flow around a cylinder

happen that the particles stop and that the velocity reverses its direction because of the
increasing pressure, i.e. separation of the boundary layer takes place.

In the 2-D situation, the point of separation at the curved surface which is in two
dimensions a curve Γ can be well described mathematically. For this purpose, let u

Figure 27: Flow with separation
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be the particular component of the flow velocity parallel to Γ and let ∂nu be the
normal derivative of this component. The separation point P ∈ Γ is then obviously
given as the point where this normal derivative vanishes (cf. Fig 28):

∂nu(P ) = 0 . (5.55)

Figure 28: Explanation of (5.55) in case of a 2-D boundary layer flow

Figure 29: Boundary layer separation on a wing

Beyond the point of separation, the flow loses its buoyancy effect. Hence, one tries to
design a wing in such a way that the point of separation is situated as near as possible
at the back edge of the wing, e.g. by sucking off the boundary layer.

It should be mentioned that there is no general mathematical definition of separation
in case of 3-D flows.
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5.5 Stability of Laminar Flows

The beginning of the transition of a flow from the laminar state to a turbulent one can
be looked upon as a transition from a stable behaviour of the solution of the Navier-
Stokes equations belonging to this flow to instability.

In order to approach this idea, let us for convenience consider a situation easy to
survey, namely an incompressible 2-D flow and the knowledge of a stationary average
laminar flow in x-direction whose velocity U only depends on the second space
variable y:

U =
(
U(y)

0

)
.

The pressure of this flow is denoted by P (x, y), and (U , P ) is assumed to fulfill the
given incompressible Navier-Stokes problem84 and to be one part of a superposition
whose other part consists of infinitesimal incompressible disturbances (ũ, p̃) with

ũ =
(
ũ(x, y, t)
ṽ(x, y, t)

)
and p̃ = p̃(x, z, t) .

This second part is not necessarily a statinary flow and, besides (U , P ), also the
complete flow

u = U + ũ, p = P + p̃ (5.56)

is assumed to be a solution of the given Navier-Stokes problem85.

Because the disturbances are infinitesimal, quadratic terms can be neglected compared
with linear terms, so that putting (5.56) into the Navier-Stokes equations (5.10) and
into the continuity equation then yields the relations

∂tũ+ U ∂xũ +ṽ
d U

d y
+

1
ρ
∂xP +

1
ρ
∂xp̃ = ν

(
d2U

d y2
+ ∆ ũ

)

∂tṽ + U ∂xṽ +
1
ρ
∂yP +

1
ρ
∂yp̃ = ν∆ ṽ (5.57)

∂xũ+ ∂y ṽ = 0.

84It is absolutely problematic to suppose such an average flow to exist.
85This assumption is called the closing, and the treatment of the instability problem in this way is

called the Reynolds averaging.
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Because the average flow solves the Navier-Stokes equations on its own, (5.57) re-
duces to the linear equations

∂tũ+ U ∂xũ +ṽ
d U

d y
+

1
ρ
∂xp̃ = ν∆ ũ

∂tṽ + U ∂xṽ +
1
ρ
∂yp̃ = ν∆ ṽ (5.58)

∂xũ+ ∂y ṽ = 0.

If the first equation in (5.58) is differentiated with respect to y and the second one
with respect to x, the pressure can be eliminated so that there remains only one
equation for u and v besides the continuity equation. The no-slip condition along
surfaces of solids leads to additional boundary conditions.

Let us now suppose that the disturbances result from the superposition of waves propa-
gating in x-direction where each of them fulfills (5.58). These waves can be expressed
by

ũ =
(
ϕ(y)
ψ(y)

)
ei(α x−γ t) (5.59)

and are called Tollmien-Schlichting waves. Here, α ∈ � , γ ∈ �. The particular
case α ∈ � describes the investigation of the temporal stability, whereas an inves-
tigation of the case α ∈ � , γ ∈ � concerns the so-called spatial stability not
discussed here.

The continuity equation leads to

ϕ(y) =
i
α
ψ′(y) ,

and the equation that remains after the eliminition of p̃ then yields

(U − γ)(ψ′′ − α2ψ) − U ′′ψ = − iν
α

(ψ(4) − 2α2 ψ′′ + α4 ψ) . (5.60)

The linear homogeneous 4th order ordinary differential equation (5.60) for ψ with
complex coefficients is called the Orr-Sommerfeld equation. Boundary conditions
are for instance the no-slip condition ψ = 0 for y = 0 and the disappearance of the
disturbances for y → ∞.

Thus, for every fixed α ∈ �, an eigenvalue problem arises where the complex phase
speed of perturbation γ plays the role of the eigenvalue. The parameter ν86 is

86or, if the problem is formulated in dimensionless form,
1

Re



5.5 Stability of Laminar Flows 133

considered to be already known from the laminar average flow. This laminar flow
corresponds to the trivial solution ψ ≡ 0 of problem (5.60), and one asks for
nontrivial solutions bifurcating from it.

If the sign of the imaginary part of γ is negative, the disturbance decreases when
time grows, and its amplitude does not depend on time if this imaginary part vanishes.
But an unstable situation occurs for

sgn (Im γ) > 0 . (5.61)

The Orr-Sommerfeld equation can under realistic boundary conditions for U nor-
mally not be solved explicitely though it is linear and homogeneous. Numerical pro-
cedures known from numerical bifurcation theory have to be used.

The smallest value of the Reynolds number giving rise to the validity of (5.61) is
called the critical Reynolds number Recr and is of interest because it is the smallest
Reynolds number for which the flow can become unstable. The curve sgn (Im γ) = 0
obviously separates the area of instability in the (α,Re)-plane from the area of a stable
laminar flow and is called the curve of neutral stability.

It should be noted that an instability result due to this linearized theory of disturbances
does not necessarily ensure that the real underlying flow can already be considered to
be completely turbulent. A measure accepted by engineers is the so-called e9-rule:
The flow is really a turbulent one if the small amplitude of the initial disturbance has
increased by the factor e9 ≈ 8100.



6 Existence Proof for Entropy Solutions by Means
of Discretization Procedures

Though we have already studied some properties of weak solutions of conservation
laws, we did not yet proof the existence of this type of solutions, particularly of en-
tropy solutions. The only exceptions were some scalar problems whose solutions
could explicitely be specified.

We are now going to attack the existence problem.

6.1 Some Historical Remarks

Existence proofs for solutions of ordinary or partial differential equations are often
structured in the following way: In a first step, the differential equation will be dis-
cretized as normally done in Numerical Analysis in order to create numerical proce-
dures. Thus, a finite dimensional approximate version of the original problem solvable
on a certain grid for every suitable step size parameter h comes into being. If the
solution of the discrete problem is only given on a set of discrete points, it will be ex-
tended to the inter grid points by interpolation or other techniques in such a way that
it belongs to the particular function space the solution or weak solution of the original
problem is expected to belong to. This extension is called reconstruction (cf. the
special case (4.2)). Moreover, we assume that all the computations to be made were
theoretically realized without occurence of round off errors.

If it can be shown in a second step that a sequence L of these reconstructed approx-
imate solutions determined for every step size parameter hj of a sequence {hj} of
positive step size parameters with lim

j→∞
= 0 is compact in the function space under

consideration, convergent subsequences of L exist. It can often be shown in a third
step that under certain conditions the limits of those subsequences solve the original
problem. Thus, solutions exist in this case, but different convergent subsequences can
lead to different solutions of the original problem because uniqueness was not yet
ensured.
Mathematical Models of Fluiddynamics. Rainer Ansorge
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A well known example of an existence proof of this type is the particular proof of
Peano’s theorem on the existence of a solution of the initial value problem

y′ = f(x, y), y(x0) = y0, f continuous

where Euler’s polygon method is used in order to construct approximate solutions
in the space of functions continuous on a compact interval and equipped with the
maximum norm.

Another example is the existence proof of Courant, Friedrichs, Lewy where this type
of proof was for the first time applied on initial value problems of systems of quasilin-
ear hyperbolic partial differential equations. The proof was published in their famous
paper of 192887, and it was in this paper that a condition concerning the step ratio was
formulated in order to ensure numerical stability of the numerical procedure, later
called the CFL condition. This condition ensures that the region affecting the solution
at a point Q where the solution is expected to exist is covered by the region that af-
fects the approximate solution at Q, and this condition is extremely important when
treating conservation laws by means of explicit numerical methods88.

Of course, because Courant, Friedrichs and Lewy asked for smooth solutions, they
could only give conditions for local existence.

Under certain restrictions concerning the initial functions, J. Glimm gave an existence
theorem for global weak solutions of conservation laws in a paper that also became
famous89, and one of his tools was also a certain finite difference procedure.

We are now going to study a general theory on discretizations of partial differential
equations that can also help to prove existence theorems for conservation laws as
occuring in fluid dynamics90.

6.2 Reduction to Properties of Operator Sequences

In 1948, Kantorowitch published his important paper on the connections between
numerical mathematics and functional analysis91.

Particularly in case of linear partial evolution equations, Lax and Richtmyer provided
in 1956 a functionalanalytic frame for the construction and investigation of finite dif-

87Math. Ann. 100, 32-74 (1928)
88For more details cf. Section 7.3.
89Comm. Pure Appl. Math. 18, 697-715 (1965)
90R. Ansorge, ZAMM 73, 239-253 (1993)
91Uspeki Mat. 3, 89-185 (1948)
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ference methods92 (cf. section 7.4). Their theory was later generalized with respect
to different aspects.

Inspired by the Lax-Richtmyer Theory but besides the particular question of the dis-
cretization of differential equations, Stummel published in 1972 his general theory
on discretization algorithms93. Though it was already rather general, it was still influ-
enced by linear structures underlying the given general problem. This theory was later
also generalized into different directions and applied to several types of problems such
as ordinary or partial differential equations, integral equations, optimization problems
etc. Since then, this theory was called Functional Analysis of Discretization Algo-
rithms (Vainikko).

But not yet included into this theory were weak solutions of differential equations or
problems whose solutions are not necessarily unique.

Let us therefore in a first step try to describe an imbedding of discretization techniques
for problems of this type into the general theory and look for problems given in the
following general form:

Let X , Y , Xn , Yn be topological, usually metric spaces, and let us ask for an
element v ∈ X which fulfills

Av = a , A : X → Y a given operator . (6.1)

Let the numerical procedure constructed in order to solve this problem also be de-
scribed in a general form by

Anvn = an , An : Xn → Yn , n ∈ � , (6.2)

where {an|an ∈ Yn, n ∈ �} is a given sequence approximating a ∈ Y in a sense
still to be specified.

Neither Xn ⊂ Xn+1 nor Xn ⊂ X and neither Yn ⊂ Yn+1 nor Yn ⊂ Y (n =
1, 2, · · · ) are assumed to hold.

Assume that there are either mappings

pn : X → Xn, qn : Y → Yn

X

pn

��

A �� Y

qn

��
Xn

An �� Yn

92Comm. Pure Appl. Math. 9, 267-293 (1956)
93Proc. Conf. Num. Anal. Dublin 1972 (ed.: J. Miller), 285-310, Academic Press 1973
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or an imbedding of the numerical procedure, just for theoretical purposes, into the
frame of the original problem. This can for instance be done in the sense of

Xn ⊂ X, Yn = Y (n = 1, 2, · · · ),

but not necessarily

Xn ⊂ Xn+1 (n = 1, 2, · · · ).

Just for convenience, let us suppose such an imbedding to be realized, but the given
original problem does not necessarily need to be linear, and its solutions are allowed
to be weak in a sense to be specified.

Let the original problem be described by

Ãv = w , (6.3)

with Ã : X̃ → Y, X̃ ⊂ X .

The weak formulation of (6.3) which then will be the problem really to be solved is
supposed to be described in the following way:

Let J be an index set; let {a(Φ),Φ ∈ J} ⊂ Y be a given set and {A(Φ),Φ ∈ J}
a set of operators with joint domain D ⊂ X , D → Y .

We ask for an element v ∈ X with

A(Φ)v = a(Φ) ∀ Φ ∈ J . (6.4)

Definition:
The elements of

Θ := {v ∈ X|v solves (6.4)}

are called weak solutions of (6.3) if the following implications hold:

If v solves (6.3), then v ∈ Θ ; if v ∈ X̃ ∩ Θ, it also solves (6.3).

The elements Φ ∈ J are called test elements.

Let the numerical method be described in an also rather general form by

Ânvn = ân (n = 1, 2, · · · ) (6.5)
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where Ân: Xn → Z (n = 1, 2, · · · ) with a certain topological space Z. Here,
{ân} ⊂ Z is a given sequence compact in Z.

Assume

Θn := {vn ∈ Xn|vn solves (6.5)} �= ∅ (n = 1, 2, · · · ) ,

but every Θn may contain more than one element. The solutions vn of (6.5) are
called approximate solutions of (6.4).

The numerical method (6.5) is assumed not to depend on test elements because com-
puters cannot understand what test elements are. But we suppose that also this method
can be formulated weakly by means of a sequence of operators

{An(Φ)|Φ ∈ J, n ∈ �} with An(Φ) : Xn → Yn ,

and of a sequence {an(Φ)} with

lim
n→∞ an(Φ) = a(Φ) for every fixed Φ ∈ J ,

so that

An(Φ)vn = an(Φ) ∀ Φ ∈ J , ∀ vn ∈ Θn (6.6)

holds.

(6.6) is called a weak formulation of the numerical method.

Some concepts help to prove convergence results:

Definition:
A pair [{Cn} , C], consisting of an operator sequence {Cn} and of an operator C is
called asymptotically closed if the implication

vn → v ∧ Cnvn → z ⇒ Cv = z

holds.

Definition:
An operator sequence {Cn} is called asymptotically regular if the implication

{Cnvn} compact in Y ⇒ {vn} compact inX

holds.
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Definition:
Method (6.5) is called convergent if set convergence

Θn → Θ

is ensured in the following sense:

{Θn} is discretely compact, i.e. every sequence {vn|vn ∈ Θn ;n = 1, 2, · · · } is
compact in X , and if v is a limit of a convergent subsequence, v ∈ Θ follows.

Remark:
Θn → Θ implies Θ �∈ ∅. In other words: There is a solution of (6.4), i.e. a weak
solution of (6.3).94

6.3 Convergence Theorems

We can now state a convergence theorem:

Theorem 6.1:

(i) Let [{An(Φ)} , A(Φ)] be asymptotically closed for every fixed Φ ∈ J and let

(ii)
{
Ân

}
be asymptotically regular.

Then:

Θn → Θ .

PROOF: {ân} compact in Z ⇒
{
Ânvn|vn ∈ Θn

}
compact in Z, and this for

every sequence {vn|vn ∈ Θn}.

Thus, each of the sequences {vn} is compact in X because of assumption (ii), i.e.

∃ {vn|vn ∈ Θn , n ∈ �′ ⊂ �} , ∃ v ∈ X with vn → v (n ∈ �′) .

Here, �′ and v are independent of Φ.

But because vn fulfills also An(Φ)vn = an(Φ), and because of

an(Φ) → a(Φ) ∀ Φ ∈ J ,

supposition (i) yields A(Φ)v = a(Φ), i.e. v ∈ Θ. �
94A proof of Θn → Θ is therefore also an existence proof.
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If one is only interested in a particular problem, i.e. in a particular right hand side of
equation (6.3), assumption (ii) can obviously be replaced by the weaker requirement

(ii∗) {Θn} discretely compact.

If uniqueness of a weak solution is not guaranteed, sometimes additional restrictions
are formulated in order to pick out of the set of weak solutions the particular one
relevant from the user’s point of view. And as in the case of scalar conservation
laws, this restriction often takes the form of an inequality the relevant solution has
additionally to fulfill. Therefore we are going to call such a restriction generally an
entropy condition, and we formulate this condition in a general setting as

B(Φ̂)v ≤ 0 ∀ Φ̂ ∈ Ĵ , (6.7)

where
{
B(Φ̂)|Φ̂ ∈ Ĵ

}
denotes a set of nonlinear continuous functionals mapping

X into �, and where Ĵ is a certain index set which may differ from J .

We suppose that there is a uniqueness theorem available95:

There is at most one solution of (6.4) that fulfills also (6.7), called the entropy
solution.

If the original problem is completed by an entropy condition in order to characterize
the relevant solution, it seems to be reasonable to discretize also this condition by

Bn(Φ̂)vn ≤ 0 ∀ Φ̂ ∈ Ĵ (n = 1, 2, · · · ) , (6.8)

and to accept only such approximate solutions vn ∈ Sn which additionally fulfill
this discrete entropy version. Herewith, the functionals Bn(Φ̂) are also assumed to
be continuous.

We suppose

{(6.5), (6.8)} has at least one solution v̂n ∈ Θn for every fixed n ∈ �.

(6.8) is called a sequence of discrete entropy conditions, but we do not expect a
discrete entropy solution

v̂n (n ∈ � arbitrary)

necessarily to be unique.

95Theorem 3.3 is an example.
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Definition:
An operator sequence {Cn} is called continuously convergent to an operator C if
the implication

vn → v ⇒ Cnvn → Cv

holds9697. We then write

Cn
c−→ C.

We can now supplement Theorem 6.1 with another important remark:
Theorem 6.2: Let

Θ̂n := {v̂n ∈ Θn|v̂n solves (6.8)} �= ∅,
and let

Bn(Φ̂) c−→ B(Φ̂) be fulfilled for every fixed Φ̂ ∈ Ĵ .

Moreover, assume the suppositions of Theorem 6.1 to be fulfilled.

Then there is an entropy solution v̂ of {(6.4),(6.7)}, and

Θ̂n → {v̂} .

PROOF:
Because of the validity of Theorem 6.1, i.e. because of Θn → Θ, there is a subse-
quence

{
v̂n | v̂n ∈ Θ̂n , n ∈ �′ ⊂ �

}

and a weak solution v ∈ Θ with {v̂n} → v , n ∈ �′.

The continuous convergence therefore yields Bn(Φ̂)v̂n → B(Φ̂)v.

From (6.8), B(Φ̂)v ≤ 0 follows. Consequently, v is an entropy solution, and
because the entropy solution was assumed to be unique, v coincides with this entropy
solution, i.e. v = v̂, and not only a subsequence converges to v̂ but the full sequence
converges:

lim
n→∞ v̂n = v̂. �

96P. du Bois-Reymond: Sitz.-Berichte, Preussische Akad. d. Wiss., 359-360 (1886)
97R. Courant: Göttinger Nachr., 101-109 (1914)
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Conditions for the property of continuous convergence on metric spaces follow from
a theorem due to W. Rinow98 :

Theorem 6.3:
If the operators C , Cn (n = 1, 2, · · · ) mapping a metric space X into a metric
space Y are individually continuous, then Cn

c−→ C is equivalent to the simultane-
ous validity of the two statements:

(j) {Cn} is a sequence of equicontinuous operators ,

(jj) Cn → C holds pointwise on a subset X̃
⊂

dense X .

6.4 Example

As an example, we treat the scalar version of problem (2.1). Thus, let x ∈ � be
a spatial variable and t ≥ 0 a time variable, and let Ω be again the upper (x, t)-
halfplane.

We ask for solutions v : Ω → � of the scalar conservation law

∂tv + ∂xf(v) = 0, t > 0

v(x, 0) = v0(x) with v0 ∈ BV (�) ∩ L∞(�) ,
(6.9)

where the flux f ∈ C1 is strictly convex and has its minimum at zero which can be
assumed to be zero: f(0) = 0. Let

|f ′|∗∞ := max
{|f ′(v)| , |v| ≤ ‖v0‖L∞

}
<∞ . (6.10)

Because of possible discontinuities we are interested in weak global solutions v ∈
X := Lloc

1 of

A(Φ)v := −
∫

Ω

∫
{v∂tΦ + f(v)∂xΦ} dx dt

(6.11)

−
∞∫

−∞
v0(x)Φ(x, 0) dx = 0 ∀ Φ ∈ J := C1

0 (Ω) .

Let

S̃ = S̃(v, c) , �×�→ �

98Die innere Geometrie der metrischen Räume, p. 78 ff., Berlin-Göttingen-Heidelberg: Springer 1961
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be a one parameter set of so-called entropy functions continuously differentiable for
every fixed c ∈ � with respect to v, possibly with an exception at v = c.

F̃ = F̃ (v, c) (�×�→ �) is called the entropy flux, if

∂tS̃(v(x, t), c) + ∂xF̃ (u(x, t), c) = 0 on Ω′

holds for every fixed c ∈ � and for every pair (v , Ω′), for which v is a weak
solution on Ω but even a smooth C1-solution on Ω′ ⊂ Ω.

If a solution v, which is weak on Ω, fulfills on Ω additionally the inequality

∂tS̃(v(x, t), c) + ∂xF̃ (v(x, t), c) ≤ 0 ∀c ∈ �
in a weak sense, i.e.

−
∫

Ω

∫ {
∂tΦ(x, t)S̃(v(x, t), c) + ∂xΦ(x, t) F̃ (v(x, t), c)

}
d x d t

−
∞∫

−∞
Φ(x, 0)S̃(v0(x), c) dx ≤ 0 (6.12)

∀ c ∈ � , ∀ nonnegative Φ ∈ J ,

then v is called the entropy solution, denoted by v̂.

Thus, test elements in this example are the pairs

Φ̂ := (Φ, c) with Φ̂ ∈ Ĵ := {(Φ, c)|Φ ∈ J , Φ ≥ 0 , c ∈ �} ,

and the integral inequality can therefore be written as

B(Φ̂)v ≤ 0 ∀Φ̂ ∈ Ĵ (6.13)

in accordance with the general theory. Particular choices of S̃ in the literature are

S̃ = S̃(v) , S̃ independent of c but strictly convex,

Φ̂ = {Φ ∈ J |Φ ≥ 0} ⊂ J

(Lax; cf. (3.11)) ,

S̃(v, c) = |v − c| (Kruzkov; cf. (3.44)) ,

S̃(v, c) =
{
v − c , v ≥ c

0 , v < c
(Harten, Hyman, Lax99)

etc.

99Comm. Pure Appl. Math. 29, 297-322 (1976)
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Each of these choices then implies a particular choice of F̃ according to (3.13).

Let the numerical procedure used in the general setting be put in concrete form by a
(2k+1)-point finite difference scheme:

vν+1
j − vν

j

∆t
+
gν
j+ 1

2

− gν
j− 1

2

∆x
= 0 , (6.14)

where ν counts the number of time steps, j the number of spatial steps, starting from

v0
j =

1
∆x

j+1/2∆x∫

(j−1/2)∆x

vo(x) dx.

Here, the numerical flux

gν
j+ 1

2
:= g(vν

j−k+1, v
ν
j−k+2, · · · , vν

j , v
ν
j+1, · · · , vν

j+k)

is assumed to be Lipschitz continuous and consistent with the original problem, i.e.

g(w,w, · · · , w) = f(w) , ∀ w ∈ �. (6.15)

Methods of this form are called methods in conservation form.

We restrict the choices of the step sizes by the requirement that the CFL condition, al-
ready introduced in the beginning of this chapter, has to be respected. For the problem
under consideration this means

0 < λ :=
∆t
∆x

= const ≤ 1
|f ′|∗∞

. (6.16)

Let ∆x = O( 1
n) (n ∈ �), and put

vn(x, t) = vν
j for

{
(j − 1

2)∆x ≤ x < (j + 1
2)∆x

ν ∆t ≤ t < (ν + 1)∆t

(j = 0,±1,±2, · · · ) , (ν = 1, 2, · · · ) .

If Xn is then chosen as the space of functions defined on Ω and constant on these
rectangles, the finite difference scheme can be formulated as

Ân vn = 0 (n = 1, 2, · · · ) (6.17)

with operators Ân : Xn → Z := � .
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Multiplication of (6.14) by test functions Φ ∈ J and integration leads to

An(Φ) vn =
(6.18)

∞∑
ν=0

∑
j

(ν+1)∆t∫

ν ∆t

(j+ 1
2
)∆x)∫

(j− 1
2
)∆x)

Φ(x, t)
[
vν+1
j − vν

j + λ
(
gν
j+ 1

2
− gν

j− 1
2

)]
dx dt = 0

and describes the operators An(Φ) as well as the right sides an(Φ), which equal
zero in this context.

Using the abbreviation

S̃ν
j (c) = S̃(vν

j , c) ,

vn is called a discrete entropy solution, denoted by v̂n , if

S̃ν+1
j (c) − S̃ν

j (c)
∆t

+
Gν

j+ 1
2

(c) −Gν
j− 1

2

(c)

∆x
≤ 0 ∀ c ∈ � , (6.19)

where

Gν
j+ 1

2
(c) := G(uν

j−k+1, · · · , vν
j , v

ν
j+1, · · · , vν

j+k, c)

denotes a Lipschitz continuous numerical entropy flux to be specified and consistent
with the entropy flux F̃ in the sense of

G(w,w, · · · , w, c) = F̃ (w, c) ∀ (w, c) ∈ �2 . (6.20)

For k = 1 (3-point case) the flux splitting choice

G(α, β, c) = F̃+(α, c) + F̃−(β, c) (6.21)

with

F̃+(α, c) :=
{
F̃ (α, c) , α ≥ 0

0 , α < 0
, F̃(β, c) :=

{
0 , β ≥ 0

F̃ (β, c) , β < 0

is one of several possible choices of G, where F̃ is known as soon as S̃ is chosen.
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The weak formulation of the discrete form of the entropy condition needed for the
use of Theorem 6.2 arises from multiplication of (6.19) by nonnegative test functions
Φ ∈ J and integration:

Bn(Φ̂) vn :=
∫

Ω

∫
Φ(x, t)




1
∆t

[
S̃(vn(x, t+ ∆t) , c) − S̃(vn(x, t) , c)

]

+
1

∆x
[G(vn(x, t) , vn(x+ ∆x, t) , c) (6.22)

− G(vn(x− ∆x, t) , vn(x, t) , c)]


 dx dt ≤ 0

∀ Φ̂ ∈ Ĵ , i.e.

Bn(Φ̂) vn = −
∞∫

∆t

∞∫

−∞

Φ(x, t) − Φ(x, t− ∆t)
∆t

S̃(vn(x, t), c) dx dt

− 1
∆t

∆t∫

0

∑
i

xi+∆x/2∫

xi−∆x/2

Φ(x, t) dx S̃(v0
i , c) dt (6.23)

−
∫

Ω

∫
Φ(x+ ∆x

2 , t) − Φ(x− ∆x
2 , t)

∆x
G(vn(x−∆x

2 , t), vn(x+∆x
2 , t), c) dx dt

≤ 0 ∀ Φ̂ ∈ Ĵ .

Thus,B andBn from (6.7) and (6.8), respectively, are put into concrete form provided
that a 3-point scheme is under consideration. If then, for instance, the Harten-Hyman-
Lax choice of S̃ is taken into account and G is chosen according to (6.21), then
B(Φ̂) in (6.12), (6.13) is continuous for every fixed Φ. The functionals Bn(Φ) (n =
1, 2, · · · ) in (6.22) are equicontinuous, and pointwise convergence Bn(Φ̂) → B(Φ̂)
can easily be shown provided that the joint domain of these functionals is restricted to
elements v ∈ X∗ ; herewith, X∗ is the space of functions v ∈ X restricted to the
domain supp Φ which is equipped with the L1-metric on X∗.

Hence, the assumptions (j) and (jj) of Rinow’s theorem are fulfilled, i.e.

Bn(Φ) c−→ B(Φ) ,

and Theorem 6.2 applies as far as Θ̂n �= ∅100.

100cf. footnote 90
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The explicit101 Engquist-Osher 3-point flux splitting scheme102, characterized by
(6.14) with

gν
j+ 1

2

= g(vν
j , v

ν
j+1) := f−(vν

j+1) + f+(vν
j ) (6.24)

where

f+(α) =
{
f(α) for α ≥ 0

0 for α < 0
, f−(α) =

{
0 for α ≥ 0

f(α) for α < 0
,

together with the Harten-Hyman-Lax choice of S̃, is an example. (6.24) then de-
scribes the operators Ân (n = 1, 2, · · · ) in (6.17)103, hence also the operators
An(Φ) via (6.18). The method simulates an important property of weak solutions
of scalar problems of type (2.1) provided the CFL condition is fulfilled, namely their
monotonicity, hence its Total Variation Diminishing or TVD property and, there-
fore, its Total Variation Boundedness or TVB.

We interrupt the proof of our convergence theorem for some explanations:

A method used for the numerical treatment of scalar conservation laws of type (2.1),
represented in the general form

vn+1
j = H(vn

j−k , v
n
j−k+1 , · · · , vn

j+k) ,

is called monotone if the partial derivatives of the function H with respect to all its
variables are nonnegative.
This imitates the following property of the weak solutions of (2.1): If two initial func-
tions ṽ0 and v0 fulfill the inequality

ṽ0(x) ≥ v0(x) ∀ x ∈ � ,

this inequality holds everywhere in Ω for the weak solutions ṽ(x, t) and v(x, t)
belonging to these initial functions, respectively.

TV-boundedness in this context (and formulated not only for scalar equations but
also for systems) means that

∑
j ‖V n

j+1 − V n
j ‖�m ≤ K for all n, and TVD meth-

ods introducded by Harten104 simulate the fact that the total variation of weak solu-
tions of scalar problems does not increase, and it is obvious that TVD implies TVB.
The fact that monotonicity of a scheme implies its TVD property was shown in an

101It follows from this explicitness that Θn �= ∅ , (n = 1, 2, · · · ).
102Math.Comput. 34, 45-75 (1980)
103ân = 0 , (n = 1, 2, · · · ) .
104SIAM J. Numer.Anal. 21, 1-23 (1984)
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appendix to the paper of Harten, Hyman, Lax (cf. footnote 98), written by Barbara
Keyfitz.

We continue proving the convergence theorem:

It was LeVeque105 who showed that Θn is discretely compact106 provided that v0 is
of bounded variation. It is here where we put our requirement v0 ∈ BV (�) to use.

Thus, assumption (ii) of Theorem 6.1 is fulfilled because (ii∗) is fulfilled.

The property (i), i.e.

[{An(Φ)} , A(Φ)] discretely closed ,

remains to be shown in order to show the convergence of the method by means of
Theorem 6.1. But this can in case of TVB methods for scalar equations immediately
be deduced from the Lax-Wendroff Theorem107.

This ends the proof for the existence of an entropy solution of our scalar conservation
law example.

As a particular result, we notice that a convergent monotone consistent scheme in
conservation form converges to the entropy solution of the original problem.

The Lax-Wendroff Theorem refered to in the proof of the convergence theorem reads
as follows:

Theorem 6.4:

Let λ = ∆t
∆x = const and let ∆t = O ( 1

n

)
(n ∈ �) for n → ∞. Define

V n ∈ Lloc
1 to be the step function

V n(x, t) := V n
j for xj − ∆x

2
≤ x < xj +

∆x
2

, tn ≤ t < tn+1 ,

(j = 0,±1,±2, · · · ; n = 0, 1, 2, · · · ) on Ω = {(x, t) |x ∈ � , t ≥ 0} ,
where the numerical values V n

j were computed by means of an explicit TV-bounding
finite difference one-step scheme whose numerical flux g is consistent and Lipschitz
continuous and which starts from

V 0
j :=

1
∆x

xj+
∆x
2∫

xj−∆x
2

V 0(ξ) dξ (j = 0,±1,±2, · · · ) .

105Numerical Methods for Conservation Laws, p. 164. Basel-Boston-Berlin: Birkhäuser 1990
106though he used another terminology
107Comm. Pure Appl. Math. 13, 217-237 (1960)



150 6 Existence Proof for Entropy Solutions by Means of Discretization Procedures

Assume that V n converges for n → ∞, i.e for ∆t → 0), to a function V in the
Lloc

1 -topology, i.e. with respect to the L1-norm on each compact subset of Ω and for
each of the components of V n.

Then V is a weak solution of (2.1).

We omit the proof of the Lax-Wendroff Theorem but notice that this is not yet a
convergence theorem! The theorem only says that the limits of convergent sequences
of approximate solutions −as far as they do exist− are weak solutions of the original
problem.

In order to finish off a proof showing the important property of a method to converge,
one has to look for properties which ensure the validity of the assumptions of Theo-
rems 6.1 and 6.2 (as it was realized in the case of the Engqist-Osher scheme).

It should be mentioned that the general convergence theorem of this chapter does of
course not only apply in case of initial value problems for scalar conservation laws but
also in case of certain nonlinear elliptic boundary value problems numerically treated
by means of projection methods etc.108

108R. Ansorge and J. Lei, ZAMM 71, 207-221 (1991)
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7.1 Some General Remarks

We want to describe the principal possibilities of discretizing hyperbolic conservation
laws and describe their common features as well as their differences109. For the sake
of simplicity we consider the generic scalar equation

L(u) := ∂tu+ ∂xu+ ∂yu = 0. (7.1)

There are three basic classes of discretization methods for (7.1), namely the Finite
Element Method (FEM), the Finite Volume Method (FVM), and the Finite Differ-
ence Method (FDM) already introduced briefly in section 4.1 and already used for
more theoretical purposes in section 6.4. Although these names sound quite definitive
there are very many particular schemes behind each of the three classes of methods.

In the FDM we begin by discretizing time

�
n := {n∆t | ∆t > 0, n ∈ � ∪ {0}}

as well as space

�i,j := {(i∆x, j∆y) | ∆x,∆y > 0 , i, j ∈ �}

and replace the differential operators in (7.1) by difference operators, for example:

∂tu(i∆x, j∆y, n∆t) ≈ u(i∆x, j∆y, (n+ 1)∆t) − u(i∆x, j∆y, n∆t)
∆t

=:
un+1

i,j − un
i,j

∆t

109cf. also Chapter 6

Mathematical Models of Fluiddynamics. Rainer Ansorge

Copyright c© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40397-3



152 7 Types of Discretization Principles

and

∂xu(i∆x, j∆y, n∆t) ≈ u(i∆x, j∆y, n∆t)− u((i− 1)∆x, j∆y, n∆t)
∆x

=:
un

i,j − un
i−1,j

∆x

∂yu(i∆x, j∆y, n∆t) ≈ u(i∆x, j∆y, n∆t)− u(i∆x, (j − 1)∆y, n∆t)
∆y

=:
un

i,j − un
i,j−1

∆y
.

Replacing the derivatives in (7.1) by the differences leads to the difference equation

Lh(u) :=
un+1

i,j − un
i,j

∆t
+
un

i,j − un
i−1,j

∆x
+
un

i,j − un
i,j−1

∆y
≈ 0 ,

where the superscript h indicates a discrete value (very often one encounters ∆x =
∆y and calls this value simply h). Since we decided to approximate the spatial deriva-
tives at time level n∆t the resulting difference equation is explicit, i.e. the solution at
the resulting time level (n+ 1)∆t is explicitly computable through

un+1
i,j ≈ un

i,j −
∆t
∆x

(
un

i,j − un
i−1,j

)− ∆t
∆y

(
un

i,j − un
i,j−1

)
. (7.2)

If we had decided to take the spatial differences at t = (n+1)∆twe would have ended
up with an implicit equation, requiring the solution of a system of linear equations
at each time step. Note that in (7.2) we still have used the exact solution u of (7.1).
Since there will be errors due to the replacement of differential quotients by difference
quotients we can not assume (7.2) to hold for u. Thus, (7.2) should be rewritten as

Un+1
i,j = Un

i,j −
∆t
∆x

(
Un

i,j − Un
i−1,j

)− ∆t
∆y

(
Un

i,j − Un
i,j−1

)
, (7.3)

and (7.3) now defines an approximation Un
i,j to un

i,j within the bounds of the dis-
cretization and other errors. Note further that the representation of the numerical
solution within the FDM framework is pointwise, i.e. we know pointwise values of
approximations of the exact solution.
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We conclude with a philosophical remark:

In FDMs one discretizes the operators occuring in the differential equation. The

discrete solution Uh :=
(
Un

i,j | i, j ∈ � ; n ∈ �
)

consists of point values at the

grid points of �n ×�i,j .

In the FEM one always starts from a weak (variational) formulation like (2.2). The
space Ω := �2×{t ∈ � | t ≥ 0} is divided by means of a grid into certain elements.
These elements may be chosen as the space-time bricks building the finite difference
grid �n × �i,j but can be far more general. Due to their simplicity and their ability
to resolve even complex geometries, triangulations are often used where the elements
are triangles or tetrahedra. Applying the notion of weak solutions and choosing a
space W of test functions leads to

∀Φ ∈W :
∫

Ω

{u∂tΦ + u∂xΦ + u∂yΦ} dt dx dy = 0 .

Replacing the test function space by a finite dimensional subspace W h leads to

∀Φh ∈W h :
∫

Ω

{
u∂tΦh + u∂xΦh + u∂yΦh

}
dt dx dy = 0 .

This is a set of so many equations as the dimension of W h := span{Φ1, . . . ,Φn}. A
popular choice is the space of polynomials linear in t and x, y vanishing outside each
element Σ ⊂ Ω.

Choosing the approximation

U(x, y, t) :=
n∑

i=1

UiΦi(x, y, t)
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for u then leads to a linear system for the unknown coefficients Ui since

∀ j = 1, . . . , n :
∫

Ω

{U∂tΦj + U∂xΦj + U∂yΦj} dt dx =

∫

Ω

{
n∑

i=1

UiΦi∂tΦj +
n∑

i=1

UiΦi∂xΦj +
n∑

i=1

UiΦi∂yΦj

}
dt dx dy

=
n∑

i=1

Ui



∫

Ω

Φi∂tΦj dt dx dy


+

n∑
i=1

Ui



∫

Ω

Φi∂xΦj dt dx dy




+
n∑

i=1

Ui



∫

Ω

Φi∂yΦj dt x dy


 =

=
n∑

i=1



∫

Ω

Φi(∂tΦj + ∂xΦj + ∂yΦj) dt dx dy


Ui = 0 .

Now, given Ui on the old time level, the Ui on the new time level follow from solving
this linear system.

FEMs of the type just described are usually called space-time FEMs. It is often conve-
nient to discretize in space only with finite elements and tackle the time derivative in
a finite difference manner. In order ro remove the coupling of every element with any
other element one can use discontinuous Galerkin methods, where discontinuities
are allowed at element faces. These types of methods are very close to finite volume
methods, but not identical. Also popular are streamline diffusion FEMs which belong
to the class of Petrov-Galerkin schemes. Petrov-Galerkin methods are characterized
by choosing a test space different from the Ansatz space in which the discrete solution
is sought. Although some mathematical analysis is available for streamline diffusion
methods the numerical results obtained so far can not cope with results obtained by
FDMs.

Again we end up with a philosophical remark:

In FEMs one discretizes the solution of the differential equation. The discrete
solution is made up of polynomials defined piecewise on the elements.

The FVMs as third class of methods share all good properties of the FDM as well as
of FEMs. As with FEMs arbitrary cells in space can be used for the discretization,
while all of the FD technology is applicable at the same time. Here, one starts with a
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type of weak solution which stems directly from gas dynamics, where the conservative
equations are formulated as integral balances on so-called control volumes. For our
generic model this weak form results from integrating

∂tu+ ∂xu+ ∂yu = ∂tu+ 〈∇,u〉 = 0, u := (u, u)T ,

over a bounded control volume σ ⊂ �2 with boundary ∂σ where the unit outer nor-
mal vector n is defined almost everywhere. From Gauss’ divergence theorem it then
follows

d

dt

∫

σ

u dx dy +
∮

∂σ

〈u, n〉 ds = 0 .

Now the cell average of u on σ is defined as

uσ(t) :=
1
|σ|

∫

σ

u(x, y, t) dx dy ,

where |σ| denotes the area of σ, so that the weak formulation of gas dynamics enrolls
itself as being an evolution equation for cell averages

d

dt
uσ = − 1

|σ|
∮

∂σ

〈u, n〉 ds. (7.4)

FVMs are derived from (7.4) by approximating the line integrals by a suitable Gauss
formula. The product 〈u, n〉 is replaced by a so-called numerical flux function which
is essentially a finite difference formula.

Again we conclude with a philosophical remark:

FVMs are discrete evolution equations for cell averages. There is freedom in
representing the numerical solution.

Some people like to view FVMs as being part of the Petrov-Galerkin family of FEMs
with piecewise constant trial functions. The central idea in FVMs is to adapt FDMs
to unstructured grids like triangulations and to use the computational advantages
from FDMs and FEMs.

There are even more discretization methods available than the three classes described
here, but they may often be subsummed as particular instances of FDMs, FEMs and
FVMs. A popular method in the computation of incompressible viscous flows, and
now becoming more and more attractive for compressible fluid flow, is the class of
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spectral discretizations. Here the Ansatz space consists of globally defined trigono-
metric or polynomial functions on the whole domain (or, as in the spectral element
method, on macro-elements). Choosing a FEM-like Ansatz leads to spectral Galer-
kin methods. If the differential equation has to be satisfied pointwise at so-called
collocation points one talks about spectral collocation or pseudospectral methods.
These methods are very close to FDMs with large stencils.

7.2 The Finite Difference Calculus

Let us now study more intensively the structure of finite difference methods.

Even one century before the invention of calculus through Leibniz and Newton, the
foundations were laid for a discrete calculus employing differences of functions.
Napier’s 110 and Briggs’ 111 invention of logarithms revolutionized naval navigation
and necessitated interpolation formulae for computing intermediate values in tabu-
lated data. It was the genius Thomas Harriot 112 who founded the field of finite dif-
ference calculus. This field flourished in the days of Leibniz and Euler and came
to enormous influence in the area of the numerical treatment of ordinary and partial
differential equations.

To give the reader again an idea of the spirit of the finite difference calculus, we
consider the forward difference operator ∆ defined by

∆u(x) := u(x+ ∆x) − u(x) ,

where ∆x denotes an increment different from zero. It is often convenient to introduce
the shift operator S through

Su(x) := u(x+ ∆x)

so that ∆ = S − I , where I is the identity operator. Assuming a smooth function
x→ u(x), Taylor series expansion results in

u(x+ ∆x) =
∞∑

ν=0

1
ν!

∆xνDνu(x),

where Dν is defined as
d

dx
◦ d

dx
◦ · · · ◦ d

dx︸ ︷︷ ︸
ν−times

and D0 = I .

110John Napier (1559 - 1617); Merchiston
111Henry Briggs (1556 - 1630); London, Oxford
112Thomas Harriot (1560 - 1621); Oxford
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Utilizing the shift operator, this is nothing but the representation

Su(x) =

( ∞∑
ν=0

1
ν!

∆xνDν

)
u(x),

where now, formally, the term in parathensis is exactly e∆xD, i.e. we have found the
representation

S = e∆xD (7.5)

and hence

∆ = e∆xD − I. (7.6)

Introducing the central difference operator δ by means of

δu(x) := u(x+ ∆x/2) − u(x− ∆x/2) ,

a further Taylor series

u(x± ∆x/2) =
∞∑

ν=0

1
ν!

(±∆x)ν 1
2ν
Dνu(x)

reveals

δu(x) = 2
∞∑

ν=0

1
(2ν + 1)!

(
∆x
2
D

)2ν+1

u(x),

i.e.

δ = 2sinh

(
∆x
2
D

)
. (7.7)

Inverting this equation gives a relation between the differential operator D with the
central difference operator δ, namely

D =
2

∆x
sinh −1 δ

2
=

1
∆x

(
δ − 12

223!
δ3 +

1232

245!
δ5 − · · ·

)
(7.8)

where δn := δ ◦ δ ◦ · · · ◦ δ︸ ︷︷ ︸
n−times

. Equation (7.8) is an exact difference formula for the

operator D.
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More equations like (7.8) and (7.6) can be constructed.

We are mainly interested in the applicability of formulae like (7.8). To get an idea, we
consider the simple linear transport equation ∂tu+ ∂xu = 0 which we rewrite as

∂tu = L(D)u := −∂xu,

where the differential operator D is now partial derivation with respect to x. From
(7.5), we deduce

u(x, t+ ∆t) =
(
e∆t∂t

)
u(x, t)

and, since ∂t = L(D), we conclude

un+1
i =

(
e∆tL(D)

)
un

i . (7.9)

We now use (7.8) to eliminate D in terms of δ in (7.9). This gives

un+1
i =

(
e∆tL(2/∆x sinh−1(δ/2))

)
un

i . (7.10)

Note that (7.10) is not an approximate difference equation but an exact one. Retaining
only the linear terms in the exponential function gives

Un+1
i =

(
I + ∆tL(2/∆xsinh −1(δ/2))

)
Un

i .

Retaining also only linear terms in the expansion (7.8) and noting that L(D) = −D =
−∂x, leads finally to

Un+1
i =

(
I − ∆t

δ

∆x

)
Un

i .

Expanding the central difference operator gives a finite difference method

Un+1
i = Un

i − ∆t
∆x

(
Un

i+1/2 − Un
i−1/2

)
(7.11)

for the transport equation.

Hence, the finite difference calculus may be directly used to construct finite difference
methods for partial differential equations. More constructions of this type can be
found in the literature.
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Now let the above difference scheme act on the true solution u. Employing again
Taylor series expansions

un+1
i = u(x, t) + ∆t∂tu(x, t) + O(∆t2)

un
i+1/2 = u(x, t) +

∆x
2
∂xu(x, t) +

1
2!

∆x2

22
∂2

xu(x, t) + O(∆x3)

un
i−1/2 = u(x, t) − ∆x

2
∂xu(x, t) +

1
2!

∆x2

22
∂2

xu(x, t) + O(∆x3)

and inserting them in (7.11) gives

u+ ∆t∂tu+ O(∆t2) = u− ∆t
∆x

(
∆x∂xu+ O(∆x3)

)

which, after rearranging, leads to

∂tu+ ∂xu = O(∆t,∆x2) . (7.12)

Thus, our simple difference method (7.11) is of order one in time and of order two
in space. This notion of order is usually called truncation error since it results from
truncating Taylor series.

Note that we did not say a word about the convergence of (7.11). The property that
(7.12) formally tends to ∂tu+ ∂xu = 0 for ∆t,∆x→ 0 is called consistency.

If a difference operator is applied to a sequence (Un
i | i ∈ �) then it acts on the se-

quence index, i.e. ∆iU
n
i := ∆Un

i = Un
i+1 − Un

i .

For later reference we introduce the antidifference operator ∆−1 as follows. If
∆ui = gi holds, then we define

ui = ∆−1gi + c,

where c denotes an arbitrary constant. The constant appears since after application of
∆ we get back ∆ui = gi. We first prove

n−1∑
i=n0

∆ui = un − un0 , (7.13)

∆

(
n−1∑
i=n0

ui

)
= un . (7.14)
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Equation (7.13) simply follows from

n−1∑
i=n0

∆ui = (un0+1−un0)+(un0+2−un0+1)+. . .+(un−1−un−2)+(un−un−1),

while (7.14) is nothing but

∆

(
n−1∑
i=n0

ui

)
=

n−1∑
i+1=n0

ui+1 −
n−1∑
i=n0

ui =
n−1∑

i=n0−1

ui+1 −
n−1∑
i=n0

ui .

Using formula (7.14), we can immediately deduce

∆−1un =
n−1∑
i=n0

ui + c , (7.15)

where n0 is an arbitrary start index.

We now give a discrete analogue of the product rule, namely

∆(uivi) = Sui∆vi + vi∆ui . (7.16)

The proof consists in evaluating the right and left hand side to see that they coincide.

Writing the product rule in the form vi∆ui = ∆(uivi) − ui+1∆vi and applying the
operator ∆−1 results in ∆−1(vi∆ui) = ∆−1∆(uivi) − ∆−1(ui+1∆vi). Following
formula (7.15), we finally get the formula for summation by parts, which is a discrete
analogue to the formula of integration by parts, namely

n−1∑
i=n0

vi∆ui = unvn −
n−1∑
i=n0

ui+1∆vi + c . (7.17)

7.3 The CFL Condition

In 1928 Courant113 , Friedrichs114 and Hans Lewy published a milestone paper (cf.
Section 6.1) which was forgotten in war times and became famous when it was redis-
covered during the Manhattan project.

113Richard Courant (1888-1972); Göttingen, New York
114Kurt Otto Friedrichs (1901-1982); Brunswick, New York
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As already emphasized in the last chapter, Courant’s interests at that time mainly con-
cerned the proof of existence of solutions to partial differential equations. In that field
he was one of the founders of the idea to employ finite difference schemes as approx-
imations to partial differential equations. If he could prove that the difference scheme
is consistent and convergent, and furthermore that the limit solution (as ∆t and ∆x
tend to zero) satisfies the original differential equation, then he would have proven ex-
istence of a solution of the partial differential equation. Although Courant, Friedrichs
and Lewy succeeded with this scheme for the (elliptic) Laplace equation, they encoun-
tered serious problems with the (hyperbolic) wave equation. Finally they succeeded
in formulating the celebrated CFL condition which is necessary for convergence.

In order to demonstrate the basic behaviour in the context under consideration, let us
consider the simple forward expicit difference scheme for the slightly more general
transport equation ∂tu+ a∂xu = 0 , a < 0, namely

Un+1
i = Un

i − a
∆t
∆x

(
Un

i+1 − Un
i

)
=
(

1 + a
∆t
∆x

)
Un

i − a
∆t
∆x

Un
i+1 . (7.18)

(7.18) is an explicit three-point scheme for the explicit computation of Un+1
i . Viewed

in the (x, t)-plane we can identify the difference stencil of (7.18) as shown in Fig.
30.

Figure 30: Difference stencil and characteristics

The stencil gives rise to the definition of numerical characteristics which are straight
lines enveloping the stencil. The numerical characteristics cut an interval off the axis
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t = 0 which is called numerical domain of dependence. Changing the initial datum
in this interval changes the numerical solution at point P while perturbations outside
this interval would not affect the numerical solution at P . However, there is also the
characteristic Γ of the differential equation we would like to approximate. If Γ lies
outside the numerical characteristics as shown in Fig. 30, then changing the initial
datum between Γ and the numerical characteristic would change the true solution at
P but not the numerical solution. Thus, convergence of the difference scheme is not
possible. Keeping Γ inside the numerical characteristics ensures that all perturbations
of the initial datum which affect the true solution at P will always affect the numerical
solution at P , too.

The characteristic Γ has slope

dt

dx
=

1
a

and the right numerical characteristic has slope −∆t/∆x. Thus, necessary for con-
vergence is ∆t/∆x ≤ 1/|a| which is already the Courant-Friedrichs-Lewy (CFL)
condition

∆t ≤ ∆x
|a| . (7.19)

In case of a > 0, and replacing the forward difference equation by the backward
one, (7.19) again ensures the suitable behaviour of the domains of dependence. This
dependence of the type of the difference equation on the sign of a, i.e. on the direction
of the movement of the wave, leads to so-called upwind schemes.

In the case of a scalar conservation law ∂tu + ∂xf(u) = 0, the same arguments hold
for the quasilinear form ∂tu+ f ′(u)∂xu = 0. Hence, instead of (7.19), explicit finite
difference schemes with three-point stencil have to satisfy the CFL condition

∆t
∆x

max
i

∣∣f ′(Un
i )
∣∣ ≤ 1 (7.20)

in each time step n.

7.4 Lax-Richtmyer Theory

We now formalize the treatment of finite difference schemes supplementing chapter 6
in order to present at least the historical central idea of a convergence theory for this
particular type of schemes.
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Although we have to confine ourselves with linear problems, the Lax-Richtmyer the-
ory allows to gain deep insight into the interplay between the notions of consistency,
stability and convergence. Originally, it was formulated for autonomous, linear initial
value problems only but was later generalized by several authors so that also non-
autonomous and nonlinear problems could be included115.

We consider an abstract evolution equation in a Banach space B, where a linear
operator A : DA → B acts upon a subspace DA of B. The evolution equation we
want to discretize is then given as

d

dt
u(t) = A(u(t)), t ∈ [0, T ] , T > 0 (7.21)

u(0) = u0, u0 ∈ DA .

A one-parameter family u(t) with t ∈ [0, T ] , u(t) ∈ DA, is called a genuine solution
of (7.21), if

lim
∆t→0
0≤t≤T

∥∥∥∥
u(t+ ∆t) − u(t)

∆t
−Au(t)

∥∥∥∥
B

= 0. (7.22)

Let D be the set of all initial data u0 ∈ B so that a unique genuine solution exists
with u(0) = u0 and such that convergence in (7.22) is uniform in t116. Then there is
a one-parameter family of linear operators E0(t) : D → B defined by

u(t) = E0(t)u0

which are called evolution operators or solution operators. We always assume that
our problem is properly posed, which in particular implies that E0(t) is bounded
uniformly in t, i.e. there is a constant K > 0 sucht that ‖E0(t)‖D→B < K for
0 ≤ t ≤ T . Then the Hahn-Banach extension theorem implies the existence of a
generalized solution operator E(t) : B → B with the same bound K as E0(t). The
generalized solution operator has the semigroup property

∀s, t ≥ 0 : E(s+ t) = E(s)E(t)

and the closure of the operator A which we also denote by A is the infinitesimal
generator of this semigroup. One can further show that E(t) commutes with A, so

115cf. R. Ansorge: Survey of equivalence theorems in the theory of difference approximations for
partial initial value problems. In: Topics in Numerical Analysis (J.J. Miller, ed.), London-New York-San
Francisco: Academic Press 1977

116We shall see in a minute that uniform convergence is automatic.
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that

E(t)Au0 = AE(t)u0.

Then (7.21) can be written as

lim
∆t→0
0≤t≤T

∥∥∥∥E(t)
(
E(∆t) − I

∆t
−A

)
u0

∥∥∥∥
B

= 0 ,

which, since ‖E(t)‖B < K for 0 ≤ t ≤ T , implies the uniform convergence of (7.22)
with respect to t.

In order to discuss fairly general finite difference schemes, let us introduce linear
difference operators

Λ0/1 = Λ0/1(∆t,∆x1, . . . ,∆xd)

and the class of difference schemes

Λ1U
n+1 = Λ0U

n.

We assume the existence of Λ−1
1 and that Λ−1

1 Λ0 is a bounded linear operator defined
in all of B. From the CFL condition we know that ∆t and the ∆xi can not go to
zero independently of each other as far as explicit methods are concerned. Hence we
assume relations ∆xi = ϕi(∆t), i = 1, . . . , d, and introduce the discrete evolution
operator

C(∆t) := Λ−1
1 (∆t, ϕ1(∆t), . . . , ϕd(∆t)) · Λ0 (∆t, ϕ1(∆t), . . . , ϕd(∆t))

so that the class of difference schemes under consideration is

Un+1 = C(∆t)Un . (7.23)

The family of operators C(∆t) is said to define a consistent approximation for the
initial value problem if for every u(t) in a class of genuine solutions with initial data
u(0) dense in B the consistency condition

lim
∆t→00≤t≤T

∥∥∥∥
(
C(∆t) − I

∆t
−A

)
u(t)

∥∥∥∥
B

= 0 (7.24)

holds. Since u(t) denotes a genuine solution we can use the fact that due to (7.22)
Au(t) is close to (u(t+ ∆t) − u(t))/∆t to give the alternative definition

lim
∆t→00≤t≤T

∥∥∥∥
u(t+ ∆t) − C(∆t)u(t)

∆t

∥∥∥∥
B

= 0 . (7.25)
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The quantity
∥∥∥∥
u(t+ ∆t) − C(∆t)u(t)

∆t

∥∥∥∥
B

:= ε̂(∆t, u0)

is called truncation error, and if this error is of order p, i.e.

ε̂(∆t, u0) = O(∆tp) ,

the method is called a method of order p. Consistency therefore means

ε̂(∆t, u0) = o(1)

which is particularly fulfilled for p > 0.

Note that this abstract notion is in complete agreement with our earlier calculations in
(7.12).

Consistency guarantees that in the limit ∆t → 0 the difference scheme formally re-
produces the differential equation. The notion of convergence is concerned with the
limit behaviour of the discrete solutions. Consistency does not necessarily already
imply convergence!

Due to (7.23), iterated application of C(∆t) gives

Un = C(∆t)Un−1 = C(∆t)◦C(∆t)Un−2 = · · · = C(∆t)nU0 = C(∆t)nu0 ,

and this discrete function is expected to be a good approximation to u(n∆t) =
E(n∆t)u0. The family of operators C(∆t) provides a convergent approximation
to the initial value problem if, for fixed t ∈ [0, T ],

lim
j→∞

‖C(∆jt)nju0 − E(t)u0‖B = 0 (7.26)

holds for each sequence (∆jt)j=1,2,... tending to zero where nj is chosen to satisfy
limj→∞ nj∆jt = t.

In reaching the discrete solution at time t = n∆t, the operator C(∆t) has to act n
times on the initial datum. Thinking of small errors in u0 or errors due to rounding
during the computation, we would not be satisfied with a difference scheme which
would amplify these small perturbations until they spoil the solution. The central idea
of stability is therefore to put bounds on the possible amplification of initial data. The
operatorC(∆t) is said to define a stable approximation if for some t∗ > 0 the infinite
set of operators

C(∆t)n, 0 < ∆t < t∗ , 0 ≤ n∆t ≤ T ,
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are uniformly bounded, i.e. if there exists a constant κ with

‖C(∆t)n‖B ≤ κ , ∀n ∈ � , ∀∆t
with 0 < ∆t ≤ t∗ and with 0 ≤ n∆t ≤ T .

With the notions of consistency, stability and convergence we can now formulate the
central Equivalence Theorem of the Lax-Richtmyer theory:

Theorem 7.1 : A finite difference scheme approximating a properly posed initial value
problem is convergent if and only if it is consistent and stable.

PROOF (of the direction: consistency ∧ stability ⇒ convergence117):

U(0) = u0 implies

Un−u(t) =
n∑

ν=1

C(∆t)ν−1 {C(∆t)u (tn−ν) − u (tn−ν+1) }+u(tn)−u(t)

(tµ = µ∆t).

Thus, from the stability property, we obtain

‖Un − u(t)‖B ≤
n∑

ν=1

∥∥C(∆t)ν−1
∥∥

B
· ‖C(∆t)u (tn−ν) − u (tn−ν+1)‖B

+ ‖u(tn) − u(t)‖B

≤ κ
n∑

ν=1

‖C(∆t)E0 (tn−ν) u0 −E0 (tn−ν+1) u0‖B

+ ‖u(tn) − u(t)‖B ,

leading to

‖Un − u(t)‖B ≤ κn∆t · ε̂(∆t, u0) + ‖u(tn) − u(t)‖B .

117From an engineering point of view, this is the more important direction. The complete proof can
be found in the original paper of Lax and Richtmyer cited in footnote 92. If consistency and stability
are defined properly, theorems of the Lax-Richtmyer type can be proven even in the case of nonlinear
difference schemes for nonlinear equations, as already mentioned in footnote 115.
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Taking n∆t ≤ T into account, we find

‖Un − u(t)‖B ≤ κT ε̂(∆t, u0) + ‖u(n∆t) − u(t)‖B .

Because of n∆t → t , because of the continuity of u with respect to t, and because
of the consistency condition (7.25), the truth of the assertion is obvious. �

Particularly for n∆t = t, we get an estimate for the global discretization error
‖Un − u(t)‖B , namely

‖Un − u(t)‖B ≤ κ t ε̂(∆t, u0) .

Here, round off errors are not included!

Example:

Let us again treat the transport equation ∂tu+ a∂xu = 0 in the case of a < 0.

If then (7.18) will be expressed in terms of the Lax-Richtmyer theory, and if a relation
between the step sizes ∆t and ∆x will be described, we find

‖C(∆t)‖∞ ≤
∣∣∣∣1 + a

∆t
∆x

∣∣∣∣ + |a| ∆t
∆x

.

The CFL condition (7.19) then ensures

‖C(∆t)‖∞ ≤
(

1 + a
∆t
∆x

)
+ |a| ∆t

∆x
= 1 ,

hence

‖Cn(∆t)‖∞ ≤ ‖C(∆t)‖n
∞ ≤ 1 .

Thus, the CFL condition guarantees the numerical stability of the scheme in the sense
of the Lax-Richtmyer theory.

And also the other direction is true: Stability in the sense of Lax-Richtmyer requires
the CFL condition to be fulfilled, and this holds independently of the norm.

Of course, the upwind scheme for a > 0 can be treated in the same way.

The upwinding idea can also be looked upon from the point of view of information
theory: Looking into the direction of the traveling information it seems to be unrea-
sonable to use for the computation of a future value of the solution at a given space
position such values of the present time level whose positions lie downstream and
were not yet influenced by the information.



168 7 Types of Discretization Principles

7.5 The von Neumann Stability Criterion

Consistency of a finite difference scheme is easy to verify by means of Taylor expan-
sions. In contrast, verifying stability using the pure definition may be much harder.
In the case of linear initial value problems or problems with periodic boundary data
there is a simple mechanism due to von Neumann118.

We follow start with a complex Fourier transform of a discrete function represented
as a sequence Un = (Un

j )j∈� and defined at grid points only. The discrete Fourier
transform is defined as

Ûn(ξ) =
∑
j∈�

Un
j e

−ijξ, 0 ≤ ξ < 2π.

The importance of the discrete Fourier transform in analyzing stability of finite differ-
ence schemes can be seen if it is applied to the shift operator S defined already in sec-
tion 7.2. For our purposes, we refine the definition by calling S+U

n := S(∆x)Un :=
(Un

j+1)j∈� the forward shift operator. Then it follows from the definition of the
discrete Fourier transform

Ŝ+Un(ξ) =
∑
j∈�

Un
j+1e

−ijξ =
∑
j∈�

Un
j e

−i(j−1)ξ

=
∑
j∈�

Un
j e

−ijeiξ = eiξ
∑
j∈�

Un
j e

−ijξ

= eiξÛn(ξ).

Thus, applying the shift operator to a grid function is, in Fourier space, multiplication
with eiξ . The function eiξ is called the symbol of the shift operator S.

Completely analogously one gets for the backward shift operator S−Un :=
S(−∆x)Un the symbol e−iξ, i.e.

Ŝ−Un(ξ) = e−iξÛn(ξ).

Since every linear finite difference scheme is made up of combinations of forward
and backward shift operators the way is open to look at discrete Fourier transforms of
difference schemes.

118John von Neumann (1903 - 1957) Berlin, Hamburg, Göttingen, Princeton
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Example:

Consider again the difference scheme

Un+1
i = Un

i − ∆t
2∆x

a
(
Un

i+1 − Un
i−1

)

as an approximation to ∂tu+a∂xu = 0. It is an easy exercise to see that the scheme is
consistent of order 2 in space and order 1 in time. Written in terms of shift operators
and sequences we get

Un+1 =
(
I − ∆t

2∆x
a(S+ − S−)

)
Un .

Now, taking Fourier transform on both sides, it follows that

Ûn+1(ξ) =
(

1 − ∆t
2∆x

a
(
eiξ − e−iξ

))
Ûn(ξ).

If the symbol Θ(∆t, ξ) := 1 − ∆t
2∆xa

(
eiξ − e−iξ

)
turns out to be larger than one in

modulus, this means that any small perturbation in Un will be amplified in the step
computing Un+1. In our case, since e±iξ = cos ξ ± i sin ξ, we get

Θ(∆t, ξ) = 1 − ∆t
∆x

a i sin ξ .

Taking the modulus, this amounts to

|Θ(∆t, ξ)|2 = 1 +
(

∆t
∆x

a

)2

sin2 ξ ≥ 1

regardless how small the time step is chosen. The symbol is usually called the am-
plification factor of the difference scheme. The present scheme is unconditionally
unstable, since the modulus of the amplification factor is larger than one except for
ξ ∈ {0, π, 2π}. Assuming a > 0, the upwind difference scheme

Un+1
i = Un

i − ∆t
∆x

a
(
Un

i − Un
i−1

)

results in the sequence formulation

Un+1 =
(
I − ∆t

∆x
a(I − S−)

)
Un

which gives the discrete Fourier transform

Ûn+1(ξ) =
(

1 − ∆t
∆x

a(1 − e−iξ)
)
Ûn(ξ) .
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Let us define K := ∆t
∆xa and compute the amplification factor

Θ(∆t, ξ) =
∣∣∣1 −K(1 − e−iξ)

∣∣∣ ≤ |1 −K| +K |e−iξ|︸ ︷︷ ︸
=1

CFL condition≤ 1 −K +K = 1.

Hence, our upwind scheme is stable under the usual CFL condition.

We remark in passing that the same analysis holds in multiple space dimensions. Here,
the discrete Fourier transform is defined as

Ûn(Ξ) =
∑
k∈�d

Un
k e

ikT Ξ

where d is the space dimension and Ξ = (ξ1, . . . , ξd)T .

In the case of systems of equations with n components in d space dimensions, ampli-
fication is given by

Ûn+1(Ξ) = Θ(∆t,Ξ)Ûn(Ξ)

where now Θ is an n×n matrix, the amplification matrix. For reasons of generality
we stay with the case of systems in the following.

Recursion reveals the relation

Ûn(Ξ) = Θn(∆t,Ξ)Û0(Ξ )

so that stability has to do with the properties of the iterated amplification matrix. In
general, we can state the necessary and sufficient stability criterion that for some
positive ∆t∗ the matrices (or, in the case of scalar equations, the amplification factor)

Θn(∆t,Ξ )

should be uniformly bounded for 0 < ∆t < ∆t∗, 0 ≤ n∆t ≤ T and all Ξ ∈ �d.
If ρθ(∆t,Ξ) denotes the spectral radius of Θ (i.e. the maximum of the moduli of the
eigenvalues), then it follows from linear algebra that

ρn
θ (∆t,Ξ) ≤ ‖Θn(∆t,Ξ)‖ ≤ ‖Θ(∆t,Ξ)‖n .

A necessary condition for stability is therefore the existence of a constant C so that

ρθ
n(∆t,Ξ) ≤ C
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for 0 < ∆t < ∆t∗, 0 ≤ n∆t ≤ T and all Ξ ∈ �d. Without loss of generality we
assume C ≥ 1 and therefore

ρθ(∆t,Ξ) ≤ C
1
n , 0 ≤ n ≤ T

∆t
.

Thus, in particular, we get

ρθ(∆t,Ξ) ≤ C
∆t
T .

Now the expression C∆t/T is bounded for 0 < ∆t < ∆t∗ by a linear function 1 +
const ∆t.

Thus, a necessary condition for stability is the celebrated von Neumann condition

|λi| ≤ 1 + O(∆t)

for 0 < ∆t < ∆t∗, all Ξ ∈ �d and i = 1, . . . , n, where λi denotes the i-th eigenvalue
of Θ(∆t,Ξ).

It should be noted that there are several other stability conditions like the famous
Kreiss matrix theorem or the much less known criterion of Buchanan119.

7.6 The Modified Equation

Finally, a tool should briefly be explained which can often help to analyse finite dif-
ference procedures.

To every finite difference approximation of order O(∆tp,∆xq) of a given differential
equation there is another differential equation to which the difference scheme is a
better approximation.

In order to demonstrate this remark, let us start again from the simple upwind scheme

Un+1
i = Un

i − ∆t
∆x

a
(
Un

i − Un
i−1

)
(7.27)

for the transport equation

∂tu+ a∂xu = 0, a > 0 . (7.28)

119For a thorough treatment see: Richtmyer, R.D. and K.W. Morton, Difference methods for initial-
value problems, 2nd ed., New York, London, Sydney: Interscience Publishers 1967
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Inserting the Taylor series expansions of a sufficiently smooth function u, i.e.

un+1
i = u+ ∆t∂tu+

∆t2

2
∂2

t u+
∆t3

6
∂3

t u+ O(∆t4)

un
i−1 = u− ∆x∂xu+

∆x2

2
∂2

xu− ∆x3

6
∂3

xu+ O(∆x4) ,

into the upwind scheme results in

∂tu+
∆t
2
∂2

t u+
∆t2

6
∂3

t u+ O(∆t3) = −a∂xu+ a
∆x
2
∂2

xu− a
∆x2

6
∂3

xu

+O(∆x3) ,

or, after rearrangement of terms, in

∂tu+ a∂xu = −∆t
2
∂2

t u+
a∆x

2
∂2

xu− ∆t2

6
∂3

t u− a∆x2

6
∂3

xu

(7.29)

+O(∆t3,∆x3) .

We do now want to replace the time derivatives on the right hand side by space deriva-
tives. In order to do so, we are not allowed to use the differential equation (7.28),
since our u does not necessarily satisfy this equation but equation (7.29)! Therefore,
we have to accomplish our task using (7.29) alone. We take the time derivative of
(7.29), i.e.

∂2
t u+ a∂t∂xu = −∆t

2
∂3

t u+
a∆x

2
∂t∂

2
xu− ∆t2

6
∂4

t u

+
a∆x2

6
∂t∂

3
xu+ O(∆t3,∆x3) ,

and then the space derivative of (7.29) which we multiply by a,

a∂t∂xu+ a2∂2
xu = −a∆t

2
∂2

t ∂xu+
a2∆x

2
∂3

xu− a∆t2

6
∂3

t ∂xu

−a
2∆x2

6
∂4

xu+ O(∆t3,∆x3) .

Subtracting the last equation from the first one gives

∂2
t u = a2∂2

xu+ ∆t
(
−1

2
∂3

t u+
a

2
∂2

t ∂xu

)
+ ∆x

(
a

2
∂t∂

2
xu− a2

2
∂3

xu

)

+O(∆t3,∆x3) .
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Some further similar manipulations of (7.29) lead to

∂3
t u = −a3∂3

xu+ O(∆t,∆x),
∂x∂

2
t u = a2∂3

xu+ O(∆t,∆x),
∂t∂

2
xu = −a∂3

xu+ O(∆t,∆x).

Substituting these expressions into (7.29) yields the modified equation

∂tu+ a∂xu =
a∆x

2

(
1 − ∆t

∆x

)
∂2

xu− a∆x2

6

(
2

∆t2

∆x2
− 3

∆t
∆x

+ 1
)
∂3

xu

+O(∆x3,∆x2∆t,∆x∆t2,∆t3) .

What can be seen from this equation ? First of all we see that the truncation error of
our difference scheme applied to the transport equation (7.28) is O(∆t,∆x), since
the first term on the right hand side of the modified equation is

a

2
∆x∂2

xu− a

2
∆t∂2

xu

which goes to zero linearly with time and space increments. Moreover, our upwind
scheme is a good approximation to the parabolic differential equation

∂tu+ a∂xu = ε(a,∆t)∂2
xu

with positive (due to the CFL condition) diffusion coefficient. Since such equations
have smooth solutions, we expect our upwind scheme to be well-behaved.

Many further properties of the difference scheme can be deduced from the modified
equation, e.g. numerical stability.

7.7 Difference Schemes in Conservation Form

It seems to be obvious that numerical procedures can only be expected to lead to good
approximations of the solution of the original problem if as many properties known in
advance as possible are imitated by the scheme.

One of these reproductions, already mentioned in chapter 6, is the use of so-called
methods of conservation form in order to treat conservation law equations numeri-
cally.



174 7 Types of Discretization Principles

This means that the system (2.1) of conservation laws, i.e.

∂tV + ∂xf(V ) = ∂tV + J f(V ) ∂xV = 0 (7.30)

is approximated by an explicit (2k + 1)-step finite difference scheme

1
∆t

(
V n+1

j − V n
j

)
+

1
∆x

(
gn

j+ 1
2
− gn

j− 1
2

)
= 0 (7.31)

with a consistent numerical flux

gn
j+ 1

2

:= g
(
V n

j−k+1 , V n
j−k , · · · , V n

j , V n
j+1 , · · · , V n

j+k

)
(7.32)

and not −e.g.− by a method like

1
∆t

(
V n+1

j − V n
j

)
+ J f(V n

j )
1

2∆x
(
V n

j+1 − V n
j−1

)
= 0 .

An example of a method of type (7.31) is the 3-point Lax-Friedrichs Scheme120

V n+1
j − 1

2
(
V n

j+1 + V n
j−1

)
+

1
2

∆t
∆x

{
f(V n

j+1) − f(V n
j−1)

}
= 0 (7.33)

with

gn
j+ 1

2
= −1

2
∆x
∆t

(
V n

j+1 − V n
j

)
+

1
2
{
f(V n

j+1) + f(V n
j )
}
.

If the numerical vectors V n
j in (7.33) are replaced by an exact smooth solution

V (xj , tn) of (7.30), the left side of (7.33) differs from zero, but its Taylor expansion
then leads to a truncation error of order O(∆t) in the sense of the Lax-Richtmyer
theory provided that λ = ∆t

∆x = const is prescribed.

Hence, (7.33) is a method of conservation form of order 1. It can be shown that the
method is monotone in the meaning of Section 6.4, and, as a matter of fact, all mono-
tone methods are only of order 1 as can be established by means of the ‘Modified
Equation’ of Section 7.6.

But, of course, there are also methods of higher order. One of them is the 3-point
Lax-Wendroff Scheme121. Its numerical flux reads in case of scalar 1-dimensional
conservation laws of type (2.1) as

gn
j+ 1

2
=

1
2

{
f(vn

j+1) + f(vn
j ) − 1

λ
(µn

j+ 1
2
)2 (vn

j+1 − vn
j )
}

(7.34)

120Proc. Nat. Acad. Sci. USA 68 (1971), 1686-1688
121Comm. Pure Appl. Math. 13, 217-237 (1960)
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with

µn
j+ 1

2

= λ
f(vn

j+1) − f(vn
j )

vn
j+1 − vn

j

, λ =
∆t
∆x

.

By Taylor expansion, it can be verified that this is a method of order 2. Therefore,
the scheme seems to be a useful one, at least as long as the smoothness assumptions
necessary for the Taylor expansion are guaranteed in a neighborhood of (xj , tn).

But if the exact weak solution shows a shock at a certain position, the numerical
solution begins to oscillate close to this position though the scheme respects the con-
servation character of the original problem.
But what is not respected by the method is the TVD-property of the solutions of the
original problem.

Numerical solutions produced by means of TVD-methods do not begin to oscillate
because this would lead to an increase of the total variation.

Several attempts were made in the literature to overcome the problem of the low order
of monotone methods and the demand for keeping the advantages of higher order
methods, e.g. the use of greater step sizes without loss of accuracy in areas where the
exact solution is smooth.

One of these ideas, e.g. in case of scalar problems, consists in the construction of
so-called flux limiter methods:

Let gH be the numerical flux of a higher order method, e.g. of the Lax-Wendroff
scheme, and let gL be the numerical flux of a low order procedure, e.g. a TVD-
scheme.

If gH(vn
j+k−1 , · · · vn

j+k) is abbreviated by gH(vn; j) and analogously gL(vn; j),
let us create a new method by

g(vn; j) := gL(vn; j) + ϕ(vn; j) {gH(vn; j) − gL(vn; j)} . (7.35)

Herewith, ϕ −called the limiter− has to be chosen in such a way that ϕ ≈ 1 in
areas where the exact entropy solution is expected to be smooth, and ϕ ≈ 0 close to
shocks. In other words, ϕ has to be a sensor for sudden strong increase or decrease
of the unknown exact solution expected to occur at positions where the numerical
solution increases or decreases strongly with respect to space, e.g.

ϕ = ϕ

(
vn
j − vn

j−1

vn
j+1 − vn

j

)
(7.36)
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where ϕ is a sufficiently smooth and bounded function with ϕ(1) = 1 and ϕ(0) = 0.
Of course, difficulties can still make trouble, e.g. if an extremum of the solution lies
between xj and xj+1.

Also other ideas were created in order to get over the problem of non-physical oscilla-
tions as far as higher order methods are under consideration. One of them in the case
of higher dimensions was the introduction of so-called ENO schemes (essentially
non-oscillatory schemes)122. This idea consists of a piecewise polynomial reconstruc-
tion from the piecewise constant values of the approximate solution of the last time
step where the stencil for each cell is adaptively chosen in such a way that intensive
oscillations near shocks do not occur.

7.8 The Finite Volume Method on Unstructured Grids

Let us finally briefly put the idea of finite volume schemes on unstructured grids in-
troduced in section 7.1 into concrete form. For convenience, we restrict ourselves to
the scalar 2-dimensional conservation law (cf. (1.10))

∂tu+ ∂xf1(u) + ∂yf2(u) = 0 in �
2 ×�+ ,

(7.37)

u(x, y; 0) = u0(x, y) in �
2 .

A so-called unstructured grid of Ω̂ ⊂ �
2 consists of a set of polygons σi (i ∈

I ⊂ �), e.g. triangles, each of which has the same number m of edges and vertices,
so that

Ω̂ =
⋃
i∈I

σi ,

and two polygons are assumed not to intersect or only to intersect along a common
edge or at a common vertex. These polygons are often called cells. The angles at the
vertices have to be bounded uniformly away from zero, and we assume h = O(∆t)
where h represents a measure for the maximal diameter of the cells.

Unstructured grids can more easily be adapted to complicated geometries than struc-
tured grids, e.g. to the gas flow around flying objects, and refinements of the net in
regions where the exact solution is expected to vary more than in neighbouring areas

122cf. Harten, A.: Multi-dimensional ENO schemes for general geometries. ICASE Report 91-76,
Langley Research Center: Hampton 1991
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can easily be realized. The development of grid generation techniques, therefore, is
a very important task in this context.

Let Ii ⊂ I be the index set consisting of the numbers of the particular cells being
neighbours of σi with a joint edge.

With un(x, y) := u(x, y;n∆t) (n ∈ �0) in the case of a given time step ∆t and with
an exact solution u assumed for a short time to be smooth, equation (7.37) leads to

un+1(x, y) − un(x, y)
∆t

+∂xf1(un(x, y))+∂yf2(un(x, y)) = O(∆t) . (7.38)

Taking the divergence theorem into account, integration of this equation over the cell
σi with edges ∂σi,k (k = 1, 2, · · ·m) results in

1
∆t

∫

σi

{
un+1(x, y) − un(x, y)

}
d σi +

∑
k∈Ii

∫

∂σi,k

〈
f(u) , ni,k

〉
ds = O(∆t)

(7.39)

where f(u) = (f1(u) , f2(u))T is assumed to be sufficiently smooth and where ni,k

denotes the outer normal unit vector on ∂σi,k
121 122.

If we replace the functions un(x, y) , un+1(x, y) along the cell σi by constant approx-
imate values vn

i , v
n+1
i to be calculated, if the term O(∆t) is neglected, if |σi| denotes

the area of σi and si,k the length of the edge ∂σi,k, (7.39) leads to

vn+1
i = vn

i − ∆t
|σi|

∑
k∈Ii

〈
f(ṽn

i,k) , ni,k
〉
si,k (7.40)

(n = 0, 1, 2, · · · ) where the values ṽn
i,k represent approximations for u along the

edges ∂σi,k, respectively, and where v0
i is chosen to be the mean value of the initial

function on σi :

v0
i =

1
|σi|

∫

σi

u0(x, y) dσi , ∀i ∈ I .

Obviously, from a physical point of view, the term 〈f(ṽn
i,k) , ni,k〉 si,k describes ap-

proximately the flux through the edge ∂σi,k.

121cf. (7.4)
122Here, we assumed that each of the cells has neighbours along each of its edges. If this is not the

case, namely along the edges being parts of the boundary of Ω̂, one has to respect suitable boundary
conditions.
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The question arises, how the values ṽn
i,k should be chosen.

Because the conservation principle should also be reflected by the approximate values,
we aim for

〈f(ṽn
i,k) , ni,k〉 si,k ≈ −〈f(ṽn

k,i) , nk,i〉 sk,i (7.41)

(sk,i = si,k).

In order to create a scheme easy to handle, we are going to replace ṽn
i,k and ṽn

k,i by
a certain mean value of vn

i and vn
k together with a replacement of the physical flux

by a numerical flux gi,k(vn
i , v

n
k ) that fulfills the relation (7.41) exactly, i.e.

gi,k(vn
i , v

n
k ) = − gk,i(vn

k , v
n
i ) . (7.42)

Moreover,

gi,k(w,w) = 〈f(w) , ni,k〉 si,k (7.43)

should be fulfilled making the finite volume method now constructed, namely

vn+1
i = vn

i − ∆t
|σi|

∑
k∈Ii

gi,k(vn
i , v

n
k ) , (7.44)

consistent with (7.39). Finally, we do now forget the assumption on the smoothness
of the exact solution because the integration process allows to deal also with weak
solutions.

Convergence proofs for FVMs in higher dimensions and on unstructured grids, par-
ticularly mathematical proofs for convergence to the entropy solutions, are often not
yet available. But what can be done is, to formulate the methods in such a way that
they lead to well-known and well working methods if analogously formulated for
one-dimensional problems.

A method which could be shown to behave very well in the 1-D situation was the
Engquist-Osher flux splitting scheme123 with a numerical flux described by formula
(6.24).

If the numerical flux gi,k in (7.43) is chosen accordingly to (6.24) as

gi,k(v, v̂) =
[
f̂−i,k(v) + f̂+

i,k(v̂)
]

(7.45)

123cf. section 6.4
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with

f̂i,k(w) := 〈f(w) , ni,k〉 si,k

and with

f̂+
i,k(v) =

∫ v

0
max

{
f̂ ′i,k(w), 0

}
dw + f̂i,k(0)

(7.46)

f̂−i,k(v̂) =
∫ v̂

0
min

{
f̂ ′i,k(w), 0

}
dw ,

it corresponds to the Engquist-Osher scheme in 1-D, and it fulfills the relations (7.42)
and (7.43).

After these brief introductions, we stop here, but it should be mentioned that there
are lots of schemes available for the numerical treatment of conservation laws like the
Euler equations or for the solution of Navier-Stokes problems, scalar or systems, one-
dimensional or multi-dimensional. Most of them show advantages compared with
other schemes but often certain disadvantages as well. Many additional informations
can be found in some of the extensive monographs listed behind this page.
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