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Chapter 1

Introduction

Robotics and computer vision are interdisciplinary subjects at the intersection of engineering and computer
science. By their nature, they deal with both computers and the physical world. Although the former are
in the latter, the workings of computers are best described in the black-and-white vocabulary of discrete
mathematics, which is foreign to most classical models of reality, quantum physics notwithstanding.

This class surveys some of the key tools of applied math to be used at the interface of continuous and
discrete. It is not on robotics or computer vision. These subjects evolve rapidly, but their mathematical
foundations remain. Even if you will not pursue either field, the mathematics that you learn in this class will
not go wasted. To be sure, applied mathematics is a discipline in itself and, in many universities, a separate
department. Consequently, this class can be a quick tour at best. It does not replace calculus or linear
algebra, which are assumed as prerequisites, nor is it a comprehensive survey of applied mathematics. What
is covered is a compromise between the time available and what is useful and fun to talk about. Even if in
some cases you may have to wait until you take a robotics or vision class to fully appreciate the usefulness
of a particular topic, I hope that you will enjoy studying these subjects in their own right.

1.1 Who Should Take This Class

The main goal of this class is to present a collection of mathematical tools for both understanding and solving
problems in robotics and computer vision. Several classes at most universities cover the topics presented in
this class, and do so in much greater detail. If you want to understand the full details of any one of the topics
in the syllabus below, you should take one or more of these other classes instead. If you want to understand
how these tools are implemented numerically, you should take one of the classes in the scientific computing
program, which again cover these issues in much better detail. Finally, if you want to understand robotics
or vision, you should take classes in these subjects, since this course is not on robotics or vision.

On the other hand, if you do plan to study robotics, vision, or other similar subjects in the future, and
you regard yourself as a user of the mathematical techniques outlined in the syllabus below, then you may
benefit from this course. Of the proofs, we will only see those that add understanding. Of the implementation
aspects of algorithms that are available in, say, Matlab or LApack, we will only see the parts that we need
to understand when we use the code.

In brief, we will be able to cover more topics than other classes because we will be often (but not
always) unconcerned with rigorous proof or implementation issues. The emphasis will be on intuition and
on practicality of the various algorithms. For instance, why are singular values important, and how do they
relate to eigenvalues? What are the dangers of Newton-style minimization? How does a Kalman filter work,
and why do PDEs lead to sparse linear systems? In this spirit, for instance, we discuss Singular Value
Decomposition and Schur decomposition both because they never fail and because they clarify the structure
of an algebraic or a differential linear problem.
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4 CHAPTER 1. INTRODUCTION

1.2 Syllabus

Here is the ideal syllabus, but how much we cover depends on how fast we go.

1. Introduction

2. Unknown numbers

2.1 Algebraic linear systems

2.1.1 Characterization of the solutions to a linear system
2.1.2 Gaussian elimination
2.1.3 The Singular Value Decomposition
2.1.4 The pseudoinverse

2.2 Function optimization

2.2.1 Newton and Gauss-Newton methods
2.2.2 Levenberg-Marquardt method
2.2.3 Constraints and Lagrange multipliers

3. Unknown functions of one real variable

3.1 Ordinary differential linear systems

3.1.1 Eigenvalues and eigenvectors
3.1.2 The Schur decomposition
3.1.3 Ordinary differential linear systems
3.1.4 The matrix zoo
3.1.5 Real, symmetric, positive-definite matrices

3.2 Statistical estimation

3.2.1 Linear estimation
3.2.2 Weighted least squares
3.2.3 The Kalman filter

4. Unknown functions of several variables

4.1 Tensor fields of several variables

4.1.1 Grad, div, curl
4.1.2 Line, surface, and volume integrals
4.1.3 Green’s theorem and potential fields of two variables
4.1.4 Stokes’ and divergence theorems and potential fields of three variables
4.1.5 Diffusion and flow problems

4.2 Partial differential equations and sparse linear systems

4.2.1 Finite differences
4.2.2 Direct versus iterative solution methods
4.2.3 Jacobi and Gauss-Seidel iterations
4.2.4 Successive overrelaxation
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1.3 Discussion of the Syllabus

In robotics, vision, physics, and any other branch of science whose subjects belongs to or interacts with the
real world, mathematical models are developed that describe the relationship between different quantities.
Some of these quantities are measured, or sensed, while others are inferred by calculation. For instance, in
computer vision, equations tie the coordinates of points in space to the coordinates of corresponding points
in different images. Image points are data, world points are unknowns to be computed.

Similarly, in robotics, a robot arm is modeled by equations that describe where each link of the robot is
as a function of the configuration of the link’s own joints and that of the links that support it. The desired
position of the end effector, as well as the current configuration of all the joints, are the data. The unknowns
are the motions to be imparted to the joints so that the end effector reaches the desired target position.

Of course, what is data and what is unknown depends on the problem. For instance, the vision system
mentioned above could be looking at the robot arm. Then, the robot’s end effector position could be the
unknowns to be solved for by the vision system. Once vision has solved its problem, it could feed the robot’s
end-effector position as data for the robot controller to use in its own motion planning problem.

Sensed data are invariably noisy, because sensors have inherent limitations of accuracy, precision, reso-
lution, and repeatability. Consequently, the systems of equations to be solved are typically overconstrained:
there are more equations than unknowns, and it is hoped that the errors that affect the coefficients of one
equation are partially cancelled by opposite errors in other equations. This is the basis of optimization prob-
lems: Rather than solving a minimal system exactly, an optimization problem tries to solve many equations
simultaneously, each of them only approximately, but collectively as well as possible, according to some
global criterion. Least squares is perhaps the most popular such criterion, and we will devote a good deal of
attention to it.

In summary, the problems encountered in robotics and vision are optimization problems. A fundamental
distinction between different classes of problems reflects the complexity of the unknowns. In the simplest
case, unknowns are scalars. When there is more than one scalar, the unknown is a vector of numbers,
typically either real or complex. Accordingly, the first part of this course will be devoted to describing
systems of algebraic equations, especially linear equations, and optimization techniques for problems whose
solution is a vector of reals. The main tool for understanding linear algebraic systems is the Singular Value
Decomposition (SVD), which is both conceptually fundamental and practically of extreme usefulness. When
the systems are nonlinear, they can be solved by various techniques of function optimization, of which we
will consider the basic aspects.

Since physical quantities often evolve over time, many problems arise in which the unknowns are them-
selves functions of time. This is our second class of problems. Again, problems can be cast as a set of
equations to be solved exactly, and this leads to the theory of Ordinary Differential Equations (ODEs).
Here, “ordinary” expresses the fact that the unknown functions depend on just one variable (e.g., time).
The main conceptual tool for addressing ODEs is the theory of eigenvalues, and the primary computational
tool is the Schur decomposition.

Alternatively, problems with time varying solutions can be stated as minimization problems. When
viewed globally, these minimization problems lead to the calculus of variations. When the minimization
problems above are studied locally, they become state estimation problems, and the relevant theory is that
of dynamic systems and Kalman filtering.

The third category of problems concerns unknown functions of more than one variable. The images taken
by a moving camera, for instance, are functions of time and space, and so are the unknown quantities that
one can compute from the images, such as the distance of points in the world from the camera. This leads
to Partial Differential equations (PDEs), or to extensions of the calculus of variations. In this class, we will
see how PDEs arise, and how they can be solved numerically.
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1.4 Books

The class will be based on these lecture notes, and additional notes handed out when necessary. Other useful
references include the following.

• R. Courant and D. Hilbert, Methods of Mathematical Physics, Volume I and II, John Wiley and Sons,
1989.

• D. A. Danielson, Vectors and Tensors in Engineering and Physics, Addison-Wesley, 1992.

• A. Gelb et al., Applied Optimal Estimation, MIT Press, 1974.

• P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1993.

• G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition, Johns Hopkins University Press,
1989, or 3rd edition, 1997.

• W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd
Edition, Cambridge University Press, 1992.

• G. Strang, Introduction to Applied Mathematics, Wellesley- Cambridge Press, 1986.

• A. E. Taylor and W. R. Mann, Advanced Calculus, 3rd Edition, John Wiley and Sons, 1983.



Chapter 2

Algebraic Linear Systems

An algebraic linear system is a set of m equations in n unknown scalars, which appear linearly. Without loss
of generality, an algebraic linear system can be written as follows:

Ax = b (2.1)

where A is an m×n matrix, x is an n-dimensional vector that collects all of the unknowns, and b is a known
vector of dimension m. In this chapter, we only consider the cases in which the entries of A, b, and x are
real numbers.

Two reasons are usually offered for the importance of linear systems. The first is apparently deep, and
refers to the principle of superposition of effects. For instance, in dynamics, superposition of forces states
that if force f1 produces acceleration a1 (both possibly vectors) and force f2 produces acceleration a2, then
the combined force f1 + αf2 produces acceleration a1 + αa2. This is Newton’s second law of dynamics,
although in a formulation less common than the equivalent f = ma. Because Newton’s laws are at the basis
of the entire edifice of Mechanics, linearity appears to be a fundamental principle of Nature. However, like
all physical laws, Newton’s second law is an abstraction, and ignores viscosity, friction, turbulence, and other
nonlinear effects. Linearity, then, is perhaps more in the physicist’s mind than in reality: if nonlinear effects
can be ignored, physical phenomena are linear!

A more pragmatic explanation is that linear systems are the only ones we know how to solve in general.
This argument, which is apparently more shallow than the previous one, is actually rather important. Here
is why. Given two algebraic equations in two variables,

f(x, y) = 0
g(x, y) = 0 ,

we can eliminate, say, y and obtain the equivalent system

F (x) = 0
y = h(x) .

Thus, the original system is as hard to solve as it is to find the roots of the polynomial F in a single variable.
Unfortunately, if f and g have degrees df and dg, the polynomial F has generically degree dfdg.

Thus, the degree of a system of equations is, roughly speaking, the product of the degrees. For instance,
a system of m quadratic equations corresponds to a polynomial of degree 2m. The only case in which the
exponential is harmless is when its base is 1, that is, when the system is linear.

In this chapter, we first review a few basic facts about vectors in sections 2.1 through 2.4. More specifically,
we develop enough language to talk about linear systems and their solutions in geometric terms. In contrast
with the promise made in the introduction, these sections contain quite a few proofs. This is because a large
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8 CHAPTER 2. ALGEBRAIC LINEAR SYSTEMS

part of the course material is based on these notions, so we want to make sure that the foundations are
sound. In addition, some of the proofs lead to useful algorithms, and some others prove rather surprising
facts. Then, in section 2.5, we characterize the solutions of linear algebraic systems.

2.1 Linear (In)dependence

Given n vectors a1, . . . , an and n real numbers x1, . . . , xn, the vector

b =
n∑

j=1

xjaj (2.2)

is said to be a linear combination of a1, . . . ,an with coefficients x1, . . . , xn.
The vectors a1, . . . ,an are linearly dependent if they admit the null vector as a nonzero linear combination.

In other words, they are linearly dependent if there is a set of coefficients x1, . . . , xn, not all of which are
zero, such that

n∑

j=1

xjaj = 0 . (2.3)

For later reference, it is useful to rewrite the last two equalities in a different form. Equation (2.2) is the
same as

Ax = b (2.4)

and equation (2.3) is the same as
Ax = 0 (2.5)

where

A =
[

a1 · · · an

]
, x =




x1

...
xn


 , b =




b1

...
bm


 .

If you are not convinced of these equivalences, take the time to write out the components of each expression
for a small example. This is important. Make sure that you are comfortable with this.

Thus, the columns of a matrix A are dependent if there is a nonzero solution to the homogeneous system
(2.5). Vectors that are not dependent are independent.

Theorem 2.1.1 The vectors a1, . . . ,an are linearly dependent iff1 at least one of them is a linear combina-
tion of the others.

Proof. In one direction, dependency means that there is a nonzero vector x such that

n∑

j=1

xjaj = 0 .

Let xk be nonzero for some k. We have

n∑

j=1

xjaj = xkak +
n∑

j=1, j 6=k

xjaj = 0

so that

ak = −
n∑

j=1, j 6=k

xj

xk
aj (2.6)

1“iff” means “if and only if.”
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as desired. The converse is proven similarly: if

ak =
n∑

j=1, j 6=k

xjaj

for some k, then
n∑

j=1

xjaj = 0

by letting xk = −1 (so that x is nonzero). ∆ 2

We can make the first part of the proof above even more specific, and state the following

Lemma 2.1.2 If n nonzero vectors a1, . . . ,an are linearly dependent then at least one of them is a linear
combination of the ones that precede it.

Proof. Just let k be the last of the nonzero xj . Then xj = 0 for j > k in (2.6), which then becomes

ak =
n∑

j<k

xj

xk
aj

as desired. ∆

2.2 Basis

A set a1, . . . ,an is said to be a basis for a set B of vectors if the aj are linearly independent and every vector
in B can be written as a linear combination of them. B is said to be a vector space if it contains all the
linear combinations of its basis vectors. In particular, this implies that every linear space contains the zero
vector. The basis vectors are said to span the vector space.

Theorem 2.2.1 Given a vector b in the vector space B and a basis a1, . . . ,an for B, the coefficients
x1, . . . , xn such that

b =
n∑

j=1

xjaj

are uniquely determined.

Proof. Let also

b =
n∑

j=1

x′jaj .

Then,

0 = b− b =
n∑

j=1

xjaj −
n∑

j=1

x′jaj =
n∑

j=1

(xj − x′j)aj

but because the aj are linearly independent, this is possible only when xj − x′j = 0 for every j. ∆

The previous theorem is a very important result. An equivalent formulation is the following:
2This symbol marks the end of a proof.
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If the columns a1, . . . ,an of A are linearly independent and the system Ax = b admits a solution,
then the solution is unique.

Pause for a minute to verify that this formulation is equivalent.

Theorem 2.2.2 Two different bases for the same vector space B have the same number of vectors.

Proof. Let a1, . . . , an and a′1, . . . ,a
′
n′ be two different bases for B. Then each a′j is in B (why?), and can

therefore be written as a linear combination of a1, . . . , an. Consequently, the vectors of the set

G = a′1,a1, . . . ,an

must be linearly dependent. We call a set of vectors that contains a basis for B a generating set for B. Thus,
G is a generating set for B.

The rest of the proof now proceeds as follows: we keep removing a vectors from G and replacing them
with a′ vectors in such a way as to keep G a generating set for B. Then we show that we cannot run out of
a vectors before we run out of a′ vectors, which proves that n ≥ n′. We then switch the roles of a and a′

vectors to conclude that n′ ≥ n. This proves that n = n′.
From lemma 2.1.2, one of the vectors in G is a linear combination of those preceding it. This vector

cannot be a′1, since it has no other vectors preceding it. So it must be one of the aj vectors. Removing the
latter keeps G a generating set, since the removed vector depends on the others. Now we can add a′2 to G,
writing it right after a′1:

G = a′1,a
′
2, . . . .

G is still a generating set for B.
Let us continue this procedure until we run out of either a vectors to remove or a′ vectors to add. The

a vectors cannot run out first. Suppose in fact per absurdum that G is now made only of a′ vectors, and
that there are still left-over a′ vectors that have not been put into G. Since the a′s form a basis, they are
mutually linearly independent. Since B is a vector space, all the a′s are in B. But then G cannot be a
generating set, since the vectors in it cannot generate the left-over a′s, which are independent of those in G.
This is absurd, because at every step we have made sure that G remains a generating set. Consequently, we
must run out of a′s first (or simultaneously with the last a). That is, n ≥ n′.

Now we can repeat the whole procedure with the roles of a vectors and a′ vectors exchanged. This shows
that n′ ≥ n, and the two results together imply that n = n′. ∆

A consequence of this theorem is that any basis for Rm has m vectors. In fact, the basis of elementary
vectors

ej = jth column of the m×m identity matrix

is clearly a basis for Rm, since any vector

b =




b1

...
bm




can be written as

b =
m∑

j=1

bjej

and the ej are clearly independent. Since this elementary basis has m vectors, theorem 2.2.2 implies that
any other basis for Rm has m vectors.

Another consequence of theorem 2.2.2 is that n vectors of dimension m < n are bound to be dependent,
since any basis for Rm can only have m vectors.

Since all bases for a space have the same number of vectors, it makes sense to define the dimension of a
space as the number of vectors in any of its bases.
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2.3 Inner Product and Orthogonality

In this section we establish the geometric meaning of the algebraic notions of norm, inner product, projection,
and orthogonality. The fundamental geometric fact that is assumed to be known is the law of cosines: given
a triangle with sides a, b, c (see figure 2.1), we have

a2 = b2 + c2 − 2bc cos θ

where θ is the angle between the sides of length b and c. A special case of this law is Pythagoras’ theorem,
obtained when θ = ±π/2.

θ

c

b

a

Figure 2.1: The law of cosines states that a2 = b2 + c2 − 2bc cos θ.

In the previous section we saw that any vector in Rm can be written as the linear combination

b =
m∑

j=1

bjej (2.7)

of the elementary vectors that point along the coordinate axes. The length of these elementary vectors is
clearly one, because each of them goes from the origin to the unit point of one of the axes. Also, any two of
these vectors form a 90-degree angle, because the coordinate axes are orthogonal by construction. How long
is b? From equation (2.7) we obtain

b = b1e1 +
m∑

j=2

bjej

and the two vectors b1e1 and
∑m

j=2 bjej are orthogonal. By Pythagoras’ theorem, the square of the length
‖b‖ of b is

‖b‖2 = b2
1 + ‖

m∑

j=2

bjej‖2 .

Pythagoras’ theorem can now be applied again to the last sum by singling out its first term b2e2, and so
forth. In conclusion,

‖b‖2 =
m∑

j=1

b2
j .

This result extends Pythagoras’ theorem to m dimensions.
If we define the inner product of two m-dimensional vectors as follows:

bT c =
m∑

j=1

bjcj ,

then
‖b‖2 = bT b . (2.8)

Thus, the squared length of a vector is the inner product of the vector with itself. Here and elsewhere,
vectors are column vectors by default, and the symbol T makes them into row vectors.
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Theorem 2.3.1

bT c = ‖b‖ ‖c‖ cos θ

where θ is the angle between b and c.

Proof. The law of cosines applied to the triangle with sides ‖b‖, ‖c‖, and ‖b− c‖ yields

‖b− c‖2 = ‖b‖2 + ‖c‖2 − 2‖b‖ ‖c‖ cos θ

and from equation (2.8) we obtain

bT b + cT c− 2bT c = bT b + cT c− 2‖b‖ ‖c‖ cos θ .

Canceling equal terms and dividing by -2 yields the desired result. ∆

Corollary 2.3.2 Two nonzero vectors b and c in Rm are mutually orthogonal iff bT c = 0.

Proof. When θ = ±π/2, the previous theorem yields bT c = 0. ∆

Given two vectors b and c applied to the origin, the projection of b onto c is the vector from the origin
to the point p on the line through c that is nearest to the endpoint of b. See figure 2.2.

p

b

c

Figure 2.2: The vector from the origin to point p is the projection of b onto c. The line from the endpoint
of b to p is orthogonal to c.

Theorem 2.3.3 The projection of b onto c is the vector

p = Pcb

where Pc is the following square matrix:

Pc =
ccT

cT c
.

Proof. Since by definition point p is on the line through c, the projection vector p has the form p = ac,
where a is some real number. From elementary geometry, the line between p and the endpoint of b is shortest
when it is orthogonal to c:

cT (b− ac) = 0



2.4. ORTHOGONAL SUBSPACES AND THE RANK OF A MATRIX 13

which yields

a =
cT b
cT c

so that

p = ac = c a =
ccT

cT c
b

as advertised. ∆

2.4 Orthogonal Subspaces and the Rank of a Matrix

Linear transformations map spaces into spaces. It is important to understand exactly what is being mapped
into what in order to determine whether a linear system has solutions, and if so how many. This section
introduces the notion of orthogonality between spaces, defines the null space and range of a matrix, and
its rank. With these tools, we will be able to characterize the solutions to a linear system in section 2.5.
In the process, we also introduce a useful procedure (Gram-Schmidt) for orthonormalizing a set of linearly
independent vectors.

Two vector spaces A and B are said to be orthogonal to one another when every vector in A is orthogonal
to every vector in B. If vector space A is a subspace of Rm for some m, then the orthogonal complement of
A is the set of all vectors in Rm that are orthogonal to all the vectors in A.

Notice that complement and orthogonal complement are very different notions. For instance, the com-
plement of the xy plane in R3 is all of R3 except the xy plane, while the orthogonal complement of the xy
plane is the z axis.

Theorem 2.4.1 Any basis a1, . . . , an for a subspace A of Rm can be extended into a basis for Rm by adding
m− n vectors an+1, . . . ,am.

Proof. If n = m we are done. If n < m, the given basis cannot generate all of Rm, so there must be
a vector, call it an+1, that is linearly independent of a1, . . . ,an. This argument can be repeated until the
basis spans all of Rm, that is, until m = n. ∆

Theorem 2.4.2 (Gram-Schmidt) Given n vectors a1, . . . ,an, the following construction

r = 0
for j = 1 to n

a′j = aj −
∑r

l=1(q
T
l aj)ql

if ‖a′j‖ 6= 0
r = r + 1

qr = a′j
‖a′

j
‖

end
end

yields a set of orthonormal 3 vectors q1 . . . ,qr that span the same space as a1, . . . ,an.

3Orthonormal means orthogonal and with unit norm.
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Proof. We first prove by induction on r that the vectors qr, are mutually orthonormal. If r = 1, there
is little to prove. The normalization in the above procedure ensures that q1 has unit norm. Let us now
assume that the procedure above has been performed a number j− 1 of times sufficient to find r− 1 vectors
q1, . . . ,qm−1, and that these vectors are orthonormal (the inductive assumption). Then for any i < r we
have

qT
i a′j = qT

i aj −
r∑

l=1

(qT
l aj)qT

i ql = 0

because the term qT
i aj cancels the i-th term (qT

i aj)qT
i qi of the sum (remember that qT

i qi = 1), and
the inner products qT

i ql are zero by the inductive assumption. Because of the explicit normalization step
qr = a′j/‖a′j‖, the vector qr, if computed, has unit norm.

Finally, we notice that the vectors qj span the same space as the ajs, because the former are linear com-
binations of the latter, are orthonormal (and therefore independent), and equal in number to the number of
linearly independent vectors in a1, . . . ,an. ∆

Theorem 2.4.3 If A is a subspace of Rm and A⊥ is the orthogonal complement of A in Rm, then

dim(A) + dim(A⊥) = m .

Proof. Let a1, . . . ,an be a basis for A. Extend this basis to a basis a1, . . . ,am for Rm (theorem 2.4.1).
Orthonormalize this basis by the Gram-Schmidt procedure (theorem 2.4.2) to obtain q1, . . . ,qm. By con-
struction, q1, . . . ,qn span A. Because the new basis is orthonormal, all vectors generated by qn+1, . . . ,qm

are orthogonal to all vectors generated by q1, . . . ,qn, so there is a space of dimension at least m− n that is
orthogonal to A. On the other hand, the dimension of this orthogonal space cannot exceed m− n, because
otherwise we would have more than m vectors in a basis for Rm. Thus, the dimension of the orthogonal
space A⊥ is exactly m− n, as promised. ∆

We can now start to talk about matrices in terms of the subspaces associated with them. The null space
null(A) of an m × n matrix A is the space of all n-dimensional vectors that are orthogonal to the rows of
A. The range of A is the space of all m-dimensional vectors that are generated by the columns of A. Thus,
x ∈ null(A) iff Ax = 0, and b ∈ range(A) iff Ax = b for some x.

From theorem 2.4.3, if null(A) has dimension h, then the space generated by the rows of A has dimension
r = n− h, that is, A has n− h linearly independent rows. It is not obvious that the space generated by the
columns of A has also dimension r = n− h. This is the point of the following theorem.

Theorem 2.4.4 The number r of linearly independent columns of any m×n matrix A is equal to the number
of its independent rows, and

r = n− h

where h = dim(null(A)).

Proof. We have already proven that the number of independent rows is n − h. Now we show that the
number of independent columns is also n− h, by constructing a basis for range(A).

Let v1, . . . ,vh be a basis for null(A), and extend this basis (theorem 2.4.1) into a basis v1, . . . ,vn for
Rn. Then we can show that the n− h vectors Avh+1, . . . , Avn are a basis for the range of A.

First, these n− h vectors generate the range of A. In fact, given an arbitrary vector b ∈ range(A), there
must be a linear combination of the columns of A that is equal to b. In symbols, there is an n-tuple x such
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that Ax = b. The n-tuple x itself, being an element of Rn, must be some linear combination of v1, . . . ,vn,
our basis for Rn:

x =
n∑

j=1

cjvj .

Thus,

b = Ax = A

n∑

j=1

cjvj =
n∑

j=1

cjAvj =
n∑

j=h+1

cjAvj

since v1, . . . ,vh span null(A), so that Avj = 0 for j = 1, . . . , h. This proves that the n − h vectors
Avh+1, . . . , Avn generate range(A).

Second, we prove that the n−h vectors Avh+1, . . . , Avn are linearly independent. Suppose, per absurdum,
that they are not. Then there exist numbers xh+1, . . . , xn, not all zero, such that

n∑

j=h+1

xjAvj = 0

so that

A

n∑

j=h+1

xjvj = 0 .

But then the vector
∑n

j=h+1 xjvj is in the null space of A. Since the vectors v1, . . . ,vh are a basis for
null(A), there must exist coefficients x1, . . . , xh such that

n∑

j=h+1

xjvj =
h∑

j=1

xjvj ,

in conflict with the assumption that the vectors v1, . . . ,vn are linearly independent. ∆

Thanks to this theorem, we can define the rank of A to be equivalently the number of linearly independent
columns or of linearly independent rows of A:

rank(A) = dim(range(A)) = n− dim(null(A)) .

2.5 The Solutions of a Linear System

Thanks to the results of the previous sections, we now have a complete picture of the four spaces associated
with an m× n matrix A of rank r and null-space dimension h:

range(A); dimension r = rank(A)
null(A); dimension h
range(A)⊥; dimension m− r
null(A)⊥; dimension r = n− h .

The space range(A)⊥ is called the left nullspace of the matrix, and null(A)⊥ is called the rowspace of A.
A frequently used synonym for “range” is column space. It should be obvious from the meaning of these
spaces that

null(A)⊥ = range(AT )
range(A)⊥ = null(AT )

where AT is the transpose of A, defined as the matrix obtained by exchanging the rows of A with its columns.
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Theorem 2.5.1 The matrix A transforms a vector x in its null space into the zero vector, and an arbitrary
vector x into a vector in range(A).

This allows characterizing the set of solutions to linear system as follows. Let

Ax = b

be an m× n system (m can be less than, equal to, or greater than n). Also, let

r = rank(A)

be the number of linearly independent rows or columns of A. Then,

b 6∈ range(A) ⇒ no solutions
b ∈ range(A) ⇒ ∞n−r solutions

with the convention that ∞0 = 1. Here, ∞k is the cardinality of a k-dimensional vector space.
In the first case above, there can be no linear combination of the columns (no x vector) that gives b, and

the system is said to be incompatible. In the second, compatible case, three possibilities occur, depending on
the relative sizes of r,m, n:

• When r = n = m, the system is invertible. This means that there is exactly one x that satisfies the
system, since the columns of A span all of Rn. Notice that invertibility depends only on A, not on b.

• When r = n and m > n, the system is redundant. There are more equations than unknowns, but since
b is in the range of A there is a linear combination of the columns (a vector x) that produces b. In
other words, the equations are compatible, and exactly one solution exists. 4

• When r < n the system is underdetermined. This means that the null space is nontrivial (i.e., it has
dimension h > 0), and there is a space of dimension h = n− r of vectors x such that Ax = 0. Since b
is assumed to be in the range of A, there are solutions x to Ax = b, but then for any y ∈ null(A) also
x + y is a solution:

Ax = b , Ay = 0 ⇒ A(x + y) = b

and this generates the ∞h = ∞n−r solutions mentioned above.

Notice that if r = n then n cannot possibly exceed m, so the first two cases exhaust the possibilities for
r = n. Also, r cannot exceed either m or n. All the cases are summarized in figure 2.3.

Of course, listing all possibilities does not provide an operational method for determining the type of
linear system for a given pair A,b. Gaussian elimination, and particularly its version called reduction to
echelon form is such a method, and is summarized in the next section.

2.6 Gaussian Elimination

Gaussian elimination is an important technique for solving linear systems. In addition to always yielding a
solution, no matter whether the system is invertible or not, it also allows determining the rank of a matrix.

Other solution techniques exist for linear systems. Most notably, iterative methods solve systems in a
time that depends on the accuracy required, while direct methods, like Gaussian elimination, are done in a
finite amount of time that can be bounded given only the size of a matrix. Which method to use depends on

4Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than unknowns.”
The case r < n < m is possible, has more equations (m) than unknowns (n), admits a solution if b ∈ range(A), but is
called “underdetermined” because there are fewer (r) independent equations than there are unknowns (see next item). Thus,
“redundant” means “with exactly one solution and with more equations than unknowns.”
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yes no

yes no

yes no

underdetermined

redundantinvertible

b in range(A)

r = n

m = n

incompatible

Figure 2.3: Types of linear systems.

the size and structure (e.g., sparsity) of the matrix, whether more information is required about the matrix
of the system, and on numerical considerations. More on this in chapter ??.

Consider the m× n system
Ax = b (2.9)

which can be square or rectangular, invertible, incompatible, redundant, or underdetermined. In short,
there are no restrictions on the system. Gaussian elimination replaces the rows of this system by linear
combinations of the rows themselves until A is changed into a matrix U that is in the so-called echelon form.
This means that

• Nonzero rows precede rows with all zeros. The first nonzero entry, if any, of a row, is called a pivot.

• Below each pivot is a column of zeros.

• Each pivot lies to the right of the pivot in the row above.

The same operations are applied to the rows of A and to those of b, which is transformed to a new vector
c, so equality is preserved and solving the final system yields the same solution as solving the original one.

Once the system is transformed into echelon form, we compute the solution x by backsubstitution, that
is, by solving the transformed system

Ux = c .

2.6.1 Reduction to Echelon Form

The matrix A is reduced to echelon form by a process in m− 1 steps. The first step is applied to U (1) = A
and c(1) = b. The k-th step is applied to rows k, . . . , m of U (k) and c(k) and produces U (k+1) and c(k+1).
The last step produces U (m) = U and c(m) = c. Initially, the “pivot column index” p is set to one. Here is
step k, where uij denotes entry i, j of U (k):

Skip no-pivot columns If uip is zero for every i = k, . . . , m, then increment p by 1. If p exceeds n stop.5

Row exchange Now p ≤ n and uip is nonzero for some k ≤ i ≤ m. Let l be one such value of i6. If l 6= k,
exchange rows l and k of U (k) and of c(k).

5“Stop” means that the entire algorithm is finished.
6Different ways of selecting l here lead to different numerical properties of the algorithm. Selecting the largest entry in the

column leads to better round-off properties.
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Triangularization The new entry ukp is nonzero, and is called the pivot. For i = k + 1, . . . ,m, subtract
row k of U (k) multiplied by uip/ukp from row i of U (k), and subtract entry k of c(k) multiplied by
uip/ukp from entry i of c(k). This zeros all the entries in the column below the pivot, and preserves
the equality of left- and right-hand side.

When this process is finished, U is in echelon form. In particular, if the matrix is square and if all columns
have a pivot, then U is upper-triangular.

2.6.2 Backsubstitution

A system
Ux = c (2.10)

in echelon form is easily solved for x. To see this, we first solve the system symbolically, leaving undetermined
variables specified by their name, and then transform this solution procedure into one that can be more readily
implemented numerically.

Let r be the index of the last nonzero row of U . Since this is the number of independent rows of U , r is
the rank of U . It is also the rank of A, because A and U admit exactly the same solutions and are equal in
size. If r < m, the last m− r equations yield a subsystem of the following form:

0




xr+1

...
xm


 =




cr+1

...
cm


 .

Let us call this the residual subsystem. If on the other hand r = m (obviously r cannot exceed m), there is
no residual subsystem.

If there is a residual system (i.e., r < m) and some of cr+1, . . . , cm are nonzero, then the equations
corresponding to these nonzero entries are incompatible, because they are of the form 0 = ci with ci 6= 0.
Since no vector x can satisfy these equations, the linear system admits no solutions: it is incompatible.

Let us now assume that either there is no residual system, or if there is one it is compatible, that is,
cr+1 = . . . = cm = 0. Then, solutions exist, and they can be determined by backsubstitution, that is, by
solving the equations starting from the last one and replacing the result in the equations higher up.

Backsubstitutions works as follows. First, remove the residual system, if any. We are left with an r × n
system. In this system, call the variables corresponding to the r columns with pivots the basic variables,
and call the other n − r the free variables. Say that the pivot columns are j1, . . . , jr. Then symbolic
backsubstitution consists of the following sequence:

for i = r downto 1

xji =
1

uiji


ci −

n∑

l=ji+1

uilxl




end

This is called symbolic backsubstitution because no numerical values are assigned to free variables. Whenever
they appear in the expressions for the basic variables, free variables are specified by name rather than by
value. The final result is a solution with as many free parameters as there are free variables. Since any value
given to the free variables leaves the equality of system (2.10) satisfied, the presence of free variables leads
to an infinity of solutions.

When solving a system in echelon form numerically, however, it is inconvenient to carry around nonnu-
meric symbol names (the free variables). Here is an equivalent solution procedure that makes this unneces-
sary. The solution obtained by backsubstitution is an affine function7 of the free variables, and can therefore

7An affine function is a linear function plus a constant.
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be written in the form
x = v0 + xj1v1 + . . . + xjn−r

vn−r (2.11)

where the xji
are the free variables. The vector v0 is the solution when all free variables are zero, and can

therefore be obtained by replacing each free variable by zero during backsubstitution. Similarly, the vector
vi for i = 1, . . . , n− r can be obtained by solving the homogeneous system

Ux = 0

with xji
= 1 and all other free variables equal to zero. In conclusion, the general solution can be obtained

by running backsubstitution n− r + 1 times, once for the nonhomogeneous system, and n− r times for the
homogeneous system, with suitable values of the free variables. This yields the solution in the form (2.11).

Notice that the vectors v1, . . . ,vn−r form a basis for the null space of U , and therefore of A.

2.6.3 An Example

An example will clarify both the reduction to echelon form and backsubstitution. Consider the system

Ax = b

where

U (1) = A =




1 3 3 2
2 6 9 5
−1 −3 3 0


 , c(1) = b =




1
5
5


 .

Reduction to echelon form transforms A and b as follows. In the first step (k = 1), there are no no-pivot
columns, so the pivot column index p stays at 1. Throughout this example, we choose a trivial pivot selection
rule: we pick the first nonzero entry at or below row k in the pivot column. For k = 1, this means that
u

(1)
11 = a11 = 1 is the pivot. In other words, no row exchange is necessary.8 The triangularization step

subtracts row 1 multiplied by 2/1 from row 2, and subtracts row 1 multiplied by -1/1 from row 3. When
applied to both U (1) and c(1) this yields

U (2) =




1 3 3 2
0 0 3 1
0 0 6 2


 , c(2) =




1
3
6


 .

Notice that now (k = 2) the entries u
(2)
ip are zero for i = 2, 3, for both p = 1 and p = 2, so p is set

to 3: the second pivot column is column 3, and u
(2)
23 is nonzero, so no row exchange is necessary. In the

triangularization step, row 2 multiplied by 6/3 is subtracted from row 3 for both U (2) and c(2) to yield

U = U (3) =




1 3 3 2
0 0 3 1
0 0 0 0


 , c = c(3) =




1
3
0


 .

There is one zero row in the left-hand side, and the rank of U and that of A is r = 2, the number of
nonzero rows. The residual system is 0 = 0 (compatible), and r < n = 4, so the system is underdetermined,
with ∞n−r = ∞2 solutions.

In symbolic backsubstitution, the residual subsystem is first deleted. This yields the reduced system
[

1 3 3 2
0 0 3 1

]
x =

[
1
3

]
(2.12)

8Selecting the largest entry in the column at or below row k is a frequent choice, and this would have caused rows 1 and 2
to be switched.
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The basic variables are x1 and x3, corresponding to the columns with pivots. The other two variables, x2

and x4, are free. Backsubstitution applied first to row 2 and then to row 1 yields the following expressions
for the pivot variables:

x3 =
1

u23
(c2 − u24x4) =

1
3
(3− x4) = 1− 1

3
x4

x1 =
1

u11
(c1 − u12x2 − u13x3 − u14x4) =

1
1
(1− 3x2 − 3x3 − 2x4)

= 1− 3x2 − (3− x4)− 2x4 = −2− 3x2 − x4

so the general solution is

x =




−2− 3x2 − x4

x2

1− 1
3x4

x4


 =




−2
0
1
0


 + x2




−3
1
0
0


 + x4




−1
0
− 1

3
1


 .

This same solution can be found by the numerical backsubstitution method as follows. Solving the
reduced system (2.12) with x2 = x4 = 0 by numerical backsubstitution yields

x3 =
1
3
(3− 1 · 0) = 1

x1 =
1
1
(1− 3 · 0− 3 · 1− 2 · 0) = −2

so that

v0 =




−2
0
1
0


 .

Then v1 is found by solving the nonzero part (first two rows) of Ux = 0 with x2 = 1 and x4 = 0 to obtain

x3 =
1
3
(−1 · 0) = 0

x1 =
1
1
(−3 · 1− 3 · 0− 2 · 0) = −3

so that

v1 =




−3
1
0
0


 .

Finally, solving the nonzero part of Ux = 0 with x2 = 0 and x4 = 1 leads to

x3 =
1
3
(−1 · 1) = −1

3

x1 =
1
1
(−3 · 0− 3 ·

(
−1

3

)
− 2 · 1) = −1

so that

v2 =




−1
0
− 1

3
1



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and

x = v0 + x2v1 + x4v2 =




−2
0
1
0


 + x2




−3
1
0
0


 + x4




−1
0
− 1

3
1




just as before.

As mentioned at the beginning of this section, Gaussian elimination is a direct method, in the sense that
the answer can be found in a number of steps that depends only on the size of the matrix A. In the next
chapter, we study a different method, based on the so-called the Singular Value Decomposition (SVD). This
is an iterative method, meaning that an exact solution usually requires an infinite number of steps, and the
number of steps necessary to find an approximate solution depends on the desired number of correct digits.

This state of affairs would seem to favor Gaussian elimination over the SVD. However, the latter yields
a much more complete answer, since it computes bases for all the four spaces mentioned above, as well as
a set of quantities, called the singular values, which provide great insight into the behavior of the linear
transformation represented by the matrix A. Singular values also allow defining a notion of approximate
rank which is very useful in a large number of applications. It also allows finding approximate solutions
when the linear system in question is incompatible. In addition, for reasons that will become apparent in
the next chapter, the computation of the SVD is numerically well behaved, much more so than Gaussian
elimination. Finally, very efficient algorithms for the SVD exist. For instance, on a regular workstation,
one can compute several thousand SVDs of 5 × 5 matrices in one second. More generally, the number of
floating point operations necessary to compute the SVD of an m × n matrix is amn2 + bn3 where a, b are
small numbers that depend on the details of the algorithm.
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Chapter 3

The Singular Value Decomposition

In section 2, we saw that a matrix transforms vectors in its domain into vectors in its range (column space),
and vectors in its null space into the zero vector. No nonzero vector is mapped into the left null space,
that is, into the orthogonal complement of the range. In this section, we make this statement more specific
by showing how unit vectors1 in the rowspace are transformed by matrices. This describes the action that
a matrix has on the magnitudes of vectors as well. To this end, we first need to introduce the notion of
orthogonal matrices, and interpret them geometrically as transformations between systems of orthonormal
coordinates. We do this in section 3.1. Then, in section 3.2, we use these new concepts to introduce the
all-important concept of the Singular Value Decomposition (SVD). The chapter concludes with some basic
applications and examples.

3.1 Orthogonal Matrices

Let S be an n-dimensional subspace of Rm (so that we necessarily have n ≤ m), and let v1, . . . ,vn be
an orthonormal basis for S. Consider a point P in S. If the coordinates of P in Rm are collected in an
m-dimensional vector

p =




p1

...
pm


 ,

and since P is in S, it must be possible to write p as a linear combination of the vjs. In other words, there
must exist coefficients

q =




q1

...
qn




such that
p = q1v1 + . . . + qnvn = V q

where
V =

[
v1 · · · vn

]

is an m× n matrix that collects the basis for S as its columns. Then for any i = 1, . . . , n we have

vT
i p = vT

i

n∑

j=1

qjvj =
n∑

j=1

qjvT
i vj = qi ,

since the vj are orthonormal. This is important, and may need emphasis:
1Vectors with unit norm.

23
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If

p =
n∑

j=1

qjvj

and the vectors of the basis v1, . . . ,vn are orthonormal, then the coefficients qj are the signed
magnitudes of the projections of p onto the basis vectors:

qj = vT
j p . (3.1)

In matrix form,
q = V T p . (3.2)

Also, we can collect the n2 equations

vT
i vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V T V = I (3.3)

where I is the n×n identity matrix. A matrix V that satisfies equation (3.3) is said to be orthogonal. Thus,
a matrix is orthogonal if its columns are orthonormal. Since the left inverse of a matrix V is defined as the
matrix L such that

LV = I , (3.4)

comparison with equation (3.3) shows that the left inverse of an orthogonal matrix V exists, and is equal to
the transpose of V .

Of course, this argument requires V to be full rank, so that the solution L to equation (3.4) is unique.
However, V is certainly full rank, because it is made of orthonormal columns.

Notice that V R = I cannot possibly have a solution when m > n, because the m ×m identity matrix
has m linearly independent 2 columns, while the columns of V R are linear combinations of the n columns
of V , so V R can have at most n linearly independent columns.

Of course, this result is still valid when V is m ×m and has orthonormal columns, since equation (3.3)
still holds. However, for square, full-rank matrices (r = m = n), the distinction between left and right
inverse vanishes. In fact, suppose that there exist matrices L and R such that LV = I and V R = I. Then
L = L(V R) = (LV )R = R, so the left and the right inverse are the same. Thus, for square orthogonal
matrices, V T is both the left and the right inverse:

V T V = V V T = I ,

and V T is then simply said to be the inverse of V :

V T = V −1 .

Since the matrix V V T contains the inner products between the rows of V (just as V T V is formed by the
inner products of its columns), the argument above shows that the rows of a square orthogonal matrix are
orthonormal as well. We can summarize this discussion as follows:

Theorem 3.1.1 The left inverse of an orthogonal m × n matrix V with m ≥ n exists and is equal to the
transpose of V :

V T V = I .

In particular, if m = n, the matrix V −1 = V T is also the right inverse of V :

V square ⇒ V −1V = V T V = V V −1 = V V T = I .

2Nay, orthonormal.
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Sometimes, when m = n, the geometric interpretation of equation (3.2) causes confusion, because two
interpretations of it are possible. In the interpretation given above, the point P remains the same, and the
underlying reference frame is changed from the elementary vectors ej (that is, from the columns of I) to the
vectors vj (that is, to the columns of V ). Alternatively, equation (3.2) can be seen as a transformation, in
a fixed reference system, of point P with coordinates p into a different point Q with coordinates q. This,
however, is relativity, and should not be surprising: If you spin clockwise on your feet, or if you stand still
and the whole universe spins counterclockwise around you, the result is the same.3

Consistently with either of these geometric interpretations, we have the following result:

Theorem 3.1.2 The norm of a vector x is not changed by multiplication by an orthogonal matrix V :

‖V x‖ = ‖x‖ .

Proof.
‖V x‖2 = xT V T V x = xT x = ‖x‖2 .

∆

We conclude this section with an obvious but useful consequence of orthogonality. In section 2.3 we
defined the projection p of a vector b onto another vector c as the point on the line through c that is closest
to b. This notion of projection can be extended from lines to vector spaces by the following definition: The
projection p of a point b ∈ Rn onto a subspace C is the point in C that is closest to b.

Also, for unit vectors c, the projection matrix is ccT (theorem 2.3.3), and the vector b−p is orthogonal
to c. An analogous result holds for subspace projection, as the following theorem shows.

Theorem 3.1.3 Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto range(U).
Furthermore, the difference vector between b and its projection p onto range(U) is orthogonal to range(U):

UT (b− p) = 0 .

Proof. A point p in range(U) is a linear combination of the columns of U :

p = Ux

where x is the vector of coefficients (as many coefficients as there are columns in U). The squared distance
between b and p is

‖b− p‖2 = (b− p)T (b− p) = bT b + pT p− 2bT p = bT b + xT UT Ux− 2bT Ux .

Because of orthogonality, UT U is the identity matrix, so

‖b− p‖2 = bT b + xT x− 2bT Ux .

The derivative of this squared distance with respect to x is the vector

2x− 2UT b
3At least geometrically. One solution may be more efficient than the other in other ways.
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1 1

b

Figure 3.1: The matrix in equation (3.5) maps a circle on the plane into an ellipse in space. The two small
boxes are corresponding points.

which is zero iff
x = UT b ,

that is, when
p = Ux = UUT b

as promised.
For this value of p the difference vector b− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUT b) = UT b− UT b = 0 .

∆

3.2 The Singular Value Decomposition

In these notes, we have often used geometric intuition to introduce new concepts, and we have then translated
these into algebraic statements. This approach is successful when geometry is less cumbersome than algebra,
or when geometric intuition provides a strong guiding element. The geometric picture underlying the Singular
Value Decomposition is crisp and useful, so we will use geometric intuition again. Here is the main intuition:

An m × n matrix A of rank r maps the r-dimensional unit hypersphere in rowspace(A) into an
r-dimensional hyperellipse in range(A).

This statement is stronger than saying that A maps rowspace(A) into range(A), because it also describes
what happens to the magnitudes of the vectors: a hypersphere is stretched or compressed into a hyperellipse,
which is a quadratic hypersurface that generalizes the two-dimensional notion of ellipse to an arbitrary
number of dimensions. In three dimensions, the hyperellipse is an ellipsoid, in one dimension it is a pair of
points. In all cases, the hyperellipse in question is centered at the origin.

For instance, the rank-2 matrix

A =
1√
2



√

3
√

3
−3 3
1 1


 (3.5)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 3.1 shows
the map

b = Ax .
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Two diametrically opposite points on the unit circle are mapped into the two endpoints of the major
axis of the ellipse, and two other diametrically opposite points on the unit circle are mapped into the two
endpoints of the minor axis of the ellipse. The lines through these two pairs of points on the unit circle are
always orthogonal. This result can be generalized to any m× n matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cumbersome.
Instead, we will prove it algebraically by first introducing the existence of the SVD and then using the latter
to prove that matrices map hyperspheres into hyperellipses.

Theorem 3.2.1 If A is a real m× n matrix then there exist orthogonal matrices

U =
[

u1 · · · um

] ∈ Rm×m

V =
[

v1 · · · vn

] ∈ Rn×n

such that
UT AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

Proof. Let x and y be unit vectors in Rn and Rm, respectively, and consider the bilinear form

z = yT Ax .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}

is compact, so that the scalar function z(x,y) must achieve a maximum value on S, possibly at more than
one point 4. Let u1, v1 be two unit vectors in Rm and Rn respectively where this maximum is achieved,
and let σ1 be the corresponding value of z:

max
‖x‖=‖y‖=1

yT Ax = uT
1 Av1 = σ1 .

It is easy to see that u1 is parallel to the vector Av1. If this were not the case, their inner product uT
1 Av1

could be increased by rotating u1 towards the direction of Av1, thereby contradicting the fact that uT
1 Av1

is a maximum. Similarly, by noticing that

uT
1 Av1 = vT

1 AT u1

and repeating the argument above, we see that v1 is parallel to AT u1.
By theorems 2.4.1 and 2.4.2, u1 and v1 can be extended into orthonormal bases for Rm and Rn, respec-

tively. Collect these orthonormal basis vectors into orthogonal matrices U1 and V1. Then

UT
1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column of AV1 is Av1 = σ1u1, so the first entry of UT
1 AV1 is uT

1 σ1u1 = σ1, and its other
entries are uT

j Av1 = 0 because Av1 is parallel to u1 and therefore orthogonal, by construction, to u2, . . . ,um.
A similar argument shows that the entries after the first in the first row of S1 are zero: the row vector uT

1 A
is parallel to vT

1 , and therefore orthogonal to v2, . . . ,vn, so that uT
1 Av2 = . . . = uT

1 Avn = 0.

4Actually, at least at two points: if uT
1 Av1 is a maximum, so is (−u1)T A(−v1).



28 CHAPTER 3. THE SINGULAR VALUE DECOMPOSITION

The matrix A1 has one fewer row and column than A. We can repeat the same construction on A1 and
write

UT
2 A1V2 = S2 =

[
σ2 0T

0 A2

]

so that
[

1 0T

0 UT
2

]
UT

1 AV1

[
1 0T

0 V2

]
=




σ1 0 0T

0 σ2 0T

0 0 A2


 .

This procedure can be repeated until Ak vanishes (zero rows or zero columns) to obtain

UT AV = Σ

where UT and V are orthogonal matrices obtained by multiplying together all the orthogonal matrices used
in the procedure, and

Σ = diag(σ1, . . . , σp) .

Since matrices U and V are orthogonal, we can premultiply the matrix product in the theorem by U and
postmultiply it by V T to obtain

A = UΣV T ,

which is the desired result.
It only remains to show that the elements on the diagonal of Σ are nonnegative and arranged in non-

increasing order. To see that σ1 ≥ . . . ≥ σp (where p = min(m,n)), we can observe that the successive
maximization problems that yield σ1, . . . , σp are performed on a sequence of sets each of which contains the
next. To show this, we just need to show that σ2 ≤ σ1, and induction will do the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷT A1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]

= max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT

1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xT v1 = yT u1 = 0

yT Ax ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vector x is equal to the unit vector [0 x̂]T transformed by the orthogonal matrix V1, and is therefore
itself a unit vector. In addition, it is a linear combination of v2, . . . ,vn, and is therefore orthogonal to v1.
A similar argument shows that y is a unit vector orthogonal to u1. Because x and y thus defined belong to
subsets (actually sub-spheres) of the unit spheres in Rn and Rm, we conclude that σ2 ≤ σ1.

The σi are nonnegative because all these maximizations are performed on unit hyper-spheres. The σis are
maxima of the function z(x,y) which always assumes both positive and negative values on any hyper-sphere:
If z(x,y) is negative, then z(−x,y) is positive, and if x is on a hyper-sphere, so is −x. ∆

We can now review the geometric picture in figure 3.1 in light of the singular value decomposition. In
the process, we introduce some nomenclature for the three matrices in the SVD. Consider the map in figure
3.1, represented by equation (3.5), and imagine transforming point x (the small box at x on the unit circle)
into its corresponding point b = Ax (the small box on the ellipse). This transformation can be achieved in
three steps (see figure 3.2):
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1. Write x in the frame of reference of the two vectors v1,v2 on the unit circle that map into the major
axes of the ellipse. There are a few ways to do this, because axis endpoints come in pairs. Just pick
one way, but order v1,v2 so they map into the major and the minor axis, in this order. Let us call
v1,v2 the two right singular vectors of A. The corresponding axis unit vectors u1,u2 on the ellipse are
called left singular vectors. If we define

V =
[

v1 v2

]
,

the new coordinates ξ of x become
ξ = V T x

because V is orthogonal.

2. Transform ξ into its image on a “straight” version of the final ellipse. “Straight” here means that the
axes of the ellipse are aligned with the y1, y2 axes. Otherwise, the “straight” ellipse has the same shape
as the ellipse in figure 3.1. If the lengths of the half-axes of the ellipse are σ1, σ2 (major axis first), the
transformed vector η has coordinates

η = Σξ

where

Σ =




σ1 0
0 σ2

0 0




is a diagonal matrix. The real, nonnegative numbers σ1, σ2 are called the singular values of A.

3. Rotate the reference frame in Rm = R3 so that the “straight” ellipse becomes the ellipse in figure 3.1.
This rotation brings η along, and maps it to b. The components of η are the signed magnitudes of the
projections of b along the unit vectors u1,u2,u3 that identify the axes of the ellipse and the normal
to the plane of the ellipse, so

b = Uη

where the orthogonal matrix
U =

[
u1 u2 u3

]

collects the left singular vectors of A.

We can concatenate these three transformations to obtain

b = UΣV T x

or
A = UΣV T

since this construction works for any point x on the unit circle. This is the SVD of A.
The singular value decomposition is “almost unique”. There are two sources of ambiguity. The first is in

the orientation of the singular vectors. One can flip any right singular vector, provided that the corresponding
left singular vector is flipped as well, and still obtain a valid SVD. Singular vectors must be flipped in pairs
(a left vector and its corresponding right vector) because the singular values are required to be nonnegative.
This is a trivial ambiguity. If desired, it can be removed by imposing, for instance, that the first nonzero
entry of every left singular value be positive.

The second source of ambiguity is deeper. If the matrix A maps a hypersphere into another hypersphere,
the axes of the latter are not defined. For instance, the identity matrix has an infinity of SVDs, all of the
form

I = UIUT
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Figure 3.2: Decomposition of the mapping in figure 3.1.

where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular values
coincide, the subspaces identified by the corresponding left and right singular vectors are unique, but any
orthonormal basis can be chosen within, say, the right subspace and yield, together with the corresponding
left singular vectors, a valid SVD. Except for these ambiguities, the SVD is unique.

Even in the general case, the singular values of a matrix A are the lengths of the semi-axes of the
hyperellipse E defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we define r by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,

that is, if σr is the smallest nonzero singular value of A, then

rank(A) = r

null(A) = span{vr+1, . . . ,vn}
range(A) = span{u1, . . . ,ur} .

The sizes of the matrices in the SVD are as follows: U is m ×m, Σ is m × n, and V is n × n. Thus, Σ
has the same shape and size as A, while U and V are square. However, if m > n, the bottom (m − n) × n
block of Σ is zero, so that the last m − n columns of U are multiplied by zero. Similarly, if m < n, the
rightmost m × (n − m) block of Σ is zero, and this multiplies the last n − m rows of V . This suggests a
“small,” equivalent version of the SVD. If p = min(m,n), we can define Up = U(:, 1 : p), Σp = Σ(1 : p, 1 : p),
and Vp = V (:, 1 : p), and write

A = UpΣpV
T
p

where Up is m× p, Σp is p× p, and Vp is n× p.
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Moreover, if p − r singular values are zero, we can let Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), and
Vr = V (:, 1 : r), then we have

A = UrΣrV
T
r =

r∑

i=1

σiuivT
i ,

which is an even smaller, minimal, SVD.
Finally, both the 2-norm and the Frobenius norm

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij |2

and

‖A‖2 = sup
x6=0

‖Ax‖
‖x‖

are neatly characterized in terms of the SVD:

‖A‖2F = σ2
1 + . . . + σ2

p

‖A‖2 = σ1 .

In the next few sections we introduce fundamental results and applications that testify to the importance
of the SVD.

3.3 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least squares
sense. A linear system of the form

Ax = b (3.6)

arising from a real-life application may or may not admit a solution, that is, a vector x that satisfies this
equation exactly. Often more measurements are available than strictly necessary, because measurements
are unreliable. This leads to more equations than unknowns (the number m of rows in A is greater than
the number n of columns), and equations are often mutually incompatible because they come from inexact
measurements (incompatible linear systems were defined in chapter 2). Even when m ≤ n the equations
can be incompatible, because of errors in the measurements that produce the entries of A. In these cases, it
makes more sense to find a vector x that minimizes the norm

‖Ax− b‖
of the residual vector

r = Ax− b .

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy any of the m
equations in the system, but it tries to satisfy all of them as closely as possible, as measured by the sum of
the squares of the discrepancies between left- and right-hand sides of the equations.

In other circumstances, not enough measurements are available. Then, the linear system (3.6) is under-
determined, in the sense that it has fewer independent equations than unknowns (its rank r is less than n,
see again chapter 2).

Incompatibility and underdeterminacy can occur together: the system admits no solution, and the least-
squares solution is not unique. For instance, the system

x1 + x2 = 1
x1 + x2 = 3

x3 = 2
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has three unknowns, but rank 2, and its first two equations are incompatible: x1 + x2 cannot be equal to
both 1 and 3. A least-squares solution turns out to be x = [1 1 2]T with residual r = Ax − b = [1 − 1 0],
which has norm

√
2 (admittedly, this is a rather high residual, but this is the best we can do for this problem,

in the least-squares sense). However, any other vector of the form

x′ =




1
1
2


 + α



−1
1
0




is as good as x. For instance, x′ = [0 2 2], obtained for α = 1, yields exactly the same residual as x (check
this).

In summary, an exact solution to the system (3.6) may not exist, or may not be unique, as we learned in
chapter 2. An approximate solution, in the least-squares sense, always exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out to be
shorter than all the others, that is, its norm ‖x‖ is smallest. One can therefore redefine what it means to
“solve” a linear system so that there is always exactly one solution. This minimum norm solution is the
subject of the following theorem, which both proves uniqueness and provides a recipe for the computation
of the solution.

Theorem 3.3.1 The minimum-norm least squares solution to a linear system Ax = b, that is, the shortest
vector x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UT b (3.7)

where

Σ† =




1/σ1 0 · · · 0
. . .

1/σr

...
...

0
. . .

0 0 · · · 0




is an n×m diagonal matrix.

The matrix
A† = V Σ†UT

is called the pseudoinverse of A.
Proof. The minimum-norm Least Squares solution to

Ax = b

is the shortest vector x that minimizes
‖Ax− b‖

that is,
‖UΣV T x− b‖ .

This can be written as
‖U(ΣV T x− UT b)‖ (3.8)
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because U is an orthogonal matrix, UUT = I. But orthogonal matrices do not change the norm of vectors
they are applied to (theorem 3.1.2), so that the last expression above equals

‖ΣV T x− UT b‖
or, with y = V T x and c = UT b,

‖Σy− c‖ .

In order to find the solution to this minimization problem, let us spell out the last expression. We want to
minimize the norm of the following vector:




σ1 0 · · · 0

0
. . . · · · 0

σr

... 0
...

. . .
0 0







y1

...
yr

yr+1

...
yn




−




c1

...
cr

cr+1

...
cm




.

The last m− r differences are of the form

0−




cr+1

...
cm




and do not depend on the unknown y. In other words, there is nothing we can do about those differences:
if some or all the ci for i = r + 1, . . . ,m are nonzero, we will not be able to zero these differences, and each
of them contributes a residual |ci| to the solution. In each of the first r differences, on the other hand, the
last n − r components of y are multiplied by zeros, so they have no effect on the solution. Thus, there is
freedom in their choice. Since we look for the minimum-norm solution, that is, for the shortest vector x, we
also want the shortest y, because x and y are related by an orthogonal transformation. We therefore set
yr+1 = . . . = yn = 0. In summary, the desired y has the following components:

yi =
ci

σi
for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .

When written as a function of the vector c, this is

y = Σ+c .

Notice that there is no other choice for y, which is therefore unique: minimum residual forces the choice of
y1, . . . , yr, and minimum-norm solution forces the other entries of y. Thus, the minimum-norm, least-squares
solution to the original system is the unique vector

x̂ = V y = V Σ+c = V Σ+UT b

as promised. The residual, that is, the norm of ‖Ax−b‖ when x is the solution vector, is the norm of Σy−c,
since this vector is related to Ax − b by an orthogonal transformation (see equation (3.8)). In conclusion,
the square of the residual is

‖Ax− b‖2 = ‖Σy− c‖2 =
m∑

i=r+1

c2
i =

m∑

i=r+1

(uT
i b)2

which is the projection of the right-hand side vector b onto the complement of the range of A. ∆
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3.4 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 3.3.1 works regardless of the value of the right-hand side vector b. When b = 0, that is, when the
system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (3.9)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only one (any vector in the null
space of A is also a solution, by definition), but it is obviously the one with the smallest norm.

Thus, x = 0 is the minimum-norm solution to any homogeneous linear system. Although correct, this
solution is not too interesting. In many applications, what is desired is a nonzero vector x that satisfies
the system (3.9) as well as possible. Without any constraints on x, we would fall back to x = 0 again.
For homogeneous linear systems, the meaning of a least-squares solution is therefore usually modified, once
more, by imposing the constraint

‖x‖ = 1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily admit
a unique solution. The following theorem provides a recipe for finding this solution, and shows that there is
in general a whole hypersphere of solutions.

Theorem 3.4.1 Let
A = UΣV T

be the singular value decomposition of A. Furthermore, let vn−k+1, . . . ,vn be the k columns of V whose
corresponding singular values are equal to the last singular value σn, that is, let k be the largest integer such
that

σn−k+1 = . . . = σn .

Then, all vectors of the form
x = α1vn−k+1 + . . . + αkvn (3.10)

with
α2

1 + . . . + α2
k = 1 (3.11)

are unit-norm least squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

Note: when σn is greater than zero the most common case is k = 1, since it is very unlikely that different
singular values have exactly the same numerical value. When A is rank deficient, on the other case, it may
often have more than one singular value equal to zero. In any event, if k = 1, then the minimum-norm
solution is unique, x = vn. If k > 1, the theorem above shows how to express all solutions as a linear
combination of the last k columns of V .
Proof. The reasoning is very similar to that for the previous theorem. The unit-norm Least Squares
solution to

Ax = 0

is the vector x with ‖x‖ = 1 that minimizes
‖Ax‖
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that is,
‖UΣV T x‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to (theorem 3.1.2), this norm
is the same as

‖ΣV T x‖
or, with y = V T x,

‖Σy‖ .

Since V is orthogonal, ‖x‖ = 1 translates to ‖y‖ = 1. We thus look for the unit-norm vector y that minimizes
the norm (squared) of Σy, that is,

σ2
1y2

1 + . . . + σ2
ny2

n .

This is obviously achieved by concentrating all the (unit) mass of y where the σs are smallest, that is by
letting

y1 = . . . = yn−k = 0. (3.12)

From y = V T x we obtain x = V y = y1v1 + . . . + ynvn, so that equation (3.12) is equivalent to equation
(3.10) with α1 = yn−k+1, . . . , αk = yn, and the unit-norm constraint on y yields equation (3.11). ∆

Section 3.5 shows a sample use of theorem 3.4.1.
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3.5 SVD Line Fitting

The Singular Value Decomposition of a matrix yields a simple method for fitting a line to a set of points on
the plane.

3.5.1 Fitting a Line to a Set of Points

Let pi = (xi, yi)T be a set of m ≥ 2 points on the plane, and let

ax + by − c = 0

be the equation of a line. If the lefthand side of this equation is multiplied by a nonzero constant, the line
does not change. Thus, we can assume without loss of generality that

‖n‖ = a2 + b2 = 1 , (3.13)

where the unit vector n = (a, b)T , orthogonal to the line, is called the line normal.
The distance from the line to the origin is |c| (see figure 3.3), and the distance between the line n and a

point pi is equal to
di = |axi + byi − c| = |pT

i n− c| . (3.14)

p
i

a

b
|c|

Figure 3.3: The distance between point pi = (xi, yi)T and line ax + by − c = 0 is |axi + byi − c|.

The best-fit line minimizes the sum of the squared distances. Thus, if we let d = (d1, . . . , dm) and
P = (p1 . . . ,pm)T , the best-fit line achieves the

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− c1‖2 . (3.15)

In equation (3.15), 1 is a vector of m ones.

3.5.2 The Best Line Fit

Since the third line parameter c does not appear in the constraint (3.13), at the minimum (3.15) we must
have

∂‖d‖2
∂c

= 0 . (3.16)

If we define the centroid p of all the points pi as

p =
1
m

PT 1 ,
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equation (3.16) yields

∂‖d‖2
∂c

=
∂

∂c

(
nT PT − c1T

)
(Pn− 1c)

=
∂

∂c

(
nT PT Pn + c21T 1− 2nT PT c1

)

= 2
(
mc− nT PT 1

)
= 0

from which we obtain
c =

1
m

nT PT 1 ,

that is,
c = pT n .

By replacing this expression into equation (3.15), we obtain

min
‖n‖=1

‖d‖2 = min
‖n‖=1

‖Pn− 1pT n‖2 = min
‖n‖=1

‖Qn‖2 ,

where Q = P − 1pT collects the centered coordinates of the m points. We can solve this constrained
minimization problem by theorem 3.4.1. Equivalently, and in order to emphasize the geometric meaning
of signular values and vectors, we can recall that if n is on a circle, the shortest vector of the form Qn is
obtained when n is the right singular vector v2 corresponding to the smaller σ2 of the two singular values
of Q. Furthermore, since Qv2 has norm σ2, the residue is

min
‖n‖=1

‖d‖ = σ2

and more specifically the distances di are given by

d = σ2u2

where u2 is the left singular vector corresponding to σ2. In fact, when n = v2, the SVD

Q = UΣV T =
2∑

i=1

σiuivT
i

yields

Qn = Qv2 =
2∑

i=1

σiuivT
i v2 = σ2u2

because v1 and v2 are orthonormal vectors.
To summarize, to fit a line (a, b, c) to a set of m points pi collected in the m×2 matrix P = (p1 . . . ,pm)T ,

proceed as follows:

1. compute the centroid of the points (1 is a vector of m ones):

p =
1
m

PT 1

2. form the matrix of centered coordinates:

Q = P − 1pT

3. compute the SVD of Q:
Q = UΣV T
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4. the line normal is the second column of the 2× 2 matrix V :

n = (a, b)T = v2 ,

5. the third coefficient of the line is
c = pT n

6. the residue of the fit is
min
‖n‖=1

‖d‖ = σ2

The following matlab code implements the line fitting method.

function [l, residue] = linefit(P)
% check input matrix sizes
[m n] = size(P);
if n ~= 2, error(’matrix P must be m x 2’), end
if m < 2, error(’Need at least two points’), end
one = ones(m, 1);
% centroid of all the points
p = (P’ * one) / m;
% matrix of centered coordinates
Q = P - one * p’;
[U Sigma V] = svd(Q);
% the line normal is the second column of V
n = V(:, 2);
% assemble the three line coefficients into a column vector
l = [n ; p’ * n];
% the smallest singular value of Q
% measures the residual fitting error
residue = Sigma(2, 2);

A useful exercise is to think how this procedure, or something close to it, can be adapted to fit a set of
data points in Rm with an affine subspace of given dimension n. An affine subspace is a linear subspace plus
a point, just like an arbitrary line is a line through the origin plus a point. Here “plus” means the following.
Let L be a linear space. Then an affine space has the form

A = p + L = {a |a = p + l and l ∈ L} .

Hint: minimizing the distance between a point and a subspace is equivalent to maximizing the norm of the
projection of the point onto the subspace. The fitting problem (including fitting a line to a set of points)
can be cast either as a maximization or a minimization problem.
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Chapter 3

Function Optimization

There are three main reasons why most problems in robotics, vision, and arguably every other science or
endeavor take on the form of optimization problems. One is that the desired goal may not be achievable,
and so we try to get as close as possible to it. The second reason is that there may be more ways to achieve
the goal, and so we can choose one by assigning a quality to all the solutions and selecting the best one. The
third reason is that we may not know how to solve the system of equations f(x) = 0, so instead we minimize
the norm ‖f(x)‖, which is a scalar function of the unknown vector x.

We have encountered the first two situations when talking about linear systems. The case in which
a linear system admits exactly one exact solution is simple but rare. More often, the system at hand is
either incompatible (some say overconstrained) or, at the opposite end, underdetermined. In fact, some
problems are both, in a sense. While these problems admit no exact solution, they often admit a multitude
of approximate solutions. In addition, many problems lead to nonlinear equations.

Consider, for instance, the problem of Structure From Motion (SFM) in computer vision. Nonlinear
equations describe how points in the world project onto the images taken by cameras at given positions in
space. Structure from motion goes the other way around, and attempts to solve these equations: image points
are given, and one wants to determine where the points in the world and the cameras are. Because image
points come from noisy measurements, they are not exact, and the resulting system is usually incompatible.
SFM is then cast as an optimization problem. On the other hand, the exact system (the one with perfect
coefficients) is often close to being underdetermined. For instance, the images may be insufficient to recover
a certain shape under a certain motion. Then, an additional criterion must be added to define what a “good”
solution is. In these cases, the noisy system admits no exact solutions, but has many approximate ones.

The term “optimization” is meant to subsume both minimization and maximization. However, maximiz-
ing the scalar function f(x) is the same as minimizing−f(x), so we consider optimization and minimization to
be essentially synonyms. Usually, one is after global minima. However, global minima are hard to find, since
they involve a universal quantifier: x∗ is a global minimum of f if for every other x we have f(x) ≥ f(x∗).
Global minization techniques like simulated annealing have been proposed, but their convergence properties
depend very strongly on the problem at hand. In this chapter, we consider local minimization: we pick a
starting point x0, and we descend in the landscape of f(x) until we cannot go down any further. The bottom
of the valley is a local minimum.

Local minimization is appropriate if we know how to pick an x0 that is close to x∗. This occurs frequently
in feedback systems. In these systems, we start at a local (or even a global) minimum. The system then
evolves and escapes from the minimum. As soon as this occurs, a control signal is generated to bring the
system back to the minimum. Because of this immediate reaction, the old minimum can often be used as a
starting point x0 when looking for the new minimum, that is, when computing the required control signal.
More formally, we reach the correct minimum x∗ as long as the initial point x0 is in the basin of attraction
of x∗, defined as the largest neighborhood of x∗ in which f(x) is convex.

Good references for the discussion in this chapter are Matrix Computations, Practical Optimization, and

39
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Numerical Recipes in C, all of which are listed with full citations in section 1.4.

3.1 Local Minimization and Steepest Descent

Suppose that we want to find a local minimum for the scalar function f of the vector variable x, starting
from an initial point x0. Picking an appropriate x0 is crucial, but also very problem-dependent. We start
from x0, and we go downhill. At every step of the way, we must make the following decisions:

• Whether to stop.

• In what direction to proceed.

• How long a step to take.

In fact, most minimization algorithms have the following structure:

k = 0
while xk is not a minimum

compute step direction pk with ‖pk‖ = 1
compute step size αk

xk+1 = xk + αkpk

k = k + 1
end.

Different algorithms differ in how each of these instructions is performed.
It is intuitively clear that the choice of the step size αk is important. Too small a step leads to slow

convergence, or even to lack of convergence altogether. Too large a step causes overshooting, that is, leaping
past the solution. The most disastrous consequence of this is that we may leave the basin of attraction, or
that we oscillate back and forth with increasing amplitudes, leading to instability. Even when oscillations
decrease, they can slow down convergence considerably.

What is less obvious is that the best direction of descent is not necessarily, and in fact is quite rarely, the
direction of steepest descent, as we now show. Consider a simple but important case,

f(x) = c + aT x +
1
2
xT Qx (3.1)

where Q is a symmetric, positive definite matrix. Positive definite means that for every nonzero x the
quantity xT Qx is positive. In this case, the graph of f(x)− c is a plane aT x plus a paraboloid.

Of course, if f were this simple, no descent methods would be necessary. In fact the minimum of f can
be found by setting its gradient to zero:

∂f

∂x
= a + Qx = 0

so that the minimum x∗ is the solution to the linear system

Qx = −a . (3.2)

Since Q is positive definite, it is also invertible (why?), and the solution x∗ is unique. However, understanding
the behavior of minimization algorithms in this simple case is crucial in order to establish the convergence
properties of these algorithms for more general functions. In fact, all smooth functions can be approximated
by paraboloids in a sufficiently small neighborhood of any point.

Let us therefore assume that we minimize f as given in equation (4.1), and that at every step we choose
the direction of steepest descent. In order to simplify the mathematics, we observe that if we let

ẽ(x) =
1
2
(x− x∗)T Q(x− x∗)
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then we have
ẽ(x) = f(x)− c +

1
2
x∗T Qx∗ = f(x)− f(x∗) (3.3)

so that ẽ and f differ only by a constant. In fact,

ẽ(x) =
1
2
(xT Qx + x∗T Qx∗ − 2xT Qx∗) =

1
2
xT Qx + aT x +

1
2
x∗T Qx∗ = f(x)− c +

1
2
x∗T Qx∗

and from equation (4.2) we obtain

f(x∗) = c + aT x∗ +
1
2
x∗T Qx∗ = c− x∗T Qx∗ +

1
2
x∗T Qx∗ = c− 1

2
x∗T Qx∗ .

The result (4.3),
ẽ(x) = f(x)− f(x∗) ,

is rather interesting in itself. It says that adding a linear term aT x (and a constant c) to a paraboloid 1
2x

T Qx
merely shifts the bottom of the paraboloid, both in position (x∗ rather than 0) and value (c − 1

2x
∗T Qx∗

rather than zero). Adding the linear term does not “warp” or “tilt” the shape of the paraboloid in any way.
Since ẽ is simpler, we consider that we are minimizing ẽ rather than f . In addition, we can let

y = x− x∗ ,

that is, we can shift the origin of the domain to x∗, and study the function

e(y) =
1
2
yT Qy

instead of f or ẽ, without loss of generality. We will transform everything back to f and x once we are done.
Of course, by construction, the new minimum is at

y∗ = 0

where e reaches a value of zero:
e(y∗) = e(0) = 0 .

However, we let our steepest descent algorithm find this minimum by starting from the initial point

y0 = x0 − x∗ .

At every iteration k, the algorithm chooses the direction of steepest descent, which is in the direction

pk = − gk

‖gk‖
opposite to the gradient of e evaluated at yk:

gk = g(yk) =
∂e

∂y

∣∣∣∣
y=yk

= Qyk .

We select for the algorithm the most favorable step size, that is, the one that takes us from yk to the
lowest point in the direction of pk. This can be found by differentiating the function

e(yk + αpk) =
1
2
(yk + αpk)T Q(yk + αpk)

with respect to α, and setting the derivative to zero to obtain the optimal step αk. We have

∂e(yk + αpk)
∂α

= (yk + αpk)T Qpk
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and setting this to zero yields

αk = − (Qyk)T pk

pT
k Qpk

= − gT
k pk

pT
k Qpk

= ‖gk‖
pT

k pk

pT
k Qpk

= ‖gk‖
gT

k gk

gT
k Qgk

. (3.4)

Thus, the basic step of our steepest descent can be written as follows:

yk+1 = yk + ‖gk‖
gT

k gk

gT
k Qgk

pk

that is,

yk+1 = yk −
gT

k gk

gT
k Qgk

gk . (3.5)

How much closer did this step bring us to the solution y∗ = 0? In other words, how much smaller is
e(yk+1), relative to the value e(yk) at the previous step? The answer is, often not much, as we shall now
prove. The arguments and proofs below are adapted from D. G. Luenberger, Introduction to Linear and
Nonlinear Programming, Addison-Wesley, 1973.

From the definition of e and from equation (4.5) we obtain

e(yk)− e(yk+1)
e(yk)

=
yT

k Qyk − yT
k+1Qyk+1

yT
k Qyk

=
yT

k Qyk −
(
yk − gT

k gk

gT
k

Qgk

gk

)T

Q
(
yk − gT

k gk

gT
k

Qgk

gk

)

yT
k Qyk

=
2 gT

k gk

gT
k

Qgk

gT
k Qyk −

( gT
k gk

gT
k

Qgk

)2

gT
k Qgk

yT
k Qyk

=
2gT

k gkg
T
k Qyk − (gT

k gk)2

yT
k Qyk gT

k Qgk

.

Since Q is invertible we have

gk = Qyk ⇒ yk = Q−1gk

and
yT

k Qyk = gT
k Q−1gk

so that
e(yk)− e(yk+1)

e(yk)
=

(gT
k gk)2

gT
k Q−1gk gT

k Qgk

.

This can be rewritten as follows by rearranging terms:

e(yk+1) =
(

1− (gT
k gk)2

gT
k Q−1gk gT

k Qgk

)
e(yk) (3.6)

so if we can bound the expression in parentheses we have a bound on the rate of convergence of steepest
descent. To this end, we introduce the following result.

Lemma 3.1.1 (Kantorovich inequality) Let Q be a positive definite, symmetric, n× n matrix. For any
vector y there holds

(yT y)2

yT Q−1yyT Qy
≥ 4σ1σn

(σ1 + σn)2

where σ1 and σn are, respectively, the largest and smallest singular values of Q.
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Proof. Let
Q = UΣUT

be the singular value decomposition of the symmetric (hence V = U) matrix Q. Because Q is positive
definite, all its singular values are strictly positive, since the smallest of them satisfies

σn = min
‖y‖=1

yT Qy > 0

by the definition of positive definiteness. If we let

z = UT y

we have

(yT y)2

yT Q−1yyT Qy
=

(yT UT Uy)2

yT UΣ−1UT yyT UΣUT y
=

(zT z)2

zT Σ−1z zT Σz
=

1/
∑n

i=1 θiσi∑n
i=1 θi/σi

=
φ(σ)
ψ(σ)

(3.7)

where the coefficients

θi =
z2
i

‖z‖2
add up to one. If we let

σ =
n∑

i=1

θiσi , (3.8)

then the numerator φ(σ) in (4.7) is 1/σ. Of course, there are many ways to choose the coefficients θi to
obtain a particular value of σ. However, each of the singular values σj can be obtained by letting θj = 1 and
all other θi to zero. Thus, the values 1/σj for j = 1, . . . , n are all on the curve 1/σ. The denominator ψ(σ)
in (4.7) is a convex combination of points on this curve. Since 1/σ is a convex function of σ, the values of
the denominator ψ(σ) of (4.7) must be in the shaded area in figure 4.1. This area is delimited from above
by the straight line that connects point (σ1, 1/σ1) with point (σn, 1/σn), that is, by the line with ordinate

λ(σ) = (σ1 + σn − σ)/(σ1σn) .

For the same vector of coefficients θi, the values of φ(σ), ψ(σ), and λ(σ) are on the vertical line corre-
sponding to the value of σ given by (4.8). Thus an appropriate bound is

φ(σ)
ψ(σ)

≥ min
σ1≤σ≤σn

φ(σ)
λ(σ)

= min
σ1≤σ≤σn

1/σ

(σ1 + σn − σ)/(σ1σn)
.

The minimum is achieved at σ = (σ1 + σn)/2, yielding the desired result. ∆

Thanks to this lemma, we can state the main result on the convergence of the method of steepest descent.

Theorem 3.1.2 Let
f(x) = c + aT x +

1
2
xT Qx

be a quadratic function of x, with Q symmetric and positive definite. For any x0, the method of steepest
descent

xk+1 = xk − gT
k gk

gT
k Qgk

gk (3.9)

where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

= a + Qxk
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Figure 3.1: Kantorovich inequality.

converges to the unique minimum point
x∗ = −Q−1a

of f . Furthermore, at every step k there holds

f(xk+1)− f(x∗) ≤
(

σ1 − σn

σ1 + σn

)2

(f(xk)− f(x∗))

where σ1 and σn are, respectively, the largest and smallest singular value of Q.

Proof. From the definitions

y = x− x∗ and e(y) =
1
2
yT Qy (3.10)

we immediately obtain the expression for steepest descent in terms of f and x. By equations (4.3) and (4.6)
and the Kantorovich inequality we obtain

f(xk+1)− f(x∗) = e(yk+1) =
(

1− (gT
k gk)2

gT
k Q−1gk gT

k Qgk

)
e(yk) ≤

(
1− 4σ1σn

(σ1 + σn)2

)
e(yk) (3.11)

=
(

σ1 − σn

σ1 + σn

)2

(f(xk)− f(x∗)) . (3.12)

Since the ratio in the last term is smaller than one, it follows immediately that f(xk)−f(x∗) → 0 and hence,
since the minimum of f is unique, that xk → x∗. ∆

The ratio κ(Q) = σ1/σn is called the condition number of Q. The larger the condition number, the closer
the fraction (σ1−σn)/(σ1 +σn) is to unity, and the slower convergence. It is easily seen why this happens in
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Figure 3.2: Trajectory of steepest descent.

the case in which x is a two-dimensional vector, as in figure 4.2, which shows the trajectory xk superimposed
on a set of isocontours of f(x).

There is one good, but very precarious case, namely, when the starting point x0 is at one apex (tip of
either axis) of an isocontour ellipse. In that case, one iteration will lead to the minimum x∗. In all other
cases, the line in the direction pk of steepest descent, which is orthogonal to the isocontour at xk, will not
pass through x∗. The minimum of f along that line is tangent to some other, lower isocontour. The next
step is orthogonal to the latter isocontour (that is, parallel to the gradient). Thus, at every step the steepest
descent trajectory is forced to make a ninety-degree turn. If isocontours were circles (σ1 = σn) centered at
x∗, then the first turn would make the new direction point to x∗, and minimization would get there in just
one more step. This case, in which κ(Q) = 1, is consistent with our analysis, because then

σ1 − σn

σ1 + σn
= 0 .

The more elongated the isocontours, that is, the greater the condition number κ(Q), the farther away a line
orthogonal to an isocontour passes from x∗, and the more steps are required for convergence.

For general (that is, non-quadratic) f , the analysis above applies once xk gets close enough to the
minimum, so that f is well approximated by a paraboloid. In this case, Q is the matrix of second derivatives
of f with respect to x, and is called the Hessian of f . In summary, steepest descent is good for functions that
have a well conditioned Hessian near the minimum, but can become arbitrarily slow for poorly conditioned
Hessians.

To characterize the speed of convergence of different minimization algorithms, we introduce the notion
of the order of convergence. This is defined as the largest value of q for which the

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖q

is finite. If β is this limit, then close to the solution (that is, for large values of k) we have

‖xk+1 − x∗‖ ≈ β‖xk − x∗‖q

for a minimization method of order q. In other words, the distance of xk from x∗ is reduced by the q-th
power at every step, so the higher the order of convergence, the better. Theorem 4.1.2 implies that steepest
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descent has at best a linear order of convergence. In fact, the residuals |f(xk)− f(x∗)| in the values of the
function being minimized converge linearly. Since the gradient of f approaches zero when xk tends to x∗,
the arguments xk to f can converge to x∗ even more slowly.

To complete the steepest descent algorithm we need to specify how to check whether a minimum has
been reached. One criterion is to check whether the value of f(xk) has significantly decreased from f(xk−1).
Another is to check whether xk is significantly different from xk−1. Close to the minimum, the derivatives
of f are close to zero, so |f(xk)− f(xk−1)| may be very small but ‖xk − xk−1‖ may still be relatively large.
Thus, the check on xk is more stringent, and therefore preferable in most cases. In fact, usually one is
interested in the value of x∗, rather than in that of f(x∗). In summary, the steepest descent algorithm can
be stopped when

‖xk − xk−1‖ < ε

where the positive constant ε is provided by the user.
In our analysis of steepest descent, we used the Hessian Q in order to compute the optimal step size

α (see equation (4.4)). We used Q because it was available, but its computation during steepest descent
would in general be overkill. In fact, only gradient information is necessary to find pk, and a line search
in the direction of pk can be used to determine the step size αk. In contrast, the Hessian of f(x) requires
computing

(
n
2

)
second derivatives if x is an n-dimensional vector.

Using line search to find αk guarantees that a minimum in the direction pk is actually reached even when
the parabolic approximation is inadequate. Here is how line search works.

Let
h(α) = f(xk + αpk) (3.13)

be the scalar function of one variable that is obtained by restricting the function f to the line through the
current point xk and in the direction of pk. Line search first determines two points a, c that bracket the
desired minimum αk, in the sense that a ≤ αk ≤ c, and then picks a point between a and c, say, b = (a+c)/2.
The only difficulty here is to find c. In fact, we can set a = 0, corresponding through equation (4.13) to the
starting point xk. A point c that is on the opposite side of the minimum with respect to a can be found by
increasing α through values α1 = a, α2, . . . until h(αi) is greater than h(αi−1). Then, if we can assume that
h is convex between α1 and αi, we can set c = αi. In fact, the derivative of h at a is negative, so the function
is initially decreasing, but it is increasing between αi−1 and αi = c, so the minimum must be somewhere
between a and c. Of course, if we cannot assume convexity, we may find the wrong minimum, but there is
no general-purpose fix to this problem.

Line search now proceeds by shrinking the bracketing triple (a, b, c) until c−a is smaller than the desired
accuracy in determining αk. Shrinking works as follows:

if b− a > c− b
u = (a + b)/2
if f(u) > f(b)

(a, b, c) = (u, b, c)
otherwise

(a, b, c) = (a, u, b)
end

otherwise
u = (b + c)/2
if f(u) > f(b)

(a, b, c) = (a, b, u)
otherwise

(a, b, c) = (b, u, c)
end

end.
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It is easy to see that in each case the bracketing triple (a, b, c) preserves the property that f(b) ≤ f(a)
and f(b) ≤ f(c), and therefore the minimum is somewhere between a and c. In addition, at every step the
interval (a, c) shrinks to 3/4 of its previous size, so line search will find the minimum in a number of steps
that is logarithmic in the desired accuracy.

3.2 Newton’s Method

If a function can be well approximated by a paraboloid in the region in which minimization is performed, the
analysis in the previous section suggests a straight-forward fix to the slow convergence of steepest descent.
In fact, equation (4.2) tells us how to jump in one step from the starting point x0 to the minimum x∗. Of
course, when f(x) is not exactly a paraboloid, the new value x1 will be different from x∗. Consequently,
iterations are needed, but convergence can be expected to be faster. This is the idea of Newton’s method,
which we now summarize. Let

f(xk + ∆x) ≈ f(xk) + gT
k ∆x +

1
2
∆xT Qk∆x (3.14)

be the first terms of the Taylor series expansion of f about the current point xk, where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

and

Qk = Q(xk) =
∂2f

∂x∂xT

∣∣∣∣
x=xk

=




∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n



x=xk

are the gradient and Hessian of f evaluated at the current point xk. Notice that even when f is a paraboloid,
the gradient gk is different from a as used in equation (4.1). In fact, a and Q are the coefficients of the
Taylor expansion of f around point x = 0, while gk and Qk are the coefficients of the Taylor expansion of f
around the current point xk. In other words, gradient and Hessian are constantly reevaluated in Newton’s
method.

To the extent that approximation (4.14) is valid, we can set the derivatives of f(xk + ∆x) with respect
to ∆x to zero, and obtain, analogously to equation (4.2), the linear system

Qk∆x = −gk , (3.15)

whose solution ∆xk = αkpk yields at the same time the step direction pk = ∆xk/‖∆xk‖ and the step size
αk = ‖∆xk‖. The direction is of course undefined once the algorithm has reached a minimum, that is, when
αk = 0.

A minimization algorithm in which the step direction pk and size αk are defined in this manner is called
Newton’s method. The corresponding pk is termed the Newton direction, and the step defined by equation
(4.15) is the Newton step.

The greater speed of Newton’s method over steepest descent is borne out by analysis: while steepest
descent has a linear order of convergence, Newton’s method is quadratic. In fact, let

y(x) = x−Q(x)−1g(x)

be the place reached by a Newton step starting at x (see equation (4.15)), and suppose that at the minimum
x∗ the Hessian Q(x∗) is nonsingular. Then

y(x∗) = x∗
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because g(x∗) = 0, and
xk+1 − x∗ = y(xk)− x∗ = y(xk)− y(x∗) .

From the mean-value theorem, we have

‖xk+1 − x∗‖ = ‖y(xk)− y(x∗)‖ ≤
∥∥∥∥
[

∂y
∂xT

]

x=x∗
(xk − x∗)

∥∥∥∥ +
1
2

∣∣∣∣
∂2y

∂x∂xT

∣∣∣∣
x=x̂

‖xk − x∗‖2

where x̂ is some point on the line between x∗ and xk. Since y(x∗) = x∗, the first derivatives of y at x∗ are
zero, so that the first term in the right-hand side above vanishes, and

‖xk+1 − x∗‖ ≤ c ‖xk − x∗‖2

where c depends on third-order derivatives of f near x∗. Thus, the convergence rate of Newton’s method is
of order at least two.

For a quadratic function, as in equation (4.1), steepest descent takes many steps to converge, while
Newton’s method reaches the minimum in one step. However, this single iteration in Newton’s method is
more expensive, because it requires both the gradient gk and the Hessian Qk to be evaluated, for a total of
n+

(
n
2

)
derivatives. In addition, the Hessian must be inverted, or, at least, system (4.15) must be solved. For

very large problems, in which the dimension n of x is thousands or more, storing and manipulating a Hessian
can be prohibitive. In contrast, steepest descent requires the gradient gk for selecting the step direction pk,
and a line search in the direction pk to find the step size. The method of conjugate gradients, discussed in
the next section, is motivated by the desire to accelerate convergence with respect to the steepest descent
method, but without paying the storage cost of Newton’s method.

3.3 Conjugate Gradients

Newton’s method converges faster (quadratically) than steepest descent (linear convergence rate) because
it uses more information about the function f being minimized. Steepest descent locally approximates the
function with planes, because it only uses gradient information. All it can do is to go downhill. Newton’s
method approximates f with paraboloids, and then jumps at every iteration to the lowest point of the current
approximation. The bottom line is that fast convergence requires work that is equivalent to evaluating the
Hessian of f .

Prima facie, the method of conjugate gradients discussed in this section seems to violate this principle:
it achieves fast, superlinear convergence, similarly to Newton’s method, but it only requires gradient infor-
mation. This paradox, however, is only apparent. Conjugate gradients works by taking n steps for each of
the steps in Newton’s method. It effectively solves the linear system (4.2) of Newton’s method, but it does
so by a sequence of n one-dimensional minimizations, each requiring one gradient computation and one line
search.

Overall, the work done by conjugate gradients is equivalent to that done by Newton’s method. However,
system (4.2) is never constructed explicitly, and the matrix Q is never stored. This is very important in cases
where x has thousands or even millions of components. These high-dimensional problems arise typically from
the discretization of partial differential equations. Say for instance that we want to compute the motion of
points in an image as a consequence of camera motion. Partial differential equations relate image intensities
over space and time to the motion of the underlying image features. At every pixel in the image, this motion,
called the motion field, is represented by a vector whose magnitude and direction describe the velocity of the
image feature at that pixel. Thus, if an image has, say, a quarter of a million pixels, there are n = 500, 000
unknown motion field values. Storing and inverting a 500, 000× 500, 000 Hessian is out of the question. In
cases like these, conjugate gradients saves the day.

The conjugate gradients method described in these notes is the so-called Polak-Ribière variation. It will
be introduced in three steps. First, it will be developed for the simple case of minimizing a quadratic function
with positive-definite and known Hessian. This quadratic function f(x) was introduced in equation (4.1).
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We know that in this case minimizing f(x) is equivalent to solving the linear system (4.2). Rather than an
iterative method, conjugate gradients is a direct method for the quadratic case. This means that the number
of iterations is fixed. Specifically, the method converges to the solution in n steps, where n is the number
of components of x. Because of the equivalence with a linear system, conjugate gradients for the quadratic
case can also be seen as an alternative method for solving a linear system, although the version presented
here will only work if the matrix of the system is symmetric and positive definite.

Second, the assumption that the Hessian Q in expression (4.1) is known will be removed. As discussed
above, this is the main reason for using conjugate gradients.

Third, the conjugate gradients method will be extended to general functions f(x). In this case, the method
is no longer direct, but iterative, and the cost of finding the minimum depends on the desired accuracy. This
occurs because the Hessian of f is no longer a constant, as it was in the quadratic case. As a consequence,
a certain property that holds in the quadratic case is now valid only approximately. In spite of this, the
convergence rate of conjugate gradients is superlinear, somewhere between Newton’s method and steepest
descent. Finding tight bounds for the convergence rate of conjugate gradients is hard, and we will omit this
proof. We rely instead on the intuition that conjugate gradients solves system (4.2), and that the quadratic
approximation becomes more and more valid as the algorithm converges to the minimum. If the function f
starts to behave like a quadratic function early, that is, if f is nearly quadratic in a large neighborhood of
the minimum, convergence is fast, as it requires close to the n steps that are necessary in the quadratic case,
and each of the steps is simple. This combination of fast convergence, modest storage requirements, and low
computational cost per iteration explains the popularity of conjugate gradients methods for the optimization
of functions of a large number of variables.

3.3.1 The Quadratic Case

Suppose that we want to minimize the quadratic function

f(x) = c + aT x +
1
2
xT Qx (3.16)

where Q is a symmetric, positive definite matrix, and x has n components. As we saw in our discussion of
steepest descent, the minimum x∗ is the solution to the linear system

Qx = −a . (3.17)

We know how to solve such a system. However, all the methods we have seen so far involve explicit
manipulation of the matrix Q. We now consider an alternative solution method that does not need Q, but
only the quantity

gk = Qxk + a

that is, the gradient of f(x), evaluated at n different points x1, . . . ,xn. We will see that the conjugate
gradients method requires n gradient evaluations and n line searches in lieu of each n× n matrix inversion
in Newton’s method.

Formal proofs can be found in Elijah Polak, Optimization — Algorithms and consistent approximations,
Springer, NY, 1997. The arguments offered below appeal to intuition.

Consider the case n = 3, in which the variable x in f(x) is a three-dimensional vector. Then the quadratic
function f(x) is constant over ellipsoids, called isosurfaces, centered at the minimum x∗. How can we start
from a point x0 on one of these ellipsoids and reach x∗ by a finite sequence of one-dimensional searches? In
connection with steepest descent, we noticed that for poorly conditioned Hessians orthogonal directions lead
to many small steps, that is, to slow convergence.

When the ellipsoids are spheres, on the other hand, this works much better. The first step takes from x0

to x1, and the line between x0 and x1 is tangent to an isosurface at x1. The next step is in the direction of
the gradient, so that the new direction p1 is orthogonal to the previous direction p0. This would then take
us to x∗ right away. Suppose however that we cannot afford to compute this special direction p1 orthogonal



50 CHAPTER 3. FUNCTION OPTIMIZATION

to p0, but that we can only compute some direction p1 orthogonal to p0 (there is an n−1-dimensional space
of such directions!). It is easy to see that in that case n steps will take us to x∗. In fact, since isosurfaces
are spheres, each line minimization is independent of the others: The first step yields the minimum in the
space spanned by p0, the second step then yields the minimum in the space spanned by p0 and p1, and so
forth. After n steps we must be done, since p0 . . . ,pn−1 span the whole space.

In summary, any set of orthogonal directions, with a line search in each direction, will lead to the minimum
for spherical isosurfaces. Given an arbitrary set of ellipsoidal isosurfaces, there is a one-to-one mapping with
a spherical system: if Q = UΣUT is the SVD of the symmetric, positive definite matrix Q, then we can write

1
2
xT Qx =

1
2
yT y

where
y = Σ1/2UT x . (3.18)

Consequently, there must be a condition for the original problem (in terms of Q) that is equivalent to
orthogonality for the spherical problem. If two directions qi and qj are orthogonal in the spherical context,
that is, if

qT
i qj = 0 ,

what does this translate into in terms of the directions pi and pj for the ellipsoidal problem? We have

qi,j = Σ1/2UT pi,j ,

so that orthogonality for qi,j becomes

pT
i UΣ1/2Σ1/2UT pj = 0

or
pT

i Qpj = 0 . (3.19)

This condition is called Q-conjugacy, or Q-orthogonality: if equation (4.19) holds, then pi and pj are said
to be Q-conjugate or Q-orthogonal to each other. We will henceforth simply say “conjugate” for brevity.

In summary, if we can find n directions p0, . . . ,pn−1 that are mutually conjugate, and if we do line
minimization along each direction pk, we reach the minimum in at most n steps. Of course, we cannot use
the transformation (4.18) in the algorithm, because Σ and especially UT are too large. So now we need to
find a method for generating n conjugate directions without using either Q or its SVD. We do this in two
steps. First, we find conjugate directions whose definitions do involve Q. Then, in the next subsection, we
rewrite these expressions without Q.

Here is the procedure, due to Hestenes and Stiefel (Methods of conjugate gradients for solving linear
systems, J. Res. Bureau National Standards, section B, Vol 49, pp. 409-436, 1952), which also incorporates
the steps from x0 to xn:

g0 = g(x0)
p0 = −g0

for k = 0 . . . , n− 1
αk = arg minα≥0 f(xk + αpk)
xk+1 = xk + αkpk

gk+1 = g(xk+1)

γk =
gT

k+1Qpk

pT
k

Qpk

pk+1 = −gk+1 + γkpk

end
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where

gk = g(xk) =
∂f

∂x

∣∣∣∣
x=xk

is the gradient of f at xk.
It is simple to see that pk and pk+1 are conjugate. In fact,

pT
k Qpk+1 = pT

k Q(−gk+1 + γkpk)

= −pT
k Qgk+1 +

gT
k+1Qpk

pT
k Qpk

pT
k Qpk

= −pT
k Qgk+1 + gT

k+1Qpk = 0 .

It is somewhat more cumbersome to show that pi and pk+1 for i = 0, . . . , k are also conjugate. This can be
done by induction. The proof is based on the observation that the vectors pk are found by a generalization
of Gram-Schmidt (theorem 2.4.2) to produce conjugate rather than orthogonal vectors. Details can be found
in Polak’s book mentioned earlier.

3.3.2 Removing the Hessian

The algorithm shown in the previous subsection is a correct conjugate gradients algorithm. However, it is
computationally inadequate because the expression for γk contains the Hessian Q, which is too large. We
now show that γk can be rewritten in terms of the gradient values gk and gk+1 only. To this end, we notice
that

gk+1 = gk + αkQpk ,

or
αkQpk = gk+1 − gk .

In fact,
g(x) = a + Qx

so that
gk+1 = g(xk+1) = g(xk + αkpk) = a + Q(xk + αkpk) = gk + αkQpk .

We can therefore write

γk =
gT

k+1Qpk

pT
k Qpk

=
gT

k+1αkQpk

pT
k αkQpk

=
gT

k+1(gk+1 − gk)
pT

k (gk+1 − gk)
,

and Q has disappeared.
This expression for γk can be further simplified by noticing that

pT
k gk+1 = 0

because the line along pk is tangent to an isosurface at xk+1, while the gradient gk+1 is orthogonal to the
isosurface at xk+1. Similarly,

pT
k−1gk = 0 .

Then, the denominator of γk becomes

pT
k (gk+1 − gk) = −pT

k gk = (gk − γk−1pk−1)
T gk = gT

k gk .

In conclusion, we obtain the Polak-Ribière formula

γk =
gT

k+1(gk+1 − gk)
gT

k gk

.
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3.3.3 Extension to General Functions

We now know how to minimize the quadratic function (4.16) in n steps, without ever constructing the
Hessian explicitly. When the function f(x) is arbitrary, the same algorithm can be used.

However, n iterations will not suffice. In fact, the Hessian, which was constant for the quadratic case,
now is a function of xk. Strictly speaking, we then lose conjugacy, since pk and pk+1 are associated to
different Hessians. However, as the algorithm approaches the minimum x∗, the quadratic approximation
becomes more and more valid, and a few cycles of n iterations each will achieve convergence.
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Chapter 5

Eigenvalues and Eigenvectors

Given a linear transformation
b = Ax ,

the singular value decomposition A = UΣV T of A transforms the domain of the transformation via the
matrix V T and its range via the matrix UT so that the transformed system is diagonal. In fact, the equation
b = UΣV T x can be written as follows

UT b = ΣV T x ,

that is,
c = Σy

where

y = V T x and c = UT b ,

and where Σ is diagonal. This is a fundamental transformation to use whenever the domain and the range
of A are separate spaces. Often, however, domain and range are intimately related to one another even
independently of the transformation A. The most important example is perhaps that of a system of linear
differential equations, of the form

ẋ = Ax

where A is n× n. For this equation, the fact that A is square is not a coincidence. In fact, x is assumed to
be a function of some real scalar variable t (often time), and ẋ is the derivative of x with respect to t:

ẋ =
dx
dt

.

In other words, there is an intimate, pre-existing relation between x and ẋ, and one cannot change coordinates
for x without also changing those for ẋ accordingly. In fact, if V is an orthogonal matrix and we define

y = V T x ,

then the definition of ẋ forces us to transform ẋ by V T as well:

d V T x
dt

= V T dx
dt

= V T ẋ .

In brief, the SVD does nothing useful for systems of linear differential equations, because it diagonalizes
A by two different transformations, one for the domain and one for the range, while we need a single
transformation. Ideally, we would like to find an orthogonal matrix S and a diagonal matrix Λ such that

A = SΛST (5.1)

53
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so that if we define
y = ST x

we can write the equivalent but diagonal differential system

ẏ = Λy .

This is now much easier to handle, because it is a system of n independent, scalar differential equations,
which can be solved separately. The solutions can then be recombined through

x = Sy .

We will see all of this in greater detail soon.
Unfortunately, writing A in the form (5.1) is not always possible. This stands to reason, because now we

are imposing stronger constraints on the terms of the decomposition. It is like doing an SVD but with the
additional constraint U = V . If we refer back to figure 3.1, now the circle and the ellipse live in the same
space, and the constraint U = V implies that the vectors vi on the circle that map into the axes σiui of the
ellipse are parallel to the axes themselves. This will only occur for very special matrices.

In order to make a decomposition like (5.1) possible, we weaken the constraints in several ways:

• the elements of S and Λ are allowed to be complex, rather than real;

• the elements on the diagonal of Λ are allowed to be negative; in fact, they can be even non-real;

• S is required to be only invertible, rather than orthogonal.

To distinguish invertible from orthogonal matrices we use the symbol Q for invertible and S for orthogonal.
In some cases, it will be possible to diagonalize A by orthogonal transformations S and ST . Finally, for
complex matrices we generalize the notion of transpose by introducing the Hermitian operator: The matrix
QH (pronounced “Q Hermitian”) is defined to be the complex conjugate of the transpose of Q. If Q happens
to be real, conjugate transposition becomes simply transposition, so the Hermitian is a generalization of the
transpose. A matrix S is said to be unitary if

SHS = SSH = I ,

so unitary generalizes orthogonal for complex matrices. Unitary matrices merely rotate or flip vectors, in
the sense that they do not alter the vectors’ norms. For complex vectors, the norm squared is defined as

‖x‖2 = xHx ,

and if S is unitary we have
‖Sx‖2 = xHSHSx = xHx = ‖x‖2 .

Furthermore, if x1 and x2 are mutually orthogonal, in the sense that

xH
1 x2 = 0 ,

then Sx1 and Sx2 are orthogonal as well:

xH
1 SHSx2 = xH

1 x2 = 0 .

In contrast, a nonunitary transformation Q can change the norms of vectors, as well as the inner products
between vectors. A matrix that is equal to its Hermitian is called a Hermitian matrix.

In summary, in order to diagonalize a square matrix A from a system of linear differential equations we
generally look for a decomposition of A of the form

A = QΛQ−1 (5.2)
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where Q and Λ are complex, Q is invertible, and Λ is diagonal. For some special matrices, this may specialize
to

A = SΛSH

with unitary S.
Whenever two matrices A and B, diagonal or not, are related by

A = QBQ−1 ,

they are said to be similar to each other, and the transformation of B into A (and vice versa) is called a
similarity transformation.

The equation A = QΛQ−1 can be rewritten as follows:

AQ = QΛ

or separately for every column of Q as follows:

Aqi = λiqi (5.3)

where

Q =
[

q1 · · · qn

]
and Λ = diag(λ1, . . . , λn) .

Thus, the columns of qi of Q and the diagonal entries λi of Λ are solutions of the eigenvalue/eigenvector
equation

Ax = λx , (5.4)

which is how eigenvalues and eigenvectors are usually introduced. In contrast, we have derived this equation
from the requirement of diagonalizing a matrix by a similarity transformation. The columns of Q are called
eigenvectors, and the diagonal entries of Λ are called eigenvalues.

−2 −1 0 1 2
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Figure 5.1: Effect of the transformation (5.5) on a sample of points on the unit circle. The dashed lines are
vectors that do not change direction under the transformation.

That real eigenvectors and eigenvalues do not always exist can be clarified by considering the eigenvalue
problem from a geometrical point of view in the n = 2 case. As we know, an invertible linear transformation
transforms the unit circle into an ellipse. Each point on the unit circle is transformed into some point on
the ellipse. Figure 5.1 shows the effect of the transformation represented by the matrix

A =
[

2/3 4/
√

3
0 2

]
(5.5)
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for a sample of points on the unit circle. Notice that there are many transformations that map the unit
circle into the same ellipse. In fact, the circle in figure 5.1 can be rotated, pulling the solid lines along.
Each rotation yields another matrix A, but the resulting ellipse is unchanged. In other words, the curve-to-
curve transformation from circle to ellipse is unique, but the point-to-point transformation is not. Matrices
represent point-to-point transformations.

The eigenvalue problem amounts to finding axes q1,q2 that are mapped into themselves by the original
transformation A (see equation (5.3)). In figure 5.1, the two eigenvectors are shown as dashed lines. Notice
that they do not correspond to the axes of the ellipse, and that they are not orthogonal. Equation (5.4) is
homogeneous in x, so x can be assumed to be a unit vector without loss of generality.

Given that the directions of the input vectors are generally changed by the transformation A, as evident
from figure 5.1, it is not obvious whether the eigenvalue problem admits a solution at all. We will see that
the answer depends on the matrix A, and that a rather diverse array of situations may arise. In some cases,
the eigenvalues and their eigenvectors exist, but they are complex. The geometric intuition is hidden, and
the problem is best treated as an algebraic one. In other cases, all eigenvalues exist, perhaps all real, but
not enough eigenvectors can be found, and the matrix A cannot be diagonalized. In particularly good cases,
there are n real, orthonormal eigenvectors. In bad cases, we have to give up the idea of diagonalizing A, and
we can only triangularize it. This turns out to be good enough for solving linear differential systems, just as
triangularization was sufficient for solving linear algebraic systems.

5.1 Computing Eigenvalues and Eigenvectors Algebraically

Let us rewrite the eigenvalue equation
Ax = λx

as follows:
(A− λI)x = 0 . (5.6)

This is a homogeneous, square system of equations, which admits nontrivial solutions iff the matrix A− λI
is rank-deficient. A square matrix B is rank-deficient iff its determinant,

det(B) =
{

b11 if B is 1× 1∑n
i=1(−1)i+1bi1 det(Bi1) otherwise

is zero. In this expression, Bij is the algebraic complement of entry bij , defined as the (n − 1) × (n − 1)
matrix obtained by removing row i and column j from B.

Volumes have been written about the properties of the determinant. For our purposes, it is sufficient to
recall the following properties from linear algebra:

• det(B) = det(BT );

• det(
[

b1 · · · bn

]
) = 0 iff b1, . . . ,bn are linearly dependent;

• det(
[

b1 · · · bi · · · bj · · · bn

]
) = − det(

[
b1 · · · bj · · · bi · · · bn

]
);

• det(BC) = det(B) det(C).

Thus, for system (5.6) to admit nontrivial solutions, we need

det(A− λI) = 0 . (5.7)

From the definition of determinant, it follows, by very simple induction, that the left-hand side of equation
(5.7) is a polynomial of degree n in λ, and that the coefficient of λn is 1. Therefore, equation (5.7), which
is called the characteristic equation of A, has n complex solutions, in the sense that

det(A− λI) = (−1)n(λ− λ1) · . . . · (λ− λn)
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where some of the λi may coincide. In other words, an n×n matrix has at most n distinct eigenvalues. The
case of exactly n distinct eigenvalues is of particular interest, because of the following results.

Theorem 5.1.1 Eigenvectors x1, . . . ,xk corresponding to distinct eigenvalues λ1, . . . , λk are linearly inde-
pendent.

Proof. Suppose that c1x1 + . . .+ ckxk = 0 where the xi are eigenvectors of a matrix A. We need to show
that then c1 = . . . = ck = 0. By multiplying by A we obtain

c1Ax1 + . . . + ckAxk = 0

and because x1, . . . ,xk are eigenvectors corresponding to eigenvalues λ1, . . . , λk, we have

c1λ1x1 + . . . + ckλkxk = 0 . (5.8)

However, from
c1x1 + . . . + ckxk = 0

we also have
c1λkx1 + . . . + ckλkxk = 0

and subtracting this equation from equation (5.8) we have

c1(λ1 − λk)x1 + . . . + ck−1(λk−1 − λk)xk−1 = 0 .

Thus, we have reduced the summation to one containing k−1 terms. Since all λi are distinct, the differences
in parentheses are all nonzero, and we can replace each xi by x′i = (λi − λk)xi, which is still an eigenvector
of A:

c1x′1 + . . . + ck−1x′k−1 = 0 .

We can repeat this procedure until only one term remains, and this forces c1 = 0, so that

c2x2 + . . . + ckxk = 0

This entire argument can be repeated for the last equation, therefore forcing c2 = 0, and so forth.
In summary, the equation c1x1 + . . . + ckxk = 0 implies that c1 = . . . = ck = 0, that is, that the vectors

x1, . . . ,xk are linearly independent. ∆

For Hermitian matrices (and therefore for real symmetric matrices as well), the situation is even better.

Theorem 5.1.2 A Hermitian matrix has real eigenvalues.

Proof. A matrix A is Hermitian iff A = AH . Let λ and x be an eigenvalue of A and a corresponding
eigenvector:

Ax = λx . (5.9)

By taking the Hermitian we obtain
xHAH = λ∗xH .

Since A = AH , the last equation can be rewritten as follows:

xHA = λ∗xH . (5.10)

If we multiply equation (5.9) from the left by xH and equation (5.10) from the right by x, we obtain

xHAx = λxHx

xHAx = λ∗xHx
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which implies that
λxHx = λ∗xHx

Since x is an eigenvector, the scalar xHx is nonzero, so that we have

λ = λ∗

as promised. ∆

Corollary 5.1.3 A real and symmetric matrix has real eigenvalues.

Proof. A real and symmetric matrix is Hermitian. ∆

Theorem 5.1.4 Eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are mutually
orthogonal.

Proof. Let λ and µ be two distinct eigenvalues of A, and let x and y be corresponding eigenvectors:

Ax = λx

Ay = µy ⇒ yHA = µyH

because A = AH and from theorem 5.1.2 µ = µ∗. If we multiply these two equations by yH from the left
and x from the right, respectively, we obtain

yHAx = λyHx

yHAx = µyHx ,

which implies
λyHx = µyHx

or
(λ− µ)yHx = 0 .

Since the two eigenvalues are distinct, λ− µ is nonzero, and we must have yHx = 0. ∆

Corollary 5.1.5 An n×n Hermitian matrix with n distinct eigenvalues admits n orthonormal eigenvectors.

Proof. From theorem 5.1.4, the eigenvectors of an n×n Hermitian matrix with n distinct eigenvalues are
all mutually orthogonal. Since the eigenvalue equation Ax = λx is homogeneous in x, the vector x can be
normalized without violating the equation. Consequently, the eigenvectors can be made to be orthonormal.

∆

In summary, any square matrix with n distinct eigenvalues can be diagonalized by a similarity trans-
formation, and any square Hermitian matrix with n distinct eigenvalues can be diagonalized by a unitary
similarity transformation.

Notice that the converse is not true: a matrix can have coincident eigenvalues and still admit n indepen-
dent, and even orthonormal, eigenvectors. For instance, the n × n identity matrix has n equal eigenvalues
but n orthonormal eigenvectors (which can be chosen in infinitely many ways).

The examples in section 5.2 show that when some eigenvalues coincide, rather diverse situations can
arise concerning the eigenvectors. First, however, we point out a simple but fundamental fact about the
eigenvalues of a triangular matrix.
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Theorem 5.1.6 The determinant of a triangular matrix is the product of the elements on its diagonal.

Proof. This follows immediately from the definition of determinant. Without loss of generality, we can
assume a triangular matrix B to be upper-triangular, for otherwise we can repeat the argument for the
transpose, which because of the properties above has the same eigenvalues. Then, the only possibly nonzero
bi1 of the matrix B is b11, and the summation in the definition of determinant given above reduces to a
single term:

det(B) =
{

b11 if B is 1× 1
b11 det(B11) otherwise .

By repeating the argument for B11 and so forth until we are left with a single scalar, we obtain

det(B) = b11 · . . . · bnn .

∆

Corollary 5.1.7 The eigenvalues of a triangular matrix are the elements on its diagonal.

Proof. The eigenvalues of a matrix A are the solutions of the equation

det(A− λI) = 0 .

If A is triangular, so is B = A− λI, and from the previous theorem we obtain

det(A− λI) = (a11 − λ) · . . . · (ann − λ)

which is equal to zero for
λ = a11, . . . , ann .

∆

Note that diagonal matrices are triangular, so this result holds for diagonal matrices as well.

5.2 Good and Bad Matrices

Solving differential equations becomes much easier when matrices have a full set of orthonormal eigenvectors.
For instance, the matrix

A =
[

2 0
0 1

]
(5.11)

has eigenvalues 2 and 1 and eigenvectors

s1 =
[

1
0

]
s2 =

[
0
1

]
.

Matrices with n orthonormal eigenvectors are called normal. Normal matrices are good news, because
then the n× n system of differential equations

ẋ = Ax

has solution

x(t) =
n∑

i=1

cisi eλit = S




eλ1t

. . .
eλnt


 c
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where S = [s1 · · · sn] are the eigenvectors, λi are the eigenvalues, and the vector c of constants ci is

c = SHx(0) .

More compactly,

x(t) = S




eλ1t

. . .
eλnt


 SHx(0) .

Fortunately these matrices occur frequently in practice. However, not all matrices are as good as these.
First, there may still be a complete set of n eigenvectors, but they may not be orthonormal. An example of
such a matrix is [

2 −1
0 1

]

which has eigenvalues 2 and 1 and nonorthogonal eigenvectors

q1 =
[

1
0

]
q2 =

√
2

2

[
1
1

]
.

This is conceptually only a slight problem, because the unitary matrix S is replaced by an invertible matrix
Q, and the solution becomes

x(t) = Q




eλ1t

. . .
eλnt


 Q−1x(0) .

Computationally this is more expensive, because a computation of a Hermitian is replaced by a matrix
inversion.

However, things can be worse yet, and a full set of eigenvectors may fail to exist, as we now show.
A necessary condition for an n×n matrix to be defective, that is, to have fewer than n eigenvectors, is that

it have repeated eigenvalues. In fact, we have seen (theorem 5.1.1) that a matrix with distinct eigenvalues
(zero or nonzero does not matter) has a full set of eigenvectors (perhaps nonorthogonal, but independent).
The simplest example of a defective matrix is

[
0 1
0 0

]

which has double eigenvalue 0 and only eigenvector [1 0]T , while
[

3 1
0 3

]

has double eigenvalue 3 and only eigenvector [1 0]T , so zero eigenvalues are not the problem.
However, repeated eigenvalues are not a sufficient condition for defectiveness, as the identity matrix

proves.
How bad can a matrix be? Here is a matrix that is singular, has fewer than n eigenvectors, and the

eigenvectors it has are not orthogonal. It belongs to the scum of all matrices:

A =




0 2 −1
0 2 1
0 0 2


 .

Its eigenvalues are 0, because the matrix is singular, and 2, repeated twice. A has to have a repeated
eigenvalue if it is to be defective. Its two eigenvectors are

q1 =




1
0
0


 , q2 =

√
2

2




1
1
0



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corresponding to eigenvalues 0 and 2 in this order, and there is no q3. Furthermore, q1 and q2 are not
orthogonal to each other.

5.3 Computing Eigenvalues and Eigenvectors Numerically

The examples above have shown that not every n × n matrix admits n independent eigenvectors, so some
matrices cannot be diagonalized by similarity transformations. Fortunately, these matrices can be triangu-
larized by similarity transformations, as we now show. We will show later on that this allows solving systems
of linear differential equations regardless of the structure of the system’s matrix of coefficients.

It is important to notice that if a matrix A is triangularized by similarity transformations,

T = Q−1AQ ,

then the eigenvalues of the triangular matrix T are equal to those of the original matrix A. In fact, if

Ax = λx ,

then
QTQ−1x = λx ,

that is,
Ty = λy

where
y = Q−1x ,

so λ is also an eigenvalue for T . The eigenvectors, however, are changed according to the last equation.
The Schur decomposition does even better, since it triangularizes any square matrix A by a unitary

(possibly complex) transformation:
T = SHAS .

This transformation is equivalent to factoring A into the product

A = STSH ,

and this product is called the Schur decomposition of A. Numerically stable and efficient algorithms exist
for the Schur decomposition. In this note, we will not study these algorithms, but only show that all square
matrices admit a Schur decomposition.

5.3.1 Rotations into the x1 Axis

An important preliminary fact concerns vector rotations. Let e1 be the first column of the identity matrix.
It is intuitively obvious that any nonzero real vector x can be rotated into a vector parallel to e1. Formally,
take any orthogonal matrix S whose first column is

s1 =
x
‖x‖ .

Since sT
1 x = xT x/‖x‖ = ‖x‖, and since all the other sj are orthogonal to s1, we have

ST x =




sT
1
...

sT
n


x =




sT
1 x
...

sT
nx


 =




‖x‖
0
...
0



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which is parallel to e1 as desired. It may be less obvious that a complex vector x can be transformed into a
real vector parallel to e1 by a unitary transformation. But the trick is the same: let

s1 =
x
‖x‖ .

Now s1 may be complex. We have sH
1 x = xHx/‖x‖ = ‖x‖, and

SHx =




sH
1
...

sH
n


x =




sH
1 x
...

sH
n x


 =




‖x‖
0
...
0


 ,

just about like before. We are now ready to triangularize an arbitrary square matrix A.

5.3.2 The Schur Decomposition

The Schur decomposition theorem is the cornerstone of eigenvalue computations. It states that any square
matrix can be triangularized by unitary transformations. The diagonal elements of a triangular matrix are
its eigenvalues, and unitary transformations preserve eigenvalues. Consequently, if the Schur decomposition
of a matrix can be computed, its eigenvalues can be determined. Moreover, as we will see later, a system of
linear differential equations can be solved regardless of the structure of the matrix of its coefficients.

Lemma 5.3.1 If A is an n×n matrix and λ and x are an eigenvalue of A and its corresponding eigenvector,

Ax = λx (5.12)

then there is a transformation
T = UHAU

where U is a unitary, n× n matrix, such that

T =




λ
0
...
0

C


 .

Proof. Let U be a unitary transformation that transforms the (possibly complex) eigenvector x of A into
a real vector on the x1 axis:

x = U




r
0
...
0




where r is the nonzero norm of x. By substituting this into (5.12) and rearranging we have

AU




r
0
...
0


 = λU




r
0
...
0




UHAU




r
0
...
0


 = λ




r
0
...
0



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UHAU




1
0
...
0


 = λ




1
0
...
0




T




1
0
...
0


 =




λ
0
...
0


 .

The last left-hand side is the first column of T , and the corresponding right-hand side is of the form required
by the lemma. ∆

Theorem 5.3.2 (Schur) If A is any n× n matrix then there exists a unitary n× n matrix S such that

SHAS = T

where T is triangular. Furthermore, S can be chosen so that the eigenvalues λi of A appear in any order
along the diagonal of T .

Proof. By induction. The theorem obviously holds for n = 1:

1 A 1 = A .

Suppose it holds for all matrices of order n− 1. Then from the lemma there exists a unitary U such that

UHAU =




λ
0
...
0

C




where λ is any eigenvalue of A. Partition C into a row vector and an (n− 1)× (n− 1) matrix G:

C =
[

wH

G

]
.

By the inductive hypothesis, there is a unitary matrix V such that V HGV is a Schur decomposition of G.
Let

S = U




1 0 · · · 0
0
...
0

V


 .

Clearly, S is a unitary matrix, and SHAS is upper-triangular. Since the elements on the diagonal of a
triangular matrix are the eigenvalues, SHAS is the Schur decomposition of A. Because we can pick any
eigenvalue as λ, the order of eigenvalues can be chosen arbitrarily. ∆

This theorem does not say how to compute the Schur decomposition, only that it exists. Fortunately,
there is a stable and efficient algorithm to compute the Schur decomposition. This is the preferred way to
compute eigenvalues numerically.
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5.4 Eigenvalues/Vectors and Singular Values/Vectors

In this section we prove a few additional important properties of eigenvalues and eigenvectors. In the process,
we also establish a link between singular values/vectors and eigenvalues/vectors. While this link is very
important, it is useful to remember that eigenvalues/vectors and singular values/vectors are conceptually
and factually very distinct entities (recall figure 5.1).

First, a general relation between determinant and eigenvalues.

Theorem 5.4.1 The determinant of a matrix is equal to the product of its eigenvalues.

Proof. The proof is very simple, given the Schur decomposition. In fact, we know that the eigenvalues of
a matrix A are equal to those of the triangular matrix in the Schur decomposition of A. Furthermore, we
know from theorem 5.1.6 that the determinant of a triangular matrix is the product of the elements on its
diagonal. If we recall that a unitary matrix has determinant 1 or -1, that the determinants of S and SH are
the same, and that the determinant of a product of matrices is equal to the product of the determinants,
the proof is complete. ∆

We saw that an n × n Hermitian matrix with n distinct eigenvalues admits n orthonormal eigenvectors
(corollary 5.1.5). The assumption of distinct eigenvalues made the proof simple, but is otherwise unnecessary.
In fact, now that we have the Schur decomposition, we can state the following stronger result.

Theorem 5.4.2 (Spectral theorem) Every Hermitian matrix can be diagonalized by a unitary matrix,
and every real symmetric matrix can be diagonalized by an orthogonal matrix:

A = AH ⇒ A = SΛSH

A real, A = AT ⇒ A = SΛST , S real .

In either case, Λ is real and diagonal.

Proof. We already know that Hermitian matrices (and therefore real and symmetric ones) have real
eigenvalues (theorem 5.1.2), so Λ is real. Let now

A = STSH

be the Schur decomposition of A. Since A is Hermitian, so is T . In fact, T = SHAS, and

TH = (SHAS)H = SHAHS = SHAS = T .

But the only way that T can be both triangular and Hermitian is for it to be diagonal, because 0∗ = 0. Thus,
the Schur decomposition of a Hermitian matrix is in fact a diagonalization, and this is the first equation of
the theorem (the diagonal of a Hermitian matrix must be real).

Let now A be real and symmetric. All that is left to prove is that then its eigenvectors are real. But
eigenvectors are the solution of the homogeneous system (5.6), which is both real and rank-deficient, and
therefore admits nontrivial real solutions. Thus, S is real, and SH = ST . ∆

In other words, a Hermitian matrix, real or not, with distinct eigenvalues or not, has real eigenvalues and
n orthonormal eigenvectors. If in addition the matrix is real, so are its eigenvectors.

We recall that a real matrix A such that for every nonzero x we have xT Ax > 0 is said to be positive
definite. It is positive semidefinite if for every nonzero x we have xT Ax ≥ 0. Notice that a positive
definite matrix is also positive semidefinite. Positive definite or semidefinite matrices arise in the solution of
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overconstrained linear systems, because AT A is positive semidefinite for every A (lemma 5.4.5). They also
occur in geometry through the equation of an ellipsoid,

xT Qx = 1

in which Q is positive definite. In physics, positive definite matrices are associated to quadratic forms xT Qx
that represent energies or second-order moments of mass or force distributions. Their physical meaning
makes them positive definite, or at least positive semidefinite (for instance, energies cannot be negative). The
following result relates eigenvalues/vectors with singular values/vectors for positive semidefinite matrices.

Theorem 5.4.3 The eigenvalues of a real, symmetric, positive semidefinite matrix A are equal to its singular
values. The eigenvectors of A are also its singular vectors, both left and right.

Proof. From the previous theorem, A = SΛST , where both Λ and S are real. Furthermore, the entries
in Λ are nonnegative. In fact, from

Asi = λsi

we obtain
sT
i Asi = sT

i λsi = λsT
i si = λ‖si‖2 = λ .

If A is positive semidefinite, then xT Ax ≥ 0 for any nonzero x, and in particular sT
i Asi ≥ 0, so that λ ≥ 0.

But
A = SΛST

with nonnegative diagonal entries in Λ is the singular value decomposition A = UΣV T of A with Σ = Λ and
U = V = S. Recall that the eigenvalues in the Schur decomposition can be arranged in any desired order
along the diagonal. ∆

Theorem 5.4.4 A real, symmetric matrix is positive semidefinite iff all its eigenvalues are nonnegative. It
is positive definite iff all its eigenvalues are positive.

Proof. Theorem 5.4.3 implies one of the two directions: If A is real, symmetric, and positive semidefinite,
then its eigenvalues are nonnegative. If the proof of that theorem is repeated with the strict inequality, we
also obtain that if A is real, symmetric, and positive definite, then its eigenvalues are positive.

Conversely, we show that if all eigenvalues λ of a real and symmetric matrix A are positive (nonnegative)
then A is positive definite (semidefinite). To this end, let x be any nonzero vector. Since real and symmetric
matrices have n orthonormal eigenvectors (theorem 5.4.2), we can use these eigenvectors s1, . . . , sn as an
orthonormal basis for Rn, and write

x = c1s1 + . . . + cnsn

with
ci = xT si .

But then

xT Ax = xT A(c1s1 + . . . + cnsn) = xT (c1As1 + . . . + cnAsn)
= xT (c1λ1s1 + . . . + cnλnsn) = c1λ1xT s1 + . . . + cnλnxT sn

= λ1c
2
1 + . . . + λnc2

n > 0 (or ≥ 0)

because the λi are positive (nonnegative) and not all ci can be zero. Since xT Ax > 0 (or ≥ 0) for every
nonzero x, A is positive definite (semidefinite). ∆

Theorem 5.4.3 establishes one connection between eigenvalues/vectors and singular values/vectors: for
symmetric, positive definite matrices, the concepts coincide. This result can be used to introduce a less
direct link, but for arbitrary matrices.
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Lemma 5.4.5 AT A is positive semidefinite.

Proof. For any nonzero x we can write xT AT Ax = ‖Ax‖2 ≥ 0. ∆

Theorem 5.4.6 The eigenvalues of AT A with m ≥ n are the squares of the singular values of A; the
eigenvectors of AT A are the right singular vectors of A. Similarly, for m ≤ n, the eigenvalues of AAT are
the squares of the singular values of A, and the eigenvectors of AAT are the left singular vectors of A.

Proof. If m ≥ n and A = UΣV T is the SVD of A, we have

AT A = V ΣUT UΣV T = V Σ2V T

which is in the required format to be a (diagonal) Schur decomposition with S = V and T = Λ = Σ2.
Similarly, for m ≤ n,

AAT = UΣV T V ΣUT = UΣ2UT

is a Schur decomposition with S = U and T = Λ = Σ2. ∆

We have seen that important classes of matrices admit a full set of orthonormal eigenvectors. The theorem
below characterizes the class of all matrices with this property, that is, the class of all normal matrices. To
prove the theorem, we first need a lemma.

Lemma 5.4.7 If for an n × n matrix B we have BBH = BHB, then for every i = 1, . . . , n, the norm of
the i-th row of B equals the norm of its i-th column.

Proof. From BBH = BHB we deduce

‖Bx‖2 = xHBHBx = xHBBHx = ‖BHx‖2 . (5.13)

If x = ei, the i-th column of the n × n identity matrix, Bei is the i-th column of B, and BHei is the i-th
column of BH , which is the conjugate of the i-th row of B. Since conjugation does not change the norm of
a vector, the equality (5.13) implies that the i-th column of B has the same norm as the i-th row of B. ∆

Theorem 5.4.8 An n× n matrix is normal if an only if it commutes with its Hermitian:

AAH = AHA .

Proof. Let A = STSH be the Schur decomposition of A. Then,

AAH = STSHSTHSH = STTHSH and AHA = STHSHSTSH = STHTSH .

Because S is invertible (even unitary), we have AAH = AHA if and only if TTH = THT .
However, a triangular matrix T for which TTH = THT must be diagonal. In fact, from the lemma, the

norm of the i-th row of T is equal to the norm of its i-th column. Let i = 1. Then, the first column of T
has norm |t11|. The first row has first entry t11, so the only way that its norm can be |t11| is for all other
entries in the first row to be zero. We now proceed through i = 2, . . . , n, and reason similarly to conclude
that T must be diagonal.

The converse is also obviously true: if T is diagonal, then TTH = THT . Thus, AAH = AHA if and only
if T is diagonal, that is, if and only if A can be diagonalized by a unitary similarity transformation. This is
the definition of a normal matrix. ∆
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Corollary 5.4.9 A triangular, normal matrix must be diagonal.

Proof. We proved this in the proof of theorem 5.4.8. ∆

Checking that AHA = AAH is much easier than computing eigenvectors, so theorem 5.4.8 is a very useful
characterization of normal matrices. Notice that Hermitian (and therefore also real symmetric) matrices
commute trivially with their Hermitians, but so do, for instance, unitary (and therefore also real orthogonal)
matrices:

UUH = UHU = I .

Thus, Hermitian, real symmetric, unitary, and orthogonal matrices are all normal.
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Chapter 6

Ordinary Differential Systems

In this chapter we use the theory developed in chapter 5 in order to solve systems of first-order linear
differential equations with constant coefficients. These systems have the following form:

ẋ = Ax + b(t) (6.1)
x(0) = x0 (6.2)

where x = x(t) is an n-dimensional vector function of time t, the dot denotes differentiation, the coefficients
aij in the n × n matrix A are constant, and the vector function b(t) is a function of time. The equation
(6.2), in which x0 is a known vector, defines the initial value of the solution.

First, we show that scalar differential equations of order greater than one can be reduced to systems of
first-order differential equations. Then, in section 6.2, we recall a general result for the solution of first-order
differential systems from the elementary theory of differential equations. In section 6.3, we make this result
more specific by showing that the solution to a homogeneous system is a linear combination of exponentials
multiplied by polynomials in t. This result is based on the Schur decomposition introduced in chapter 5,
which is numerically preferable to the more commonly used Jordan canonical form. Finally, in sections 6.4
and 6.5, we set up and solve a particular differential system as an illustrative example.

6.1 Scalar Differential Equations of Order Higher than One

The first-order system (6.1) subsumes also the case of a scalar differential equation of order n, possibly
greater than 1,

dny

dtn
+ cn−1

dn−1y

dtn−1
+ . . . + c1

dy

dt
+ c0y = b(t) . (6.3)

In fact, such an equation can be reduced to a first-order system of the form (6.1) by introducing the n-
dimensional vector

x =




x1

...
xn


 =




y
dy
dt
...

dn−1y
dtn−1


 .

With this definition, we have

diy

dti
= xi+1 for i = 0, . . . , n− 1

dny

dtn
=

dxn

dt
,
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and x satisfies the additional n− 1 equations

xi+1 =
dxi

dt
(6.4)

for i = 1, . . . , n− 1. If we write the original system (6.3) together with the n− 1 differential equations (6.4),
we obtain the first-order system

ẋ = Ax + b(t)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cn−1




is the so-called companion matrix of (6.3) and

b(t) =




0
0
...
0

b(t)




.

6.2 General Solution of a Linear Differential System

We know from the general theory of differential equations that a general solution of system (6.1) with initial
condition (6.2) is given by

x(t) = xh(t) + xp(t)

where xh(t) is the solution of the homogeneous system

ẋ = Ax

x(0) = x0

and xp(t) is a particular solution of

ẋ = Ax + b(t)
x(0) = 0 .

The two solution components xh and xp can be written by means of the matrix exponential, introduced in
the following.

For the scalar exponential eλt we can write a Taylor series expansion

eλt = 1 +
λt

1!
+

λ2t2

2!
+ · · · =

∞∑

j=0

λjtj

j!
.

Usually1, in calculus classes, the exponential is introduced by other means, and the Taylor series expansion
above is proven as a property.

For matrices, the exponential eZ of a matrix Z ∈ Rn×n is instead defined by the infinite series expansion

eZ = I +
Z

1!
+

Z2

2!
+ · · · =

∞∑

j=0

Zj

j!
.

1Not always. In some treatments, the exponential is defined through its Taylor series.
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Here I is the n × n identity matrix, and the general term Zj/j! is simply the matrix Z raised to the jth
power divided by the scalar j!. It turns out that this infinite sum converges (to an n × n matrix which we
write as eZ) for every matrix Z. Substituting Z = At gives

eAt = I +
At

1!
+

A2t2

2!
+

A3t3

3!
+ · · · =

∞∑

j=0

Ajtj

j!
. (6.5)

Differentiating both sides of (6.5) gives

deAt

dt
= A +

A2t

1!
+

A3t2

2!
+ · · ·

= A

(
I +

At

1!
+

A2t2

2!
+ · · ·

)

deAt

dt
= AeAt.

Thus, for any vector w, the function xh(t) = eAtw satisfies the homogeneous differential system

ẋh = Axh .

By using the initial values (6.2) we obtain v = x0, and

xh(t) = eAtx(0) (6.6)

is a solution to the differential system (6.1) with b(t) = 0 and initial values (6.2). It can be shown that this
solution is unique.

From the elementary theory of differential equations, we also know that a particular solution to the
nonhomogeneous (b(t) 6= 0) equation (6.1) is given by

xp(t) =
∫ t

0

eA(t−s) b(s) ds .

This is easily verified, since by differentiating this expression for xp we obtain

ẋp = AeAt

∫ t

0

e−As b(s) ds + eAt e−At b(t) = Axp + b(t) ,

so xp satisfies equation (6.1).
In summary, we have the following result.

The solution to
ẋ = Ax + b(t) (6.7)

with initial value
x(0) = x0 (6.8)

is
x(t) = xh(t) + xp(t) (6.9)

where
xh(t) = eAtx(0) (6.10)

and

xp(t) =
∫ t

0

eA(t−s) b(s) ds . (6.11)
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Since we now have a formula for the general solution to a linear differential system, we seem to have all
we need. However, we do not know how to compute the matrix exponential. The naive solution to use the
definition (6.5) requires too many terms for a good approximation. As we have done for the SVD and the
Schur decomposition, we will only point out that several methods exist for computing a matrix exponential,
but we will not discuss how this is done2. In a fundamental paper on the subject, Nineteen dubious ways to
compute the exponential of a matrix (SIAM Review, vol. 20, no. 4, pp. 801-36), Cleve Moler and Charles
Van Loan discuss a large number of different methods, pointing out that no one of them is appropriate for
all situations. A full discussion of this matter is beyond the scope of these notes.

When the matrix A is constant, as we currently assume, we can be much more specific about the structure
of the solution (6.9) of system (6.7), and particularly so about the solution xh(t) to the homogeneous part.
Specifically, the matrix exponential (6.10) can be written as a linear combination, with constant vector
coefficients, of scalar exponentials multiplied by polynomials. In the general theory of linear differential
systems, this is shown via the Jordan canonical form. However, in the paper cited above, Moler and Van
Loan point out that the Jordan form cannot be computed reliably, and small perturbations in the data can
change the results dramatically. Fortunately, a similar result can be found through the Schur decomposition
introduced in chapter 5. The next section shows how to do this.

6.3 Structure of the Solution

For the homogeneous case b(t) = 0, consider the first order system of linear differential equations

ẋ = Ax (6.12)
x(0) = x0 . (6.13)

Two cases arise: either A admits n distinct eigenvalues, or is does not. In chapter 5, we have seen that
if (but not only if) A has n distinct eigenvalues then it has n linearly independent eigenvectors (theorem
5.1.1), and we have shown how to find xh(t) by solving an eigenvalue problem. In section 6.3.1, we briefly
review this solution. Then, in section 6.3.2, we show how to compute the homogeneous solution xh(t) in the
extreme case of an n× n matrix A with n coincident eigenvalues.

To be sure, we have seen that matrices with coincident eigenvalues can still have a full set of linearly
independent eigenvectors (see for instance the identity matrix). However, the solution procedure we introduce
in section 6.3.2 for the case of n coincident eigenvalues can be applied regardless to how many linearly
independent eigenvectors exist. If the matrix has a full complement of eigenvectors, the solution obtained in
section 6.3.2 is the same as would be obtained with the method of section 6.3.1.

Once these two extreme cases (nondefective matrix or all-coincident eigenvalues) have been handled, we
show a general procedure in section 6.3.3 for solving a homogeneous or nonhomogeneous differential system
for any, square, constant matrix A, defective or not. This procedure is based on backsubstitution, and
produces a result analogous to that obtained via Jordan decomposition for the homogeneous part xh(t) of
the solution. However, since it is based on the numerically sound Schur decomposition, the method of section
6.3.3 is superior in practice. For a nonhomogeneous system, the procedure can be carried out analytically if
the functions in the right-hand side vector b(t) can be integrated.

6.3.1 A is Not Defective

In chapter 5 we saw how to find the homogeneous part xh(t) of the solution when A has a full set of n
linearly independent eigenvectors. This result is briefly reviewed in this section for convenience.3

If A is not defective, then it has n linearly independent eigenvectors q1, . . . ,qn with corresponding
eigenvalues λ1, . . . , λn. Let

Q =
[

q1 · · · qn

]
.

2In Matlab, expm(A) is the matrix exponential of A.
3Parts of this subsection and of the following one are based on notes written by Scott Cohen.
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This square matrix is invertible because its columns are linearly independent. Since Aqi = λiqi, we have

AQ = QΛ, (6.14)

where Λ = diag(λ1, . . . , λn) is a square diagonal matrix with the eigenvalues of A on its diagonal. Multiplying
both sides of (6.14) by Q−1 on the right, we obtain

A = QΛQ−1. (6.15)

Then, system (6.12) can be rewritten as follows:

ẋ = Ax

ẋ = QΛQ−1x

Q−1ẋ = ΛQ−1x

ẏ = Λy, (6.16)

where y = Q−1x. The last equation (6.16) represents n uncoupled, homogeneous, differential equations
ẏi = λiyi. The solution is

yh(t) = eΛty(0),

where
eΛt = diag(eλ1t, . . . , eλnt).

Using the relation x = Qy, and the consequent relation y(0) = Q−1x(0), we see that the solution to the
homogeneous system (6.12) is

xh(t) = QeΛtQ−1x(0).

If A is normal, that is, if it has n orthonormal eigenvectors q1, . . . qn, then Q is replaced by the Hermitian
matrix S =

[
s1 · · · sn

]
, Q−1 is replaced by SH , and the solution to (6.12) becomes

xh(t) = SeΛtSHx(0).

6.3.2 A Has n Coincident Eigenvalues

When A = QΛQ−1, we derived that the solution to (6.12) is xh(t) = QeΛtQ−1x(0). Comparing with (6.6),
it should be the case that

eQ(Λt)Q−1
= QeΛtQ−1.

This follows easily from the definition of eZ and the fact that (Q(Λt)Q−1)j = Q(Λt)jQ−1. Similarly, if
A = SΛSH , where S is Hermitian, then the solution to (6.12) is xh(t) = SeΛtSHx(0), and

eS(Λt)SH

= SeΛtSH .

How can we compute the matrix exponential in the extreme case in which A has n coincident eigen-
values, regardless of the number of its linearly independent eigenvectors? In any case, A admits a Schur
decomposition

A = STSH

(theorem 5.3.2). We recall that S is a unitary matrix and T is upper triangular with the eigenvalues of A
on its diagonal. Thus we can write T as

T = Λ + N,

where Λ is diagonal and N is strictly upper triangular. The solution (6.6) in this case becomes

xh(t) = eS(Tt)SH

x(0) = SeTtSHx(0) = SeΛt+NtSHx(0).
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Thus we can compute (6.6) if we can compute eTt = eΛt+Nt. This turns out to be almost as easy as
computing eΛt when the diagonal matrix Λ is a multiple of the identity matrix:

Λ = λ I

that is, when all the eigenvalues of A coincide. In fact, in this case, Λt and Nt commute:

Λt Nt = λ It Nt = λtNt = Nt λt = Ntλ It = Nt Λt .

It can be shown that if two matrices Z1 and Z2 commute, that is if

Z1Z2 = Z2Z1 ,

then
eZ1+Z2 = eZ1eZ2 = eZ2eZ1 .

Thus, in our case, we can write
eΛt+Nt = eΛteNt.

We already know how to compute eΛt, so it remains to show how to compute eNt. The fact that Nt is
strictly upper triangular makes the computation of this matrix exponential much simpler than for a general
matrix Z.

Suppose, for example, that N is 4 × 4. Then N has three nonzero superdiagonals, N2 has two nonzero
superdiagonals, N3 has one nonzero superdiagonal, and N4 is the zero matrix:

N =




0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


 → N2 =




0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0


 →

N3 =




0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0


 → N4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

In general, for a strictly upper triangular n× n matrix, we have N j = 0 for all j ≥ n (i.e., N is nilpotent of
order n). Therefore,

eNt =
∞∑

j=0

N jtj

j!
=

n−1∑

j=0

N jtj

j!

is simply a finite sum, and the exponential reduces to a matrix polynomial.
In summary, the general solution to the homogeneous differential system (6.12) with initial value (6.13)

when the n× n matrix A has n coincident eigenvalues is given by

xh(t) = SeΛt
n−1∑

j=0

N jtj

j!
SHx0 (6.17)

where
A = S(Λ + N)SH

is the Schur decomposition of A,
Λ = λ I

is a multiple of the identity matrix containing the coincident eigenvalues of A on its diagonal, and N is
strictly upper triangular.
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6.3.3 The General Case

We are now ready to solve the linear differential system

ẋ = Ax + b(t) (6.18)
x(0) = x0 (6.19)

in the general case of a constant matrix A, defective or not, with arbitrary b(t). In fact, let A = STSH be
the Schur decomposition of A, and consider the transformed system

ẏ(t) = Ty(t) + c(t) (6.20)

where

y(t) = SHx(t) and c(t) = SHb(t) . (6.21)

The triangular matrix T can always be written in the following form:

T =




T11 · · · · · · T1k

0 T22 · · · T2k

...
. . .

...
0 · · · 0 Tkk




where the diagonal blocks Tii for i = 1, . . . , k are of size ni × ni (possibly 1 × 1) and contain all-coincident
eigenvalues. The remaining nonzero blocks Tij with i < j can be in turn bundled into matrices

Ri =
[

Ti,i+1 · · · Ti,k

]

that contain everything to the right of the corresponding Tii. The vector c(t) can be partitioned correspond-
ingly as follows

c(t) =




c1(t)
...

ck(t)




where ci has ni entries, and the same can be done for

y(t) =




y1(t)
...

yk(t)




and for the initial values

y(0) =




y1(0)
...

yk(0)


 .

The triangular system (6.20) can then be solved by backsubstitution as follows:

for i = k down to 1
if i < k

di(t) = Ri[yi+1(t), . . . ,yk(t)]T

else
di(t) = 0 (an nk-dimensional vector of zeros)

end
Tii = λi I + Ni (diagonal and strictly upper-triangular part of Tii)

yi(t) = eλiIt
∑ni−1

j=0
Nj

i
tj

j! yi(0) +
∫ t

0

(
eλiI(t−s)

∑ni−1
j=0

Nj
i
(t−s)j

j!

)
(ci(s) + di(s)) ds

end.
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In this procedure, the expression for yi(t) is a direct application of equations (6.9), (6.10), (6.11), and
(6.17) with S = I. In the general case, the applicability of this routine depends on whether the integral in
the expression for yi(t) can be computed analytically. This is certainly the case when b(t) is a constant
vector b, because then the integrand is a linear combination of exponentials multiplied by polynomials in
t− s, which can be integrated by parts.

The solution x(t) for the original system (6.18) is then

x(t) = Sy(t) .

As an illustration, we consider a very small example, the 2× 2 homogeneous, triangular case,
[

ẏ1

ẏ2

]
=

[
t11 t12
0 t22

] [
y1

y2

]
. (6.22)

When t11 = t22 = λ, we obtain

y(t) = eλIt

[
1 t12t
0 1

]
y(0) .

In scalar form, this becomes

y1(t) = (y1(0) + t12y2(0) t) eλt

y2(t) = y2(0) eλt ,

and it is easy to verify that this solution satisfies the differential system (6.22).
When t11 = λ1 6= t22 = λ2, we could solve the system by finding the eigenvectors of T , since we

know that in this case two linearly independent eigenvectors exist (theorem 5.1.1). Instead, we apply the
backsubstitution procedure introduced in this section. The second equation of the system,

ẏ2(t) = t22y2

has solution
y2(t) = y2(0) eλ2t .

We then have
d1(t) = t12y2(t) = t12y2(0) eλ2t

and

y1(t) = y1(0)eλ1t +
∫ t

0

eλ1(t−s)d1(s) ds

= y1(0)eλ1t + t12y2(0) eλ1t

∫ t

0

e−λ1seλ2s ds

= y1(0)eλ1t + t12y2(0) eλ1t

∫ t

0

e(λ2−λ1)s ds

= y1(0)eλ1t +
t12y2(0)
λ2 − λ1

eλ1t(e(λ2−λ1)t − 1)

= y1(0)eλ1t +
t12y2(0)
λ2 − λ1

(eλ2t − eλ1t)

Exercise: verify that this solution satisfies both the differential equation (6.22) and the initial value equation
y(0) = y0.

Thus, the solutions to system (6.22) for t11 = t22 and for t11 6= t22 have different forms. While y2(t) is
the same in both cases, we have

y1(t) = y1(0) eλt + t12y2(0) t eλt if t11 = t22

y1(t) = y1(0)eλ1t +
t12y2(0)
λ2 − λ1

(eλ2t − eλ1t) if t11 6= t22 .
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rest position
of mass 1

rest position
of mass 2

2
v

1
v

1

2

2

1

3

Figure 6.1: A system of masses and springs. In the absence of external forces, the two masses would assume
the positions indicated by the dashed lines.

This would seem to present numerical difficulties when t11 ≈ t22, because the solution would suddenly
switch from one form to the other as the difference between t11 and t22 changes from about zero to exactly
zero or viceversa. This, however, is not a problem. In fact,

lim
λ1→λ

eλt − eλ1t

λ− λ1
= t eλt ,

and the transition between the two cases is smooth.

6.4 A Concrete Example

In this section we set up and solve a more concrete example of a system of differential equations. The initial
system has two second-order equations, and is transformed into a first-order system with four equations.
The 4× 4 matrix of the resulting system has an interesting structure, which allows finding eigenvalues and
eigenvectors analytically with a little trick. The point of this section is to show how to transform the complex
formal solution of the differential system, computed with any of the methods described above, into a real
solution in a form appropriate to the problem at hand.

Consider the mechanical system in figure 6.1. Suppose that we want to study the evolution of the system
over time. Since forces are proportional to accelerations, because of Newton’s law, and since accelerations
are second derivatives of position, the new equations are differential. Because differentiation occurs only
with respect to one variable, time, these are ordinary differential equations, as opposed to partial.

In the following we write the differential equations that describe this system. Two linear differential
equations of the second order4 result. We will then transform these into four linear differential equations of
the first order.

4Recall that the order of a differential equation is the highest degree of derivative that appears in it.
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By Hooke’s law, the three springs exert forces that are proportional to the springs’ elongations:

f1 = c1v1

f2 = c2(v2 − v1)
f3 = −c3v2

where the ci are the positive spring constants (in newtons per meter).
The accelerations of masses 1 and 2 (springs are assumed to be massless) are proportional to their

accelerations, according to Newton’s second law:

m1v̈1 = −f1 + f2 = −c1v1 + c2(v2 − v1) = −(c1 + c2)v1 + c2v2

m2v̈2 = −f2 + f3 = −c2(v2 − v1)− c3v2 = c2v1 − (c2 + c3)v2

or, in matrix form,
v̈ = Bv (6.23)

where

v =
[

v1

v2

]
and B =

[ − c1+c2
m1

c2
m1

c2
m2

− c2+c3
m2

]
.

We also assume that initial conditions

v(0) and v̇(0) (6.24)

are given, which specify positions and velocities of the two masses at time t = 0.
To solve the second-order system (6.23), we will first transform it to a system of four first-order equations.

As shown in the introduction to this chapter, the trick is to introduce variables to denote the first-order
derivatives of v, so that second-order derivatives of v are first-order derivatives of the new variables. For
uniformity, we define four new variables

u =




u1

u2

u3

u4


 =




v1

v2

v̇1

v̇2


 (6.25)

so that

u3 = v̇1 and u4 = v̇2 ,

while the original system (6.23) becomes
[

u̇3

u̇4

]
= B

[
u1

u2

]
.

We can now gather these four first-order differential equations into a single system as follows:

u̇ = Au (6.26)

where

A =




0 0
0 0

1 0
0 1

B
0 0
0 0


 .

Likewise, the initial conditions (6.24) are replaced by the (known) vector

u(0) =
[

v(0)
v̇(0)

]
.

In the next section we solve equation (6.26).
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6.5 Solution of the Example

Not all matrices have a full set of linearly independent eigenvectors. With the system of springs in figure
6.1, however, we are lucky. The eigenvalues of A are solutions to the equation

Ax = λx , (6.27)

where we recall that

A =
[

0 I
B 0

]
and B =

[ − c1+c2
m1

c2
m1

c2
m2

− c2+c3
m2

]
.

Here, the zeros in A are 2× 2 matrices of zeros, and I is the 2× 2 identity matrix. If we partition the vector
x into its upper and lower halves y and z,

x =
[

y
z

]
,

we can write

Ax =
[

0 I
B 0

] [
y
z

]
=

[
z

By

]

so that the eigenvalue equation (6.27) can be written as the following pair of equations:

z = λy (6.28)
By = λz ,

which yields

By = µy with µ = λ2 .

In other words, the eigenvalues of A are the square roots of the eigenvalues of B: if we denote the two
eigenvalues of B as µ1 and µ2, then the eigenvalues of A are

λ1 =
√

µ1 λ2 = −√µ1 λ3 =
√

µ2 λ4 = −√µ2 .

The eigenvalues µ1 and µ2 of B are the solutions of

det(B − µI) =
(

c1 + c2

m1
+ µ

)(
c2 + c3

m2
+ µ

)
− c2

2

m1m2
= µ2 + 2αµ + β = 0

where

α =
1
2

(
c1 + c2

m1
+

c2 + c3

m2

)
and β =

c1c2 + c1c3 + c2c3

m1m2

are positive constants that depend on the elastic properties of the springs and on the masses. We then obtain

µ1,2 = −α± γ ,

where

γ =
√

α2 − β =

√
1
4

(
c1 + c2

m1
− c2 + c3

m2

)2

+
c2
2

m1m2
.

The constant γ is real because the radicand is nonnegative. We also have that α ≥ γ, so that the two
solutions µ1,2 are real and negative, and the four eigenvalues of A,

λ1 =
√−α + γ , λ2 = −√−α + γ , (6.29)

λ3 =
√−α− γ , λ4 = −√−α− γ (6.30)
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come in nonreal, complex-conjugate pairs. This is to be expected, since our system of springs obviously
exhibits an oscillatory behavior.

Also the eigenvectors of A can be derived from those of B. In fact, from equation (6.28) we see that if
y is an eigenvector of B corresponding to eigenvalue µ = λ2, then there are two corresponding eigenvectors
for A of the form

x =
[

y
±λy

]
. (6.31)

The eigenvectors of B are the solutions of

(B − (−α± γ)I)y = 0 . (6.32)

Since ±(−α± γ) are eigenvalues of B, the determinant of this equation is zero, and the two scalar equations
in (6.32) must be linearly dependent. The first equation reads

−
(

c1 + c2

m1
− α± γ

)
y1 +

c2

m1
y2 = 0

and is obviously satisfied by any vector of the form

y = k

[ c2
m1

c1+c2
m1

− α± γ

]

where k is an arbitrary constant. For k 6= 0, y denotes the two eigenvectors of B, and from equation (6.31)
the four eigenvectors of A are proportional to the four columns of the following matrix:

Q =




c2
m1

c2
m1

c2
m1

c2
m1

a + λ2
1 a + λ2

2 a + λ2
3 a + λ2

4

λ1
c2
m1

λ2
c2
m1

λ3
c2
m1

λ4
c2
m1

λ1

(
a + λ2

1

)
λ2

(
a + λ2

2

)
λ3

(
a + λ2

3

)
λ4

(
a + λ2

4

)


 (6.33)

where
a =

c1 + c2

m1
.

The general solution to the first-order differential system (6.26) is then given by equation (6.17). Since we
just found four distinct eigenvectors, however, we can write more simply

u(t) = QeΛtQ−1u(0) (6.34)

where

Λ =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


 .

In these expressions, the values of λi are given in equations (6.30), and Q is in equation (6.33).
Finally, the solution to the original, second-order system (6.23) can be obtained from equation (6.25) by

noticing that v is equal to the first two components of u.
This completes the solution of our system of differential equations. However, it may be useful to add some

algebraic manipulation in order to show that the solution is indeed oscillatory. As we see in the following,
the masses’ motions can be described by the superposition of two sinusoids whose frequencies depend on the
physical constants involved (masses and spring constants). The amplitudes and phases of the sinusoids, on
the other hand, depend on the initial conditions.

To simplify our manipulation, we note that

u(t) = QeΛtw ,
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where we defined
w = Q−1u(0) . (6.35)

We now leave the constants in w unspecified, and derive the general solution v(t) for the original, second-
order problem. Numerical values for the constants can be found from the initial conditions u(0) by equation
(6.35). We have

v(t) = Q(1 : 2, :)eΛtw ,

where Q(1 : 2, :) denotes the first two rows of Q. Since

λ2 = −λ1 and λ4 = −λ3

(see equations (6.30)), we have
Q(1 : 2, :) =

[
q1 q1 q2 q2

]

where we defined

q1 =
[ c2

m1
c1+c2

m1
+ λ2

1

]
and q2 =

[ c2
m1

c1+c2
m1

+ λ2
3

]
.

Thus, we can write
v(t) = q1

(
k1e

λ1t + k2e
−λ1t

)
+ q2

(
k3e

λ3t + k4e
−λ3t

)
.

Since the λs are imaginary but v(t) is real, the ki must come in complex-conjugate pairs:

k1 = k∗2 and k3 = k∗4 . (6.36)

In fact, we have
v(0) = q1(k1 + k2) + q2(k3 + k4)

and from the derivative

v̇(t) = q1λ1

(
k1e

λ1t − k2e
−λ1t

)
+ q2λ3

(
k3e

λ3t − k4e
−λ3t

)

we obtain
v̇(0) = q1λ1(k1 − k2) + q2λ3(k3 − k4) .

Since the vectors qi are independent (assuming that the mass c2 is nonzero), this means that

k1 + k2 is real k1 − k2 is purely imaginary
k3 + k4 is real k3 − k4 is purely imaginary ,

from which equations (6.36) follow.
Finally, by using the relation

ejx + e−jx

2
= cos x ,

and simple trigonometry we obtain

v(t) = q1A1 cos(ω1t + φ1) + q2A2 cos(ω2t + φ2)

where

ω1 =
√

α− γ =

√√√√1
2
(a + b)−

√
1
4
(a− b)2 +

c2
2

m1m2

ω2 =
√

α + γ =

√√√√1
2
(a + b) +

√
1
4
(a− b)2 +

c2
2

m1m2
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and

a =
c1 + c2

m1
, b =

c2 + c3

m2
.

Notice that these two frequencies depend only on the configuration of the system, and not on the initial
conditions.

The amplitudes Ai and phases φi, on the other hand, depend on the constants ki as follows:

A1 = 2|k1| , A2 = 2|k3|
φ1 = arctan2(Im(k1),Re(k1)) φ2 = arctan2(Im(k3), Re(k3))

where Re, Im denote the real and imaginary part and where the two-argument function arctan2 is defined as
follows for (x, y) 6= (0, 0)

arctan2(y, x) =





arctan( y
x ) if x > 0

π + arctan( y
x ) if x < 0

π
2 if x = 0 and y > 0
−π

2 if x = 0 and y < 0

and is undefined for (x, y) = (0, 0). This function returns the arctangent of y/x (notice the order of the
arguments) in the proper quadrant, and extends the function by continuity along the y axis.

The two constants k1 and k3 can be found from the given initial conditions v(0) and v̇(0) from equations
(6.35) and (6.25).
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Chapter 7

Stochastic State Estimation

Perhaps the most important part of studying a problem in robotics or vision, as well as in most other
sciences, is to determine a good model for the phenomena and events that are involved. For instance,
studying manipulation requires defining models for how a robot arm can move and for how it interacts
with the world. Analyzing image motion implies defining models for how points move in space and how
this motion projects onto the image. When motion is involved, as is very often the case, models take on
frequently the form of dynamic systems. A dynamic system is a mathematical description of a quantity that
evolves over time. The theory of dynamic systems is both rich and fascinating. Although in this chapter
we will barely scratch its surface, we will consider one of its most popular and useful aspects, the theory
of state estimation, in the particular form of Kalman filtering. To this purpose, an informal definition of a
dynamic system is given in the next section. The definition is then illustrated by setting up the dynamic
system equations for a simple but realistic application, that of modeling the trajectory of an enemy mortar
shell. In sections 7.3 through 7.5, we will develop the theory of the Kalman filter, and in section 7.6 we
will see that the shell can be shot down before it hits us. As discussed in section 7.7, Kalman filtering has
intimate connections with the theory of algebraic linear systems we have developed in chapters 2 and 3.

7.1 Dynamic Systems

In its most general meaning, the term system refers to some physical entity on which some action is performed
by means of an input u. The system reacts to this input and produces an output y (see figure 7.1).

A dynamic system is a system whose phenomena occur over time. One often says that a system evolves
over time. Simple examples of a dynamic system are the following:

• An electric circuit, whose input is the current in a given branch and whose output is a voltage across
a pair of nodes.

• A chemical reactor, whose inputs are the external temperature, the temperature of the gas being
supplied, and the supply rate of the gas. The output can be the temperature of the reaction product.

input outputsystem

Su y

Figure 7.1: A general system.
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• A mass suspended from a spring. The input is the force applied to the mass and the output is the
position of the mass.

In all these examples, what is input and what is output is a choice that depends on the application. Also,
all the quantities in the examples vary continuously with time. In other cases, as for instance for switching
networks and computers, it is more natural to consider time as a discrete variable. If time varies continuously,
the system is said to be continuous; if time varies discretely, the system is said to be discrete.

7.1.1 State

Given a dynamic system, continuous or discrete, the modeling problem is to somehow correlate inputs
(causes) with outputs (effects). The examples above suggest that the output at time t cannot be determined
in general by the value assumed by the input quantity at the same point in time. Rather, the output is
the result of the entire history of the system. An effort of abstraction is therefore required, which leads to
postulating a new quantity, called the state, which summarizes information about the past and the present
of the system. Specifically, the value x(t) taken by the state at time t must be sufficient to determine the
output at the same point in time. Also, knowledge of both x(t1) and u[t1,t2), that is, of the state at time t1
and the input over the interval t1 ≤ t < t2, must allow computing the state (and hence the output) at time
t2. For the mass attached to a spring, for instance, the state could be the position and velocity of the mass.
In fact, the laws of classical mechanics allow computing the new position and velocity of the mass at time
t2 given its position and velocity at time t1 and the forces applied over the interval [t1, t2). Furthermore,
in this example, the output y of the system happens to coincide with one of the two state variables, and is
therefore always deducible from the latter.

Thus, in a dynamic system the input affects the state, and the output is a function of the state. For a
discrete system, the way that the input changes the state at time instant number k into the new state at
time instant k + 1 can be represented by a simple equation:

xk+1 = f(xk,uk, k)

where f is some function that represents the change, and uk is the input at time k. Similarly, the relation
between state and output can be expressed by another function:

yk = h(xk, k) .

A discrete dynamic system is completely described by these two equations and an initial state x0. In general,
all quantities are vectors.

For continuous systems, time does not come in quanta, so one cannot compute xk+1 as a function of
xk, uk, and k, but rather compute x(t2) as a functional φ of x(t1) and the entire input u over the interval
[t1, t2):

x(t2) = φ(x(t1),u(·), t1, t2)
where u(·) represents the entire function u, not just one of its values. A description of the system in terms
of functions, rather than functionals, can be given in the case of a regular system, for which the functional
φ is continuous, differentiable, and with continuous first derivative. In that case, one can show that there
exists a function f such that the state x(t) of the system satisfies the differential equation

ẋ(t) = f(x(t),u(t), t)

where the dot denotes differentiation with respect to time. The relation from state to output, on the other
hand, is essentially the same as for the discrete case:

y(t) = h(x(t), t) .

Specifying the initial state x0 completes the definition of a continuous dynamic system.
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7.1.2 Uncertainty

The systems defined in the previous section are called deterministic, since the evolution is exactly determined
once the initial state x at time 0 is known. Determinism implies that both the evolution function f and the
output function h are known exactly. This is, however, an unrealistic state of affairs. In practice, the laws
that govern a given physical system are known up to some uncertainty. In fact, the equations themselves
are simple abstractions of a complex reality. The coefficients that appear in the equations are known only
approximately, and can change over time as a result of temperature changes, component wear, and so forth.
A more realistic model then allows for some inherent, unresolvable uncertainty in both f and h. This
uncertainty can be represented as noise that perturbs the equations we have presented so far. A discrete
system then takes on the following form:

xk+1 = f(xk,uk, k) + ηk

yk = h(xk, k) + ξk

and for a continuous system

ẋ(t) = f(x(t),u(t), t) + η(t)
y(t) = h(x(t), t) + ξ(t) .

Without loss of generality, the noise distributions can be assumed to have zero mean, for otherwise the mean
can be incorporated into the deterministic part, that is, in either f or h. The mean may not be known,
but this is a different story: in general the parameters that enter into the definitions of f and h must be
estimated by some method, and the mean perturbations are no different.

A common assumption, which is sometimes valid and always simplifies the mathematics, is that η and ξ
are zero-mean Gaussian random variables with known covariance matrices Q and R, respectively.

7.1.3 Linearity

The mathematics becomes particularly simple when both the evolution function f and the output function
h are linear. Then, the system equations become

xk+1 = Fkxk + Gkuk + ηk

yk = Hkxk + ξk

for the discrete case, and

ẋ(t) = F (t)x(t) + G(t)u(t) + η(t)
y(t) = H(t)x(t) + ξ(t)

for the continuous one. It is useful to specify the sizes of the matrices involved. We assume that the input
u is a vector in Rp, the state x is in Rn, and the output y is in Rm. Then, the state propagation matrix F
is n × n, the input matrix G is n × p, and the output matrix H is m × n. The covariance matrix Q of the
system noise η is n× n, and the covariance matrix of the output noise ξ is m×m.

7.2 An Example: the Mortar Shell

In this section, the example of the mortar shell will be discussed in order to see some of the technical issues
involved in setting up the equations of a dynamic system. In particular, we consider discretization issues
because the physical system is itself continuous, but we choose to model it as a discrete system for easier
implementation on a computer.
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In sections 7.3 through 7.5, we consider the state estimation problem: given observations of the output
y over an interval of time, we want to determine the state x of the system. This is a very important task.
For instance, in the case of the mortar shell, the state is the (initially unknown) position and velocity of the
shell, while the output is a set of observations made by a tracking system. Estimating the state then leads to
enough knowledge about the shell to allow driving an antiaircraft gun to shoot the shell down in mid-flight.

You spotted an enemy mortar installation about thirty kilometers away, on a hill that looks about 0.5
kilometers higher than your own position. You want to track incoming projectiles with a Kalman filter so
you can aim your guns accurately. You do not know the initial velocity of the projectiles, so you just guess
some values: 0.6 kilometers/second for the horizontal component, 0.1 kilometers/second for the vertical
component. Thus, your estimate of the initial state of the projectile is

x̂0 =




ḋ
d
ż
z


 =




−0.6
30
0.1
0.5




where d is the horizontal coordinate, z is the vertical, you are at (0, 0), and dots denote derivatives with
respect to time.

From your high-school physics, you remember that the laws of motion for a ballistic trajectory are the
following:

d(t) = d(0) + ḋ(0)t (7.1)

z(t) = z(0) + ż(0)t− 1
2
gt2 (7.2)

where g is the gravitational acceleration, equal to 9.8 × 10−3 kilometers per second squared. Since you do
not trust your physics much, and you have little time to get ready, you decide to ignore air drag. Because
of this, you introduce a state update covariance matrix Q = 0.1I4, where I4 is the 4× 4 identity matrix.

All you have to track the shells is a camera pointed at the mortar that will rotate so as to keep the
projectile at the center of the image, where you see a blob that increases in size as the projectile gets closer.
Thus, the aiming angle of the camera gives you elevation information about the projectile’s position, and the
size of the blob tells you something about the distance, given that you know the actual size of the projectiles
used and all the camera parameters. The projectile’s elevation is

e = 1000
z

d
(7.3)

when the projectile is at (d, z). Similarly, the size of the blob in pixels is

s =
1000√
d2 + z2

. (7.4)

You do not have very precise estimates of the noise that corrupts e and s, so you guess measurement
covariances Re = Rs = 1000, which you put along the diagonal of a 2× 2 diagonal measurement covariance
matrix R.

7.2.1 The Dynamic System Equation

Equations (7.1) and (7.2) are continuous. Since you are taking measurements every dt = 0.2 seconds, you
want to discretize these equations. For the z component, equation (7.2) yields

z(t + dt)− z(t) = z(0) + ż(0)(t + dt)− 1
2
g(t + dt)2 −

[
z(0) + ż(0)t− 1

2
gt2

]

= (ż(0)− gt)dt− 1
2
g(dt)2

= ż(t)dt− 1
2
g(dt)2 ,
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since ż(0)− gt = ż(t).
Consequently, if t + dt is time instant k + 1 and t is time instant k, you have

zk+1 = zk + żkdt− 1
2
g(dt)2 . (7.5)

The reasoning for the horizontal component d is the same, except that there is no acceleration:

dk+1 = dk + ḋkdt . (7.6)

Equations (7.5) and (7.6) can be rewritten as a single system update equation

xk+1 = Fxk + Gu

where

xk =




ḋk

dk

żk

zk




is the state, the 4 × 4 matrix F depends on dt, the control scalar u is equal to −g, and the 4 × 1 control
matrix G depends on dt. The two matrices F and G are as follows:

F =




1 0 0 0
dt 1 0 0
0 0 1 0
0 0 dt 1


 G =




0
0
dt
−dt2

2


 .

7.2.2 The Measurement Equation

The two nonlinear equations (7.3) and (7.4) express the available measurements as a function of the true
values of the projectile coordinates d and z. We want to replace these equations with linear approximations.
To this end, we develop both equations as Taylor series around the current estimate and truncate them after
the linear term. From the elevation equation (7.3), we have

ek = 1000
zk

dk
≈ 1000

[
ẑk

d̂k

+
zk − ẑk

d̂k

− ẑk

d̂2
k

(dk − d̂k)

]
,

so that after simplifying we can redefine the measurement to be the discrepancy from the estimated value:

e′k = ek − 1000
ẑk

d̂k

≈ 1000(
zk

d̂k

− ẑk

d̂2
k

dk) . (7.7)

We can proceed similarly for equation (7.4):

sk =
1000√
d2

k + z2
k

≈ 1000√
d̂2

k + ẑ2
k

− 1000d̂k

(d̂2
k + ẑ2

k)3/2
(dk − d̂k)− 1000ẑk

(d̂2
k + ẑ2

k)3/2
(zk − ẑk)

and after simplifying:

s′k = sk − 2000√
d̂2 + ẑ2

≈ −1000

[
d̂k

(d̂2
k + ẑ2

k)3/2
dk +

ẑk

(d̂2
k + ẑ2

k)3/2
zk

]
. (7.8)
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The two measurements s′k and e′k just defined can be collected into a single measurement vector

yk =
[

s′k
e′k

]
,

and the two approximate measurement equations (7.7) and (7.8) can be written in the matrix form

yk = Hkxk (7.9)

where the measurement matrix Hk depends on the current state estimate x̂k:

Hk = −1000


 0 d̂k

(d̂2
k
+ẑ2

k)
3/2 0 ẑk

(d̂2
k
+ẑ2

k)
3/2

0 ẑk

d̂2
k

0 − 1
d̂k




As the shell approaches us, we frantically start studying state estimation, and in particular Kalman
filtering, in the hope to build a system that lets us shoot down the shell before it hits us. The next few
sections will be read under this impending threat.

Knowing the model for the mortar shell amounts to knowing the laws by which the object moves and
those that relate the position of the projectile to our observations. So what else is there left to do? From the
observations, we would like to know where the mortar shell is right now, and perhaps predict where it will
be in a few seconds, so we can direct an antiaircraft gun to shoot down the target. In other words, we want
to know xk, the state of the dynamic system. Clearly, knowing x0 instead is equivalent, at least when the
dynamics of the system are known exactly (the system noise ηk is zero). In fact, from x0 we can simulate
the system up until time t, thereby determining xk as well. Most importantly, we do not want to have all
the observations before we shoot: we would be dead by then. A scheme that refines an initial estimation of
the state as new observations are acquired is called a recursive1 state estimation system. The Kalman filter
is one of the most versatile schemes for recursive state estimations. The original paper by Kalman (R. E.
Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME Journal
Basic Engineering, 82:34–45, 1960) is still one of the most readable treatments of this subject from the point
of view of stochastic estimation.

Even without noise, a single observation yk may not be sufficient to determine the state xk (in the
example, one observation happens to be sufficient). This is a very interesting aspect of state estimation. It
is really the ensemble of all observations that let one estimate the state, and yet observations are processed
one at a time, as they become available. A classical example of this situation in computer vision is the
reconstruction of three-dimensional shape from a sequence of images. A single image is two-dimensional, so
by itself it conveys no three-dimensional information. Kalman filters exist that recover shape information
from a sequence of images. See for instance L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-
based algorithms for estimating depth from image sequences,” International Journal of Computer Vision,
3(3):209-236, September 1989; and T.J. Broida, S. Chandrashekhar, and R. Chellappa, “Recursive 3-D
motion estimation from a monocular image sequence,” IEEE Transactions on Aerospace and Electronic
Systems, 26(4):639–656, July 1990.

Here, we introduce the Kalman filter from the simpler point of view of least squares estimation, since
we have developed all the necessary tools in the first part of this course. The next section defines the state
estimation problem for a discrete dynamic system in more detail. Then, section 7.4 defines the essential
notions of estimation theory that are necessary to understand the quantitative aspects of Kalman filtering.
Section 7.5 develops the equation of the Kalman filter, and section 7.6 reconsiders the example of the mortar
shell. Finally, section 7.7 establishes a connection between the Kalman filter and the solution of a linear
system.

1The term “recursive” in the systems theory literature corresponds loosely to “incremental” or “iterative” in computer
science.
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7.3 State Estimation

In this section, the estimation problem is defined in some more detail. Given a discrete dynamic system

xk+1 = Fkxk + Gkuk + ηk (7.10)
yk = Hkxk + ξk (7.11)

where the system noise ηk and the measurement noise ξk are Gaussian variables,

ηk ∼ N (0, Qk)
ξk ∼ N (0, Rk) ,

as well as a (possibly completely wrong) estimate x̂0 of the initial state and an initial covariance matrix P0

of the estimate x̂0, the Kalman filter computes the optimal estimate x̂k|k at time k given the measurements
y0, . . . ,yk. The filter also computes an estimate Pk|k of the covariance of x̂k|k given those measurements.
In these expressions, the hat means that the quantity is an estimate. Also, the first k in the subscript refers
to which variable is being estimated, the second to which measurements are being used for the estimate.
Thus, in general, x̂i|j is the estimate of the value that x assumes at time i given the first j +1 measurements
y0, . . . ,yj .

7.3.1 Update

The covariance matrix Pk|k must be computed in order to keep the Kalman filter running, in the following
sense. At time k, just before the new measurement yk comes in, we have an estimate x̂k|k−1 of the state
vector xk based on the previous measurements y0, . . . ,yk−1. Now we face the problem of incorporating
the new measurement yk into our estimate, that is, of transforming x̂k|k−1 into x̂k|k. If x̂k|k−1 were exact,
we could compute the new measurement yk without even looking at it, through the measurement equation
(7.11). Even if x̂k|k−1 is not exact, the estimate

ŷk|k−1 = Hkx̂k|k−1

is still our best bet. Now yk becomes available, and we can consider the residue

rk = yk − ŷk|k−1 = yk −Hkx̂k|k−1 .

If this residue is nonzero, we probably need to correct our estimate of the state xk, so that the new prediction

ŷk|k = Hkx̂k|k

of the measurement value is closer to the measurement yk than the old prediction

ŷk|k−1 = Hkx̂k|k−1

that we made just before the new measurement yk was available.
The question however is, by how much should we correct our estimate of the state? We do not want to

make ŷk|k coincide with yk. That would mean that we trust the new measurement completely, but that we do
not trust our state estimate x̂k|k−1 at all, even if the latter was obtained through a large number of previous
measurements. Thus, we need some criterion for comparing the quality of the new measurement yk with
that of our old estimate x̂k|k−1 of the state. The uncertainty about the former is Rk, the covariance of the
observation error. The uncertainty about the state just before the new measurement yk becomes available is
Pk|k−1. The update stage of the Kalman filter uses Rk and Pk|k−1 to weigh past evidence (x̂k|k−1) and new
observations (yk). This stage is represented graphically in the middle of figure 7.2. At the same time, also
the uncertainty measure Pk|k−1 must be updated, so that it becomes available for the next step. Because a
new measurement has been read, this uncertainty becomes usually smaller: Pk|k < Pk|k−1.

The idea is that as time goes by the uncertainty on the state decreases, while that about the measurements
may remain the same. Then, measurements count less and less as the estimate approaches its true value.
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Figure 7.2: The update stage of the Kalman filter changes the estimate of the current system state xk to
make the prediction of the measurement closer to the actual measurement yk. Propagation then accounts
for the evolution of the system state, as well as the consequent growing uncertainty.

7.3.2 Propagation

Just after arrival of the measurement yk, both state estimate and state covariance matrix have been updated
as described above. But between time k and time k + 1 both state and covariance may change. The state
changes according to the system equation (7.10), so our estimate x̂k+1|k of xk+1 given y0, . . . ,yk should
reflect this change as well. Similarly, because of the system noise ηk, our uncertainty about this estimate
may be somewhat greater than one time epoch ago. The system equation (7.10) essentially “dead reckons”
the new state from the old, and inaccuracies in our model of how this happens lead to greater uncertainty.
This increase in uncertainty depends on the system noise covariance Qk. Thus, both state estimate and
covariance must be propagated to the new time k + 1 to yield the new state estimate x̂k+1|k and the new
covariance Pk+1|k. Both these changes are shown on the right in figure 7.2.

In summary, just as the state vector xk represents all the information necessary to describe the evolution
of a deterministic system, the covariance matrix Pk|k contains all the necessary information about the
probabilistic part of the system, that is, about how both the system noise ηk and the measurement noise ξk

corrupt the quality of the state estimate x̂k|k.
Hopefully, this intuitive introduction to Kalman filtering gives you an idea of what the filter does, and

what information it needs to keep working. To turn these concepts into a quantitative algorithm we need
some preliminaries on optimal estimation, which are discussed in the next section. The Kalman filter itself
is derived in section 7.5.

7.4 BLUE Estimators

In what sense does the Kalman filter use covariance information to produce better estimates of the state?
As we will se later, the Kalman filter computes the Best Linear Unbiased Estimate (BLUE) of the state. In
this section, we see what this means, starting with the definition of a linear estimation problem, and then
considering the attributes “best” and “unbiased” in turn.

7.4.1 Linear Estimation

Given a quantity y (the observation) that is a known function of another (deterministic but unknown)
quantity x (the state) plus some amount of noise,

y = h(x) + n , (7.12)
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the estimation problem amounts to finding a function

x̂ = L(y)

such that x̂ is as close as possible to x. The function L is called an estimator, and its value x̂ given the
observations y is called an estimate. Inverting a function is an example of estimation. If the function h is
invertible and the noise term n is zero, then L is the inverse of h, no matter how the phrase “as close as
possible” is interpreted. In fact, in that case x̂ is equal to x, and any distance between x̂ and x must be
zero. In particular, solving a square, nonsingular system

y = Hx (7.13)

is, in this somewhat trivial sense, a problem of estimation. The optimal estimator is then represented by the
matrix

L = H−1

and the optimal estimate is
x̂ = Ly .

A less trivial example occurs, for a linear observation function, when the matrix H has more rows than
columns, so that the system (7.13) is overconstrained. In this case, there is usually no inverse to H, and
again one must say in what sense x̂ is required to be “as close as possible” to x. For linear systems, we
have so far considered the criterion that prefers a particular x̂ if it makes the Euclidean norm of the vector
y − Hx as small as possible. This is the (unweighted) least squares criterion. In section 7.4.2, we will see
that in a very precise sense ordinary least squares solve a particular type of estimation problem, namely, the
estimation problem for the observation equation (7.12) with h a linear function and n Gaussian zero-mean
noise with the indentity matrix for covariance.

An estimator is said to be linear if the function L is linear. Notice that the observation function h can
still be nonlinear. If L is required to be linear but h is not, we will probably have an estimator that produces
a worse estimate than a nonlinear one. However, it still makes sense to look for the best possible linear
estimator. The best estimator for a linear observation function happens to be a linear estimator.

7.4.2 Best

In order to define what is meant by a “best” estimator, one needs to define a measure of goodness of an
estimate. In the least squares approach to solving a linear system like (7.13), this distance is defined as the
Euclidean norm of the residue vector

y−Hx̂

between the left and the right-hand sides of equation (7.13), evaluated at the solution x̂. Replacing (7.13)
by a “noisy equation”,

y = Hx + n (7.14)

does not change the nature of the problem. Even equation (7.13) has no exact solution when there are more
independent equations than unknowns, so requiring equality is hopeless. What the least squares approach
is really saying is that even at the solution x̂ there is some residue

n = y−Hx̂ (7.15)

and we would like to make that residue as small as possible in the sense of the Euclidean norm. Thus, an
overconstrained system of the form (7.13) and its “noisy” version (7.14) are really the same problem. In
fact, (7.14) is the correct version, if the equality sign is to be taken literally.

The noise term, however, can be used to generalize the problem. In fact, the Euclidean norm of the
residue (7.15) treats all components (all equations in (7.14)) equally. In other words, each equation counts
the same when computing the norm of the residue. However, different equations can have noise terms of
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different variance. This amounts to saying that we have reasons to prefer the quality of some equations over
others or, alternatively, that we want to enforce different equations to different degrees. From the point
of view of least squares, this can be enforced by some scaling of the entries of n or, even, by some linear
transformation of them:

n → Wn

so instead of minimizing ‖n‖2 = nT n (the square is of course irrelevant when it comes to minimization), we
now minimize

‖Wn‖2 = nT R−1n

where
R−1 = WT W

is a symmetric, nonnegative-definite matrix. This minimization problem, called weighted least squares, is
only slightly different from its unweighted version. In fact, we have

Wn = W (y−Hx) = Wy−WHx

so we are simply solving the system
Wy = WHx

in the traditional, “unweighted” sense. We know the solution from normal equations:

x̂ = ((WH)T WH)−1(WH)T Wy = (HT R−1H)−1HT R−1y .

Interestingly, this same solution is obtained from a completely different criterion of goodness of a solution
x̂. This criterion is a probabilistic one. We consider this different approach because it will let us show that
the Kalman filter is optimal in a very useful sense.

The new criterion is the so-called minimum-covariance criterion. The estimate x̂ of x is some function
of the measurements y, which in turn are corrupted by noise. Thus, x̂ is a function of a random vector
(noise), and is therefore a random vector itself. Intuitively, if we estimate the same quantity many times,
from measurements corrupted by different noise samples from the same distribution, we obtain different
estimates. In this sense, the estimates are random.

It makes therefore sense to measure the quality of an estimator by requiring that its variance be as small
as possible: the fluctuations of the estimate x̂ with respect to the true (unknown) value x from one estimation
experiment to the next should be as small as possible. Formally, we want to choose a linear estimator L
such that the estimates x̂ = Ly it produces minimize the following covariance matrix:

P = E[(x− x̂)(x− x̂)T ] .

Minimizing a matrix, however, requires a notion of “size” for matrices: how large is P? Fortunately, most
interesting matrix norms are equivalent, in the sense that given two different definitions ‖P‖1 and ‖P‖2 of
matrix norm there exist two positive scalars α, β such that

α‖P‖1 < ‖P‖2 < β‖P‖1 .

Thus, we can pick any norm we like. In fact, in the derivations that follow, we only use properties shared by
all norms, so which norm we actually use is irrelevant. Some matrix norms were mentioned in section 3.2.

7.4.3 Unbiased

In additionto requiring our estimator to be linear and with minimum covariance, we also want it to be
unbiased, in the sense that if repeat the same estimation experiment many times we neither consistently
overestimate nor consistently underestimate x. Mathematically, this translates into the following require-
ment:

E[x− x̂] = 0 and E[x̂] = E[x] .
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7.4.4 The BLUE

We now address the problem of finding the Best Linear Unbiased Estimator (BLUE)

x̂ = Ly

of x given that y depends on x according to the model (7.14), which is repeated here for convenience:

y = Hx + n . (7.16)

First, we give a necessary and sufficient condition for L to be unbiased.

Lemma 7.4.1 Let n in equation (7.16) be zero mean. Then the linear estimator L is unbiased if an only if

LH = I ,

the identity matrix.

Proof.

E[x− x̂] = E[x− Ly] = E[x− L(Hx + n)]
= E[(I − LH)x]− E[Ln] = (I −HL)E[x]

since E[Ln] = LE[n] and E[n] = 0. For this to hold for all x we need I − LH = 0. ∆

And now the main result.

Theorem 7.4.2 The Best Linear Unbiased Estimator (BLUE)

x̂ = Ly

for the measurement model
y = Hx + n

where the noise vector n has zero mean and covariance R is given by

L = (HT R−1H)−1HT R−1

and the covariance of the estimate x̂ is

P = E[(x− x̂)(x− x̂)T ] = (HT R−1H)−1 . (7.17)

Proof. We can write

P = E[(x− x̂)(x− x̂)T ] = E[(x− Ly)(x− Ly)T ]
= E[(x− LHx− Ln)(x− LHx− Ln)T ] = E[((I − LH)x− Ln)((I − LH)x− Ln)T ]
= E[LnnT LT ] = LE[nnT ] LT = LRLT

because L is unbiased, so that LH = I.
To show that

L0 = (HT R−1H)−1HT R−1 (7.18)

is the best choice, let L be any (other) linear unbiased estimator. We can trivially write

L = L0 + (L− L0)
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and

P = LRLT = [L0 + (L− L0)]R[L0 + (L− L0)]T

= L0RLT
0 + (L− L0)RLT

0 + L0R(L− L0)T + (L− L0)R(L− L0)T .

From (7.18) we obtain

RLT
0 = RR−1H(HT R−1H)−1 = H(HT R−1H)−1

so that
(L− L0)RLT

0 = (L− L0)H(HT R−1H)−1 = (LH − L0H)(HT R−1H)−1 .

But L and L0 are unbiased, so LH = L0H = I, and

(L− L0)RLT
0 = 0 .

The term L0R(L− L0)T is the transpose of this, so it is zero as well. In conclusion,

P = L0RLT
0 + (L− L0)R(L− L0)T ,

the sum of two positive definite or at least semidefinite matrices. For such matrices, the norm of the sum
is greater or equal to either norm, so this expression is minimized when the second term vanishes, that is,
when L = L0.

This proves that the estimator given by (7.18) is the best, that is, that it has minimum covariance. To
prove that the covariance P of x̂ is given by equation (7.17), we simply substitute L0 for L in P = LRLT :

P = L0RLT
0 = (HT R−1H)−1HT R−1RR−1H(HT R−1H)−1

= (HT R−1H)−1HT R−1H(HT R−1H)−1 = (HT R−1H)−1

as promised. ∆

7.5 The Kalman Filter: Derivation

We now have all the components necessary to write the equations for the Kalman filter. To summarize,
given a linear measurement equation

y = Hx + n

where n is a Gaussian random vector with zero mean and covariance matrix R,

n ∼ N (0, R) ,

the best linear unbiased estimate x̂ of x is

x̂ = PHT R−1y

where the matrix
P

∆= E[(x̂− x)(x̂− x)T ] = (HT R−1H)−1

is the covariance of the estimation error.
Given a dynamic system with system and measurement equations

xk+1 = Fkxk + Gkuk + ηk (7.19)
yk = Hkxk + ξk
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where the system noise ηk and the measurement noise ξk are Gaussian random vectors,

ηk ∼ N (0, Qk)
ξk ∼ N (0, Rk) ,

as well as the best, linear, unbiased estimate x̂0 of the initial state with an error covariance matrix P0, the
Kalman filter computes the best, linear, unbiased estimate x̂k|k at time k given the measurements y0, . . . ,yk.
The filter also computes the covariance Pk|k of the error x̂k|k − xk given those measurements. Computation
occurs according to the phases of update and propagation illustrated in figure 7.2. We now apply the results
from optimal estimation to the problem of updating and propagating the state estimates and their error
covariances.

7.5.1 Update

At time k, two pieces of data are available. One is the estimate x̂k|k−1 of the state xk given measurements
up to but not including yk. This estimate comes with its covariance matrix Pk|k−1. Another way of saying
this is that the estimate x̂k|k−1 differs from the true state xk by an error term ek whose covariance is Pk|k−1:

x̂k|k−1 = xk + ek (7.20)

with
E[ekeT

k ] = Pk|k−1 .

The other piece of data is the new measurement yk itself, which is related to the state xk by the equation

yk = Hkxk + ξk (7.21)

with error covariance
E[ξkξT

k ] = Rk .

We can summarize this available information by grouping equations 7.20 and 7.21 into one, and packaging
the error covariances into a single, block-diagonal matrix. Thus, we have

y = Hxk + n

where

y =
[

x̂k|k−1

yk

]
, H =

[
I

Hk

]
, n =

[
ek

ξk

]
,

and where n has covariance

R =
[

Pk|k−1 0
0 Rk

]
.

As we know, the solution to this classical estimation problem is

x̂k|k = Pk|kHT R−1y

Pk|k = (HT R−1H)−1 .

This pair of equations represents the update stage of the Kalman filter. These expressions are somewhat
wasteful, because the matrices H and R contain many zeros. For this reason, these two update equations
are now rewritten in a more efficient and more familiar form. We have

P−1
k|k = HT R−1H

=
[

I HT
k

] [
P−1

k|k−1 0
0 R−1

k

] [
I

Hk

]

= P−1
k|k−1 + HT

k R−1
k Hk
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and

x̂k|k = Pk|kHT R−1y

= Pk|k
[

P−1
k|k−1 HT

k R−1
k

] [
x̂k|k−1

yk

]

= Pk|k(P−1
k|k−1x̂k|k−1 + HT

k R−1
k yk)

= Pk|k((P−1
k|k −HT

k R−1
k Hk)x̂k|k−1 + HT

k R−1
k yk)

= x̂k|k−1 + Pk|kHT
k R−1

k (yk −Hkx̂k|k−1) .

In the last line, the difference
rk

∆= yk −Hkx̂k|k−1

is the residue between the actual measurement yk and its best estimate based on x̂k|k−1, and the matrix

Kk
∆= Pk|kHT

k R−1
k

is usually referred to as the Kalman gain matrix, because it specifies the amount by which the residue must
be multiplied (or amplified) to obtain the correction term that transforms the old estimate x̂k|k−1 of the
state xk into its new estimate x̂k|k.

7.5.2 Propagation

Propagation is even simpler. Since the new state is related to the old through the system equation 7.19, and
the noise term ηk is zero mean, unbiasedness requires

x̂k+1|k = Fkx̂k|k + Gkuk ,

which is the state estimate propagation equation of the Kalman filter. The error covariance matrix is easily
propagated thanks to the linearity of the expectation operator:

Pk+1|k = E[(x̂k+1|k − xk+1)(x̂k+1|k − xk+1)T ]

= E[(Fk(x̂k|k − xk)− ηk)(Fk(x̂k|k − xk)− ηk)T ]

= FkE[(x̂k|k − xk)(x̂k|k − xk)T ]FT
k + E[ηkηT

k ]

= FkPk|kFT
k + Qk

where the system noise ηk and the previous estimation error x̂k|k − xk were assumed to be uncorrelated.

7.5.3 Kalman Filter Equations

In summary, the Kalman filter evolves an initial estimate and an initial error covariance matrix,

x̂0|−1
∆= x̂0 and P0|−1

∆= P0 ,

both assumed to be given, by the update equations

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1)

P−1
k|k = P−1

k|k−1 + HT
k R−1

k Hk

where the Kalman gain is defined as
Kk = Pk|kHT

k R−1
k

and by the propagation equations

x̂k+1|k = Fkx̂k|k + Gkuk

Pk+1|k = FkPk|kFT
k + Qk .
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Figure 7.3: The true and estimated trajectories get closer to one another. Trajectories start on the right.

7.6 Results of the Mortar Shell Experiment

In section 7.2, the dynamic system equations for a mortar shell were set up. Matlab routines available through
the class Web page implement a Kalman filter (with naive numerics) to estimate the state of that system
from simulated observations. Figure 7.3 shows the true and estimated trajectories. Notice that coincidence
of the trajectories does not imply that the state estimate is up-to-date. For this it is also necessary that any
given point of the trajectory is reached by the estimate at the same time instant. Figure 7.4 shows that the
distance between estimated and true target position does indeed converge to zero, and this occurs in time
for the shell to be shot down. Figure 7.5 shows the 2-norm of the covariance matrix over time. Notice that
the covariance goes to zero only asymptotically.

7.7 Linear Systems and the Kalman Filter

In order to connect the theory of state estimation with what we have learned so far about linear systems,
we now show that estimating the initial state x0 from the first k + 1 measurements, that is, obtaining x̂0|k,
amounts to solving a linear system of equations with suitable weights for its rows.

The basic recurrence equations (7.10) and (7.11) can be expanded as follows:

yk = Hkxk + ξk = Hk(Fk−1xk−1 + Gk−1uk−1 + ηk−1) + ξk

= HkFk−1xk−1 + HkGk−1uk−1 + Hkηk−1 + ξk

= HkFk−1(Fk−2xk−2 + Gk−2uk−2 + ηk−2) + HkGk−1uk−1 + Hkηk−1 + ξk

= HkFk−1Fk−2xk−2 + Hk(Fk−1Gk−2uk−2 + Gk−1uk−1) +
Hk(Fk−1ηk−2 + ηk−1) + ξk

...
= HkFk−1 . . . F0x0 + Hk(Fk−1 . . . F1G0u0 + . . . + Gk−1uk−1) +

Hk(Fk−1 . . . F1η0 + . . . + ηk−1) + ξk
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Figure 7.4: The estimate actually closes in towards the target.
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Figure 7.5: After an initial increase in uncertainty, the norm of the state covariance matrix converges to
zero. Upwards segments correspond to state propagation, downwards ones to state update.
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or in a more compact form,

yk = HkΦ(k − 1, 0)x0 + Hk

k∑

j=1

Φ(k − 1, j)Gj−1uj−1 + νk (7.22)

where

Φ(l, j) =
{

Fl . . . Fj for l ≥ j
1 for l < j

and the term

νk = Hk

k∑

j=1

Φ(k − 1, j)ηj−1 + ξk

is noise.
The key thing to notice about this somewhat intimidating expression is that for any k it is a linear system

in x0, the initial state of the system. We can write one system like the one in equation (7.22) for every value
of k = 0, . . . , K, where K is the last time instant considered, and we obtain a large system of the form

zK = ΨKx0 + gK + nK (7.23)

where

zK =




y0
...

yK




ΨK =




H0

H1F0

...
HKΦ(K − 1, 0)




gK =




0
H1G0u0

...
HK(Φ(K − 1, 1)G0u0 + . . . + Φ(K − 1,K)GK−1uK−1)




nK =




ν0

...
νK


 .

Without knowing anything about the statistics of the noise vector nK in equation (7.23), the best we
can do is to solve the system

zK = ΨKx0 + gK

in the sense of least squares, to obtain an estimate of x0 from the measurements y0, . . . ,yK :

x̂0|K = Ψ†K(zK − gK)

where Ψ†K is the pseudoinverse of ΨK . We know that if ΨK has full rank, the result with the pseudoinverse
is the same as we would obtain by solving the normal equations, so that

Ψ†K = (ΨT
KΨK)−1ΨT

K .

The least square solution to system (7.23) minimizes the residue between the left and the right-hand side
under the assumption that all equations are to be treated the same way. This is equivalent to assuming
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that all the noise terms in nK are equally important. However, we know the covariance matrices of all these
noise terms, so we ought to be able to do better, and weigh each equation to keep these covariances into
account. Intuitively, a small covariance means that we believe in that measurement, and therefore in that
equation, which should consequently be weighed more heavily than others. The quantitative embodiment of
this intuitive idea is at the core of the Kalman filter.

In summary, the Kalman filter for a linear system has been shown to be equivalent to a linear equation
solver, under the assumption that the noise that affects each of the equations has the same probability
distribution, that is, that all the noise terms in nK in equation 7.23 are equally important. However, the
Kalman filter differs from a linear solver in the following important respects:

1. The noise terms in nK in equation 7.23 are not equally important. Measurements come with covariance
matrices, and the Kalman filter makes optimal use of this information for a proper weighting of each
of the scalar equations in (7.23). Better information ought to yield more accurate results, and this is
in fact the case.

2. The system (7.23) is not solved all at once. Rather, an initial solution is refined over time as new
measurements become available. The final solution can be proven to be exactly equal to solving
system (7.23) all at once. However, having better and better approximations to the solution as new
data come in is much preferable in a dynamic setting, where one cannot in general wait for all the data
to be collected. In some applications, data my never stop arriving.

3. A solution for the estimate x̂k|k of the current state is given, and not only for the estimate x̂0|k of the
initial state. As time goes by, knowledge of the initial state may obsolesce and become less and less
useful. The Kalman filter computes up-to-date information about the current state.


