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PREFACE

“OK, I’ve got some data.  Now what?”

It is the quintessence of science, engineering, and numerous other disciplines to make
quantitative observations, record them, and then try to make some sense out of the resulting
dataset.  Quite often, the latter is an easy task, due either to practiced familiarity with the
domain or to the fact that the goals of the exercise are undemanding.  However, when working
at the frontiers of knowledge, this is not the case.  Here, one encounters unknown territory,
with maps that are sometimes poorly defined and always incomplete.

The question posed above is nontrivial; the path from observation to understanding is, in
general, long and arduous.  There are techniques to facilitate the journey but these are seldom
taught to those who need them most.  My own observations, over the past twenty years, have
disclosed that, if a functional relationship is nonlinear, or a probability distribution something
other than Gaussian, Exponential, or Uniform, then analysts (those who are not statisticians)
are usually unable to cope.  As a result, approximations are made and reports delivered
containing conclusions that are inaccurate and/or misleading.

With scientific papers, there are always peers who are ready and willing to second-guess
any published analysis.  Unfortunately, there are as well many less mature disciplines which
lack the checks and balances that science has developed over the centuries and which frequently
address areas of public concern.  These concerns lead, inevitably, to public decisions and
warrant the best that mathematics and statistics have to offer, indeed, the best that analysts can
provide.  Since Nature is seldom linear or Gaussian, such analyses often fail to live up to
expectations.

The present tutorial is intended to provide an introduction to the correct analysis of data.  It
addresses, in an elementary way, those ideas that are important to the effort of distinguishing
information from error.  This distinction, unhappily not always acknowledged, constitutes the
central theme of the material described herein.

Both deterministic modeling (univariate regression) as well as the (stochastic) modeling of
random variables are considered, with emphasis on the latter since it usually gets short shrift in
standard textbooks.  No attempt is made to cover every topic of relevance.  Instead, attention is
focussed on elucidating and illustrating core concepts as they apply to empirical data.  I am a
scientist, not a statistician, and these are my priorities.

This tutorial is taken from the documentation included with the Macintosh software package
Regress+ which is copyrighted freeware, downloadable at

http://www.geocities.com/~mikemclaughlin/software/Regress_plus.html

Michael P. McLaughlin
McLean, VA
October, 1999
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For deeds do die, however nobly done,
And thoughts of men do as themselves decay,
But wise words taught in numbers for to run,
Recorded by the Muses, live for ay.

—E. Spenser [1591]



“…the very game…”

IS mother was a witch (or so they said).  Had she not poisoned the glazier’s wife with
a magic drink and cursed her neighbors’ livestock so that they became mad?  Did she
not wander about the town pestering people with her recipes for medicines?  Yet, in

spite of such proofs, his filial devotion did not go unrewarded and, with the aid of a good
lawyer plus the support of his friend and patron Rudolph II, Emperor of the Romans, King of
Germany, Hungary, Bohemia, &c., Archduke of Austria, &c., the old woman made her final
exit with less flamboyance than some of His Holy Imperial Majesty’s subjects might have
wished.  However, this is not about the mother but the son—and Mars.  Johannes Kepler is
remembered, to this day, for his insight and his vision.  Even more than his contemporary,
Galileo, he is honored not just for what he saw but because he invented a new way of looking.

In astronomy, as in most disciplines, how you look determines what you see and, here,
Kepler had a novel approach.  He began with data whereas all of his predecessors had begun
with circles.  The Aristotelian/Ptolemaic syllogism decreed that perfect motion was circular.
Heavenly bodies were perfect.  Therefore, they moved in circles, however many it took to save
appearances.

It took a lot.  When, more than a quarter of a century before Kepler, Nicolaus Copernicus
finally laid down his compass, he had, quite rightly, placed the Sun in the center of the
remaining seven known bodies but he had also increased the number of celestial circles to a
record forty-eight!

Kepler commenced his intellectual journey along the same path.  Indeed, in those days, it
was the only path.  After many false starts, however, he realized that a collection of circles just
would not work.  It was the wrong model; the data demanded something else.  Kepler bowed
to Nature and, without apology, substituted ellipses for circles.  He was the first scientist to
subjugate theory to observation in a way that we would recognize and applaud.

Of course, Kepler was in a unique position.  Thanks to Tycho Brahe, he had the best data
in the world and he was duly impressed.  Still, he could have voted the party line and added yet
more circles.  Sooner or later, he would have accumulated enough parameters to satisfy every
significant figure of every measurement.  But it was wrong and it was the wrongness of it that
impressed Kepler most of all.  Although he drew his inspiration from the ancient Pythagoreans
and the religious fervor of his own time, his words leave little doubt of his sincerity:

“…Now, as God the maker played,
he taught the game to Nature
whom he created in his image:
taught her the very game
which he played himself…”

Kepler searched through the data and found the game.  He learned the rules and showed
that, if you played well enough, sometimes even emperors take notice.  Today, our motivation
is different but the game goes on.  We begin, of course, with data.

H
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DATA

There are two kinds of data: measurements and opinions.  This discussion will focus
exclusively on the former.  In fact, although there are useful exceptions in many disciplines,
here we shall discuss only quantitative measurements.  Adopting this mild constraint provides
two enormous advantages.  The first is the advantage of being able to speak very precisely,
yielding minimal concessions to the vagaries of language.  The second is the opportunity to
utilize the power of mathematics and, especially, of statistics.

Statistics, albeit a discipline in its own right, is primarily an ever-improving cumulation of
mathematical tools for extracting information from data.  It is information, not data, that leads
ultimately to understanding.  Whenever you make measurements, perform experiments, or
simply observe the Universe in action, you are collecting data.  However, real data always
leave something to be desired.  There is an open interval of quality stretching from worthless to
perfect and, somewhere in between, will be your numbers, your data.  Information, on the
other hand, is not permitted the luxury of imperfection.  It is necessarily correct, by definition.
Data are dirty; information is golden.

To examine data, therefore, is to sift the silt of a riverbed in search of gold.  Of course,
there might not be any gold but, if there is, it will take some knowledge and considerable skill
to find it and separate it from everything else.  Not only must you know what gold looks like,
but you also have to know what sorts of things masquerade as gold.  Whatever the task, you
will need to know the properties of what you seek and what you wish to avoid, the chemistry
of gold and not-gold.  It is through these properties one can be separated from the other.

An example of real data is shown in Table 1 and Figure 1.1  This dataset consists of values
for the duration of daytime (sunrise to sunset) at Boston, Massachusetts over three years.  The
first day of each month has been tabulated along with the longest and shortest days occurring
during this period.  Daytime has been rounded off to the nearest minute.

What can be said about data such as these?  It can be safely assumed that they are correct to
the precision indicated.  In fact, Kepler’s data, for analogous measurements, were much more
precise.  It is also clear that, at this location, the length of the day varies quite a bit during the
year.  This is not what one would observe near the Equator but Boston is a long way from
tropical climes.  Figure 1 discloses that daytime is almost perfectly repetitive from year to year,
being long in the (Northern hemisphere) Summer and short in the Winter.

Such qualitative remarks, however, are scarcely sufficient. Any dataset as rich as this one
deserves to be further quantified in some way and, moreover, will have to be if the goal is to
gain some sort of genuine understanding.  With scientific data, proof of understanding implies
the capability to make accurate predictions.  Qualitative conclusions are, therefore, inadequate.

Quantitative understanding starts with a set of well-defined metrics.  There are several such
metrics that may be used to summarize/characterize any set of N numbers, yi, such as these
daytime values.  The most common is the total-sum-of-squares, TSS, defined in Equation 1.

                                                
1 see file Examples:Daytime.in  [FAM95]
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Table 1.  Daytime—Boston, Massachusetts (1995-1997)

Daytime (min.) Day Date

545 1 1 Jan 1995
595 32
669 60
758 91
839 121
901 152
915 172 21 Jun 1995
912 182
867 213
784 244
700 274
616 305
555 335
540 356 22 Dec 1995
544 366 1 Jan 1996
595 397
671 426
760 457
840 487
902 518
915 538 21 Jun 1996
912 548
865 579
782 610
698 640
614 671
554 701
540 721 21 Dec 1996
545 732 1 Jan 1997
597 763
671 791
760 822
839 852
902 883
915 903 21 Jun 1997
912 913
865 944
783 975
699 1005
615 1036
554 1066
540 1086 21 Dec 1997
545 1097 1 Jan 1998
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Figure 1.  Raw Daytime Data

  Total-sum-of-squares ≡ TSS = yi – y
2Σ

i = 1

N

1.

where y  is the average value of y.

TSS is a positive number summarizing how much the y-values vary about their average
(mean).  The fact that each x (day) is paired with a unique y (daytime) is completely ignored.
By discounting this important relationship, even a very large dataset may be characterized by a
single number, i.e., by a statistic.  The average amount of TSS attributable to each point
(Equation 2) is known as the variance of the variable, y.  Lastly, the square-root of the variance
is the standard deviation, another important statistic.

  Variance of y ≡ Var y = 1
N

yi – y
2Σ

i = 1

N

2.

In Figure 1, the y-values come from a continuum but the x-values do not.  More often, x is
a continuous variable, sampled at points chosen by the observer.  For this reason, it is called
the independent variable.  The dependent variable, y, describes measurements made at chosen
values of x and is almost always inaccurate to some degree.  Since the x-values are selected in
advance by the observer, they are most often assumed to be known exactly.  Obviously, this
cannot be true if x is a real number but, usually, uncertainties in x are negligible compared to
uncertainties in y.  When this is not true, some very subtle complications arise.
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Table 2 lists data from a recent astrophysics experiment, with measurement uncertainties
explicitly recorded.2  These data come from observations, made in 1996-1997, of comet Hale-
Bopp as it approached the Sun [RAU97].  Here, the independent variable is the distance of the
comet from the Sun.  The unit is AU, the average distance (approximately) of the Earth from
the Sun. The dependent variable is the rate of production of cyanide, CN, a decomposition
product of hydrogen cyanide, HCN, with units of molecules per second divided by 1025.
Thus, even when Hale-Bopp was well beyond the orbit of Jupiter (5.2 AU), it was producing
cyanide at a rate of (6 ± 3) x 1025 molecules per second, that is, nearly 2.6 kg/s.

Table 2.  Rate of Production of CN in Comet Hale-Bopp

Rate Distance from Sun Uncertainty in Rate
(molecules per second)/1025 (AU) (molecules per second)/1025

130 2.9 40
190 3.1 70
90 3.3 20
60 4.0 20
20 4.6 10
11 5.0 6
6 6.8 3

In this example, the uncertainties in the measurements (Table 2, column 3) are a significant
fraction of the observations themselves.  Establishing the value of the uncertainty for each data
point and assessing the net effect of uncertainties are crucial steps in any analysis.  Had
Kepler’s data been as poor as the data available to Copernicus, his name would be known only
to historians.

The data of Table 2 are presented graphically in Figure 2.  For each point, the length of the
error bar indicates the uncertainty3 in y.  These uncertainties vary considerably and with some
regularity.  Here, as often happens with observations made by electronic instruments which
measure a physical quantity proportional to the target variable, the uncertainty in an observation
tends to increase with the magnitude of the observed value.

Qualitatively, these data suggest the hypothesis that the comet produced more and more CN
as it got closer to the Sun.  This would make sense since all chemical reactions go faster as the
temperature increases.  On the other hand, the observed rate at 2.9 AU seems too small.  Did
the comet simply start running out of HCN?  How likely is it that the rate at 3.1 AU was really
bigger than the rate at 2.9 AU?  Are these values correct?  Are the uncertainties correct?  If the
uncertainties are correct, what does this say about the validity of the hypothesis?  All of these
are legitimate questions.

                                                
2 see file Examples:Hale_Bopp.CN.in

3 In spite of its name, this bar does not indicate    error   .  If it did, the error could be readily
removed.
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Figure 2.  Hale-Bopp CN Data

Finally, consider the very “unscientific” data shown in Figure 3.  This figure is a plot of the
highest major-league baseball batting averages in the United States, for the years 1901-1997,
as a function of time.4

A player’s batting average is the fraction of his “official at-bats” in which he hit safely.
Thus, it varies continuously from zero to one.  It is fairly clear that there is a large difference
between these data and those shown in Figure 1.  The latter look like something from a math
textbook.  One gets the feeling that a daytime value could be predicted rather well from the
values of its two nearest neighbors.  There is no such feeling regarding the data in Figure 3.  At
best, it might be said that batting champions did better before World War II than afterwards.
However, this is not an impressive conclusion given nearly a hundred data points.

Considering the data in Figure 3, there can be little doubt that maximum batting average is
not really a function of time.  Indeed, it is not a function of anything.  It is a random variable
and its values are called random variates, a term signifying no pretense whatever that any of
these values are individually predictable.5  When discussing random (stochastic) variables,
the terms “independent” and “dependent” have no relevance and are not used, nor are scatter
plots such as Figure 3 ever drawn except to illustrate that they are almost meaningless.

                                                
4 see files Examples:BattingAvgEq.in and Examples:BattingAvg.in  [FAM98]

5 The qualification is crucial; it makes random data comprehensible.
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Figure 3.  Annual Best Baseball Batting Average

Variables appear random for one of two reasons.  Either they are inherently unpredictable,
in principle, or they simply appear so to an observer who happens to be missing some vital
information that would render them deterministic (non-random).  Although deterministic
processes are understandably of primary interest, random variables are actually the more
common simply because that is the nature of the Universe.  In fact, as the next section will
describe in detail, understanding random variables is an essential prerequisite for understanding
any real dataset.

Making sense of randomness is not the paradox it seems.  Some of the metrics that apply to
deterministic variables apply equally well to random variables.  For instance, the mean and
variance (or standard deviation) of these batting averages could be computed just as easily as
with the daytime values in Example 1.  A computer would not care where the numbers came
from.  No surprise then that statistical methodology may be profitably applied in both cases.
Even random data have a story to tell.

Which brings us back to the point of this discussion.  We have data; we seek insight and
understanding.  How do we go from one to the other?  What’s the connection?

The answer to this question was Kepler’s most important discovery.  Data are connected to
understanding by a model.  When the data are quantitative, the model is a mathematical model,
in which case, not only does the form of the model lead directly to understanding but one may
query the model to gain further information and insight.

But, first, one must have a model.
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FROM DATA TO MODEL

Marshall McLuhan is widely recognized for his oft-quoted aphorism, “The medium is the
message.”  It is certainly true in the present context.  The model is the medium between data
and understanding and it is, as well, the message of this tutorial.  The current section presents
an outline of fundamental concepts essential for initiating the first step, from data to model.
The methodology for implementing these concepts is described in later sections.  The second
step, from model to understanding, will be left as an exercise for the reader.

As can be seen, through the examples above, data are not transparent.  They do not reveal
their secrets to casual observers.  Yet, when acquired with due diligence, they contain useful
information.  The operative word is “contain.”  Data and information are not equivalent even
though, in colloquial speech, they are treated as such.

Why not?  What is there in a dataset that is not information?  The answer is error.

Data  =  Information + Error

Were it not for error, every observation would be accurate, every experiment a paragon of
perfection, and nearly every high school Science Fair project a fast track to the Nobel Prize.
Alas, error exists.  It exists not just in every dataset but in every data point in every dataset.  It
contaminates everything it touches and it touches everything.  To make any progress, it must
be identified and filtered out.

A good model does this very nicely.  In its simplest, most superficial aspect, a model is a
filter designed to separate data into these two components.  A mathematical model is a statistical
filter that not only attempts the separation but also quantifies its success in that effort.

Two Ways to Construct a Model

To construct a model, it is necessary to proceed from the known to the unknown or, at the
very least, from the better known to the less well known.  There are two approaches.  The
choice depends upon whether it is the information or the error that is better known, bearing in
mind that “known” and “assumed” are not synonyms.  In the first case, the model is designed
to utilize the known properties of the embedded information to extract the latter and leave the
error behind.  This approach is commonly employed with stochastic data.  Alternatively, if the
error is the better known, the model is designed to operate on the error, filtering it out and
leaving the information behind.  This approach is nearly universal with deterministic data.  In
either case, the separation will be imperfect and the information still a bit erroneous.

The notion of deterministic information is commonplace and requires no further elaboration
but what about the putative “stochastic information” contained in a dataset of random variables?
Is it real?  Likewise, can anything useful be said about error?  Do random variables and error
really have “properties” that one can understand?  In other words, are they comprehensible?

They are indeed.  The remainder of this section elucidates some properties of i) stochastic
information and ii) error.  Such properties are quantitative, leading directly to the identification
of optimization criteria which are crucial to any modeling process.
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Stochastic Information

Stochastic.  Information.  The juxtaposition seems almost oxymoronic.  If something is
stochastic (random), does that not imply the absence of information?  Can accurate conclusions
really be induced from random variables?

Well, yes, as a matter of fact.  That a variable is stochastic signifies only that its next value
is unpredictable, no matter how much one might know about its history.  The data shown in
Figure 3 are stochastic in this sense.  If you knew the maximum batting average for every year
except 1950, that still would not be enough information to tell you the correct value for the
missing year.  In fact, no amount of ancillary data would be sufficient.  This quality is, for all
practical purposes, the quintessence of randomness.

Yet, we have a very practical purpose here.  We want to assert something definitive about
stochastic information.  We want to construct models for randomness.

Such models    are    feasible.  Although future values for a random variable are unpredictable
in principle, their collective behavior is not.  Were it missing from Figure 3, the maximum
batting average for 1950 could not be computed using any algorithm.  However, suggested
values could be considered and assessed with respect to their probability.  For instance, one
could state with confidence that the missing value is probably not less than 0.200 or greater
than 0.500.  One could be quite definite about the improbability of an infinite number of
candidate values because any large collection of random variates will exhibit consistency in
spite of the randomness of individual variates.  It is a matter of experience that the Universe is
consistent even when it is random.

A mathematical model for randomness is expressed as a probability density function
(PDF).  The easiest way to understand a PDF is to consider the process of computing a
weighted average.  For example, what is the expectation (average value) resulting from tossing
a pair of ordinary dice if prime totals are discounted?  There are six possible outcomes but they
are not equally probable.  Therefore, to get the correct answer, one must calculate the
weighted average instead of just adding up the six values and dividing the total by six.  This
requires a set of weights, as shown in Table 3.

Table 3.  Weights for Non-prime Totals for Two Dice

Value Weight

4 3/21
6 5/21
8 5/21
9 4/21

10 3/21
12 1/21

The random total, y, has an expected value, denoted <y> or y , given by Equation 3.
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  Expectation of y ≡ y = wi yiΣ
i = 1

6

3.

The true expectation, 7.62, is quite different from the unweighted average, 8.17.

The set of weights in Table 3 constitutes a discrete PDF, meaning that there are a
countable number of possible values, each with its own weight (density).  Given a discrete
PDF, f(y), for the random variable, y, any arbitrary function of y, g(y), will have an
expectation computed as shown in Equation 4.  Equation 3 is just a special case of Equation 4.

  g(y) = f(yi) g(yi) ∆yΣ
all i

4.

where ∆y is equal to the binwidth, defined below in Example S1.

In the continuous case, neighboring values are separated by the infinitesimal binwidth, dy.
Nevertheless, a continuous PDF has exactly the same meaning as a discrete PDF and, thus, the
continuous analogue of Equation 4 is Equation 5.

  g(y) = f(y) g(y) dy
– ∞

∞

5.

For example, suppose f(y) = e–y and y ≥ 0.  Then, the expectation of g(y) =  y  is

  y = e– y y dy
0

∞

= π
2 6.

The product (f(y) ∆y) or (f(y) dy) equals the probability of a given y.  Probability is a
dimensionless quantity.  That is, it is a pure number with no units.  Consequently, the units of
a PDF must always be the reciprocal of the units, if any, of y.6  It is for this reason that the
function f(y) is referred to as a “density” function.

Example S1—Batting Averages

The dataset shown in Figure 3 will be the first example.  The collective behavior of these
data can be summarized numerically and graphically.  For instance, their mean (expectation) is
0.367 and their variance is 0.0005596 [st. dev. = 0.0237].  Any statistics textbook will list
several additional metrics that could be used to characterize this set of 97 values.  For a
graphical depiction, the device most commonly employed is the histogram, constructed by
grouping the variates into numerical intervals of equal width and plotting these bins against
their frequencies, the number of variates in the respective bins.  These frequencies may be
converted to probabilities (normalized) by dividing each by the sample size and then converted
to probability densities by further dividing by the binwidth (here, 0.011).  When all of this is
done with the batting-average data, we get the histogram shown in Figure 4 (gray boxes).

                                                
6 a useful check for complicated density formulas (see Appendix A)
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Figure 4.  Batting-Average Data (Histogram and PDF)

The overall shape of a histogram is intended to describe how realizable values of a random
variable are scattered across the infinite landscape of conceivable locations.  The way it works
is that the histogram is constructed to have a total area = 1.  Therefore, the probability that any
random variate falls in a given bin is equal to the area of the corresponding rectangle.  This
scattering of values/probabilities is referred to as the distribution of the random variable.  Note
that the Y-axis measures probability density, not probability.  Given the computational process
just outlined, and recalling Equations 4 and 5, measurements along this axis have units of 1/u,
where u is the unit of the random variable (e.g., inches, grams, etc.)

A continuous density function for these data is also shown in Figure 4 (solid line).  The
corresponding analytical expression, given in Equation 7, is called the Gumbel distribution.7
Like the histogram, the total area under this curve, including the tails (not shown), equals 1.

 
PDF = 1

B
exp

A – y
B

exp – exp
A – y

B 7.

where, for this example, A = 0.3555 and B = 0.01984.

                                                
7 see pg. A-49
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We see that Equation 7 does have the proper units.  Parameter A has the same units as the
random variable, y.  Since any exponent is necessarily dimensionless, parameter B must have
the same units as well.  Hence, the entire expression has units of 1/u.  Of course, these
particular data happen to be dimensionless already, but variates described by a PDF usually do
have units of some sort.

The Gumbel distribution is one example of a continuous distribution.  [There are many
others described in Appendix A.]  If f(y) is the PDF, the probability of any value of y would
equal f(y)*dy which, since dy is vanishingly small, is zero.  Indeed, intuition demands that the
probability of randomly picking any given value from a continuum      must    be zero.  However,
the probability of picking a value in a finite range [a, b] may be greater than zero (Equation 8).

  
Prob a ≤ y ≤ b = f y dy

a

b

8.

The integral (or sum) of a density function, from minus infinity to some chosen value, y, is
referred to as the cumulative distribution function (CDF), usually denoted F(y).8  For this
example, it is plotted in Figure 5.  In this figure, the solid line is the theoretical CDF and the
gray line the empirical CDF.  The CDF-axis gives the probability that a randomly selected
variate will be less than or equal to b (Equation 9).

  
Prob y ≤ b = F b = f y dy

– ∞

b

9.

Some of the reasons for choosing the Gumbel distribution for these data are discussed in its
entry in Appendix A.  For now, it is sufficient to appreciate that any sort of “theoretical”
expression would be considered relevant.  This supports the conclusion that useful statements
can     be made about stochastic data.  However, it does not explain where these parameter values
came from.  They are another matter entirely.

One of the reasons for using the values of A and B given above is that they produce a curve
that encloses an area with approximately the same shape and size as the empirical histogram.
There are much better reasons but their explication requires some preliminary concepts.

The first is the likelihood of a dataset.  The term means just what it says.  It indicates how
“likely” this set of observations would be had they been selected randomly from the given
PDF.  If the variates are independent, the likelihood is also a measure of their joint
probability.9  For any PDF, f(y), the likelihood of a sample of N variates is defined by
Equation 10.

  Likelihood ≡ f ykΠ
k = 1

N

10.

                                                
8 The term “distribution” is sometimes taken to mean the cumulative distribution.

9 Two random quantities, x and xx, are independent if and only if their joint (simultaneous)
probability, Prob(x AND xx), is always equal to Prob(x)*Prob(xx).
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Figure 5.  Batting-Average Data (CDF)

The second concept is that of maximum likelihood (ML).  This notion is also very intuitive.
Given a form for the density function, the ML parameters are those parameters which make the
likelihood as large as possible.  In other words, any other set of parameters would make the
observed dataset less likely to have been observed.  Since the dataset      was    observed, the ML
parameters are generally considered to be optimal.10  However, this does not preclude the use
of some alternate criterion should circumstances warrant.

The values given above for A and B are the ML parameters.  This is an excellent reason for
choosing them to represent the data and it is no coincidence that the theoretical curve in Figure
4 matches the histogram so well.  Had there been a thousand data points, with proportionately
narrower histogram bins, the match would have been even better.

Thus, a Gumbel distribution, with these ML parameters, is a model for the data shown in
Figure 3.  It summarizes and characterizes the stochastic information contained in these data.
Not only does it describe the probability density of the data, but one could query the model.
One could ask the same questions of the model that could be asked of the data.  For example,
“What are the average and standard deviation of these data?” or  “What is the probability that
next year’s batting champion will have a batting average within five percent of the historical

                                                
10 Their uniqueness is usually taken for granted.
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mean?”  The answers to such questions may be computed from the model without looking at
the data at all.

For instance, the last question is answered in Equation 11.7

 
Probability = f y dy

0.95 * mean

1.05 * mean

= F 0.385 – F 0.349 = 0.55 11.

As a check, note that Equation 11 predicts that 53 of the values in Figure 3 are within the
given range.  The data show 52 in this range.

One could even ask questions of the model that one could not ask of the data.  For instance,
“What is the probability that next year’s batting champion will have a batting average greater
than the maximum in the dataset (0.424)?”  Obviously, there is no such number in the historical
data and that suggests an answer of zero.  However, this is clearly incorrect.  Sooner or later,
someone is bound to beat 0.424 provided that major-league baseball continues to be played.

It is easy to pose a theoretical question like this to a model and, if the model is good, to
obtain a correct answer.  This model (Equation 7) gives an answer of three percent, suggesting
that we are already overdue for such a feat.

Whether or not a model is good (valid) is a question yet to be addressed.

Example S2—Rolling Dice

The Gumbel distribution was chosen to model the batting-average data because it is known
to be appropriate, in many cases, for samples of continuous-distribution maxima (so-called
record values).  However, there is no a priori guarantee that it is valid for these particular data.
Occasionally, there is enough known about some type of stochastic information that theory
alone is sufficient to specify one distribution to the exclusion of all others and, perhaps, even
specify the parameters as well.  The second stochastic example illustrates this situation via the
following experiment.

Step 1
Think of a number, a whole number, from one to six.

Step 2
Roll a standard, cubical die repeatedly until your chosen number appears three times.

Step 3
Record the number of rolls, Nr, required.

After only a few semesters of advanced mathematics courses, it would be relatively easy to
prove that the random variable, Nr, is ~NegativeBinomial(1/6, 3).11  This assertion could be
tested by performing the experiment a very large number of times and comparing the theoretical
distribution to the empirical data.

                                                
11 see pg. A-81; the ~ is read “(is) distributed as”
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Carrying out this exercise by hand would be a bit tedious.  Fortunately, it is a simple matter
to simulate the experiment on a computer.  Such simulations are very common.  Simulated
results for a 1,000-fold repetition of this experiment are shown in Figure 6.12

Figure 6.  Rolls3 Data (Histogram and PDF)

The NegativeBinomial model shown in Figure 6 (solid lines) is another example of a
discrete PDF.  Typically, this means that the random variable can take on only integer values.
That is the case here since Nr is a count of the number of rolls required.

In computing the model shown, the first parameter was not fixed at its theoretical value,
1/6.  Instead, it was estimated from the data.  The ML estimate = 0.1691, very close to the
theoretical 0.1667.  It would have been even closer had the sample size been much larger than
1,000.  Likewise, the mean predicted by this model = 17.74, very close to the theoretical
mean, 18.  The second parameter, 3, was assumed given although it, too, could have been
considered unknown and estimated from the data.

The observed data (gray histogram) may be compared to the estimated, ML model using the
Chi-square statistic, defined in Equation 12.

                                                
12 see file Examples:Rolls3.in
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Chi–square ≡ χ2 =

ok – ek

2

ek
Σ
all k

12.

where k includes all possible values of the random variable and where o and e are the observed
and expected frequencies, respectively.

For this example, Chi-square = 65.235.  Again, the question of whether this amount of
discrepancy between theory and experiment is “acceptable” is a matter to be discussed below.

Example S3—Normality

We would be remiss in our illustrations of stochastic information were we to omit the most
famous of all stochastic models, the Normal (Gaussian) distribution.  The Normal distribution
is a continuous distribution and it arises naturally as a result of the Central Limit Theorem.  In
plain English, this theorem states that, provided they exist, averages (means) of any random
variable or combination of random variables tend to be ~Normal(A, B), where A is the sample
mean and B is the unbiased estimate of the population standard deviation.  As usual, with
random data, the phrase “tend to” indicates that the validity of this Gaussian model for random
means increases as the sample size increases.

In Example S2, a thousand experiments were tabulated and individual outcomes recorded.
A sample size of 1,000 is certainly large enough to illustrate the Central Limit Theorem.  Our
final example will, therefore, be a 1,000-fold replication of Example S2, with one alteration.
Instead of recording 1,000 values of Nr for each replicate, only their average, Navg, will be
recorded.  This new experiment will thus provide 1,000 averages13 which, according to the
Central Limit Theorem, should be normally distributed.

As before, the experiment was carried out in simulation.  The observed results and the ML
model are shown in Figure 7.  The estimated values for A and B are 17.991 and 0.2926,
respectively.  With a Gaussian model, the ML parameter estimates may be computed directly
from the data so one cannot ask how well they match the observed values.

A somewhat better test of the model would be to pick a statistic not formally included in the
analytical form of the distribution.  One such statistic is the interquartile range, that is, the range
included by the middle half of the sorted data.  In this example, the model predicts a range of
[17.79, 18.19]14 while the data show a range of [17.81, 18.19].

The ideal test would be one that was independent of the exact form of the density function.
For continuous distributions, the most common such test is the Kolmogorov-Smirnov (K-S)
statistic.  The K-S statistic is computed by comparing the empirical CDF to the theoretical
CDF.  For example S3, these two are shown in Figure 8.  The K-S statistic is simply the
magnitude (absolute value) of the maximum discrepancy between the two, measured along the
CDF-axis.  Here, the K-S statistic = 0.0220.

                                                
13 see file Examples:Rolls3avg.in

14 see pg. A-85
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Figure 7.  Rolls3avg Data (Histogram and PDF)

Figure 8.  Rolls3avg Data (CDF)
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Once again, the question naturally arises as to whether this result is acceptable and, once
again, we defer the question until later.

Stochastic Information—Summary

In examples S1 to S3, we have endeavored to show that the term “stochastic information”
is not the contradiction it would appear to be.  It should now be clear that random variables are
collectively, if not individually, predictable to a useful extent and that much can be said, with
accuracy, about such variables.

Since much can be said, it follows that it should be possible to use this information to filter
out some of the error found in stochastic data.  Just because variates are random, it does not
mean that they are errorless.  The data of Example S1, for instance, appeared to be described
by a Gumbel distribution.  However, as with all stochastic datasets, there were discrepancies
between model and data.  How much of this was due to inherent variation and how much was
due to error was not discussed.  It will be.

Finally, we have described three metrics: the ML criterion, the Chi-square statistic, and the
K-S statistic.  These three are valid and useful concepts for the description of stochastic data
and it will soon become evident that all may be utilized as optimization criteria as well.

First, however, we discuss deterministic information and the kinds of error commonly
associated with it.
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Deterministic Information and Error

If “stochastic information” seems an oxymoron, “deterministic information” would, for
similar reasons, appear to be a tautology.  Neither is true and, in this discussion, the latter term
will refer to any information gleaned from non-stochastic sources, typically experimentation.
Since these sources are prone to error, it is essential to characterize that error in order to attempt
to compensate for it.  This section will focus on the kinds of errors found in deterministic data.

The amount of error in a dataset, or even a data point, is generally unknown.  The reason,
of course, is that error is largely random.  We have just seen, however, that randomness does
not imply total ignorance.  To the contrary, modeling of deterministic data usually assumes that
something valid is known about the error component of the data, providing a handle with
which to filter it out.  In fact, whenever data of a given type are investigated over an extended
period of time, it is not uncommon for associated errors to become as well characterized as the
information itself.

However, for the purposes of this tutorial, our goals are much less specific.  We shall limit
our illustrations to a few kinds of error and say something, as well, about error in general.  As
in the last section, we seek quantitative metrics that may be employed as optimization criteria.

Components of Error

Empirical datasets, almost without exception, are contaminated with error.  Even the data
shown in Table 1, which few would dispute, are recorded with limited precision.  Therefore,
they are subject, at the very least, to quantization error.  A dataset without error might be
imagined but hardly ever demonstrated.

Not only does a dataset, as a whole, contain an unknown amount of error but every data
point in it contains some unknown fraction of that total error.  Consequently, the amount of
information in a dataset is unknown as well.  Each data point makes some contribution to the
total amount of information but there is no way to tell how much just by looking.  Information
and error have the same units and may be physically indistinguishable.

Error comprises some combination of bias and noise.  A bias is a systematic deviation from
the truth due either to a deterministic deviation, consistently applied, or to a random deviation
with a non-zero mean.  The former is seen, for instance, when your bathroom scale is not
properly zeroed in.  In this case, it will report your apparent weight as too high or too low,
depending on the sign of the bias in the zero-point.  The latter type of bias is exemplified in the
case of an astronomer who records the image of a distant galaxy by counting the photons that
impinge on the pixels of a light-sensitive array.  Inevitably, each pixel is subject to a counting
error.  Such errors are typically random variables ~Poisson(A) and have a mean, A > 0.15

Noise refers either to random, zero-mean errors or to the residual portion of random,
biased errors once the bias has been removed.  For example, undergraduate chemistry
students, performing their first quantitative, organic analysis usually get experimental results
exhibiting lots of errors.  These errors are largely random but often have a significant negative

                                                
15 see pg. A-101
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bias because, in trying to isolate the target substance, some is lost.  Quantifying the remainder
is a process usually subject to zero-mean, random errors, i.e., noise.

Most often, total error represents the combined effect of several sources of different kinds
of error, including biases which can sometimes be identified and removed, as well as noise.
To the degree that error is random, only its average effects can be characterized and there is, of
course, no guarantee that a given sample will be average.

As before, we shall eschew theoretical discussions in favor of concrete examples.  There is
ample literature available to anyone wishing to pursue this subject in depth.  The examples
below all relate to deterministic data.

Example D1—Quantization Error

The daytimes in Table 1 provide an illustration of one kind of error and, at the same time,
of the utility of the variance.

One of the most useful properties of the variance statistic is its additivity.  Whenever any
given variance, V, is due to the combined effect of k independent sources of variation, V will
equal the sum of the individual variances of these k sources.  [Note the recursive nature of this
property.]

The variance of the daytimes listed in Table 1 = TSS/N = 836,510/43 = 19,453.72 min2.
As noted above, a portion of this variance derives from the fact that these values, having been
rounded to the nearest minute, have limited precision.  This round-off error has nothing to do
with the mechanism responsible for the secular variation in daytime.  Hence, the variance due
to rounding (quantization) is independent of all remaining variance, so it can be factored out.

It is easy to demonstrate that quantization error is a random variable ~Uniform[–B, B],
where B is one-half the unit of quantization.16  As such, the variance due to this single source
of error, Q, is given by Equation 13.  For these data, the unit of quantization is one minute.
Therefore, Q = 0.08 min2, only 0.0004 percent of the total variance of the data.

  
Quantization variance ≡ Q =

unit of quantization
2

12 13.

Continually citing squared quantities (with squared units) is inconvenient and the standard
deviation is quoted more often than is the variance.  Unfortunately, standard deviations are not
additive.  In this example, the “standard deviation of quantization error” is 0.29 min (about 17
seconds).  Thus, although this quantization error is negligible compared to the overall variation
of the data, it is clearly not negligible when compared to the recorded precision.

If quantization were the only source of error for this dataset, the deterministic information
present would constitute 99.9996 percent of the observed variance.  It would then be left to the
chosen model to “explain” this information.  Note that a deterministic model is not expected to

                                                
16 see pg. A-113
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explain error.  That task is delegated to a separate error model, implicitly specified as part of the
optimization procedure.

Finally, the variance statistic is evidently useful not just for computational purposes but, as
seen here, as a measure of information.  In other words, were the errorless component of the
total variance equal to zero, there would be nothing to explain.  In Example D2, we utilize this
aspect of the variance to develop a quantitative metric for deterministic information explained.

Example D2—Kepler’s First Law

In a deterministic model, the value of the independent variable is supposed to be sufficient
to predict the value of the dependent variable to an accuracy matching that of the input.  If the
model is important enough, it is often referred to as a law.  The implied reverence generally
signifies that something of unusual significance has been discovered about the real world and
summarized in the model so designated.  Today, in the physical sciences, laws are particularly
precise, as are their parameters.  In fields related to physics, for instance, it is not uncommon
to find model parameters accurate to more than nine significant figures (i.e., one part per
billion).  This mathematical approach to understanding we owe, in large part, to the efforts of
Johannes Kepler (1571-1630) and Galileo Galilei (1564-1642).

This example was presented by Kepler as an illustration of his First Law, arguably the first
correct mathematical model correctly devised.  The law states that each planet revolves about
the Sun in an ellipse with the Sun at one focus.

Figure 9 depicts an ellipse, together with some of its more important features.  Like any
ellipse, its size and shape may be completely specified by two numbers.  Usually, one of these
is the length of the semi-major axis, OP, and the other is the eccentricity, which is the ratio of
two lengths, OS/OP.  The ellipse in the figure has an eccentricity of 0.5 so one focus, S, is
halfway between the center, O, and the circumference at P; the other focus, not shown, is the
mirror image of S through the center.

Kepler spent much of his life investigating the orbit of Mars.  This orbit has an eccentricity
of only 0.09, so it is much more circular than the ellipse shown in Figure 9 as, indeed, are the
orbits of all planets in the Solar System, except Mercury and Pluto.  The point P represents the
point closest to the Sun, S, and is called perihelion; the point farthest from the Sun, A, is called
aphelion.  A chord, SG, drawn through a focus and parallel to the semi-minor axis, OR, is
called the semi-latus rectum.  The latter, plus the eccentricity, are the only parameters required
when an ellipse is described in polar coordinates (Equation 14).

  radius = A
1 + B cos (ν) 14.

where the origin is at S, from which the radius (e.g., SM) is measured, and where the angle,
ν, measured from perihelion in the direction of motion, is called the true anomaly.

In Equation 14, parameter A is the length of the semi-latus rectum and B is the eccentricity.
This equation is actually a general equation describing all of the conic sections—circle, ellipse,
parabola, or hyperbola, depending upon the eccentricity (see Table 4).  The independent
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variable is true anomaly, from which the dependent variable, the heliocentric radius, may be
computed/predicted if the model is valid.

O
A P

M

S

G

R

ν

Figure 9.  Ellipse (eccentricity = 0.5)

Table 4.  Eccentricities of Conic Sections

Eccentricity Shape

0 Circle
(0, 1) Ellipse

1 Parabola
> 1 Hyperbola

With these preliminaries, we may now examine Kepler’s data, shown in Table 5 in modern
units, along with the actual values for the times indicated [KEP09, STA97].17

                                                
17 see files Examples:Kepler_Mars.in and Examples:True_Mars.in  Note that these data do

not    comprise a single Martian year; they were observed during a sequence of oppositions.
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Table 5.  Orbital Data for Mars

Time Radius (AU) True Anomaly (radians)
(JD –

2300000)18
Kepler Predicted Actual Kepler Actual

–789.86 1.58852 1.58853 1.58910 2.13027 2.12831
–757.18 1.62104 1.62100 1.62165 2.39837 2.39653
–753.19 1.62443 1.62443 1.62509 2.43037 2.42854
–726.27 1.64421 1.64423 1.64491 2.64327 2.64152
–30.95 1.64907 1.64907 1.64984 2.70815 2.70696

2.84 1.66210 1.66210 1.66288 2.96844 2.96732
13.74 1.66400 1.66396 1.66473 3.05176 3.05065
49.91 1.66170 1.66171 1.66241 3.32781 3.32675

734.17 1.66232 1.66233 1.66356 3.30693 3.30640
772.03 1.64737 1.64738 1.64812 3.59867 3.59818
777.95 1.64382 1.64383 1.64456 3.64488 3.64440
819.86 1.61027 1.61028 1.61083 3.97910 3.97865

1507.15 1.61000 1.61000 1.61059 3.98145 3.98157
1542.94 1.57141 1.57141 1.57186 4.28018 4.28035
1544.97 1.56900 1.56900 1.56944 4.29762 4.29779
1565.94 1.54326 1.54327 1.54210 4.48063 4.48083
2303.05 1.47891 1.47889 1.47886 4.94472 4.94565
2326.98 1.44981 1.44981 1.44969 5.18070 5.18169
2330.96 1.44526 1.44525 1.44512 5.22084 5.22184
2348.90 1.42608 1.42608 1.42589 5.40487 5.40591
3103.05 1.38376 1.38377 1.38332 6.12878 6.13067
3134.98 1.38463 1.38467 1.38431 0.198457 0.200358
3141.90 1.38682 1.38677 1.38643 0.274599 0.276497
3176.80 1.40697 1.40694 1.40676 0.653406 0.655260
3891.17 1.43222 1.43225 1.43206 0.940685 0.943206
3930.98 1.47890 1.47888 1.47896 1.33840 1.34079
3937.97 1.48773 1.48776 1.48789 1.40552 1.40788
3982.80 1.54539 1.54541 1.54583 1.81763 1.81986

Since Kepler intended these data to be illustrative of his law of ellipses, it is reasonable to
ask whether they are, in fact, described by the model of Equation 14.  The graph in Figure 10,
where X is true anomaly and Y is radius, makes it qualitatively apparent that they are.19

This assessment may be quantified by hypothesizing that the information explained by
this model and the residual error constitute independent sources of variation.  If this is true,
then the total variance of the dataset is the sum of the variances for each of these components
and it would then be a trivial matter to compare the fraction of the variance/information

                                                
18 JD (Julian date) ≡ interval, in days, from Greenwich noon, 1 January 4713 B.C.

19 The ellipse, in this (optimized) model, has A = 1.51043 AU and B = 0.0926388.
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explained by this model to the total variance in the dataset.  A good model is one that leaves
relatively little unexplained.

Figure 10.  Kepler’s Data and Model

Since the number of points is constant throughout this example, we may substitute sums of
squares for the respective variances.  The information     not    explained by the model, plus the
variance due to any errors, is then equal to the error-sum-of-squares, ESS, often called the
residual-sum-of-squares, defined in Equation 15.

  Error-sum-of-squares ≡ ESS = yi – yi

2Σ
i = 1

N

15.

where y  is the value predicted by the model.

Therefore, the fraction of the total variance in the dataset that is explained by a given model
is equal to the statistic R-squared, defined in Equation 16.

 R-squared = 1 – ESS
TSS 16.

Kepler’s data, plus the predictions of the optimum model (Table 5, column 3), produce the
following results (computed to six significant figures):
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TSS =  0.273586 AU2

ESS =  1.257e–08 AU2

R-squared =  1.00000

In other words, by this statistic/criterion, the model described in Equation 14 and Figure 10
explains all of the deterministic information contained in Kepler’s dataset to a precision of one
part in 100,000.

This result is not quite perfection.  Since ESS > 0, there remains something, true deviations
or error, yet to be explained.20  Also, the 28 radii listed by Kepler are not really as accurate as
his values indicate.  Nevertheless, this degree of success is impressive.  There are thousands of
sociologists, psychologists, and economists who would be more than delighted with results of
such precision.

We shall see later how Kepler’s model was optimized to find parameters yielding this value
for R-squared.

Example D3—World Track Records

As a measure of information and/or error, the variance statistic reigns supreme in most of
contemporary analysis of deterministic data.  However, intuition suggests that the “best”
deterministic model is the one that minimizes the average deviation, defined in Equation 17.
When graphed, this model gives the curve that is as close as possible to all of the data points
simultaneously, using a statistic with the same units as the dependent variable.

  Average Deviation = 1
N

yi – yiΣ
i = 1

N

17.

where y  is the value predicted by the model.

To illustrate this metric, consider the data in Table 6.21  This table lists 14 distances for
which world track records (for men) are recognized.  The corresponding average speed attained
during each record run is listed as well [YOU97].  The task is to model this speed as a function
of distance.

Not surprisingly, the average speed decreases sharply, at first, but then seems to level off
somewhat.  Many analytical forms would be suitable but we shall examine the power law given
in Equation 18 (where y is speed and x is distance).

 y = A xB + C 18.

                                                
20 That this “something” is relatively small does not imply that it is spurious or insignificant.

21 see file Examples:Track.in
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Table 6.  World Track Records (Men)

Speed (m s–1) Distance (m)

10.152 100
10.173 200
9.240 400
7.864 800
7.565 1,000
7.233 1,500
7.172 1,609.344 (mile)
6.947 2,000
6.740 3,000
6.449 5,000
6.236 10,000
5.855 20,000
5.636 25,000
5.598 30,000

The model of this form with the minimum average deviation has the parameter values given
below.  Its graph is shown in Figure 11.

A  =  18.35
B  =  –0.2380
C  =  4.020

The value of the average deviation resulting from this model is 0.163 meters per second;
the worst deviation is –0.954 meters per second (point #2).  According to the R-squared
metric, this model explains 94.691 percent of the total information in the dataset.

Had we, instead, used the R-squared criterion to optimize the model, we would then have
obtained the following parameters:

A  =  20.36
B  =  –0.2369
C  =  3.785

The latter model would have explained 96.634 percent of the information in the dataset but
with an average deviation of 0.203 meters per second and a worst deviation of –0.582 meters
per second (point #2).  Evidently, just as there is more than one conceivable model for these
data, there is also more than one way to optimize that model.

The minimum deviation is often used with data thought to contain one or more outliers,
data points with unusually large deviations from the putative model.  Minimizing the average
deviation is more robust than minimizing ESS, signifying, among other things, that the
computed model is not as sensitive to the presence of extreme values as it is when apparent
deviations are squared.  The literature on robust estimation is quite large and several good
techniques have been developed over the years.
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Figure 11.  World Track Records

Deterministic Information—Summary

In this section, we have described two metrics for deterministic modeling, giving different
answers.  Is the choice a matter of indifference or is one better than the other?

To anyone trying to understand the real world, there can be only one “best” answer because
there is only one Universe.  Nature does not use one set of rules on weekdays and another on
weekends.  To be credible, a model must eschew arbitrariness to the greatest extent possible.
Moreover, it must be completely consistent with whatever is already known about the data it
describes, including even aspects of the data that are not the subject of the model.

As noted earlier, any deterministic model should be optimized utilizing whatever is known
about the errors in the data.  In Examples D2 and D3, this concern was not addressed.  So far,
we have considered only the fraction of information explained and average deviation (error),
without considering specific     properties    of the residual variance.  Finally, in discussing these
two models, we did not relate much of what we said about stochastic modeling, especially the
powerful concept of maximum likelihood, to the fact that errors in data are largely random.

In the next section we shall put everything together.  Our efforts will be rewarded with a set
of valid, intuitive, and well-defined criteria for computing optimum model parameters.
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FINDING OPTIMUM PARAMETERS

Data, as we have seen, come in two varieties: stochastic and deterministic.  Each of these
may be modeled and that model characterized by one of a number of metrics (statistics) relating
something about the quality of the model.  Quality implies descriptive or explanatory power,
proof of which is manifested in predictive capability.  All of this presupposes, of course, that
models exhibiting these desiderata can actually be found.

This section clarifies some relationships among the five metrics described earlier.  In doing
so, a general technique for finding optimum parameters will be cited.  It will be apparent that
this technique may be readily implemented as a computational algorithm.

Five Criteria

The five metrics/statistics that we shall utilize as modeling criteria are listed in Table 7.  The
two primary criteria are shown in bold and their preeminence will be discussed.

Table 7.  Modeling Criteria

Criterion Applicability

Maximum likelihood All random variates
Minimum K-S statistic Continuous random variates

Minimum chi-square statistic Discrete random variates
Minimum ESS (least squares) Deterministic data

Minimum average deviation Deterministic data

Some of the reasons why these five are desirable criteria were described in the last section.
It was taken for granted there that, given an appropriate analytical form for the model, finding
parameters that would optimize the chosen metric was practicable.  Indeed, most of the values
for model parameters given in the text are illustrative.

The methodology described here takes a modeling criterion as a kind of meta-parameter.
Partial justification for this approach derives from the fact that these five criteria are more
interrelated than they might appear.  In particular, as first demonstrated by Carl Friedrich
Gauss (1777-1855) and Adrien Marie Legendre (1752-1833), there are deep, fundamental
connections linking the criteria for stochastic and deterministic modeling.  These relationships
are due to the randomness of error.

Maximum Likelihood Redux

In the course of any description of modeling and statistics, it is easy to get lost in the almost
inevitable deluge of symbology and equations and, in the confusion, lose sight of the original
objective.  One is dealing, presumably, with real data from the real world.  Thus, a model is
not just some computational gimmick for reproducing a matrix of numbers.  A good model
says something genuine about the Universe.  Its analytical form is discovered, not invented; its
parameters are properties of Nature, not the whim of an analyst.
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The ML criterion acknowledges this role, as well as the supremacy of data, in the most
direct fashion.  Given the form for a stochastic model, ML parameters maximize the probability
that the observed data came from a parent population described by the model.  Deterministic
modeling, on the other hand, attempts to maximize the explanatory power of the model or,
occasionally, to minimize the average deviation.  It turns out that there is a profound connection
between least squares (also, minimum deviation) and maximum likelihood.

We shall start with least squares.  This is undoubtedly the most widely used of all modeling
criteria.  It is usually presented simply as a technique for generating a curve that is closest to all
of the data points.  Of course, it isn’t.  The minimum-deviation criterion is the one that yields
that particular curve.  As we have seen, the least-squares technique actually minimizes the error
variance and, hence, maximizes the fraction of information that is explained by the model.  If
it did nothing else, one could hardly complain.  However, it does much more.

In real life, errors are almost never simple manifestations of a single mechanism.  Nearly
always, the total error in an observation is the net effect of several different errors.  As a result,
the Central Limit Theorem takes over and stipulates that such errors have a strong tendency to
be ~Normal(A, B).  This theorem was illustrated in Example S3.

In devising a deterministic model, suppose that this theorem and the proliferation of error
modes are taken at face value.  Then one might ask, “What set of parameter values maximizes
the likelihood of the residuals if they are normally distributed?  Also, is this vector unique?”

Thus, assume that the residuals for the data points,   εk ≡ yk – yk , are ~Normal(Ak, Bk).  In
addition, assume that these residuals are all unbiased so that Ak is always zero.  Then, the
likelihood is given by Equation 19 (cf. Eq. 10 and pg. A-85).

  
Likelihood ≡ f εkΠ

k = 1

N

= 1
Bk 2 π

exp – 1
2

εk

Bk

2

Π
k = 1

N

19.

Equation 19 can be simplified.  The log() function is monotonic, so any set of parameters
that maximizes log(likelihood) will necessarily maximize the likelihood.  Taking (natural) logs
of both sides of Equation 19 produces Equation 20.

  Log-likelihood = – log Bk 2 πΣ
k = 1

N

– 1
2

εk

Bk

2

Σ
k = 1

N

20.

Given a set of measurement errors, the first term in Equation 20 is a constant and has no
bearing on the maximization.  The likelihood will be a maximum if and only if the expression
in Implication 21 is a minimum.

  
Maximum likelihood ⇒ min

εk

Bk

2

Σ
k = 1

N

21.

If the errors for all of the points come from the same normal distribution, then all Bk are equal
and, after canceling the units, this constant can be factored out giving Implication 22.
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Maximum likelihood ⇒ 1

B
min εk

2Σ
k = 1

N

⇒ min yk – yk

2Σ
k = 1

N

22.

However, the term on the far right is just ESS!  In other words,

if all errors are ~Normal(0, B), then the parameters
that minimize ESS are the very same parameters that
maximize the likelihood of the residuals.

It turns out that this vector of parameters is almost always unique.  The least-squares
parameters have many other useful properties as well but these lie beyond our present scope.

While this is a wonderful result, it falls short of perfection for at least two reasons.  First,
the fact that the parameters are the ML parameters says nothing about the analytical form of the
model.  If the model itself is inappropriate, its parameter values are academic.  Second, there is
no guarantee that the errors are independent or normally distributed.  These hypotheses must be
proven for the least-squares method to yield the ML parameters.

However, the strong assumption that all Bk are equal is unnecessary provided that their
true values are known.  Minimizing Implication 21, instead of Implication 22, is referred
to as the weighted least-squares technique.22

Finally, what about the minimum-deviation criterion?  Can that be related to the maximum-
likelihood function as well?

Yes, it can.  The second most common distribution for experimental errors is the Laplace
distribution (see pg. A-63).  Substituting the Laplace density for the Normal density, the
derivation above produces Implication 23 instead of Implication 21.

  
Maximum likelihood ⇒ min

yk – yk

Bk
Σ

k = 1

N

23.

Implication 23 is equivalent to minimizing the (weighted) average deviation, analogous to
weighted least squares.  Of course, the same caveats apply here as in the case of normal errors.

Alternate Criteria

The two criteria that do not relate directly to maximum likelihood are the minimum K-S
criterion and the minimum chi-square criterion.  Nevertheless, the first of these is justified
because it is the most common goodness-of-fit test for continuous random variates, as well as
one of the most powerful.  The chi-square criterion is the discrete counterpart of the K-S
criterion and any discussion of discrete variates would be very incomplete without it.

                                                
22 Some texts discuss only the latter since setting all Bk equal to one is always a possibility.
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From this point on, we shall take it as given that the criteria listed in Table 7 are not only
valid and appropriate but, in many respects, optimal.  The next task is, therefore, to compute
the parameters that realize the selected criterion.

Searching for Optima

As noted earlier, a single computational technique will suffice regardless of the selected
criterion.  All optimizations of this sort are essentially a search in a multidimensional parameter
space for values which optimize the objective function specified by this criterion.  There are
many generic algorithms from which to choose.  One of the most robust is the simplex method
of Nelder and Mead.23

The simplex algorithm traverses the parameter space and locates the local optimum nearest
the starting point.  Depending upon the complexity of the parameter space, which increases
rapidly with dimensionality, this local optimum may or may not be the global optimum
sought.  It is, as always, up to the analyst to confirm that the computer output is, in fact, the
desired solution.

The simplex is a common algorithm and source code is readily available [CAC84, PRE92].

Summary

Three of the five modeling criteria described in the first section have been shown to be
closely linked to the concept of maximum likelihood.  Consequently, they are eminently
suitable as modeling criteria.  They are intuitive, valid, and appropriate.  Moreover, they almost
always provide unique parameter vectors for any model with which they are employed.

Two other criteria were also listed.  Both of these are best known as goodness-of-fit criteria
for random variates with respect to some putative population density.  However, they may also
be employed to determine the parameters for this density, not just to test the final result.

The simplex algorithm will prove suitable, in all cases, to compute parameters satisfying
the chosen criterion in any modeling task that we shall address.  The truth of this assertion has
not yet been demonstrated but it will become evident in the sections to follow.  Some of the
figures shown above provide examples.

To this point, we have seen, or at least stated, how models may be specified, optimized,
and computed.  The stage is now set to evaluate the results of any such endeavor.  We shall
discuss the quality of models in general and of their parameters in particular.  Is the model any
good?  Are the parameters credible?  Does the combination of model and parameters make
sense in the light of what we know about this experiment and about the Universe in general?
In other words, are we doing real science/engineering/analysis or are we just playing with data?

                                                
23 not to be confused with the linear programming technique of the same name
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IS THE MODEL ANY GOOD?

The “goodness” of a model depends not on how well it might serve our purposes but on
the degree to which it tells the truth.  Beauty, in this case, is not entirely in the eye of the
beholder.  If a model is based upon observed data, especially physical data about the real
world, then the model must be equally real.  Several criteria have been established, in earlier
sections, that measure the validity (i.e., the reality) of a model.  In this section, we shall focus
mainly on the statistical dimension of this reality; the physical dimension is beyond our scope.

Deterministic data and stochastic data will be treated separately because the former case is
very easy but the latter is not.  However, as we have seen, it is the modeling of error as a
random variable that lends credence to the aforementioned deterministic criteria.  Thus, the
validity of stochastic models is fundamental to the validity of modeling in general.

In this section, we encounter a new technique—the bootstrap.  The bootstrap may be
parametric or nonparametric.  In the discussions to follow, both forms will be employed.  The
utility of these techniques should be self-evident.

The Bootstrap

Since there is ample literature on bootstrap methodology [EFR93], the descriptions here
will be somewhat abbreviated.  While the name is fairly new, some of what is now termed
“bootstrap” methodology is not.  In particular, the parametric bootstrap includes much that was
formerly considered simply a kind of Monte Carlo simulation.  However, the nonparametric
bootstrap, outlined in the next section, is quite recent.

The bootstrap technique was designed, primarily, to establish confidence intervals for a
given statistic.  A confidence interval is a contiguous range of values within which the “true”
value of the statistic will be found with some predetermined probability.  Thus, the two-sided,
95-percent confidence interval for a given K-S statistic is that range of values within which the
true K-S statistic will be found in 95 percent of all samples drawn from the given population,
being found 2.5 percent of the time in each tail outside the interval.  Other things being equal,
the width of this interval decreases with increasing sample size.

Sometimes, a confidence interval may be computed from theory alone.  For instance,
means of large, random samples tend to be unbiased and normally distributed.  Therefore, the
95-percent confidence interval for any such mean is just µ ± 1.96 SE, where µ is the observed
mean and SE is the standard error of the mean, given by Equation 24.

  SE = σ
N

24.

where σ is the population standard deviation for the data and N is the sample size.

As an example, consider again the data exhibited in Figure 7.  Theory says that these 1,000
means should, themselves, have an (unbiased) mean of 18 and a standard deviation (SE) of
0.30.  Hence, 95 percent of them should lie in the interval 18 ± 1.96*0.30 = [17.41, 18.59],
with the remaining five percent divided equally between the two tails.  In fact, if you sort the
file Examples:Rolls3avg.in, you will find that these 1,000 means exhibit a 95-percent central
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confidence interval of [17.40, 18.55].  The latter interval is, of course, just a sample of size
one of all similar confidence intervals for similar data.  As such, it is expected to deviate a little
bit from theory.  If you sense a little recursion going on here, you are quite right.

What we have just done, without saying so, was a form of parametric bootstrap.  The file
of 1,000 means was obtained by simulating the original experiment 1,000 times.  Each trial
was terminated when an event with a probability of 1/6 was realized 3 times.  The simulation
used these two parameters to synthesize 1,000 bootstrap samples, each sample containing
1,000 trials, with only the sample mean recorded.  The explicit use of input parameters makes
this a parametric bootstrap.

Figures 7 and 8, and the accompanying discussion, illustrate not only the Central Limit
Theorem but also the validity of the bootstrap technique.  This technique has received a great
deal of scrutiny over the past decade, with very positive results.  We shall put it to good use.
Almost all of our remaining discussion will derive from the now well-established fact that

bootstrap samples are valid samples.

Whether they are created from theory (parametric bootstrap) or experiment (nonparametric
bootstrap), bootstrap samples constitute additional data.  These data may be characterized by
one or more statistics and the ensuing distribution of these statistics utilized to estimate any
desired confidence intervals.  By comparing optimum values, for any model, to the confidence
intervals for these values, the probability of the former may be estimated.  In this section, this
probability will be related to goodness-of-fit; in the following section, it will be employed to
estimate parameter uncertainty.

Stochastic Models

Table 7 listed three criteria for optimizing a stochastic model.  Unlike their deterministic
counterparts, none of these criteria are self-explanatory.  In general, it is not easy to tell, from
the value of the given statistic, whether or not that value is probable under the hypothesis that
the optimum model is valid.

For example, the K-S statistic for the best-fit Gumbel distribution to the Batting-Average
data is 0.057892.  This number represents the maximum (unsigned) discrepancy between the
theoretical and empirical CDFs.  So much is very clear.  What is not at all clear, however, is
whether or not a random sample (N = 97) from a genuine population described by
the same distribution would be likely to exhibit a K-S statistic having the same value.  It
could be that the value 0.057892 is too large to be credible.

How could you tell?  The traditional approach would be to look up a table of K-S critical
points in a reference and compare the observed value to some table entry.  The problem with
this approach is that nearly all such tables list asymptotic results, i.e., with N = Infinity.  Even
those that have entries for specific sample sizes are not always appropriate in every case.  There
might be hidden dependencies on model form or parameters that could invalidate the recorded
critical points.  Ideally, what one would really like is a made-to-order table, conditioned on the
sample size, the model form, and the model parameters.  Before the advent of fast digital
computers, such a table was a rare luxury.  Today, it is fairly easy.
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To construct such a customized table, we start with the putative parent population.  In this
case, we start with the Gumbel distribution given in Equation 25.

 
PDF = 1

0.01984
exp

0.3555 – y
0.01984

exp – exp
0.3555 – y
0.01984 25.

From this distribution, which purports to be a good description of our data, draw a random
sample (N = 97) a very large number of times (at least 1,000 times).  With each of these
samples, carry out the same operations that were performed on the original data.
Here, we assume that each sample is ~Gumbel(A, B) and we optimize the model, for each
sample, using our original criterion.  When all of this is done, we have a vector of 1,000
bootstrapped K-S statistics, all of which a) genuinely reflect our candidate population, by
construction, and b) were obtained exactly as was the original K-S statistic.

There are now several ways to proceed but, here, we shall adopt the simplest approach.
First, sort the 1,000 bootstrapped statistics in ascending order.  The result will look much like
the histogram in Figure 12 (where Y = K-S statistic).

Figure 12.  Distribution of K-S Statistic from Equation 25



35

The bootstrapped K-S statistic is, itself, a random variable and we    could     try to model it.
Since each of these continuous variates represents the maximum of 2 x 97 comparisons,24 they
might even be ~Gumbel(A, B)!25  However, we shall instead use just the raw values.  It turns
out that our observed value of K-S is found in the 41st percentile of this specific K-S
distribution.  In other words, if you draw a sample (N = 97) from the distribution given by
Equation 25, model it as ~Gumbel(A, B), and recompute the optimum A and B using the ML
criterion then, 59 percent of the time, the K-S statistic you will get will be larger (worse) than
the one we obtained with the Batting-Average data.

It is customary to require the 95th percentile before rejecting an hypothesis which means
that we cannot reject the null hypothesis that our data are modeled by Eq. 25.  While not
rejecting an hypothesis is not quite the same thing as accepting it, in practice, this is the usual
interpretation.  Therefore, we conclude that

according to the K-S test, Eq. 25 is an ACCEPTABLE description of our data.

We could go through the same procedure with the 1,000 Log-likelihood statistics that
resulted from this bootstrap process, assessing the observed value in the same fashion.  Then,
we would have two measures of acceptability.  The prudent course would be to require both of
them to be acceptable before declaring that the model is good.  In this example, the observed
value falls in the 47th percentile of its (bootstrapped) distribution so it, too, is acceptable.

With discrete variates, the usual goodness-of-fit statistic is Chi-square.  The same
procedure would apply there as well.  In fact, the bootstrap technique is a very general method
for assessing goodness-of-fit, no matter what statistic/criterion is used.

There is also a simple rule-of-thumb when using the Chi-square statistic as described.  Its
expected value is equal to the number of degrees of freedom.26  Therefore, if the Chi-square
value found is less than the range of y-values, it will always be acceptable.

Deterministic Models

Since the bootstrap technique is generally valid, it could be used for assessing goodness-
of-fit with deterministic models as well.  However, R-squared, the usual statistic in such cases,
is self-explanatory.  It is equal to the fraction of the variance explained by the model.  There is
no need to ask about the probability of such a value with a given dataset/model combination.

The minimum-deviation statistic is not quite as transparent.  Still, this statistic has the same
units as the data and it is usually easy to tell if a given minimum deviation is small enough for
the intended purposes.

                                                
24 Each end of each “step” in the empirical CDF must be examined.

25 Indeed they are, Gumbel(0.05604, 0.01192) [Fig. 12, solid line].  In fact, this model is an
even better fit than it was with the Batting-Average data.  See also, Examples:KStest.in.

26 see pg. A-42
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All of the above is true whether the deterministic modeling (regression) is weighted or
unweighted.  With weighted regressions, the weighted residuals take the place of the usual
residuals since the former are now normalized with respect to their own standard errors.
However, the goodness-of-fit metrics, and their meaning, remain the same.

Summary

This section has outlined a general technique for establishing the validity of a mathematical
model.  If a model is deemed acceptable, it signifies that the equation (or density function) may
substitute for the original data.  Moreover, the model may now be queried, perhaps in ways
that would be impossible with the actual dataset.  Deterministic models may likewise be used to
interpolate or extrapolate from the observed values.  In short, if a model is acceptable, it is
equivalent to any and all past (or future) observations.

With stochastic models, acceptability is assessed by comparing one or more goodness-of-
fit statistics (random variables) to their respective distributions, asking whether the value
observed is too improbable to credit.  With deterministic models, the goodness-of-fit statistics
are sufficiently perspicuous that we need not go to so much trouble.

Once again, it must be emphasized that none of this is meant as some kind of mathematical
gimmick.  The number of potential models is infinite and, with enough fortitude, any dataset
could be adequately fit to one or more of them.  The real goal is to find the model that Nature
uses by examining a sample of observations.  The techniques described herein are immensely
powerful but they are blind.  The necessary vision must be supplied by the analyst.
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HOW PRECISE ARE THE PARAMETERS?

Our goal has been to show how to obtain a validated mathematical model for any dataset.
This we have done.  Yet the story is not quite complete.  Certainly, an acceptable model of the
proper form, with optimum, ML parameters cannot be significantly improved but there remain
two loose ends.

One loose end is that the procedure described above for determining ML parameters is just
a search of the parameter space for the best parameter vector.  In general, there is no guarantee
either that there is only one best solution or, if there is, that you will find it.  Depending upon
where you start looking, you might converge on a local optimum instead of the desired global
optimum.  Also, the latter might be degenerate, i.e., there could be more than one of them.

For instance, the ML fit of a sine wave to the Daytime data (Table 1) is shown in Figure 13
(cf. Figure 1).  This fit (Eq. 26) has R-squared = 0.99908 so this model is good to one part in
a thousand but simple, high-school trigonometry reveals that the phase term, –1.391, may be
incremented by any integer multiple of 2π (360 degrees) without changing the daytime value,
y.  Therefore, the number of ML solutions is actually infinite.

Figure 13.  Least-squares Sine Fit to Daytime Data

  y = 183.3 sin ((2 π) 0.002736 x – 1.391) + 728.4 26.
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The other loose end stems from the definition of maximum likelihood.  ML parameters are,
by definition, more probable than any others—but how probable is that?  Suppose you propose
to flip a coin 100 times and bet on the outcome.  The wise bet would be 50 Heads and 50 Tails
because that is the ML result; every other result is less likely.  Suppose, however, that some
bystanders are watching all of this and decide to bet, amongst themselves, whether or not you
will win     your    bet.  The wise choice in this case would be to bet that you would lose.  Even
though, with a fair coin, a 50:50 outcome is the most probable, its probability is still less than
eight percent.  There are just too many other possibilities for any one of them to be at all likely.
So your chances of losing are, at best, more than 92 percent.

The probability that the ML parameters in a model are equal to the true parameters is even
worse.  Unless theory insists that a given parameter must be a rational number, then you can be
absolutely certain that the optimum value you found for it will always be incorrect.  The
reason, noted earlier, is that selecting a specific number from the real domain has a probability
of zero.  You can never do it exactly.27

But you can get as close as you like.  All it takes is a lot of effort and a very large sample.

Sampling is the key.  The model for the radius of the orbit of Mars (Table 5, col. 3) as a
function of true anomaly has two ML parameters: A = 1.51043 AU and B = 0.0926388.  The
Keplerian model is an approximation, albeit a very good one, to the true solution.
Nevertheless, even if we grant that the elliptical approximation is good enough, these two
parameters are not perfect.  Were new data found for exactly the same time frame, these
parameters would be different even though the orbit of Mars was constant.  Every
dataset is a sample, not the entire population.  Therefore, there is always some sampling error.

Nothing can be done to compensate for degenerate global optima except to examine the ML
parameters for reasonableness.  They must make sense!  They must have the correct units and
be consistent with what is known about the real world.  This is essential even if the solution is
not degenerate.  Likewise, parameter uncertainties due to sampling error, or to deficiencies in
the model, cannot be removed once the ML result has been obtained.  However, they can be
estimated.

The purpose of this section is to describe a procedure for estimating parameter uncertainty.
In addition, parameter correlation is also discussed.  The latter is a subtle kind of uncertainty
which recognizes that parameters are not necessarily independent.  We shall take it as given that
the model is acceptable since a model that is not acceptable is of little interest and its parameters
even less so.

To quantify uncertainty, we shall utilize confidence intervals.  Every optimum parameter
can be assigned a confidence interval within which the true value of the parameter will be found
with some specified probability.  The wider this confidence interval, the more uncertain the
parameter value.

                                                
27 assuming that you cannot go out and examine every member of the parent population
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As we have already seen, confidence intervals may be estimated via the bootstrap.  For this
application, however, the parametric bootstrap is not suitable.  We are not asking now about a
theoretical population from which we can select random variates.  Rather, we are asking about
one particular dataset, the one that gave rise to the model.  Hence, we need a nonparametric
bootstrap that somehow uses this dataset to generate further bootstrap samples.  The requisite
methodology is outlined below.  As we have done throughout this tutorial, we concentrate on
examples instead of theory, first with stochastic models, then with deterministic models.

The Nonparametric Bootstrap

A nonparametric bootstrap sample is created by resampling the original dataset,
with replacement.  Imagine that the original data are in a paper bag.  Close your eyes and
select one point/variate from the bag, record its value,    then        put       it        back    .  Repeat this selection
until you have a sample of the same size as the original.  Such a sample is nonparametric; it
comes from the actual data, not from a parametric model of that data.  Reusing the data in this
way might seem like cheating28 but it is quite valid, as long as proper corrections are applied.

In the previous section, when we discussed the parametric bootstrap, a simple approach
was used to analyze the bootstrap distributions.  For instance, consider the 1,000 K-S statistics
in Figure 12.  These 1,000 values constitute an empirical CDF for    any     K-S statistic computed
for a sample (N = 97) that is ~Gumbel(0.3555, 0.01984).  To determine a central, 95-percent
confidence interval for K-S, using the percentile method, we throw away the 25 largest and
25 smallest of these 1,000 K-S values.  The remaining 0.95*1,000 = 950 values comprise the
desired confidence interval,    conditioned        on       this         model       and       the        given       sample       size   .  Its range is
[0.0401747, 0.0974331].  Its interpretation is that 95 percent of the K-S statistics you would
obtain with a genuine sample (N = 97) from this Gumbel distribution would fall in this range.
Furthermore, 2.5 percent would fall in the range [0, 0.0401747] and the last 2.5 percent in the
range [0.0974331, 1].

Were the model or sample size different, the 95-percent confidence interval would be
different.  The confidence interval would also grow or shrink with the need for increased or
decreased confidence, respectively.  Thus, the 90-percent confidence interval in this example is
[0.0430050, 0.0901146] and the 99-percent confidence interval is [0.0364837, 0.107393].

With the     nonparametric    bootstrap, it is better not to use such a simple approach to find a
confidence interval.  When the original data are resampled, the resulting bootstrap distribution
is biased and skewed.  The corrections referred to above compensate for these defects.  Instead
of using the 25th and 975th elements of the sorted CDF to demarcate the tails of the bootstrap
distribution, the BCa technique specifies alternate indices.29  Once these have been identified,
however, the interpretation of the confidence interval remains the same.

We shall now illustrate the use of these nonparametric confidence intervals to determine the
precision (confidence) that we may ascribe to the ML parameters of any model.

                                                
28 or, at least, “pulling oneself up by one’s bootstraps”

29 Computing the latter is well understood but rather complicated [see Technical Details].
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Stochastic Models

Repeat the following procedure 50 times:

Step 1
Let X and Y be random Cartesian coordinates ~Normal(0, 3).

Step 2
Select X and Y, then draw the radius, R, from the origin to the point (X, Y).

Step 3
Record the length of R.

At the end of this experiment, we have a sample of 50 values for R.30  Although we shall
not prove it, theory says that R is ~Rayleigh(3) which is the same as ~Chi(3, 2).31  However,
let us pretend that we know that the distribution should be Rayleigh but have forgotten how to
compute the theoretical scale parameter, A.  Instead, we shall just determine the ML parameter
for a Rayleigh(A) model (Equation 27), based upon this small sample.
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27.

The result (see Figure 14, with Y representing R) is quite acceptable, but with A = 2.847
instead of 3.  What happened?  Did we make a mistake?  Is the theory wrong?  Was our
pseudo-random number generator faulty?

The answer is D, none of the above.  Our 50 variates are just one sample out of an infinite
number of similar samples that this experiment could have produced.  It is extremely unlikely
that the ML parameter of the ~Rayleigh model for any such sample would equal the theoretical
prediction to four significant figures.  Had the sample size been 1,000,000,000, then perhaps
four significant figures might have been anticipated, but not with N = 50.

We can be certain of this because, using 2,000 nonparametric bootstrap samples, we find
that the estimated 90-percent central confidence interval for A is [2.648, 3.062].  Since even
this somewhat conservative (narrow) confidence interval includes the value 3,

we cannot reject the null hypothesis that A = 3.

Given the manner in which the 50 radii were created, they necessarily constitute a genuine
sample (N = 50), ~Rayleigh(3).  The confidence interval given above, therefore, reflects the
intrinsic variability of this parameter.  Were another sample of 50 radii constructed, its ML
parameter would be different from that found for the first sample but the confidence interval
would be much the same.  The variability of confidence intervals decreases as the number of
bootstrap samples increases.  A set of 1,000 bootstrap samples is the minimum for experiments
such as these.

                                                
30 see file Examples:Radii50.in

31 see pg. A-21
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Figure 14.  ML Fit of 50 Radii to a Chi Distribution

If we repeat this experiment with 5,000 nonparametric bootstrap samples instead of 2,000,
in order to achieve greater accuracy, we obtain the following results for parameter A:

90% --> [2.649, 3.072]
95% --> [2.597, 3.138]
99% --> [2.507, 3.264]

At the same time, the corresponding parametric confidence intervals, determined from the
model and the percentile method, instead of by resampling the data and the BCa method, are as
follows:

90% --> [2.527, 3.186]
95% --> [2.460, 3.246]
99% --> [2.327, 3.355]

Finally, it is interesting to compare our sample of 50 radii to its theoretical distribution.  If
we insist that A = 3, we get the theoretical PDF shown in Figure 15 (with Y representing R)
along with the empirical histogram representing the data.  Using the ML and K-S criteria
established in the previous section, plus 2,000 parametric bootstrap samples, it turns out that
this fit is likewise acceptable, with likelihood and K-S values falling in the 9th and 35th

percentiles, respectively.
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Figure 15.  Comparison of 50 Radii to their Theoretical Rayleigh Distribution

Deterministic Models

Consider the data and model shown in Figure 13 and Equation 26.  These daytime values
were modeled with a sine function having four parameters.  The value of R-squared, 0.99908,
is excellent and we would have no qualms about accepting such a fit.  Still, by using the least-
squares technique, we implicitly assumed that the residuals were ~Normal(0, B).  We did not
prove it.  Now that we know how to assess a distribution of random errors, let us do so.

Table 8 shows again the daytime data of Table 1, along with the daytime values predicted
by our supposedly optimum model.  A brief glance at either this table or at Figure 13 discloses
that the fit is quite good.  The residuals are listed in column 4.  The worst one, shown in bold,
is only –7.2 minutes.  The parameters given in Equation 26 are obviously very good.
However, they are the ML parameters if and only if we can prove that the vector of residuals
shown here is ~Normal(0, B).  Otherwise, as good as the fit is, there are better parameters yet
to be found, perhaps even a better model.

We shall not repeat earlier discussion.  As Sherlock Holmes would say, “You know my
methods.”  We find that the residuals are best described as ~Normal(0, 4.280).  In this case,
the mean was held constant at zero, not estimated from the data.  The likelihood and the K-S
statistics fall in the 49th and 82nd percentile, respectively, based upon 1,000 (parametric)
bootstrap samples.  The unbiased, Gaussian nature of these residuals is, therefore, accepted.
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Table 8.  Daytime Data, Observed and Modeled

Observed Modeled
Daytime (min.) Day Daytime (est.) Residual

545 1 548.7 3.7
595 32 591.8 –3.2
669 60 664.0 –5.0
758 91 760.1 2.1
839 121 845.0 6.0
901 152 900.7 –0.3
915 172 911.7 –3.3
912 182 909.2 –2.8
867 213 868.6 1.6
784 244 789.2 5.2
700 274 696.0 –4.0
616 305 608 .8 – 7 . 2
555 335 555.9 0.9
540 356 545.1 5.1
544 366 548.4 4.4
595 397 590.8 –4.2
671 426 665.5 –5.5
760 457 761.7 1.7
840 487 846.3 6.3
902 518 901.3 –0.7
915 538 911.7 –3.3
912 548 908.9 –3.1
865 579 867.6 2.6
782 610 787.7 5.7
698 640 694.4 –3.6
614 671 607.6 –6.4
554 701 555.3 1.3
540 721 545.1 5.1
545 732 548.7 3.7
597 763 591.9 –5.1
671 791 664.0 –7.0
760 822 760.1 0.1
839 852 845.1 6.1
902 883 900.7 –1.3
915 903 911.7 –3.3
912 913 909.2 –2.8
865 944 868.6 3.6
783 975 789.1 6.1
699 1005 695.9 –3.1
615 1036 608.8 –6.2
554 1066 555.8 1.8
540 1086 545.1 5.1
545 1097 548.4 3.4
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In saying this, we imply only that the residuals, collectively, could easily have come from a
zero-mean Normal distribution.  “Collectively” signifies that we do not consider the order of
the residuals with respect to each other.  If you look carefully at Table 8, column 4, you will
notice a suspicious alternation of positive and negative residuals.  Such a periodicity would not
be observed in a random sample from any Gaussian distribution.  It is, rather, a systematic
error in our model.  It appears that we have not, after all, completely characterized the motions
of the Earth and Sun with this simple equation.  Kepler could have told us that!

We forego perfection for the moment and take up the matter of uncertainty in the least-
squares parameters.  To do this, we shall again require a large number of nonparametric
bootstrap samples.  There are two common methods for obtaining such samples.  We could
simply resample the data points as we did with the 50 radii of the previous example.  However,
it is more common to use all of the data points and resample the residuals instead.  If the latter
are independent (hence, uncorrelated), then    any     residual might have been found associated with
any     data point.  Here, there is some small amount of correlation but, for the sake of this
illustration, we shall ignore it and proceed in the usual fashion, using 1,000 bootstrap samples.

Doing so, we obtain simultaneous confidence intervals for all of the parameters, as follows:

A 90% --> [182.247, 184.318] (cf. Eq. 26, page 37)
95% --> [181.944, 184.594]
99% --> [181.354, 184.991]

B 90% --> [0.00273247, 0.00273958]
95% --> [0.00273152, 0.00274036]
99% --> [0.00272935, 0.00274223]

C 90% --> [–1.40549, –1.37757]
95% --> [–1.40857, –1.37274]
99% --> [–1.41479, –1.36706]

D 90% --> [727.679, 729.264]
95% --> [727.465, 729.569]
99% --> [727.030, 729.939]

Note that the widths of these intervals, relative to parameter magnitude, are much narrower
(i.e., better) than those seen in the example of the 50 random radii in spite of the fact that the
latter were a genuine sample from a known parent population while the sine model here is
known to be deficient.

It is difficult to predict the variability of parameters.  It was not obvious, for instance, that
the uncertainty in the period of these data would be less than the uncertainty in the amplitude.
Unless confidence intervals can be computed from theory, only a large bootstrap sample will
yield this sort of information.

The interpretation of the confidence intervals is the same with these deterministic data as it
was with the stochastic data in the previous example.  Also, the accuracy of the intervals will
improve, ceteris paribus, with bootstrap sample size.
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Parameter Correlation

There is one, final comment to make concerning confidence intervals and that concerns
their appearance.  A confidence interval is just a range of numbers and it is very easy to fall into
the trap of believing that all of the numbers in that range are equally probable or, if there is
more than one such range for a given model, that any parameter may have any value in the
stated range regardless of the values of the other parameters.  Neither of these beliefs is valid.

As an illustration, let us examine the nonparametric bootstrap results for the daytime data
more closely.  Given 1,000 bootstrap samples, we may compute the mean of all the bootstrap
parameters and, also, the covariance matrix.

The means are as follows:

A = 183.383
B = 0.00273601
C = –1.39028
D = 728.435

Note, first of all, that these means are not quite equal to the ML values of the parameters.
Bootstrap distributions are often unsymmetrical, with the mode and mean unequal.

Here is the upper triangle32 of the covariance matrix, with indices from A to D:

6.82581e–01 2.12136e–08 1.06586e–03 5.41600e–02
8.03571e–12 –2.29840e–08 4.54181e–07

1.19938e–04 –6.43826e–04
4.14830e–01

The ijth entry in this matrix is given by Equation 28:

  
Cov Pij ≡ σ ij

2 = Pi – Pi Pj – Pj 28.

where P is a parameter.

When i = j, this is just the variance of parameter[j]; when i ≠ j, it is the covariance.  As we
have seen before, the variance measures the intrinsic variability of P.  The covariance measures
the variability of one parameter with respect to another.  Looking at this matrix, we see that
parameter B, the period, has the smallest variance.  No matter what the other parameters might
have been, for any of the 1,000 bootstrap samples, the period stayed almost constant.

The sign of the covariance is an indication of the sense of correlation.  Covariances that are
positive indicate that the two parameters in question increased and decreased together, on
average.  Negative covariances mean that, on average, one parameter increased when the other
decreased.  Here, for example, the amplitude of the sine wave, A, is positively correlated with
                                                
32 All covariance matrices are symmetric about the main diagonal.
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all of the remaining parameters.  However, the phase, C, is negatively correlated with D.  To
get an idea of how strong these relationships are, it is, perhaps, best simply to compare the
covariances for any parameter to its own variance.  Any statistics textbook will discuss these
matters in great detail.

In any case, the implications with regard to confidence intervals is clear:

All combinations of parameters are not equally probable.

Summary

Our goal was to establish a quantitative measure of the variability of model parameters.  We
have succeeded by taking advantage of the power of the nonparametric bootstrap.  The measure
of variability obtained is a confidence interval which denotes the numerical range wherein the
true value of the parameter is likely to be found with some specified probability.  By using
information from the covariance matrix, we gain additional insight into the manner in which
parameters change with respect to each other when the dataset changes.
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99.9999999999% PERFECT!

The Rydberg constant describes the colors of atoms.  For a hypothetical atom of infinite
mass, its limiting value, R∞ = 109,737.3156864 cm–1, has an accuracy of more than twelve
significant figures [UDE97].  Think about that for a moment.

That’s like measuring the average distance between Earth and the Moon with an error less
than the width of the period at the end of this sentence.  Clearly, this is far beyond our current
technology.  How, then, can we measure R∞ with such perfection?

Kepler, and his eponymous laws of planetary motion are partly responsible.  Using the
first and third of these, it is possible to derive the classical expression for the energy of an
electron in an atom.  If this expression is combined with the laws of Quantum Mechanics (QM)
and its insistence upon the importance of integers, the result is that an atom cannot have just
any color but only a limited (yet still infinite!) set of colors.

Evidence for this conclusion can be illustrated using Hydrogen, the simplest atom, with the
simplest set of colors.  The primary colors of Hydrogen are listed in Table 9.33

Table 9.  Observed Transitions/Colors for Hydrogen (1H1)

Wavelength (in Angstroms)
Nl 1 2 3 4 5 6

Series Lyman Balmer Paschen Brackett Pfund Humphries
Nu Ultraviolet Visible Infra-red
2 1215.67 6562.72 18751.0 40511.6 74578.0 123685.
3 1025.72 4861.33 12818.1 26251.5 46525.1
4 972.54 4340.47 10938.1 21655.3
5 949.74 4101.74 10049.4
6 937.80 3970.07 9546.0
7 930.75 3889.05
8 926.23 3835.38
9 923.15 3797.90

The Rydberg constant describes all of these colors via the model given in Equation 29.

 Transition energy ~ RH
1

Nl
2 – 1

Nu
2 29.

where Nl and Nu are positive integers and where ~, in this case, means “is proportional to.”

According to the laws of QM, the color, i.e., the wavelength (λ) of the light emitted during
any transition is inversely proportional to its energy.  The final model, based on these laws, is
given by Equation 30.  Fitting the data in Table 9 to Equation 30, the (unweighted) least-

                                                
33 see file Examples:Rydberg.in  [WEA75]
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squares value for RH is 109,708 cm–1.34  The resulting graph is shown in Figure 16, with Y
representing wavelength.  To six significant figures, R-squared = 1.00000.  When experiments
along these lines are done very carefully, far more than six significant figures can be achieved.
However this is still not enough to get the reported precision of R∞.

  λ = x
RH

= 1
RH

Nu
2 Nl

2

Nu
2 – Nl

2 30.

Figure 16.  Rydberg Data for Hydrogen

The current accuracy of the Rydberg constant derives not from any single experiment or
insight into the laws of Nature but from the unavoidable requirement that the Universe be
consistent.  This consistency must be mirrored in the physical sciences, specifically in the
many scientific models that have been developed over the last four centuries.  When all of these
models are considered simultaneously, they must agree.

This requirement is manifested in relationships such as Equation 31.

                                                
34 One centimeter = 108 Angstroms.
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  R∞ = 2 π2 m e4

c h3 31.

where m and e are the mass and charge of the electron, respectively, c is the speed of light, and
h is Planck’s constant, the proportionality constant connecting energy to wavelength.

Equation 30 relates a mass, a charge, the speed of light, and several other constants, to the
observable colors of atoms.  One can perform a variety of experiments to determine this mass,
charge, or speed.  In every case, there are still more factors, determinable in yet different ways.
Each of these experiments depends upon a model and all of these models interlock.  They are
like words in a crossword puzzle.  The total solution will break down if even one of them is
incorrect.

The physical sciences, which seek this total solution, are not incorrect; they are mature and
reliable.  One need only turn on a television set or view a CAT scan to appreciate that the laws
of the Universe are very well understood.  Except at the frontiers of knowledge, the puzzle all
holds together.  It does not break down.

It is, in part, this internal consistency which affords the degree of accuracy that is seen in
R∞.  Whenever any physical experiment is performed, it yields a quantitative answer with some
precision.  If sufficient attention has been paid to eliminating sources of error, the experiment
will have high precision.  When many such experiments are incorporated into a single analysis,
it is possible to compute a vector of means for any quantities, such as those in Equation 30,
that their answers might have in common.  As we have seen, in Equation 24 for instance, these
means will be more precise than any single experimental result.  Simply put, the information
from many experiments necessarily exceeds the information provided by just one of them.

In our efforts at modeling, we have sought to extract information from data.  The examples
described herein illustrate that contemporary methodology is very effective in this task.  When
the same methodology is applied to a    collection     of experiments, it is possible to achieve enough
synergy to eliminate almost all of the residual error.  It is possible to obtain 99.9999999999
percent accuracy.

Twelve significant figures do not come about by accident.  The techniques described in this
tutorial are just the latest in a heritage that goes all the way back to Kepler and Galileo.  That
heritage is one which affirms the primacy of data as well as the power of mathematics and
statistics.  These affirmations are implemented in techniques that are based upon the concept of
maximum likelihood, techniques that literally construct the best possible match between theory
and experiment, between model and data.

In computing the optimum result, these same techniques explicitly acknowledge the role of
measurement error and sampling error.  Even the best measurements are not perfect.  Even the
best experiments must examine less than the entire Universe.

Error implies that the models we construct, and their parameters, must always be somewhat
uncertain, however much we might like to believe otherwise.  No model is complete until those
uncertainties have been rigorously quantified.  A good model knows its limitations…
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…as does a good tutorial.

We began with data, but where do we end?  Perhaps T. S. Eliot had the right idea:

“We shall not cease from exploration
  And the end of all our exploring
  Will be to arrive where we started
  And know the place for the first time.”

And be ready to start again on a new adventure, older and wiser, and better prepared—

to experiment,

to analyze,

to play the game one more time.


