
CHAPTER 1 

Mathematical Modelina and 
Engineering Problem s&ing 

Knowledge and understanding are prerequisites for the effective implementation of any 
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car if 
you do not understand how it works. 

This is particularly true when using computers to solve engineering problems. Al- 
though they have great potential utility, computers are practically useless without a funda- 
mental understanding of how engineering systems work. 

This understanding is initially gained by empirical means-that is, by observation and 
experiment. However, while such empirically derived information is essential, it is only 
half the story. Over years and years of observation and experiment, engineers and scientists 
have noticed that certain aspects of their empirical studies occur repeatedly. Such general 
behavior can then be expressed as fundamental laws that essentially embody the cumula- 
tive wisdom of past experience. Thus, most engineering problem solving employs the two- 
pronged approach of empiricism and theoretical analysis (Fig. 1.1). 

It must be stressed that the two prongs are closely coupled. As new measurements are 
taken, the generalizations may be modified or new ones developed. Similarly, the general- 
izations can have a strong influence on the experiments and observations. In particular, 
generalizations can serve as organizing principles that can be employed to synthesize ob- 
servations and experimental results into a coherent and comprehensive framework from 
which conclusions can be drawn. From an engineering problem-solving perspective, such 
a framework is most useful when it is expressed in the form of a mathematical model. 

The primary objective of this chapter is to introduce you to mathematical modeling 
and its role in engineering problem solving. We will also illustrate how numerical methods 
figure in the process. 

1.1 A SIMPLE MATHEMATICAL MODEL 

A mathematical model can be broadly defined as a formulation or equation that expresses 
the essential features of a physical system or process in mathematical terms. In a very gen- 
eral sense, it can be represented as a functional relationship of the form 

Dependent independent forcing 
=f( , parameters, variable variables functions 
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FIGURE 1.1 
The engineering problem- 
solving process. 

where the dependent variable is a characteristic that usually reflects the behavior or state 
of the system; the independent variables are usually dimensions, such as time and space, 
along which the system's behavior is being determined; the parameters are reflective of the 
system's properties or composition; and theforcing functions are external influences acting 
upon it. 

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic re- 
lationship to large complicated sets of differential equations. For example, on the basis of 
his observations, Newton formulated his second law of motion, which states that the time 
rate of change of momentum of a body is equal to the resultant force acting on it. The math- 
ematical expression, or model, of the second law is the well-known equation 

where F = net force acting on the body (N, or kg m/s2), m = mass of the object (kg), and 
a = its acceleration (m/s2). 
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FIGURE 1.2 
Schematic diagram of the 
forces acting on a falling para- 
chutist. FD is the downward 
force due to gravity. FU is the 
upward force due to air resis- 
tance. 

The second law can be recast in the format of Eq. (1.1) by merely dividing both sides 
by m to give 

where a = the dependent variable reflecting the system's behavior, F = the forcing func- 
tion, and m = a parameter representing a property of the system. Note that for this simple 
case there is no independent variable because we are not yet predicting how acceleration 
varies in time or space. 

Equation (1.3) has several characteristics that are typical of mathematical models of 
the physical world: 

1. It describes a natural process or system in mathematical terms. 
2. It represents an idealization and simplification of reality. That is, the model ignores neg- 

ligible details of the natural process and focuses on its essential manifestations. Thus, 
the second law does not include the effects of relativity that are of minimal importance 
when applied to objects and forces that interact on or about the earth's surface at veloc- 
ities and on scales visible to humans. 

3. Finally, it yields reproducible results and, consequently, can be used for predictive pur- 
poses. For example, if the force on an object and the mass of an object are known, 
Eq. (1.3) can be used to compute acceleration. 

Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained easily. 
However, other mathematical models of physical phenomena may be much more complex, 
and either cannot be solved exactly or require more sophisticated mathematical techniques 
than simple algebra for their solution. To illustrate a more complex model of this kind, 
Newton's second law can be used to determine the terminal velocity of a free-falling body 
near the earth's surface. Our falling body will be a parachutist (Fig. 1.2). A model for this 
case can be derived by expressing the acceleration as the time rate of change of the veloc- 
ity (dvldt) and substituting it into Eq. (1.3) to yield 

where v is velocity (m/s). Thus, the mass multiplied by the rate of change of the velocity is 
equal to the net force acting on the body. If the net force is positive, the object will accel- 
erate. If it is negative, the object will decelerate. If the net force is zero, the object's veloc- 
ity will remain at a constant level. 

Next, we will express the net force in terms of measurable variables and parameters. 
For a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of 
two opposing forces: the downward pull of gravity F, and the upward force of air resis- 
tance F,: 

If the downward force is assigned a positive sign, the second law can be used to for- 
mulate the force due to gravity, as 

where g = the gravitational constant, or the acceleration due to gravity, which is approxi- 
mately equal to 9.8 m/s2. 
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EXAMPLE 1.1 

Air resistance can be formulated in a variety of ways. A simple approach is to assume 
that it is linearly proportional to velocity1 and acts in an upward direction, as in 

where c = a proportionality constant called the drag coefficient (kg/s). Thus, the greater 
the fall velocity, the greater the upward force due to air resistance. The parameter c ac- 
counts for properties of the falling object, such as shape or surface roughness, that affect air 
resistance. For the present case, c might be a function of the type of jumpsuit or the orien- 
tation used by the parachutist during free-fall. 

The net force is the difference between the downward and upward force. Therefore, 
Eqs. (1.4) through (1.7) can be combined to yield 

or simplifying the right side, 

Equation (1.9) is a model that relates the acceleration of a falling object to the forces act- 
ing on it. It is a differential equation because it is written in terms of the differential rate of 
change (dvldt )  of the variable that we are interested in predicting. However, in contrast to 
the solution of Newton's second law in Eq. (1.3), the exact solution of Eq. (1.9) for the ve- 
locity of the falling parachutist cannot be obtained using simple algebraic manipulation. 
Rather, more advanced techniques such as those of calculus must be applied to obtain 
an exact or analytical solution. For example, if the parachutist is initially at rest ( v  = 0 at 
t = 0 ) ,  calculus can be used to solve Eq. (1.9) for 

Note that Eq. (1.10) is cast in the general form of Eq. ( ] . l ) ,  where v(t) = the dependent 
variable, t = the independent variable, c and m = parameters, and g = the forcing 
function. 

Analytical Solution to the Falling Parachutist Problem 

Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air bal- 
loon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient is 
equal to 12.5 kg/s. 

Solution. Inserting the parameters into Eq. (1.10) yields 

which can be used to compute 

' In fact, the relationship is actually nonlinear and might better be represented by a power relationship such as 
F, = -m2. We will explore how such nonlinearities affect the model in a problem at the end of this chapter. 
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According to the model, the parachutist accelerates rapidly (Fig. 1.3). A velocity of 44.87 
m/s (100.4 mi/h) is attained after 10 S. Note also that after a sufficiently long time, a con- 
stant velocity, called the terminal velocity, of 53.39 m/s (1 19.4 mi/h) is reached. This ve- 
locity is constant because, eventually, the force of gravity will be in balance with the air re- 
sistance. Thus, the net force is zero and acceleration has ceased. 

Equation (1.10) is called an analytical, or exact, solution because it exactly satisfies 
the original differential equation. Unfortunately, there are many mathematical models that 
cannot be solved exactly. In many of these cases, the only alternative is to develop a nu- 
merical solution that approximates the exact solution. 

As mentioned previously, numerical methods are those in which the mathematical 
problem is reformulated so it can be solved by arithmetic operations. This can be illustrated 

FIGURE 1.3 
The analytical solution to the 
falling parachutist problem as 
computed in Example 1 . l  . 
Velocity increases with time and 
asymptotically approaches a 
terminal velocity. 
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FIGURE 1.4 
The use of a finite difference to 
a proximate the first derivative 
o P v with respect to t. 

for Newton's second law by realizing that the time rate of change of velocity can be ap- 
proximated by (Fig. 1.4): 

where Av and At = differences in velocity and time computed over finite intervals, 
v(t,) = velocity at an initial time ti,  and v(t;+,) = velocity at some later time t,,. Note that 
dvldt g A v l A t  is approximate because At is finite. Remember from calculus that 

Equation (l .  l l )  represents the reverse process. 
Equation (1.11) is called afinite divided difference approximation of the derivative at 

time t,. It can be substituted into Eq. (1.9) to give 

This equation can then be rearranged to yield 

Notice that the term in brackets is the right-hand side of the differential equation itself 
[Eq. (1.9)]. That is, it provides a means to compute the rate of change or slope of v. Thus, 
the differential equation has been transformed into an equation that can be used to deter- 
mine the velocity algebraically at ti+, using the slope and previous values of v and t. If you 
are given an initial value for velocity at some time t,, you can easily compute velocity at a 
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EXAMPLE 1.2 

later time ti+,. This new value of velocity at ti+, can in turn be employed to extend the com- 
putation to velocity at t,,, and so on. Thus, at any time along the way, 

New value = old value + slope X step size 

Numerical Solution to the Falling Parachutist Problem 

Problem Statement. Perform the same computation as in Example 1 . 1  but use Eq. (1.12) 
to compute velocity. Employ a step size of 2 S for the calculation. 

Solution. At the start of the computation (ti = O), the velocity of the parachutist is zero. 
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be used 
to compute velocity at t,,, = 2 S: 

For the next interval (from t  = 2 to 4 S), the computation is repeated, with the result 

The calculation is continued in a similar fashion to obtain additional values: 

The results are plotted in Fig. 1.5 along with the exact solution. It can be seen that the 
numerical method captures the essential features of the exact solution. However, because 
we have employed straight-line segments to approximate a continuously curving function, 
there is some discrepancy between the two results. One way to minimize such discrepan- 
cies is to use a smaller step size. For example, applying Eq. (1.12) at l-s intervals results in 
a smaller error, as the straight-line segments track closer to the true solution. Using hand 
calculations, the effort associated with using smaller and smaller step sizes would make 
such numerical solutions impractical. However, with the aid of the computer, large num- 
bers of calculations can be performed easily. Thus, you can accurately model the velocity 
of the falling parachutist without having to solve the differential equation exactly. 

As in the previous example, a computational price must be paid for a more accurate 
numerical result. Each halving of the step size to attain more accuracy leads to a doubling 
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FIGURE 1 .S 
Comparison of the numerical 
and analytical solutions for the 
falling parachutist problem. 

of the number of computations. Thus, we see that there is a trade-off between accuracy and 
computational effort. Such trade-offs figure prominently in numerical methods and consti- 
tute an important theme of this book. Consequently, we have devoted the Epilogue of Part 
One to an introduction to more of these trade-offs. 

1.2 CONSERVATION LAWS A N D  ENGINEERING 

Aside from Newton's second law, there are other major organizing principles in engineer- 
ing. Among the most important of these are the conservation laws. Although they form the 
basis for a variety of complicated and powerful mathematical models, the great conserva- 
tion laws of science and engineering are conceptually easy to understand. They all boil 
down to 

Change = increases - decreases (1.13) 

This is precisely the format that we employed when using Newton's law to develop a force 
balance for the falling parachutist [Eq. (1.8)]. 

Although simple, Eq. (1.13) embodies one of the most fundamental ways in which 
conservation laws are used in engineering-that is, to predict changes with respect to time. 
We give Eq. (1.13) the special name time-variable (or transient) computation. 

Aside from predicting changes, another way in which conservation laws are applied is 
for cases where change is nonexistent. If change is zero, Eq. (1.13) becomes 

Change = 0 = increases - decreases 

Increases = decreases 
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Pipe 2 
Flow in = 80 

A flow balance for steady 
incompressible fluid flow at the 
iunction of pipes. 

t 
Pipe 3 

Flow out = 120 

Thus, if no change occurs, the increases and decreases must be in balance. This case, which 
is also given a special name-the steady-state computation-has many applications in en- 
gineering. For example, for steady-state incompressible fluid flow in pipes, the flow into a 
junction must be balanced by flow going out, as in 

Flow in = flow out 

For the junction in Fig. 1.6, the balance can be used to compute that the flow out of the 
fourth pipe must be 60. 

For the falling parachutist, steady-state conditions would correspond to the case where 
the net force was zero, or [Eq. (1.8) with dv /dt = 01 

Thus, at steady state, the downward and upward forces are in balance and Eq. (1.15) can be 
solved for the terminal velocity 

Although Eqs. (1.13) and (1.14) might appear trivially simple, they embody the two 
fundamental ways that conservation laws are employed in engineering. As such, they will 
form an important part of our efforts in subsequent chapters to illustrate the connection be- 
tween numerical methods and engineering. Our primary vehicles for making this connec- 
tion are the engineering applications that appear at the end of each part of this book. 

Table 1.1 summarizes some of the simple engineering models and associated conserva- 
tion laws that will form the basis for many of these engineering applications. Most of the 
chemical engineering applications will focus on mass balances for reactors. The mass bal- 
ance is derived from the conservation of mass. It specifies that the change of mass of a chem- 
ical in the reactor depends on the amount of mass flowing in minus the mass flowing out. 

Both the civil and mechanical engineering applications will focus on models devel- 
oped from the conservation of momentum. For civil engineering, force balances are uti- 
lized to analyze structures such as the simple truss in Table 1.1. The same principles are 
employed for the mechanical engineering applications to analyze the transient up-and- 
down motion or vibrations of an automobile. 
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TABLE 1 . l  Devices and types of balances that are commonly used in the four maior areas 
of engineering. For each case, the conservation law upon which the balance 
is based is specified. 

- e - _ D r r i _  ***rCl)-_lLICnXI----<----- 

Field Device Organizing Principle Mathematical Expression 

Chemical engineering 
%eactors 

Civil engineering 

Structure A 
Conservation of mass Mass balance: 

Input output 

Conservation of 
momentum 

Mechanical engineering Machine Conservation of 
momentum 

Over a unit of time period 
Amass = inputs - outputs 

Force balance: 
+F,. 

t 
-FH -0- +FH 

1 
- F, 

At each node 
X horizontal forces (F,) = 0 
X vertical forces (F,) = 0 

Force balance: Upward force 

Downward force 

m = downward force - upward force 
d t 2  

Electrical engineering Conservation of charge Current balance: 
+ i ,  + - i3  

For each node 
X current (i) = 0 1 

+ i ,  

Circuit 
Conservation of energy Voltage balance: ; , R I  

i2.2 @ . 
i3R3 

Around each loop 
H emf's - H  voltage drops for resistors = 0 
X < - X i R = O  
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TABLE 1.2 Some practical issues that will be explored in the engineering applications at 
the end of each part of this book. 

1 .  Nonlinear versus linear, Much of classical engineering depends on linearizatlon to permit analytical solu- 
tlons Although th~s is often appropriate, expanded insight can often be gained if nonlinear problems are 
examined. 

2 large versus small systems W~thout a computer, ~t is often not feas~ble to examine systems with over three 
lnteractlng components. With computers and numerical methods, more realistic multicomponent systems 
can be examined. 

3 .  Nonideol versus ideal, ldeal~zed laws abound in engineering Often there ore nonidealized alternatives 
that are more realistic but more computationally demanding. Approximate numerical approaches con fo- 
cilitate the application of these nonideal relationships. 

4 Sensitivity analysis. Because they are so involved, many manual calculations require a great deal of time 
and effort for successful implementation This sometimes discourages the analyst from implementing the 
mult~ple computations that are necessary to examine how a system responds under different conditions. 
Such sensitivity analyses are facilitated when numerical methods allow the computer to assume the com- 
putational burden 

5 Design. It is often a straightforward proposition to determine the performance of a system as a funct~on of 
~ts parameters. It is usually more difficult to solve the inverse poblem-that IS, determining the parameters 
when the required performance IS specifled. Numerical methods and computers often permlt this task to 
be implemented In an efficient manner 

Finally, the electrical engineering applications employ both current and energy bal- 
ances to model electric circuits. The current balance, which results from the conservation 
of charge, is similar in spirit to the flow balance depicted in Fig. 1.6. Just as flow must bal- 
ance at the junction of pipes, electric current must balance at the junction of electric wires. 
The energy balance specifies that the changes of voltage around any loop of the circuit 
must add up to zero. The engineering applications are designed to illustrate how numerical 
methods are actually employed in the engineering problem-solving process. As such, they 
will permit us to explore practical issues (Table 1.2) that arise in real-world applications. 
Making these connections between mathematical techniques such as numerical methods 
and engineering practice is a critical step in tapping their true potential. Careful examina- 
tion of the engineering applications will help you to take this step. 

PROBLEMS 

1.1 Answer true or false: 
(a) The value of a variable that satisfies a single equation is called 

the root of the equation. 
(b) Finite divided differences are used to represent derivatives in 

approximate terms. 
(c) In the precomputer era, numerical methods were widely em- 

ployed because they required little computational effort. 
(d) Interpolation is employed for curve-fitting problems when 

there is significant error associated with the data points. 
(e) Mathematical models should never be used for predictive pur- 

poses. 

(f) The large systems of equations, nonlinearities, and compli- 
cated geometries that are common in engineering practice are 
easy to solve analytically. 

(g) Newton's second law is a good example of the fact that most 
physical laws are based on the rate of change of quantities 
rather than on their magnitudes. 

(h) A physical interpretation of integration is the area under a 
curve. 

(i) Numerical methods are those in which a mathematical problem 
is reformulated so that it can be solved by arithmetic opera- 
tions. 
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(j) Today more attention can be paid to problem formulation and 
interpretation because the computer and numerical methods fa- 
cilitate the solution of engineering problems. 

1.2 Read the following problem descriptions and identify which 
area of numerical methods (as outlined in Fig. PT1.2) relates to 
their solution. 
(a) You are responsible for determining the flows in a large inter- 

connected network of pipes to distribute natural gas to a series 
of communities spread out over a 20-mi2 area. 

(b) You are performing experiments to determine the voltage drop 
across a resistor as a function of current. You make measure- 
ments of voltage drop for a number of different values of cur- 
rent. Although there is some error associated with your data 
points, when you plot them they suggest a smooth curvilinear 
relationship. You are to derive an equation to characterize this 
relationship. 

(C) You must develop a shock-absorber system for a racing car. 
Newton's second law can be used to derive an equation to 
predict the rate of change in position of the front wheel in 
response to external forces. You must compute the motion of 
the wheel as a function of time after it hits a 6-in bump at 
150 mi/h. 

(d) You have to determine the annual revenues required over a 
20-year period for an entertainment center to be built for a 
client. Money can presently be borrowed at an interest rate of 
10.37 percent. Although the information to perform this esti- 
mate is contained in economics tables, values are listed only 
for interest rates of 10 and 11 percent. 
You must determine the temperature distribution on the two- 
dimensional surface of a flat gasket as a function of the tem- 
peratures of its edges. 
For the falling parachutist problem, you must determine the 
value of the drag coefficient in order that a 200-lb parachutist 
not exceed 100 mi/h within 10 s ofjumping. You must make this 
evaluation on the basis of the analytical solution [Eq. (1.10)]. 
The information will be used to design a jumpsuit. 

(g) You are on a survey crew and must determine the area of a field 
that is bounded by two roads and a meandering stream. 

1.3 Give one example of an engineering problem where each of 
the following classes of numerical methods can come in handy. If 
possible, draw from your experience in class and in readings or 
from any professional experience you have gathered to date. 
(a) Roots of equations 
(b) Linear algebraic equations 
(C) Curve fitting: regression and interpolation 
(d) Optimization 
(e) Integration 
(f) Ordinary differential equations 
(g) Partial differential equations 

1.4 What is the two-pronged approach to engineering problem 
solving? Into what category should the conservation laws be 
placed? 
1.5 What is the form of the transient conservation law? What is it 
for steady state? 
1.6 The following information is available for a bank account: 

Date Deposits Withdrawals Balance 

S/ 1 5 12.33 
220.1 3 327 26 

61 1 
21 6.80 378 61 

7/ 1 
350 25 106.80 

81 1 
12731 450.61 

91 1 

Use the conservation of cash to compute the balance on 6/ 1 ,  7/ 1, 
811, and 911. Show each step in the computation. Is this a steady- 
state or a transient computation? 
1.7 Give examples of conservation laws in engineering and in 
everyday life. 
1.8 Examine your engineering textbooks and find four examples 
where mathematical models are used to describe the behavior of 
physical systems. List the independent and dependent variables as 
well as the parameters and forcing functions. 
1.9 Verify that Eq. (1.10) is a solution of Eq. (1.9). 
1.10 Repeat Example 1.2. Compute the velocity to t = 12 S, with a 
step size of (a) 1 and (b) 0.5 S. Can you make any statement re- 
garding the errors of the calculation based on the results? 
1.11 Rather than the linear relationship of Eq. (1.7), the upward 
force on the falling parachutist is actually nonlinear and might bet- 
ter be represented by a power relationship such as 

where c' = a second-order drag coefficient (kglm). Using this re- 
lationship, repeat the calculation in Example 1.2 with the same 
initial condition and parameter values. Use a value of 0.23 kg/m 
for c'. 
1.12 The amount of a uniformly distributed radioactive contami- 
nant contained in a closed reactor is measured by its concentration 
c (becquerellliter, or BqIL). The contaminant decreases at a decay 
rate proportional to its concentration; that is, 

Decav rate = -kc 
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where k = a constant with units of day-'. Therefore, according to 
Eq. (1.13), a mass balance for the reactor can be written as 

(change) = (decrease) 
in mass by decay 

Use numerical methods to solve this equation from t = 0 to 1 d, 
with k = 0.1 d-l. Employ a step size of At = 0.1. The concentra- 
tion at t = 0 is 10 Bq/L. 
1.13 A storage tank contains a liquid at depth y, where y = 0 when 
the tank is half full. Liquid is withdrawn at a constant flow rate Q 
to meet demands. The contents are resupplied at a sinusoidal rate 
3Q sin2t (see Fig. P1.13). 

Equation (1.13) can be written for this system as 

change in ( volume ) = (inflow) - (outflow) 

FIGURE P1.13 

or, since the surface area, A, is constant 

Use a numerical method to solve for the height y from t = 0 to 5 d 
with a step size of 0.5 d. The parameter values are A = 1200 m2 and 
Q = 400 m3/d. 
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