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PREFACE

Over the past decade there has been an increasing demand for suitable material in 
the area of mathematical modelling as applied to science, engineering, business and 
management. Recent developments in computer technology and related software 
have provided the necessary tools of increasing power and sophistication which 
have significant implications for the use and role of mathematical modelling in the 
above disciplines. In the past, traditional methods have relied heavily on expensive 
experimentation and the building of scaled models, but now a more flexible and cost 
effective approach is available through greater use of mathematical modelling and 
computer simulation. In particular, developments in computer algebra, symbolic 
manipulation packages and user friendly software packages for large scale problems, 
all have important implications in both the teaching of mathematical modelling and, 
more importantly, its use in the solution of real world problems. 

Many textbooks have been published which cover the art and techniques of 
modelling as well as specific mathematical modelling techniques in specialist areas 
within science and business. In most of these books the mathematical material tends 
to be rather tailor made to fit in with a one or two semester course for teaching 
students at the undergraduate or postgraduate level, usually the former. This 
textbook is quite different in that it is intended to build on and enhance students’ 
modelling skills using a combination of case studies and projects. The material for 
these case studies and projects is reflected in the leading author’s lengthy teaching, 
research and industrial experience and falls within the following three major areas: 

(1) Ordinary Differential Equations (ODEs); 

(2) Partial Differential Equations (PDEs); 

(3) Optimization. 
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Also, it could be argued that these three areas are key areas in which mathematical 
modelling can prove effective. Provided that the model formulation is successful in 
producing an ODE, PDE or a primal/dual linear programming (L.P.) problem, there 
is a strong possibility of successful solution because of the wealth of appropriate 
analytical and numerical techniques. In recent times, model validation becomes 
more possible through the use of computer algebra systems and specialist software 
packages. 

The book is aimed primarily at the postgraduate level and should prove suitable for 
students of mathematics or closely related disciplines which require mathematical 
modelling, e.g., science, engineering, business and management. Also the book 
should prove attractive to industrialists with modelling interests. Some of the case 
studies have been formulated from the industrial and research experience of the 
leading author, whereas the projects are more typical of what can be expected from a 
final year undergraduate or a Master’s student. 

In preparing the text, the authors have tried to use their experience of teaching 
mathematical modelling to both undergraduate and graduate students in a wide 
range of areas including mathematics and computer science and disciplines in 
engineering, science, business and management. An important aspect of the book is 
the use made of scientific computer software packages such as MAPLE for 
symbolic algebraic manipulations, MATLAB for numerical simulation and the 
popular linear programming package LINDO. 

The book is divided into three main parts with each part containing two major case 
studies and three projects, followed by suggested problems. Parts I, II and III deal 
with the three key areas of ODEs, PDEs and Optimization, respectively. This means 
that the book comprises case studies A1, A2, …, A6 and projects B1, B2, … , B9. 
The case studies are distinguished from the projects in that they tend to be more 
comprehensive and pitched at a higher level. As such, they should provide excellent 
teaching material. Having mastered the two case studies and three projects, the 
students should be in a strong position to tackle the ten suggested problems at the 
end of each Part of the book. To help the reader, and for consistency, each case 
study and project is solved using a standard format. Further details are given in the 
Introduction. 

The authors would like to express their thanks to other authors, former and present 
modelling colleagues and final year undergraduates (too numerous to mention by 
name) who have helped over the past years to give some of the important modelling 
ideas contained in this textbook. This includes (in alphabetical order) R. P. Canale, S. 
C. Chapra, A. Constantinides, L. R. Foulds, R. C. Klekamp, Y. Y. Kwan, M. M. 
Meerschaert, M. L. Ruwe, R. J. Thierauf and D. Waters. 

In the preparation of the actual textbook, the authors would like to thank Marlies 
Vlot of Kluwer Academic Publishers for all her organizational help. Particular 
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thanks must go to Mr CHONG Wai-san (Mountain) and to Mr CHUI Ka-shing 
(Daniel) for their help on the computing side and in preparing some of the more 
difficult computer graphs and figures. Thanks also to Miss CHAN Kit-yee (Jamie) 
for her word processing help. 

Last but not least, a particular vote of thanks must go to Miss LEE Sau-yan (Eva) for 
skillfully typing part of the manuscript and for work on the optimization case studies 
and projects. 

Dr Jim Caldwell 
Mr Kei Shing Ng 
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INTRODUCTION

The term model, as used in this textbook, is understood to refer to the ensemble of 
equations which describe and interrelate the variables and parameters of a physical 
system or process. The term modelling in turn refers to the derivation of appropriate 
equations that are solved for a set or system of process variables and parameters. 
These solutions are often referred to as simulations, i.e., they simulate or reproduce 
the behaviour of physical systems and processes. 

Modelling is practiced frequently in the engineering disciplines and indeed in all 
physical sciences where it is often known as “Applied Mathematics”. However, it 
has made its appearance in other disciplines as well which do not involve physical 
processes per se, such as economics, finance and management science. 

The textbook is organized to include a number of modelling case studies and 
projects and it has proved convenient to section the book into the following three 
parts: 

Part I.  Ordinary Differential Equations 

Part II.  Partial Differential Equations 

Part III. Optimization 

Each Part consists of two major case studies, three worked projects followed by ten 
suggested problems. In Part I, the ODE case studies and projects are drawn from the 
areas of mechanical, electrical and civil engineering as well as bioscience. In Part II, 
the PDE case studies and projects are drawn from the areas of mechanical, 
chemical/petroleum and civil/environmental engineering. Lastly in Part III, the 
Optimization case studies and projects involve linear programming and 
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transportation type problems and are drawn from the areas of business, finance and 
management science. 

The detailed layout is as follows: 

Part I — Ordinary Differential Equations 

Case Study A1. Deterministic Model in Contagious Disease. 
Case Study A2. Electromagnetic Forces in High Field Magnet Coils. 

Project B1.  Mass Balance of a Reactor in Steady State. 
Project B2.  The Free and Forced Vibration of an Automobile. 
Project B3.  Cantilever Beam Subjected to an End Load. 

Part II — Partial Differential Equations 

Case Study A3.  Cylindrical and Spherical Solidification in Heat Transfer. 
Case Study A4. Elastic Analysis of a Square Plate with Circular Holes. 

Project B4.  Motion of Fluid Layers. 
Project B5.  Mass Balance of a Reactor with Time Dependency. 
Project B6.  Flow through Porous Media. 

Part III — Optimization 

Case Study A5. Linear Programming Problem Involving Wine Production. 
Case Study A6. Transportation Problem Involving Breweries and Hotels. 

Project B7.  Profit from an Engineering Plant. 
Project B8.  Optimization of Manufacture of Personal Computers. 
Project B9.  Air Freight Transportation Problem. 

It should be explained that the case studies give a more detailed treatment of the 
modelling process with the content at a reasonably high level, usually postgraduate. 
As such, these case studies should provide excellent teaching material for the 
lecturer. In the projects which follow, the problem to be solved is more clearly 
defined and, as such, should give students a good understanding, through example, 
of the techniques which can be used in the modelling process. Having studied the 
case studies and worked through the projects, readers should be in a strong position 
to tackle the problems at the end of each Part of the textbook. 

It is important to note that, for both efficiency and consistency, a clearly defined 
format has been used for both the case studies and projects. The intention here is to 
provide a systematic approach to enable students and industrialists to tackle 
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problems which can be solved using a mathematical modelling approach. The 
format is as follows: 

Title
Summary 
1. Background 
2. Problem Statement 
3. Model Formulation 
4. Mathematical/Numerical Solution 
5. Model Validation 
6. Interpretation and Conclusions 
7. Computer Algorithms 
8. References and Bibliography 
9. Appendices (if any). 

Further details of the type of information contained in each section of the case 
study/project report are given below: 

The title and summary should convey to the reader a good idea of the subject matter 
and what the case study/project involves. Section 1 (Background) contains essential 
information which is unique to that particular case study/project. Section 2 (Problem 
Statement) is intended to explain the objectives and to state what is given and what 
is required. Section 3 (Model Formulation) breaks the problem down and formulates 
it mathematically in terms of governing equations/inequalities and relevant 
boundary/initial conditions. Section 4 (Mathematical/Numerical Solution) presents a 
mathematical solution (if this is possible) and/or, failing that, possible numerical 
solutions. Section 5 (Model Validation) is key to any model solution and could 
involve solutions using alternative numerical techniques or the use of the computer, 
including software packages, to back up the results obtained in the previous section. 
Section 6 (Interpretation and Conclusions) interprets the results and draws major 
conclusions giving, in some cases, suggestions for further extensions. Section 7 
(Computer Algorithms) discusses and, in some cases, gives details of any important 
algorithms or software which have been used in the solution techniques. Section 8 
(References and Bibliography) lists in alphabetical order important textbooks or, 
particularly for the case studies, journal references. Finally, Section 9 (Appendices) 
is only included in cases where there is detailed information which is not considered 
suitable for the body of the report. 
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Part I 

ORDINARY DIFFERENTIAL 

EQUATIONS
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Case Study A1

DETERMINISTIC MODEL IN CONTAGIOUS 

DISEASE

SUMMARY: This case study extends past work by Caldwell and Ram in the study 
of a deterministic model in the theory of contagious disease. A more realistic model 
is considered by introducing a third variable, namely, the number of removals in the 
population. Numerical results are obtained by using the Runge-Kutta-Fehlberg 
method including error control. Results and graphs are produced to show the effects 
of variation of the infection rate and the removal rate on the number of removals 
from the population over long time periods. These results are validated and are 
shown to agree well with analytical results. 

1. Background 

Throughout the world numerous people die from infections by serious diseases like 
black death, smallpox, tuberculosis, etc. Although some of these fatal diseases are 
gradually disappearing from our lives, many widespread diseases still exist resulting 
in the death of millions of people. Medical workers and health authorities have 
devoted substantial efforts and resources into trying to predict and control the spread 
of diseases of many types. Here mathematicians can be of invaluable assistance and 
play an important role which will help to decide how resources are allocated. Hence 
it is important to be able to predict how a disease will develop and spread (if at all). 
Mathematical investigations in the theory of epidemics are therefore important in 
predicting the development and spread of diseases. 

The first mathematical model which was used to study the effectiveness of 
inoculation against smallpox was developed by the Swiss mathematician Bernouille 
in the 17th century. Since the mid-19th century mathematical theories have 
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developed much faster with the increased understanding and control of contagious 
diseases. At the present time there are in excess of 500 primarily mathematical 
references to the population theory of infectious disease. 

Inevitably different epidemic models will be applied to different cases, e.g., if the 
population is sufficiently large and fixed, no people are immune, all infected people 
are infectious and vice versa, then we can use a deterministic model. However, 
when dealing with small groups the probability element must be taken into account 
and so stochastic models are used. 

2. Problem Statement  

In this case study we consider a deterministic model along the lines of that discussed 
by Bailey [1,2], and extend the work of Caldwell and Ram [3]. Here a 
homogeneously mixed group of individuals of size n a+  was considered under the 
assumptions that initially a  individuals are infected with the remaining n

individuals all being susceptible, but not yet infected. This leads to the classical 
simple model. 

Let time t  be the independent variable, ( )I t and ( )S t  be continuous, where 

     ( )S t =  number of susceptibles at time t

     ( )I t =  number of infectives at time t .

Under the major assumption that the rate of occurrence of new infections is 
proportional to both the number of infectives and the number of susceptibles, we can 
write

     ( ) ( ) ( ) ( )I t t I t I t S t tβ+ ∆ = + ∆ , (A1.1) 

where β =  infection rate (or contact rate). In the limit as 0t∆ → , this yields  

     ( )
( ) ( )

dI t
I t S t

dt
β=  (A1.2) 

with initial conditions (0)S n= , (0)I a= .

In addition, since the total population size is always n a+ , and all individuals are 
either susceptible or infected, it is clear that ( ) ( )S t I t n a+ = +  for all t  and it 

follows that  
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     ( )
( ){ ( )}

dI t
I t n a I t

dt
β= + − . (A1.3) 

Caldwell and Ram [3] considered the above model and applied the Runge-Kutta-
Fehlberg algorithm to obtain highly accurate results. In this case study we consider a 
more realistic and general model of an epidemic by introducing a third variable ( )R t

to represent the number of individuals who are removed from the affected 
population at a given time t , either by isolation, recovery and consequent immunity, 
or death. The numerical tool used in the solution is the Runge-Kutta-Fehlberg 
algorithm discussed in [3]. Numerical results will be obtained by varying the 
infection rate and removal rate and conclusions drawn. Comparisons are also made 
with analytical results. 

3. Model Formulation 

The previous simple model (A1.3) is now extended to make it more realistic by 
taking into account the removal of infectives from circulation by death or isolation. 
The following assumptions are made for this model: 

 The removals include infectives who are isolated, dead or recovered and 
immune; 

 The immune or recovered removals enter a new class which is not susceptible to 
disease.

In addition to the variables used in the previous simple model in Section 1, let 
( )R t =  the number of removals at time t  and γ =  the removal rate, such that we 

have now 

     ( ) ( ) ( )I t S t R t n+ + = ,

when n  is the total size of the community. 

The basic differential equations are constructed as follows. Obviously, if the 
infectives are removed from the community, they will not be in contact with the 
susceptibles. Therefore, the number of susceptibles is only proportional to both the 
number of infectives and the number of susceptibles, and so we have 

     ( )
( ) ( )

dS t
S t I t

dt
β= − . (A1.4) 

However, the removals should be considered in the differential equation for the 
number of infectives we discussed previously. This means that equation (A1.2) 
should be modified to  
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     ( ) ( ) ( )
dI

S t I t I t
dt

β γ= − . (A1.5) 

The equation for the number of individuals who are removed from the infectives 
with removal rate γ  then becomes 

     ( )
( )

dR t
I t

dt
γ= . (A1.6) 

At the start of the epidemic, when 0t = , we assume that there are no removals, a 
very small number of infectives, 

0I , and the remaining population is susceptible, 
0S ,

which is approximately equal to n. Thus, at 0t = , ( , , )S I R  take the values 
0 0( , , 0)S I .

For convenience, we make use of µ γ β= , as the relative removal rate.

Note that from equation (A1.5), it follows that unless 
0Sµ <  there will not be an 

epidemic as 
0[ ]tdI dt =  is required to be greater than zero. On the other hand, for the 

case
0Sµ > , the number of infectives will be increasing. Therefore, the relative 

removal rate, 
0Sµ = , gives a threshold density of susceptibles. 

4. Mathematical/Numerical Solution 

4.1 MATHEMATICAL SOLUTION 

We now consider the analytical solution of equations (A1.4)-(A1.6). By eliminating
I  from equations (A1.4) and (A1.6), we have  

     dS S

dR µ
= − .

Integration yields 

     ln
R

S c
µ

= − + ,

leading to  

     exp( )S A R µ= − .

At 0t = ,

     
0 exp ( )S S R µ= −
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and thus, 

     
0S S A= = .

Since I n S R= − − , equation (A1.6) becomes  

     
0{ exp ( / )}

dR
n R S R

dt
γ µ= − − − .

As 2 3exp( / ) 1 ( / ) ( / ) / 2! ( / ) / 3!R R R Rµ µ µ µ− = − + − + , we expand the right-hand 

side of the above equation as far as the term in 2R  to give 

     2
0{ [1 ( / ) ( / ) / 2]}

dR
n R S R R

dt
γ µ µ= − − − +

or      20 0
0 2

1
2

S SdR
n S R R

dt
γ

µ µ
= − + − − . (A1.7) 

The above equation (A1.7) is soluble by standard methods to give the analytical 
solution: 

     
2

0

0

1 tanh
2

S t
R

S

µ γαα ψ
µ

= − + − , (A1.8) 

where 

     
1 22

0 0
02

2
( ) 1

S S
n Sα

µ µ
= − + −  (A1.9) 

and

     1 01
tanh 1

Sψ
α µ

−= − . (A1.10) 

The epidemic curve is therefore 

     
2 2

2

0

1
sec

2 2

dR
h t

dt S

γα µ γα ψ= −  (A1.11) 

and the graph is a symmetric bell-shaped curve. This corresponds to the fact that in 
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many actual epidemics the number of new cases reported daily increases to a 
maximum and then dies away. 

4.2 NUMERICAL SOLUTION 

Highly accurate results have been obtained by Caldwell and Ram [3] in using the 
Runge-Kutta-Fehlberg (R-K-F) algorithm for the simple two variable model. Also 
this method is very efficient in that it only requires six evaluations per step while 
arbitrary Runge-Kutta methods of order four and five used together require at least 
10 functional evaluations per step. This method is now used to solve the three 
variable model. 

Suppose there is an epidemic of total size 100,000 and there are 99,999 susceptibles 
and therefore only one infective. Also, we assume the infection rate of the disease is 
0.000 009 while the removal rate is 0.89. The R-K-F program is run for 2000 days 
with a tolerance of one as a longer time is needed if we are interested in what the 
maximum number of removals could be in the epidemic. So, the differential 
equation (A1.7) can be used with (0) 0R =  and 0 2000t≤ ≤ , where  

0

6

total size of the community 100,000,

initial number of susceptibles 99,999,

initial number of infectives 1,

infection (contact) rate 9 10 ,

removal rate 0.89.

n

S

a

β
γ

−

= =
= =
= =
= = ×
= =

For this case the computer program was run using a minimum and maximum step 
size of 0.05 and 1.0, respectively. Computed results were obtained by using the R-
K-F method at time intervals of 10 days and compared with the analytical solution. 
Results tabulated at time intervals of 100 days from 0t =  to 1500t =  are shown in 
Table A1.1. Clearly there is very close agreement between the actual solution 

iR

and the numerical solution 
iw . This is easily checked by examining the values of the 

absolute error | |i iR w−  and the percentage relative error, namely 

| ( ) / | 100%i i iR w R− × . The following conclusion can be drawn from the results 

tabulated at 10 day intervals: 

Maximum absolute error = 44.731 10−×  (at 320t = ),

where numerical solution 
320 1,195.528 211w =

and analytical solution 
320 1,195.528 684R = .
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Maximum percentage relative error = 57.023 10−×  (at 10t = ),

where numerical solution 
10 9.358 457w =

and analytical solution 
10 9.358 464R = .

Figure A1.1 shows both the numerical and analytical solutions for the number of 
removals in the population over a 2000 day period. We note that, initially, the total 
number of removals grows exponentially and then the growth rate decreases and 
levels out eventually. Also the errors are larger when the graph shown in Figure 
A1.1 is of steepest descent. 

Figure A1.1. Plot of the number of removals from the population against time in days. 

From the results we find that the total number of removals becomes almost fixed at 
2,281R ≈ when 1,140t ≈  days. This means that the total number of removals 

becomes steady after this time and no more individuals would be removed. These 
values can be verified from the analytical solution (A1.8) by taking the limit as 
t → ∞ . This gives 

     
2

0

0

1
S

R
S

µ α
µ∞ = − + . (A1.12) 

Clearly the computed solution 2,281.319 143R∞ =  is very close to the numerical 

solution
2000 2,281.319 057w = .
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Table A1.1. Comparison of analytical results with numerical results using R-K-F method for the case 
69 x 10β −= .

it
Analytical
solution

iR

Numerical 
solution

iw

Absolute
error 

| |i iR w−

Percentage Error 
| ( ) / | 100%i i iR w R− ×

0     0.000 000     0.000 000 0.000E+00 0.000E+00 
100   149.501 525 149.501 424 1.015E 04 6.794E 05 
200   493.512 304 493.512 009 2.951E 04 5.979E 05 
300  1 068.276 717 1 068.276 252 4.649E 04 4.352E 05 
400 1 657.318 561 1 657.318 151 4.098E 04 2.472E 05 
500 2 024.085 368 2 024.085 121 2.468E 04 1.219E 05 
600 2 186.950 018 2 186.949 881 1.376E 04 6.294E 06 
700 2 248.311 964 2 248.311 876 8.853E 05 3.937E 06 
800 2 269.973 516 2 269.973 447 6.935E 05 3.055E 06 
900 2 277.442 896 2 277.442 833 6.227E 05 2.734E 06 

1000 2 279.997 577 2 279.997 517 5.973E 05 2.620E 06 
1100 2 280.868 890 2 280.868 831 5.882E 05 2.579E 06 
1200 2 281.165 780 2 281.165 722 5.850E 05 2.564E 06 
1300 2 281.266 910 2 281.266 851 5.838E 05 2.559E 06 
1400 2 281.301 354 2 281.301 295 5.834E 05 2.557E 06 
1500 2 281.313 084 2 281.313 026 5.833E 05 2.557E 06 

5. Model Validation 

5.1 EFFECTS OF VARIATION OF INFECTION AND REMOVAL RATES 

5.1.1 Results with different infection rates 
The total number of removals is affected by varying the infection rate. To illustrate 
this effect we run the R-K-F program keeping all the initial values unchanged and 
changing the infection rate to (a) 51 10β −= × , (b) 50.95 10β −= × .

Case (a) 51 10β −= ×
Results are presented in Table A1.2 at 10 day time intervals from 0t =  to 200 days. 
Again there is good agreement between the analytical and numerical results. The 
following conclusion can be drawn from the results tabulated at 10 day intervals 
over the time period 0t =  to 500 days. 

Maximum absolute error = 21.879 10−×  (at 70t = ),

where numerical solution 
70 9,365.666 247w =

and analytical solution 
70 9,365.685 043R = .



A1. DETERMINISTIC MODEL IN CONTAGIOUS DISEASE 15

Table A1.2. Comparison of results for the case 510β −= , 0.89γ = .

it
Analytical
solution

iR

Numerical 
solution

iw

Absolute
error

| |i iR w−

Percentage Error 
| ( ) / | 100%i i iR w R− ×

0      0.000 000      0.000 000 0.000E+00 0.000E+00 
10     16.209 911     16.209 840 7.148E 05 4.409E 04 
20     64.785 375     64.785 098 2.771E 04 4.277E 04 
30    209.390 560    209.389 697 8.627E 04 4.120E 04 
40    631.537 848    631.535 390 2.458E 03 3.892E 04 
50  1 796.787 864  1 796.781 479 6.385E 03 3.553E 04 
60  4 571.924 954  4 571.911 454 1.349E 02 2.952E 04 
70  9 365.685 043  9 365.666 247 1.879E 02 2.006E 04 
80 14 371.606 824 14 371.592 115 1.470E 02 1.023E 04 
90 17 477.397 105 17 477.389 976 7.128E 03 4.078E 05 

100 18 830.717 545 18 830.714 888 2.657E 03 1.411E 05 
110 19 328.485 926 19 328.485 025 9.012E 04 4.663E 06 
120 19 499.925 792 19 499.925 483 3.094E 04 1.586E 06 
130 19 557.622 727 19 557.622 607 1.208E 04 6.179E 07 
140 19 576.888 550 19 576.888 488 6.280E 05 3.208E 07 
150 19 583.304 812 19 583.304 767 4.511E 05 2.303E 07 
160 19 585.439 805 19 585.439 766 3.980E 05 2.032E 07 
170 19 586.150 011 19 586.149 973 3.823E 05 1.952E 07 
180 19 586.386 239 19 586.386 201 3.777E 05 1.928E 07 
190 19 586.464 810 19 586.464 772 3.763E 05 1.921E 07 
200 19 586.490 943 19 586.490 905 3.760E 05 1.919E 07 

Maximum percentage relative error = 44.410 10−×  (at 10t = ),

where numerical solution 
10 16,209 840w =

and analytical solution 
10 16,209 911R = .

Also as t → ∞  we can use equation (A1.12) to find the total number of removals: 
19,586.503 929R∞ =  which compares well with the numerical values 

200 19,586.490 905w =  and 
500 19,586.503 929w = .

Case (b) 50.95 10β −= ×
Results have been obtained at 10 days intervals over the time period 0t =  to 1000 
days and those results up to 200t →  days are presented in Table A1.3. Again the 
agreement is good and the following conclusion can be drawn. 
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Table A1.3. Comparison of results for the case 69.5 10β −= × , 0.89γ = .

it
Analytical
solution

iR

Numerical 
solution

iw

Absolute
error 

| |i iR w−

Percentage Error 
| ( ) / | 100%i i iR w R− ×

0      0.000 000      0.000 000 0.000E+00 0.000E+00 
10     12.191 596 12.191 642 4.564E 05 3.743E 04 
20     34.372 877     34.373 006 1.291E 04 3.758E 04 
30     74.633 184     74.633 464 2.805E 04 3.759E 04 
40    147.392 692    147.393 247 5.542E 04 3.760E 04 
50    277.863 919    277.864 955 1.036E 03 3.729E 04 
60    508.583 073    508.584 939 1.866E 03 3.669E 04 
70    906.690 215    906.693 436 3.221E 03 3.553E 04 
80  1 565.402 148  1 565.407 392 5.243E 03 3.349E 04 
90  2 583.158 735  2 583.166 567 7.832E 03 3.032E 04 

100  4 000.419 593  4 000.429 893 1.029E 02 2.574E 04 
110  5 712.802 687  5 712.814 211 1.152E 02 2.017E 04 
120  7 459.792 424  7 459.803 240 1.081E 02 1.449E 04 
130  8 960.010 323  8 960.018 891 8.568E 03 9.563E 05 
140 10 069.216 213 10 069.222 178 5.964E 03 5.923E 05 
150 10 801.858 404 10 801.862 199 3.794E 03 3.513E 05 
160 11 250.407 054 11 250.409 340 2.286E 03 2.032E 05 
170 11 512.376 969 11 512.378 311 1.342E 03 1.165E 05 
180 11 661.182 029 11 661.182 811 7.827E 04 6.712E 06 
190 11 744.374 422 11 744.374 884 4.613E 04 3.927E 06 
200 11 790.472 016 11 790.472 297 2.808E 04 2.381E 06 

Maximum absolute error = 21.152 10−×  (at 110t = ),

where numerical solution 
110 5,712.814 211w =

and analytical solution 
110 5,712.802 687R = .

Maximum percentage relative error = 3.760 109 (at 40t = ),

where numerical solution 
40 147.393 247w =

and analytical solution 
40 147.392 692R = .

Also as t → ∞  we can again use equation (A1.12) to find 11,846.856 367R∞ =
which compares well with the numerical value 

1000 11,846.856 422w = .
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To assess the effect of variation of infection rate on the total number of removals the 
results for the cases 51 10β −= ×  , 50.95 10β −= ×  and 50.9 10β −= ×  have been 

presented in Figure A1.2 over a time period of 2000 days. Clearly the gradients of 
the three curves are different, with the higher the infection rate the steeper the curve. 
Also the higher the infection rate the shorter the time period required for the number 
of removals to level out. Clearly larger infection rates lead to higher values of R∞ .

Figure A1.2. Plot of the number of removals from the population against time in days for different 
infection rates. 

5.1.2 Results with different removal rates 

Now we consider the effect of varying the removal rate. As before, we keep all the 
initial values in Section 4.2 unchanged. 

Case (a) 0.8γ =
Results are presented in Table A1.4 at 10 day time intervals from 0t =  to 200 days. 
The agreement between the analytical and numerical results is good. The following 
conclusion can be drawn from the results tabulated at 10 day intervals over the time 
period 0t =  to 500 days. 

Maximum absolute error = 26.438 10−×  (at 80t = ),

where numerical solution 
80 10,829.004 276w =

and analytical solution 
80 10,828.939 887R = .
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Maximum percentage relative error = 31.273 10−×  (at 30t = ),

where numerical solution 
30 151.747 165w =

and analytical solution 
30 151.745 232R = .

Also as t → ∞  we can use equation (A1.12) to find the total number of removals: 

19,759.500 365R∞ =  which compares well with the numerical values 

200 19,759.401 240w =  and 
500 19,759.500 468w = ,

Table A1.4. Comparison of results for the case 69 10β −= × , 0.8γ = .

it
Analytical
solution

iR

Numerical 
solution

iw

Absolute
error 

| |i iR w−

Percentage Error 
| ( ) / | 100%i i iR w R− ×

0      0.000 000      0.000 000 0.000E+00 0.000E+00 
10     13.742 277     13.742 450 1.738E 04 1.264E 03 
20     51.028 010     51.028 658 6.484E 04 1.270E 03 
30    151.745 232    151.747 165 1.933E 03 1.273E 03 
40    420.582 778    420.588 098 5.320E 03 1.264E 03 
50  1 115.924 436  1 115.938 149 1.371E 02 1.228E 03 
60  2 776.948 840  2 776.980 087 3.124E 02 1.125E 03 
70  6 089.866 641  6 089.921 967 5.532E 02 9.084E 04 
80 10 828.939 887 10 829.004 276 6.438E 02 5.946E 04 
90 15 163.389 840 15 163.436 375 4.653E 02 3.068E 04 

100 17 778.647 495 17 778.671 171 2.367E 02 1.331E 04 
110 18 982.042 132 18 982.052 203 1.007E 02 5.305E 05 
120 19 466.405 400 19 466.409 395 3.995E 03 2.052E 05 
130 19 650.734 475 19 650.736 053 1.577E 03 8.029E 06 
140 19 719.376 802 19 719.377 455 6.533E 04 3.313E 06 
150 19 744.731 393 19 744.731 699 3.064E 04 1.552E 06 
160 19 754.068 507 19 754.068 684 1.768E 04 8.953E 07 
170 19 757.503 188 19 757.503 317 1.284E 04 6.503E 07 
180 19 758.766 128 19 758.766 239 1.104E 04 5.591E 07 
190 19 759.230 444 19 759.230 548 1.037E 04 5.252E 07 
200 19 759.401 139 19 759.401 240 1.012E 04 5.126E 07 

Case (b) 0.85γ =
Results have been obtained at 10 days intervals over the time period 0t =  to 800 
days and those results up to 200t =  days are presented in Table A1.5. Again the 
agreement is good and the following conclusion can be drawn. 
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Maximum absolute error = 47.635 10−×  (at 130t = ),

where numerical solution 
130 5,487.020 363w =

and analytical solution 
130 5,487.021 127R = .

Maximum percentage relative error = 53.411 10−×  (at 10t = ),

where numerical solution 
10 11.025 809w =

and analytical solution 
10 11.025 812R = .

As t → ∞  we can again use equation (A1.12) to find 10,509.017 808R∞ = , which 

compares well with 
800 10,509.017 814w = .

Table A1.5. Comparison of results for the case 69 10β −= × , 0.85γ = .

it
Analytical
solution

iR

Numerical 
solution

iw

Absolute
error 

| |i iR w−

Percentage error 
| ( ) / | 100%i i iR w R− ×

0      0.000 000      0.000 000 0.000E+00 0.000E+00 
10     11.025 812     11.025 809 3.761E 06 3.411E 05 
20     29.181 540     29.181 530 9.726E 06 3.333E 05 
30     59.023 965     59.023 946 1.933E 05 3.276E 05 
40    107.930 739    107.930 704 3.458E 05 3.204E 05 
50    187.693 297    187.693 238 5.923E 05 3.155E 05 
60    316.756 242    316.756 144 9.858E 05 3.112E 05 
70    522.948 046    522.947 890 1.567E 04 2.996E 05 
80    845.749 543    845.749 890 2.419E 04 2.860E 05 
90  1 335.406 515  1 335.406 158 3.568E 04 2.672E 05 

100  2 043.712 930  2 043.712 425 5.049E 04 2.470E 05 
110  3 000.950 359  3 000.949 711 6.474E 04 2.157E 05 
120  4 182.271 905  4 182.271 158 7.474E 04 1.787E 05 
130  5 487.021 127  5 487.020 363 7.635E 04 1.391E 05 
140  6 762.745 079  6 762.744 389 6.902E 04 1.020E 05 
150  7 869.794 649  7 869.794 091 5.577E 04 7.087E 06 
160  8 735.290 774  8 735.290 364 4.101E 04 4.695E 06 
170  9 358.368 904  9 358.368 624 2.808E 04 3.001E 06 
180  9 780.782 644  9 780.782 456 1.882E 04 1.924E 06 
190 10 055.623 755 10 055.623 635 1.201E 04 1.195E 06 
200 10 229.695 021 10 229.694 944 7.672E 05 7.500E 07 
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The effect of variation of removal rate on the total number of removals is assessed 
by considering the results in Figure A1.3 for the cases 0.89γ = , 0.80γ =  and 

0.85γ =  over a time period of 1200 days. Clearly the gradients of the three curves 

are different, with the lower the removal rate the steeper the curve. Also the lower 
the removal rate the shorter the time period required for the number of removals to 
level out. Clearly, as would be expected, smaller infection rates lead to higher values 
of R∞ .

Figure A1.3. Plot of the number of removals from the population against time in days for different 
removal rates. 

6. Interpretation and Conclusions 

The case study has extended past work by Caldwell and Ram [3] to consider a 
deterministic model in the theory of contagious disease. A more realistic case has 
been considered by introducing a third variable, namely, the number of removals 

( )R t  at time t . Numerical results have been obtained by solving the resulting 

system of differential equations using the Runge-Kutta-Fehlberg method including 
error control to validate against analytical results. By comparing absolute and 
relative errors over long time periods there is clearly good agreement between 
analytical and numerical results. The Runge-Kutta-Fehlberg method, which requires 
only six functional evaluations per time step, is clearly an effective numerical tool 
and, in a similar way, could be applied to more complex models where analytical 
solutions are not possible. Tables of results and graphs have been presented to show 
the effects of variation of the infection rate and the removal rate on the number of 
removals from the population over long time periods. 
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7. Computer Algorithms 

The Runge-Kutta-Fehlberg (R-K-F) method has been used to obtain the numerical 
results. The algorithm used is presented in Fehlberg [4] with more details given in 
Caldwell and Ram [3]. The important details are given in Appendices I and II. 
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APPENDIX I – NUMERICAL SOLUTION BY RUNGE-KUTTA-FEHLBERG 
ALGORITHM 

One popular technique for solving the initial value problem 

( , )
dy

f t y
dt

= , a t b≤ ≤ , ( )y a α= . (A1.13) 

is the Runge-Kutta-Fehlberg (R-K-F) method presented by Fehlberg [4] in 1970. 
This technique consists of using a Runge-Kutta method of order 5 ( )w  to estimate 

the local truncation error in a Runge-Kutta method of order 4 ( )w . A clear 

advantage of this method is that it only requires six functional evaluations per step, 
whereas with arbitrary Runge-Kutta methods of orders 4 and 5 used together, we 
would require 10 functional evaluations per step. Error control theory (see Gerald 
and Wheatley [5], Maron [6] and Rice [7]) shows that, in the usual notation, the 
general error control inequality is given by  

     
1/

| |

n

i i

h
q

w w

ε≤
−

. (A1.14) 

For the R-K-F method of order 4(5) the usual choice of q  is as follows: 

     
1/ 4 1/ 4

0.84
2 | | | |i i i i

h h
q

w w w w

ε ε≤ =
− −

. (A1.15) 

The algorithm below is based on the equations presented by Fehlberg [4] and the 
coefficients are given in Appendix II. The step size, which is variable, is denoted by 
h , the tolerance, which is the value the local truncation error is not to exceed, is 
denoted by TOL, and the number of iterations is denoted by the variable i .

Initialization
0w α= , w α= , 0i = , 1/ 4(TOL)h = , t a= .

while t b≤
:t t h= +
: 1i i= +

1

25 1408 2197 1
: 1 3 4 5

216 2565 4104 5i iw w k k k k−= + + + −

1

16 6656 28561 9 2
: 1 3 4 5 6

135 12825 56430 50 55i iw w k k k k k−= + + + − +

 if 
-1| | 0i iw w− =  then 

max:h h=
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 else 
1/ 4

TOL
: 0.84

| |i i

q
w w

=
−

  if 
mingh h<  then 

   STOP—minimum step size exceeded 
  else 
   if qh h<  then 
    :t t h qh= − +
    :h qh=

    
1

25 1408 2197 1
: 1 3 4 5

216 2565 4104 5i iw w k k k k−= + + + −

    
1

16 6656 28561 9 2
: 1 3 4 5 6

135 12825 56430 50 55i iw w k k k k k−= + + + − +

   else 
    :h qh=
   endif 
  endif 
 endif 
endwhile

where, 

11: [ , ]ik h f t w −=

1

1 1
2 : , 1

4 4ik h f t h w k−= + +

1

3 3 9
3: , 1 2

8 32 32ik h f t h w k k−= + + +

1

12 1932 7200 7296
4 : , 1 2 3

13 2197 2197 2197ik h f t h w k k k−= + + − +

1

439 3680 845
5 : , 1 8 2 3 4

216 513 4104ik h f t h w k k k k−= + + − + −

1

1 8 3544 1859 11
6 : , 1 2 2 3 4 5

2 27 2565 4104 40ik h f t h w k k k k k−= + − + − + −

The algorithm given above was combined into a MATLAB computer program 
which was used to solve the differential equation. 
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APPENDIX II – COEFFICIENTS FOR RUNGE-KUTTA-FEHLBERG METHOD 

The following equations are presented by Fehlberg [4]: 

0 0 0( , )f f x y=
1

0 0
0

,
x

x x xf f x h y h fλ λ
λ

α β
−

=

= + + , ( 1, 2,3,4,5x = )

4
5

0
0

( )x x

x

y y h c f O h
=

= + + .

5
6

0
0

( )x x

x

y y h c f O h
=

= + + .

λ xλβ

x xα 0 1 2 3 4 
xc xc

0 0 0     
25

216

16

135

1
1

4

1

4
    0 0 

2
3

8

3

32

9

32
   

1408

2565

6656

12825

3
12

13

1932

2197

7200

2197
− 7296

2197

2197

4104

28561

56430

4 1 
439

216
8−

3680

513

845

4104
− 1

5
− 9

50
−

5
1

2

8

27
− 2

3544

2565
− 1859

4104

11

40
− 2

55
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ELECTROMAGNETIC FORCES IN HIGH FIELD 

MAGNET COILS

SUMMARY:  A limiting design of large high field superconducting magnets is the 
problem of supporting the electromagnetic forces. It is therefore important to be able 
to estimate the forces appearing on the windings of magnets. A simple mathematical 
model is obtained which represents the stress distribution in magnet windings. In 
deriving the equations a number of simplifying assumptions have been made. This 
model is validated by checking the accuracy against homogeneous thick cylinder 
theory which involves the calculation of stresses by solving the Timoshenko stress 
equations. In this way, values of the circumferential stress have been compared for 
two separate coil configurations and conclusions are drawn. 

1. Background 

The problem of supporting the electromagnetic forces acting on the windings has 
becomes a limiting factor in the design of large high field superconducting magnets 
and has attracted much attention in work on superconducting motors and generators. 
The three important aspects to be considered are: 

(i)  the effect of tensile stress on the performance of superconducting materials 
and composites; 

(ii)  the calculation of the forces appearing on the windings of magnets; 
(iii) the experimental verification of these calculations. 

This case study is concerned with the second of these aspects. 

Two theoretical problems arise in the determination of the stress acting on magnet 
windings. The first of these, the calculation of the electromagnetic forces generating 



26 Case Study A2

the stresses, is relatively simple in theory, but difficult and laborious to perform in 
practice. The second is the determination of the way in which these forces are 
accommodated by the windings and is less tractable, involving assumptions about 
the mechanical behaviour of the coil, e.g., the extent to which the winding may be 
considered as a solid body. 

This case study involves the development of a mathematical model to represent the 
stress distribution in magnet windings. A number of simplifying approximations will 
be made in deriving the mathematical formulation. 

2. Problem Statement 

In this case study we develop a mathematical model to represent the stress 
distribution in magnet windings stating clearly any simplifying approximations. It 
may be assumed that the tensile (or “circumferential”) stress T ′  in a circular turn 
(radius r ) of wire carrying a current density J  in a uniform magnetic field B

parallel to the axis of the loop is given by T BJr′ = .

We validate the model by comparing the results with those obtained from 
homogeneous thick cylinder theory which involves the calculation of stresses by 
solving the Timoshenko stress equations. In this way, we can compare the computed 
values of the circumferential stress for the following two coil configurations: 

(1) Coil 1 (used in the prototype superconducting motor developed at International 
Research and Development Co. Ltd., and later tested by driving a cooling water 
pump at Fawley Power Station, Southampton, UK) has the following parameters: 

 Inner radius  
1 1.11mr =

 Outer radius 
1 1.29mr =

 Winding length 2 0.55mb =
 Total Ampere turns 63 10 ANI = × .

(2) Coil 2 (part of the magnet for the 27.0Wb / m  bubble chamber at the Rutherford 
High Energy Laboratory, UK) is a Helmholtz pair with the following parameters: 

 Inner radius  0.95m
 Outer radius 1.70m
 Total winding length (including gap) 2.30m
 Length of gap between coils 0.15m
 Ampere turns (per coil)  71.02 10 A× .

Finally, we validate the results, comment on the accuracy and draw conclusions. 
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3. Model Formulation 

3.1 ELECTROMAGNETIC FORCES 

It can readily be shown that the tensile (or ‘hoop’) stress T ′  in a circular turn (radius 
r ) of wire carrying a current density J  in a uniform magnetic field B  parallel to the 
axis of the loop is given by T BJr′ = . This ‘generated’ force acts in fact only on the 
superconducting portion of a composite superconductor, since this alone is carrying 
current. It is possible that when the stresses are high the superconductor may cut 
through the copper, but we assume for the present purpose that this does not occur. 
If the bond between the superconductor and copper is rigid, then some of the stress 
will be transmitted to the copper as the two materials must strain by the same 
amount, and in this case the stresses in the two materials will be in proportion to 
their Young’s moduli. For copper and niobium-titanium these are approximately 
equal, though copper has a very much lower yield point, and so we assume that the 
stress is uniform across the composite conductor. 

In the central plane of a superconducting coil the electromagnetic force is a pure 
radial bursting force (giving rise to the tensile stress) but off this plane there are 
axial components of force since the magnetic field is not in general parallel to the 
coil axis. These forces, though sometimes large, are ignored for the purposes of the 
calculations below. 

3.2 STRESS ON THE WINDINGS  

Consider a winding of inner and outer radii 
1r  and 

2r , respectively, carrying a 

uniform current density J . We assume that a disc element of unit length in the 
central plane can be considered as a solid body, with zero radial compressibility and 
uniform radial deflection δ  due to the electromagnetic forces acting on it. As stated 
above, we ignore axial forces transmitted from windings off the mid-plane. Then the 
strain at radius r  is / rδ  and hence the stress T  in the windings at radius r  is given 
by: 

/

T
E

rδ
=  (A2.1) 

i.e., Tr Eδ= , where E  is Young’s modulus for the material. 

The tensile force on the cross-section of an element dr  thick is therefore: 

dr
Tdr E

r
δ=  (A2.2) 

and the total tensile force on the disc is: 
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     2 2

1 1
2 1ln( / )

r r

r r

dr
F T dr E E r r

r
δ δ= = = . (A2.3) 

Now if we further assume that the coil was wound under zero tension (i.e., there are 
no forces on the winding former) and there is no external hydrostatic pressure 
difference across the windings then the force on the windings is purely 
electromagnetic in origin, ignoring the weight of the windings themselves. But the 
tensile force generated in the element dr  is BJrdr , and therefore: 
      

      2

1

r

r
F BJr dr= . (A2.4) 

From the three equations (A2.2), (A2.3) and (A2.4) we obtain: 

      

2

1

2 1ln( / )

r

r
BJr dr

E Tr
r r r

δ = =  (A2.5) 

and hence: 

      

2

1

2 1ln( / )

r

r
BJr dr

T
r r r

= . (A2.6) 

This is the tensile stress in the windings at radius r . It is worth noting again all the 
approximations made in arriving at this result, since they indicate the validity of its 
application: 

(i) The bond between the two materials is rigid. 
(ii) The stress in the two materials is the same (i.e., they have the same Young’s 

modulus). 
(iii) Axial forces (and hence the introduction of Poisson’s ratio as a parameter) 

can be ignored. 
(iv) The coil acts as a solid body, i.e., the radial deflection under the stress is 

uniform. 
(v) The forces acting on the coil are purely electromagnetic in origin. 

Computer programs are available for the calculation of the flux density within the 
windings of solenoids. One such program developed by Culwick [3] is available 
from the Brookhaven National Laboratory. This can be modified to obtain the 
expression: 

      2

1

r

r
BJr dr .
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The electromagnetic forces cannot be determined by hand using this method, as the 
calculation involves successive approximations with many iterations. It is based on 
the elliptic integral formulation of the field around a single turn of wire. An 
alternative method which can be used by hand, though laboriously, uses the 
relationship between electromagnetic ‘pressure’ at a point and the mutual inductance 
between the coil and a single turn passing through that point. 

The particular type of coil of most interest to engineering applications associated 
with superconducting motors and generators is that which has a large bore but 
relatively small winding cross-section. For this type of coil the flux density varies 
approximately linearly with radius across the windings except around the zero field 
region where Bdr  is small. This means that if 

1( )B r  and 
2( )B r  are known, the 

integral can be evaluated directly. Using the linear relationship we can write: 

     1
1 2 1

2 1

( ) ( ) ( ( ) ( ))
r r

B r B r B r B r
r r

−= + −
−

 (A2.7) 

and then equation (A2.6) simplifies to give: 

     
2 2 2 2

1 2 1 2 1 2 2 1 2 1

2 1

{ ( 2 ) (2 )}

6 ln( / )

J B r r r r B r r r r
T

r r r

+ − + − −= , (A2.8) 

where 
1 1( )B B r=  and 

2 2( )B B r= .

Alternatively, we can make the further approximation: 

     

                      (A2.9) 

where 1
1 22 ( )mr r r= +  is the mean radius of the coil. In this case equation (A2.6) 

simplifies to give: 

     
2 2

1 2 2 1

2 1

( )( )

4 ln( / )

J B B r r
T

r r r

+ −= . (A2.10) 

For the types of coil we are considering 
1 2r r≈  and we can say: 

     
2 1 2 1ln( / )r r r r r≈ − ,

which gives a constant stress throughout the windings of  

2 2

1 1

1
2 1 1 22 ( )( ),

r r

m
r r

m

BJr dr Jr B dr

Jr r r B B

=

= − +
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     1
1 2 1 24 ( )( )T J B B r r= + + . (A2.11) 

This equation (A2.11) is simple to use as 
1B  and 

2B  can be obtained from curves 

plotting these factors as a function of the winding configuration.  

Equations (A2.8), (A2.10) and (A2.11) give the tensile stress with decreasing 
accuracy.

3.3 VALIDITY OF THE EQUATIONS 

Because of the drastic simplifications made in the above calculations, the 
expressions obtained must be applied with caution. It would appear that they are 
least inaccurate for the case of a ‘pancake’ winding in the mid-plane of a solenoid 
wound without interlayer spacers with a conductor of large cross-section. If a 
packing factor must be taken into account, the current density must clearly be 
averaged over the solid load-bearing cross-section. 

The results given above are intended only as a starting point for a more detailed and 
accurate consideration of the stresses appearing on magnet windings in different 
circumstances. A more accurate calculation of the stresses can be made by solving 
the Timoshenko stress equations and this has been done by Middleton and 
Trowbridge [5] to produce the formula: 

   2

1
1 1( ) ( ) (1 )

r

z r z
r

r r R drθ θσ σ νσ σ νσ ν= − − + − + , (A2.12) 

where 
zσ ,

rσ , θσ  are the three stress components, ν  is Poisson’s ratio and 

zR B J=  is the radial component of the electromagnetic body force. The tensile (or 

circumferential) stress θσ  is equivalent to T  in this notation. 

4. Mathematical Solution 

4.1 HOMOGENEOUS THICK CYLINDER THEORY 

The electromagnetic body forces for an assembly of solenoids are calculated by a 
computer program developed by Culwick [3] which is available from Brookhaven 
National Laboratory. This program divides each solenoid into a number of 
uniformly spaced filamentary conductors. Each filament is then repeatedly 
subdivided by 4 until the sum of the fields of the subdivisions is equal to the field of 
the filament within a prescribed tolerance. The forces are then calculated from the 
equations: 

     
zR B J= , (A2.13) 
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rZ B J= , (A2.14) 

where J  is the current density and R , Z  are the radial and axial components of 
force per unit volume and 

rB ,
zB  are the corresponding field components. 

The equations relating the stress components and strains for axially symmetric 
systems when shear is neglected are: 

     ( )
( , ) 0rrd

R r z
dr r

θσ σσ −+ + =  (A2.15) 

     ( , ) 0zd
Z r z

dz

σ + =  (A2.16) 

     
r r zEe θσ νσ νσ= − −  (A2.17) 

     
r zEeθ θνσ σ νσ= − + −  (A2.18) 

     
z r zEe θνσ νσ σ= − − + , (A2.19) 

where 
rσ , θσ  and 

zσ  are the radial, circumferential and axial stresses, respectively, 

and
re , eθ  and 

ze  the corresponding strains. E  is Young’s modulus and ν  is 

Poisson’s ratio for the material. 

By introducing: 

     
r

du
e

dr
= , u

e
r

θ = , (A2.20) 

where u  is the radial displacement, it is possible to solve equations (A2.15)-(A2.19) 
and thus find an expression for the circumferential stress θσ . This has been done by 

Middleton and Trowbridge [5] but, since they only outline the method without 
including a detailed derivation of the equations, this has been included below. 

On eliminating u  from equation (A2.20) we obtain: 

     
r

de
r e e

dr

θ
θ= − + . (A2.21) 

From equations (A2.17) and (A2.18) we have: 
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     ( ) (1 )( )r rE e eθ θν σ σ− = + − . (A2.22) 

On differentiating equation (A2.18) with respect to r  we obtain: 

     r zde dd d
E

dr dr dr dr

θ θσσ σν ν= − + − , (A2.23) 

and using this equation with equation (A2.21) gives: 

     ( ) r z
r

de d d d
Er E e e r

dr dr dr dr

θ θ
θ

σ σ σν ν= − = − − .

From equations (A2.15) and (A2.22) we have: 

     

(1 )( )
( )

(1 )

r
r

r z

r

E
e e

r r

d d d

dr dr dr

d
R

dr

θ
θ

θ

ν σ σ

σ σ σν ν

σν

+ − = −

= − −

= − + +

and hence: 

     (1 ) 0r zd d d
R

dr dr dr

θσ σ σν ν+ − + + = . (A2.24) 

On integrating equation (A2.24) with respect to r  we obtain: 

    
1

1 1( ) ( , ) (1 )
r

r z z
r

r z R drθ θσ σ σ νσ νσ ν+ = − + − + ,

where 
1θσ  and 

1zσ are the circumferential and axial stresses at the inner coil radius 

1r r=  for some z  plane. The radial stresses at the inner (
1r r= ) and outer radii 

(
2r r= ) are taken as zero in this case. 

Using the notation: 

     
1

r
n

n
r

r R dr I= ,

the sum of the circumferential and radial stresses becomes: 
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1 1 0( ) ( )r z z pIθ θσ σ σ νσ νσ+ = − + − , (A2.25) 

where 1p ν= + .

Rewriting equation (A2.15) as: 

     r
r

d
rR r

dr
θ

σσ σ− = − − ,

and adding to equation (A2.25) yields: 

     
1 1 02 ( ) r

r z z

d
pI rR r

dr
θ

σσ σ νσ νσ= − + − − − ,

which, on rearranging and multiplying by r , gives: 

     2 2
1 1 0( ) ( )r z z

d
r r pI r r R

dr
θσ σ νσ ν σ= − + − − .

Integration with respect to r  yields: 

     

1 1

2 2 21
1 1 12

0 2

( )( )

.

r z

r r

z
r r

r r r

r dr p rI dr I

θσ σ νσ

ν σ

= − −

+ − −

The third term on the right-hand-side can be integrated by parts to give: 

     
1

2
1

0 0 22( )
2

r

r

r
rI r dr I I= −

and hence the radial stress is given by: 

   
1

2
1

1 1 0 22 2 2

1 1
( ) 1 1

2 2 2

r

r z z
r

r p p
I I r dr

r r r
θ

νσ σ νσ σ= − − − − − + . (A2.26) 

Note that if the axial stress 
zσ  is constant, then: 

     
1

2
1 1

2 2
1

2

r
z

z
r

r
r dr

r r

νσν σ = −
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and therefore: 

     
2

1 1
0 22 2

1
1 1

2 2 2r

r p p
I I

r r

θσσ → − − − − .

Clearly the axial stress 
zσ  is obtained by direct integration of equation (A2.16) and 

1θσ  is obtained from equation (A2.26) by inserting the condition that 0rσ =  at 

2r r= .

Hence the sequence of computation is as follows: 

(1) 
zσ  from equation (A2.16). 

(2) 
1θσ  from equation (A2.26) with 

2r r= .

(3) 
rσ  from equation (A2.26). 

(4) θσ  from equation (A2.25). 

(5) 
re , eθ ,

ze  from equation (A2.17)-(A2.19). 

(6) u  from equation (A2.20). 

From equation (A2.25) the circumferential stress is given by: 

    2

1
1 1( ) ( ) (1 )

r

z r z
r

r r R drθ θσ σ νσ σ νσ ν= − − + − +  (A2.27) 

and this expression, together with the other stress and strain components, is then 
evaluated using a computer program. 

5. Model Validation 

By making a number of simplifying assumption Caldwell [2] obtained the following 
three equations for the circumferential stress: 

    
2 2 2 2

1 2 1 2 1 2 2 1 2 1

2 1

{ ( 2 ) (2 )}

6 ln( / )

J B r r r r B r r r r

r r r
θσ + − + − −= , (A2.28) 

    
2 2

1 2 2 1

2 1

{( )( )}

4 ln( / )

J B B r r

r r r
θσ + −= , (A2.29) 

    1
1 2 1 24 ( )( )J B B r rθσ = + + , (A2.30) 

where 
1 1( )B B r=  and 

2 2( )B B r= .
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In order to assess the accuracy of these equations, values of the circumferential 
stress θσ  (which is the dominant one) have been calculated for each of the equations 

(A2.28), (A2.29) and (A2.30) and compared with the values obtained by the more 
rigorous method (equation (A2.27)) for two different coil configurations. 

Coil 1 was used in the prototype superconducting motor developed at International 
Research and Development Co. Ltd., and later tested by driving a cooling water 
pump at Fawley Power Station and had parameters as given in Section 2. For 
equation (A2.28), (A2.29) and (A2.30), the values of 

1B  and 
2B  were obtained from 

the BNL program [1]. The circumferential stresses obtained including those from 
equation (A2.27) are plotted in Figure A2.1. 

(A2.30)

(A2.29)(A2.28)

(A2.27)

Coil inside radius Coil outside radius

Figure A2.1. Stresses for coil 1 using equations (A2.27)-(A2.30). 

The second coil magnet was for the 27.0Wb / m  bubble chamber at the Rutherford 
High Energy Laboratory. The solution of equation (A2.27) for this coil is given by 
Middleton and Trowbridge [5] for a particular value of z  and the variation of ( )zB r

with radius is also plotted. Values of 
1B  and 

2B  were obtained from this plot. Coil 2 

is a Helmholtz pair with parameters as given in Section 2. The circumferential 
stresses for the coil obtained by using equations (A2.27)-(A2.30) are plotted in 
Figure A2.2. 

On comparing the results we find that in both cases the discrepancy between 
equations (A2.26) and (A2.27), though significant, is not large and that for both 
coils equation (A2.29) gives the highest value of stress. At 

1r r= , where the peak 
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stress occurs, equations (A2.28) and (A2.27) are in close agreement for Coil 1 but 
the agreement is not particularly good for Coil 2. 

Coil inside radius Coil outside radius

(A2.30)

(A2.29)

(A2.28)

(A2.27)

Figure A2.2. Stresses for coil 2 using equations (A2.27)-(A2.30). 

6. Interpretation and Conclusions 

It appears from the limited comparison made above that the thick/thin cylinder 
approach of equation (A2.28) gives results close enough to the more complex theory 
of equation (A2.27) to justify its use for preliminary calculations of coil stresses, 
particularly as the applicability of solid cylinder theory has not been conclusively 
demonstrated at all and any results must be considered as approximate. In addition, 
the simple expression given in equation (A2.30) seems to give a good first 
approximation to the peak stress for Coil 1. The intermediate approximation of 
equation (A2.29) is apparently of little value except that when used it seems to err 
on the high side which is useful information. None of the equations (A2.28), (A2.29) 
or (A2.30) can, however, be a complete substitute for the full theory, if only because 
they give no information about the radial and axial stresses. 

The comparison has been carried out for two particular coil geometries which have 
been used in practice. However, comparisons made for other theoretical coil 
geometries provide similar agreement and this effectively gives us more confidence 
in the simplified formulae. 

7. Computer Algorithms 

Computer algorithms are available for the calculation of the flux density B  within 
the windings of solenoids. One such algorithm developed by Culwick [3], which is 
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available from the Brookhaven National Laboratory, was used to calculate the 
electromagnetic body forces for an assembly of solenoids. Essentially this program 
divides each solenoid into a number of uniformly spaced filamentary conductors. 
Each filament is then repeatedly subdivided by 4 until the sum of the fields of the 
subdivisions is equal to the fields of the filament within a prescribed tolerance. 
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MASS BALANCE OF A REACTOR IN STEADY 

STATE

SUMMARY: The design of a chemical reactor is particularly important in the field 
of chemical engineering. The design of the system allows the chemical reaction to 
take place in a safe and efficient way. A mathematical model is built which 
represents the concentration of the chemical along the reactor in the steady state case. 
Both numerical and analytical solutions will be presented and compared for 
accuracy purposes. This kind of study can apply to real life problems, such as waste 
treatment. 

1. Background 

The conservation of mass has been an active research area in the field of chemical 
engineering. The conservation of mass can be expressed as a balance of a chemical 
that enters and leaves a system volume, i.e., the volume enclosed by the boundaries. 
As time goes on, this idea can be represented as 

rate of accumulation rate of flow of rate of flow of

of chemical chemical chemical out 

inside the system into the system of the system

(moles/time) (moles/time) (moles/time)

= −

rate of generation 

of chemical 
.

inside the system

(moles/time)

+

We assume the chemical is neither created nor destroyed in the chemical reactor, 
because we have already employed the idea of conservation of mass. If the rate of 
entering of chemical is greater than the rate of leaving the system, the mass 
increases, or vice versa. If the chemical enters and leaves the system at the same rate, 
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the accumulation of chemical inside the system will be zero. As time proceeds (until 
the stable condition is reached), this can be represented as 
     
     Flow in = Flow out. 

Chemical engineers employ the conservation of mass to determine the steady-state 
concentration of a system of coupled reactors by expressing the inputs and outputs 
in terms of measurable variables and parameters. In this way it is possible to develop 
a mass balance and derive a differential equation for concentration. 

Figure B1.1. An elongated cylindrical reactor with a single entry and exit point. 

2. Problem Statement 

Figure B1.1 shows a cylindrical reactor with a single entry and exit point. The 
reactor can be characterized as a distributed-parameter system. If it is assumed that 
the chemical being modelled is subject to first-order decay and the cylindrical tube 
is well-mixed vertically and laterally, a mass balance can be performed on a finite 
segment of length x∆ , as in 

     
Flow in

Dispersion inFlow out

Decay reaction

Dispersion out

( ) ( )
( ) ( )

( ) ( )
,

c

c

c c x c x
V Fc x F c x x DA

t x x

c x c x
DA x Vc

x x x
γ

∆ ∂ ∂= − + ∆ −
∆ ∂ ∂

∂ ∂ ∂+ + ∆ −
∂ ∂ ∂

 (B1.1) 

where =V  volume ( 3m ), F = flow rate ( hm /3 ), c  is concentration (moles 3/ m ),
D  is a dispersion coefficient ( hm /2 ),

cA  is the tank’s cross-sectional area ( 2m ), 

and γ  is the first-order decay coefficient ( 1−h ). Note that the dispersion terms are 

based on Fick’s first law,

     
x

c
DhmJ

∂
∂−== )(moles/Flux 4 , (B1.2) 

0=x Lx =

x x x+ ∆
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which is directly analogous to Fourier’s law for heat conduction. It specifies that 
turbulent mixing tends to move mass from regions of high to low concentration. The 
parameter D , therefore, reflects the magnitude of turbulent mixing.  

Use the above mass balance around a finite segment along the longitudinal axis of 
the cylindrical tank shown in Figure B1.1 to formulate a parabolic PDE. State 
clearly any modelling assumptions made in the formulation. Then consider the 
steady state solution of this equation. 

First of all, find an analytical solution of the ODE boundary-value problem. Then 
find a numerical solution using finite differences and compare with the exact 
solution for certain assumed values of the key parameters. Determine how the 
concentration of the chemical varies with distance along the longitudinal axis of the 
cylindrical reactor for a chemical which decays with first-order decay kinetics. 

Finally, validate the model by using the finite element method and draw conclusions. 

3. Model Formulation 

If x∆  and t∆  are allowed to approach zero, equation (B1.1) becomes 

     
2

2

c c c
D U c

t x x
γ∂ ∂ ∂= − −

∂ ∂ ∂
, (B1.3) 

where / cU F A=  is the velocity of the water flowing through the tank. The mass 

balance for Figure B1.1 is, therefore, now expressed as a parabolic partial 
differential equation. This equation (B1.3) is sometimes referred to as the advection-
dispersion equation with first-order reaction. At steady state, it is reduced to a 
second-order ODE, 

     
2

2
0

d c dc
D U c

dx dx
γ− − = . (B1.4) 

Prior to 0=t , the reactor is filled with water which contains no chemical. Starting 
from 0=t , the chemical is injected into the reactor’s inflow at a constant level of 

inc . Thus, the following boundary conditions hold: 

     
0

in 0 ,

( , ) 0.

c

dc
Fc Fc DA

dx

c L t

= −

′ =

 (B1.5) 

The second condition specifies that chemical leaves the reactor purely as a function 
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of flow through the outlet pipe. This means that it is assumed that dispersion in the 
reactor does not affect the exit rate. Under these conditions, we use numerical 
methods to solve equation (B1.4) for the steady-state levels in the reactor. Note that 
this is an ODE boundary-value problem.  

4. Mathematical/Numerical Solution 

4.1 ANALYTICAL SOLUTION 

To formulate a mathematical model we make the following assumptions: 

A1.Chemical being modelled is subject to first order decay. 
A2.The tank is well-mixed vertically and laterally. 
A3.Dispersion in the reactor does not affect the exit rate. 

At steady state, we have a second order ODE boundary-value problem. 

     
in

( ) ( ) 0,  0 ,

(0) (0),

( ) 0.
c

Dc x Uc x c x L

Fc Fc DA c

c L

γ′′ ′− − = < <
′= −

′ =

 (B1.6) 

Putting /cA F U= , the first boundary condition can be further simplified and 

equation (B1.6) becomes 

     
in

( ) ( ) 0,  0 ,

(0) (0),

( ) 0.

Dc x Uc x c x L

D
c c c

U

c L

γ′′ ′− − = < <

′= −

′ =

 (B1.7) 

To obtain the solution analytically, we assume the solution takes the form ( ) r xc x e= ,

resulting in the characteristic equation 

     2 0Dr Ur γ− − = . (B1.8) 

The discriminant 2 4U Dγ∆ = +  is always positive, the roots are real and the general 

solution can be represented as 

     xrxr eAeAxc 21
21)( += , (B1.9) 

where 
1A  and 

2A  are constants that can be determined from the initial conditions. 
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With the help of mathematical solver MAPLE, we obtain 

in

D

L

Uc
e

A
3%

2% 2
2%

1 = , (B1.10) 

in

D

L

Uc
e

A
3%

1% 2
1%

2 −= , (B1.11) 

D
r

2
1%

1 = ,  (B1.12) 

D
r

2
2%

2 = ,  (B1.13) 

%1 4U U Dγ= + + , (B1.14) 

%2 4U U Dγ= − + , (B1.15) 

%2 %2 %2
22 2 2

%1 %1 %1
22 2 2

%3 4 2

4 2 .

L L L

D D D

L L L

D D D

e U e U U D e D

e U e U U D e D

γ γ

γ γ

= − + +

− − + −

 (B1.16) 

The mass fluxes for the steady-state solution can be computed using Fick’s first law. 

Once we have the analytical form of )(xc , we can work out the analytical solution 

of mass fluxes by taking the first derivative of )(xc  with respect to x  and 

multiplying by D− . This yields 

     )( 21
2211

xrxr
erAerAD

dx

dc
DJ +−=−= . (B1.17) 

4.2 NUMERICAL SOLUTION 

One more assumption is made before carrying out the numerical approximation, 
namely,  

A4. At the reactor’s ends, this process introduces nodes that lie outside the system, 

i.e., 1−c  and 1+nc  are introduced. 

A steady state solution can be developed by substituting centered finite differences 
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for the first and the second derivatives to give 

     1 1 1 1
2

2
0

( ) 2
i i i i i

i

c c c c c
D U c

x x
γ+ − + −− + −− − =

∆ ∆
. (B1.18) 

Rearranging terms gives 

    
1 1

1 2 1
0

2 2i i i

D x D D
c c c

U x U U x U x

γ
− +

∆− + + + − − + =
∆ ∆ ∆

. (B1.19) 

This equation can be written for each of the system’s nodes. At the reactor’s ends, 
this process introduces nodes that lie outside the system. For example, at the inlet 
node ( 0=i ),

     
1 0 1

1 2 1
0

2 2

D x D D
c c c

U x U U x U x

γ
−

∆− + + + − − + =
∆ ∆ ∆

. (B1.20)  

The
1−c  can be removed by imposing the first boundary condition. At the inlet, the 

following mass balance must hold: 
     

     0
in 0 c

dc
Fc Fc DA

dx
= − , (B1.21) 

where 
0c  represents the concentration at 0=x . Thus, this boundary condition 

specifies that the amount of chemical carried into the tank by advection through the 
pipe must be equal to the amount carried away from the inlet by both advection and 
turbulent dispersion in the tank. A finite divided difference can be substituted for the 
derivative 

     1 1
in 0 2c

c c
Fc Fc DA

x

−−= −
∆

, (B1.22) 

which can be solved for 

     
0in11

22
c

D

xU
c

D

xU
cc

∆−∆+=−
, (B1.23) 

which can be substituted into (B1.20) to give  

     
0 1 in

2 2
2 2

x D xU D xU
c c c

U U x D U x D

γ∆ ∆ ∆+ + + − = +
∆ ∆

. (B1.24) 
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A similar exercise can be performed for the outlet, where the original difference 
equation is  

    
1 1

1 2 1
0

2 2n n n

D x D D
c c c

U x U U x U x

γ
− +

∆− + + + − − + =
∆ ∆ ∆

. (B1.25) 

The boundary condition at the outlet is 

     n
n c n

dc
Fc DA Fc

dx
− = . (B1.26) 

As with the inlet, a divided difference can be used to approximate the derivative, 

     1 1

2
n n

n c n

c c
Fc DA Fc

x

+ −−− =
∆

. (B1.27) 

Solving the equation (B1.27) gives 
11 −+ = nn cc . In other words, the slope at the outlet 

must be zero for equation (B1.27) to hold. Substituting this result into (B1.25) and 
simplifying gives 

     
1

2 2
0n n

D x D
c c

U x U U x

γ
−

∆− + + =
∆ ∆

. (B1.28) 

Equations (B1.19), (B1.24) and (B1.28) now form a system of n  tridiagonal 
equations with n  unknowns.  

For example, if 1D = , 1=U , 5.2=∆x , 0.2γ = , 100in =c  and 10=L , the system 

is

     

0

1

2

3

4

5.8 0.8 450

0.9 1.3 0.1 0

0.9 1.3 0.1 0

0.9 1.3 0.1 0

0.8 1.3 0

c

c

c

c

c

−
−

=−
−

−

,

which can be solved to give 
0 85.34c = ,

1 56.23c = ,
2 37.05c = ,

3 24.49c = ,

4 15.07c = .

Table B1.1 shows the concentration of the reactor at 0=x , 2.5, 5, 7.5 and 10 m 
respectively.



46 Project B1

Table B1.1. Concentration of the reactor at x = 0, 2.5, 5, 7.5, 10m. 

c  (moles 3/ m ) m0=x m5.2=x m5=x m5.7=x m10=x

Exact Solution 85.4102 55.7245 36.3626 23.8408 17.7334 
s125.0=∆x 85.4100 55.7259 36.3644 23.8417 17.7247 
s25.0=∆x 85.4095 55.7299 36.3697 23.8443 17.6987 
s5.2=∆x 85.3426 56.2335 37.0471 24.4888 15.0700 

These results (analytical and numerical) are plotted in Figure B1.2. As expected, the 
concentration decreases due to the decay reaction as the chemical flows through the 
tank. In addition to the above computation, Figure B1.2 shows another case with 

4=D . Notice how increasing the turbulent mixing tends to flatten the curve. 

Figure B1.2a. Concentration versus distance along the longitudinal axis of a cylindrical reactor for a 

chemical that decays with first-order decay kinetics with x = 0.25.

5. Model Validation

We attempt to solve the equation (B1.4) by the finite element method. Equation 
(B1.4) can be written as

     
2

2

d c dc
D U c

dx dx
γ− = . (B1.29)

Dividing equation (B1.29) by D  gives 
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2

2

d c U dc
c

dx D dx D

γ− = . (B1.30) 

Figure B1.2b. Concentration versus distance along the longitudinal axis of a cylindrical reactor for a 

chemical that decays with first-order decay kinetics with x = 0.125.

Let /p U D= − , /q Dγ= − , then equation (B1.30) becomes 

     0=+′+′′ qccpc , (B1.31) 

subject to boundary conditions  

     

=′

′−=

.0)(

),0()0(in

Lc

c
U

D
cc  (B1.32) 

The boundary conditions give 

     0)( =′ Lc , )()0( in0 ccpc −−=′ . (B1.33) 

Now we consider the discretization. Since the tank is assumed well-mixed vertically 
and laterally, therefore it is just a one-dimensional problem. We divide the tank into 
N  elements of length h  where 10Nh L= = . Thus, the system consists of N

elements and 1+N  nodes (see Figure B1.3). 
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Figure B1.3. The finite-element representation consisting of N  elements and 1N +  nodes. 

We multiply equation (B1.31) by a smooth function ( )v x  and integrate over the 

interval [0, ]L  to give 

     
0

( ) 0
L

c pc qc vdx′′ ′+ + = . (B1.34) 

Integrating equation (B1.34) by parts, we have 

    0 0 0 0

0 0 0
( ) ( ) (0) (0) 0.

L L LL

L L L

c v c v dx pc vdx qcvdx

c L v L c v c v dx p c vdx q cvdx

′ ′ ′ ′− + +

′ ′ ′ ′ ′= − − + + =
 (B1.35) 

Let

     
0

( ) ( )
N

j j

j

c x xα φ
=

= and )()( xxv iφ=  for  0,  1,  ,  i N= ,

and

     ( )i ic c x≈ , (B1.36) 

where  

     0, if ,
( )

1, if .i j

i j
x

i j
φ

≠
=

=

Therefore, equation (B1.35) can be written as 

     0
0 0

0 0
0 0

(0) (0)

0,

N N L

j j i j i j

j j

N NL L

j i j j i j

j j

dx

p dx q dx

α φ φ α φ φ

α φ φ α φ φ

= =

= =

′ ′ ′− −

′+ + =

 (B1.37) 

which can be solved for 

0x 1x 2x 2−Nx 1−Nx Nx
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0 in 0

0

0 0
0 0

( ) (0)

0.

N L

i j i j

j

N NL L

j i j j i j

j j

p c c dx

p dx q dx

φ α φ φ

α φ φ α φ φ

=

= =

′ ′− −

′+ + =

 (B1.38) 

Rearranging the terms of equation (B1.38), we have 

    
0 in0 0 0

0

(0) ( ) (0)
N L L L

i j i j i j i j i

j

p dx p dx q dx pcα φ α φ φ φ φ φ φ φ
=

′ ′ ′+ − + + = . (B1.39) 

Let

∈−
∈−

=
++

−−

),(,/)(

),(,/)(

11

11

kkk

kkk

k
xxxhxx

xxxhxx
φ ,

∈−
∈

=′
+

−

),(,/1

),(,/1

1

1

kk

kk

k
xxxh

xxxh
φ ,

for 1,  2,  ,  1k N= − .

Then, equation (B1.38) forms a system of equations which leads to  

     Ac b= ,  (B1.40)  

where  

     
0,0 ,

1

2 3N N

p qh
a a

h
= = − + + , (B1.41) 

     
3

22
,

qh

h
a ii +−= , 1,  2,  ,  1i N= − , (B1.42) 

     
62

1
1,

qhp

h
a ii +−=−

, 1,  2,  ,  1i N= − , (B1.43) 

     

     
62

1
1,

qhp

h
a ii ++=+

, 0,  1,  ,  2i N= − , (B1.44) 

     
0 inb pc= , (B1.45) 

     0=ib , 1,  2,  ,  i N= . (B1.46) 

For example, if 1D = , 1=U , 2.5h = , 0.2γ = , 100in =c  and 10=L , the system 

becomes 
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0

1

3

3

4

1.07 0.18 100

0.82 1.13 0.18 0

0.82 1.13 0.18 0

0.82 1.13 0.18 0

0.82 1.07 0

c

c

c

c

c

− − −
− −

=− −
− −

−

,

which can be solved by the Thomas algorithm to give  

0 84.31c = ,
1 54.95c = ,

2 35.87c = ,
3 23.00c = ,

4 17.61c = .

These results (by FDM and FEM) are plotted in Figure B1.4. As expected, the 
concentration decreases due to the decay reaction as the chemical flows through the 
tank.  

Figure B1.4. Concentration versus distance along the longitudinal axis of a cylindrical reactor for a 
chemical that decays with first-order decay kinetics with h = 0.25.

6. Interpretation and Conclusions 

Clearly there is excellent agreement between the analytical and numerical results 
presented in Section 4 and the finite element results in Section 5 particularly, if we 
bear in mind, that only 4 elements have been used in the finite element approach in 
Section 5. It is also important to consider the case where dispersion is decreased. In 
this case, the curve would become steeper as mixing becomes less important relative 
to advection and decay. It should be noted if dispersion is decreased too much, the 
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computation will become subject to numerical errors. This type of error is referred 
to as static instability. The criterion to avoid this static instability is  
    

     2D
h

U
≤ .

Thus, it becomes more stringent (lower h ) for cases where advection dominates 
over dispersion. 

Figure B1.5 shows the results for static instability with 1.0=D , 5U =  and 0.25h = .

The mass fluxes for the steady state can be developed by substituting centered finite 
differences for the first derivative in the dispersion term, to give 

     1 1

2
i i

i

c c
J D

h

+ −−= − . (B1.47) 

At the inlet node ( 0=i ),

     1 1
0 2

c c
J D

h

−−= − . (B1.48) 

1−c  can be removed by invoking the first boundary condition, which can be 

substituted to give 

     
0in0 UcUcJ −= . (B1.49) 

A similar exercise can be performed for the outlet, where the original differential 
equation gives 

     1 1

2
n n

n

c c
J D

h

+ −−= − . (B1.50) 

From the inspection of second boundary conditions we are led to conclude that 

11 −+ = nn cc . In other words, mass fluxes 0=nJ  at the outlet. These results (analytical 

and numerical) are plotted in Figure B1.6 with 1, 4D = , 1=U  and 0.25h = .

7. Computer Algorithms 

The computer algorithm used in Section 4.2 for the numerical solution simply 
involves finite difference discretization of the ODE together with solution of the 
resulting tridiagonal system of linear equations by the Thomas algorithm. 
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Figure B1.5. Concentration versus distance along the longitudinal axis of a cylindrical reactor for a 

chemical that decays with first-order decay kinetics subject to static instability. 

A matrix A  which has non-zero entries only on the diagonal, super-diagonal and the 
sub-diagonal is called a tridiagonal matrix. Such a matrix is commonly used in the 
numerical solution of differential equations. To solve such a system by traditional 
Gaussian elimination involves 3( / 3)O n  operations. This is inefficient because the 

matrix itself is sparse, that is, contains many zero entries. In the following, we  
present an efficient algorithm to deal with such a system which involves only ( )O n

operations. 

Algorithm (Thomas algorithm): A tridiagonal system takes the form 

     

1 1 1 1

2 2 2 2 2

3 3

1 1 1

0 0

0 0 .

0 0
n n n

n n n n

x b

x b

Ax

x b

x b

α γ
β α γ

β α
γ

β α
− − −

= =
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Figure B1.6. Mass fluxes versus distance along the longitudinal axis of a cylindrical reactor for a 

chemical that decays with first-order decay kinetics. 

Applying LU decomposition of A , we have 

1 1 1 1

2 2 2 2 2 2

3 3 3 3

1 1

0 0 0 0 0 1 0 0

0 0 1

0 0 0 0 .0 0 1 0

0

0 0 0 0 0 0 0 1
n n

n n n n

l

l

A l

l

α γ µ
β α γ β µ

β α β
γ µ

β α β
− −

= =

This is equivalent to  
     

     
1 1

1

,

,  2,  3, ,  ,

,  1,  2,  ,  1.
i i i i

i i i

l

l i n

l i n

α
α β µ
µ γ

−

=
= + =
= = −

     
The solution can be found efficiently by forward and back substitution 

     1 1 1 1

1

/ ,  ( ) / ,  2,  3,  ,  ,

,  ( ) / ,  1,  2,  ,  1.
i i i i i

n n i i i i i

z b l z b z l i n

x z x z z l i n

β
µ

−

+

= = − =
= = − = −
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Project B2

THE FREE AND FORCED VIBRATION OF AN 

AUTOMOBILE

SUMMARY: This project considers the free and forced vibrations of an automobile 
supported by springs and shock absorbers. By using Newton’s second law of motion, 
a mathematical model is formulated taking into account the damping force and the 
spring force. The case where the car is subject to periodic force is analyzed in detail. 
In this way it is possible to examine how the amplitude magnification factor varies 
with the ratio of the forcing and natural frequencies for a range of damping factors. 

The realistic problem of determining the stability of a proposed design which has 
good comfort on rough roads in then considered. Of course, a number of modelling 
assumptions, including the use of realistic data, are required to achieve meaningful 
results. The numerical results are validated using MAPLE and MATLAB. 

1. Background  

Differential equations are often used to model the vibration of engineering systems. 
Some examples are a simple pendulum, a mass on a spring, and an inductance-
capacitance electric circuit. The vibration of these systems may be damped by some 
energy-absorbing mechanism. In addition, the vibration may be free or subject to 
some external periodic disturbance. In the latter case the motion is said to be forced. 
In this project, we will examine the free and forced vibration of an automobile. The 
general approach is applicable to various other engineering problems. 

2. Problem Statement 

Examine the free and forced vibration of an automobile. Develop a mathematical 
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model in the form of an ODE to represent the motion of the system. 

Find a mathematical solution for systems which are (i) overdamped, (ii) 
underdamped, (iii) critically damped. Use x  to represent the distance from the 
equilibrium position. 

Now consider the case where the car is subject to a periodic force with forcing 
frequency ω  given by sinmP P tω=  or sinmd d tω= , where /m md P k= =  the static 

deflection of the car subject to a force 
mP  and k  is the spring constant. Find an 

expression for the amplitude magnification factor denoted by /m mx d . Produce a 

graph to show a plot of magnification factor as a function of /ω p  for various 

damping factors, where p  represents the natural frequency of the undamped free 

vibration. 

Determine the stability of a proposed design that has good comfort on rough roads. 
Assume the mass of the car is 61.2 10m = ×  and it has a shock system with a 
damping coefficient of 71 10c = × . Further assume that the public’s expectation of 
comfort is satisfied if the free vibration of the car is underdamped and the first 
crossing of the equilibrium position takes place in 0.05 sec. The stability of the car is 
considered satisfactory if at steady state the maximum distance 

mx d=  is below 

0.2m for all driving speeds. 

Use MAPLE where possible to validate the numerical results. 

3. Model Formulation 

     

     Figure B2.1. An automobile of mass m.

As shown in Figure B2.1, an automobile of mass m  is supported by springs and 
shock absorbers. Shock absorbers offer resistance to the motion that is proportional 
to the vertical speed (up-and-down motion). Free vibrations result when the car is 
disturbed from equilibrium, such as after encountering a pothole. At any instant after 
hitting the pothole the net forces acting on the mass m  are the resistance of the 
springs and the damping force of the shock absorbers. These forces tend to return 
the car to the original equilibrium state. According to Hooke’s law, the resistance of 
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the spring is proportional to the spring constant k  and the distance from the 
equilibrium position, x . Therefore, 

     Spring force kx−= , (B2.1) 

where the negative sign indicates that the restoring force acts to return the car 
towards the position of equilibrium (that is, the negative x  direction). The damping 
force of the shock absorbers is given by 

     Damping force
dx

c
dt

= − , (B2.2) 

where c  is a damping coefficient and dtdx /  is the vertical velocity. The negative 
sign indicates that the damping force acts in the opposite direction against the 
velocity.

The equations of motion for the system are given by Newton’s second law 
( maF = ), which for the present project is expressed as 

     
2

2
( )

mass acceleration damping force spring force

d x dx
m c kx

dt dt
= − + −

× = +

 (B2.3) 

or

     0
2

2

=++ kx
dt

dx
c

dt

xd
m . (B2.4) 

4. Mathematical/Numerical Solution 

4.1 MATHEMATICAL SOLUTION 

If we assume that the solution takes the form rtetx =)( , we can write the 

characteristic equation as 

     02 =++ kcrmr . (B2.5) 

The unknown, r , is the solution of the quadratic characteristic equation that can be 
obtained either analytically or numerically. In this design problem, we will first use 
the analytical solution to give us general insight into the way the system motion is 
affected by the model coefficients m , c  and k . We will also use numerical methods 
to obtain solutions and check the accuracy of the results using the analytical solution.  



58 Project B2 

The solution of equation (B2.5) for r  is given by the quadratic formula 

     
m

mkcc

r

r

2

42

2

1 −±−= . (B2.6) 

Note the significance of magnitude of c  compared to km2 . If kmc 2> ,
1r  and 

2r  are negative real numbers, and the solution is of the form 

     trtr
BeAetx 21)( += , (B2.7) 

where A  and B  are constants to be determined from the initial conditions of x  and 
dtdx / . Such systems are called overdamped.

If kmc 2< , the roots are complex, 

     i
r

r
µλ ±=

2

1 ,

where  

     
2| 4 |

2
µ −

=
c mk

m

and the solution is of the form 

     )sincos()( tBtAetx t µµλ += − . (B2.8) 

Such systems are called underdamped.

Finally, if kmc 2= , the characteristic equation has a double root and the solution 
is of the form 

     teBtAtx λ−+= )()( , (B2.9) 

where 
     

     
m

c

2
=λ .

Such systems are called critically damped.
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In all three cases, )(tx  approaches zero as t  approaches infinity. This means that the 

car always returns to the equilibrium position after encountering the pothole. 

The critical damping coefficient 
cc  is the value of c  that makes the radical in 

equation (B2.6) equal to zero, 

     kmcc 2=  or mpcc 2= , (B2.10) 

where 

     
m

k
p = . (B2.11) 

The ratio 
ccc /  is called the damping factor and p  is called the natural frequency of 

the undamped free vibration. 

Now, let us consider the case where the car is subject to a periodic force given by  

     tPP m ωsin=  or tdd m ωsin=  (B2.12) 

where == kPd mm / the static deflection of the car subject to a force 
mP . The 

governing differential equation for this case is 

     
2

2
sin .m

d x dx
m c kx P t

dt dt
ω+ + =  (B2.13) 

The general solution of this equation is obtained by adding a particular solution to 
the free vibration solution given by equations (B2.7)–(B2.9). Let us consider the 
steady-state motion of the forced system where the initial transient motion has been 
damped out. We assume that this steady-state solution has the form 

     ( ) sin( )mx t x tω φ= − . (B2.14) 

Hence

     

2
2

2

( ) (sin cos cos sin )

(cos cos sin sin )

(sin cos cos sin ).

m

m

m

x t x t t

dx
x t t

dt

d x
x t t

dt

ω φ ω φ

ω ω φ ω φ

ω ω φ ω φ

= −

= +

= − −
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Substitution into equation (B2.13) leads to  

2 (sin cos cos sin ) (cos cos sin sin )

(sin cos cos sin ) sin
m m

m m

m x t t c x t t

kx t t P t

ω ω φ ω φ ω ω φ ω φ
ω φ ω φ ω

− − + +
+ − =

and so  

     
2

2

( ) cos sin

( ) sin cos 0.

m m m

m m

k m x c x P

k m x c x

ω φ ω φ
ω φ ω φ

− + =

− − + =
 (B2.15) 

From the second equation of (B2.15) we have 

     
2( )sin

cos .
k m

c

ω φφ
ω

−=  (B2.16) 

Substituting this into the first equation of (B2.15) yields 

     
2 2( )

sinm m

k m
c x P

c

ω ω φ
ω

− + =

and hence 

     
2 2 2 2

sin .
[( ) ]

m
m

c P
x

k m c

ωφ
ω ω

=
− +

This means that equation (B2.16) gives 

     
2

2 2 2 2

( )
cos .

( )
m

m

k m P
x

k m c

ωφ
ω ω
−=

− +

Since

     2 2 2 2 2sin cos ,m m mx x xφ φ+ =

we have 

     

22 2
2

2 2 2 2 2 2 2 2

2

2 2 2 2

( )

( ) ( )

( )

m m
m

m

c P k m P
x

k m c k m c

P

k m c

ω ω
ω ω ω ω

ω ω

−= +
− + − +

=
− +
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and hence 

     
2 2 2 2

1
.

( )
m

m

x

P k m cω ω
=

− +

Using equations (B2.10) and (B2.11) we obtain 

     
2 2 2 2

1

(1 ( ) ) 4( ) ( )
c

m

c
m p c p

x

P k ω ω
=

− +

and hence 

     
2 2 2 2

1

(1 ( ) ) 4( ) ( )
c

m

c
m p c p

x

d ω ω
=

− +
. (B2.17) 

The quantity,
mm dx / , called the amplitude magnification factor, depends only on the 

ratio of the actual damping to the critical damping and the ratio of the forcing 
frequency to the natural frequency. Note that when the forcing frequency ω
approaches zero, the magnification factor approaches 1. Also if the system is lightly 
damped, that is, if 

ccc /  is small, then the magnification factor becomes large if ω  is 

close to p . If the damping is zero, then the magnification factor becomes infinite 

when p=ω , and the forcing function is said to be in resonance with the system. 

Finally, as p/ω  becomes very large, the magnification factor approaches zero. 

Figure B2.2 shows a plot of magnification factor as a function of p/ω  for various 

damping factors. 

Figure B2.2. A plot of magnification factor as a function of ω/p for various damping factors. 
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Observe that the magnification factor may be kept small by choosing a large 
damping factor or by keeping the natural and the forced frequencies far apart. 

The design of the car suspension system involves a trade-off between comfort and 
stability for all driving conditions and speeds. We are asked to determine the 
stability of a proposed design that has good comfort on rough roads. The mass of the 
car is 6102.1 ×=m , and it has a shock system with a damping coefficient of 

7101×=c .

Assume that the public’s expectation of comfort is satisfied if the free vibration of 
the car is underdamped and the first crossing of the equilibrium position takes place 
in s05.0 . If, at 0=t , the car is suddenly displaced, 

0x , from equilibrium and the 

velocity is zero )0/( =dtdx , the solution of the equation of motion is given by 

equation (B2.8), with 
0=A x  and 

0 /λ µ=B x . Therefore 

     
0( ) (cos sin )tx t x e t tλ λ

µµ µ−= + .

Our design conditions are met if  

     ( ) 0 cos(0.05 ) sin(0.05 )x t
λµ µ
µ

= = +

or

   
2 2

2 22
0 cos 0.05 sin 0.05 .

4 44

k c c k c

m m m mkm c
= − + −

−
 (B2.18) 

Since c  and m  are given, our design problem reduces to finding an appropriate 
value of k  that satisfies equation (B2.18). 

4.2 NUMERICAL SOLUTION 

Equation (B2.18) can be solved using the methods of bisection or false-position 
because these methods do not require the evaluation of the derivative of equation 
(B2.18), which might be considered a bit inconvenient for this problem. The 
solution is 910397.1 ×=k , with 12 iterations of the bisection method with an initial 
bracket from 9101×=k  to 9102×=k .

Although this design satisfies our free vibration requirements (after hitting the 
pothole), it must also be tested under rough road conditions. The surface of the road 
can be approximated by 
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     )/2sin( Dxdd m π= ,

where d  is the deflection, 
md  is the maximum deflection of 0.1m, and D  is the 

distance between peaks equal to 20m. If the horizontal speed of the car (m/s) is v ,
then the overall equation of motion for the system can be written as 

     )
2

sin(
2

2

t
D

v
kdkx

dt

dx
c

dt

xd
m m

π=++ ,

where Dv /2πω =  is the forcing frequency.

The stability of the car is considered satisfactory if at steady state the maximum 
distance

mdx =  is below 0.2m for all driving speeds. The damping factor is 

calculated according to equation (B2.10), 

     
7

9 6

1 10
0.1221

2 2 (1.397 10 )(1.2 10 )c

c c

c km

×= = =
× ×

.

Now, we seek values of p/ω  that satisfy equation (B2.17), namely, 

     
     

+−

=
2

2

2

2

2

)1221.0(41

1
2

pp

ωω

. (B2.19) 

When equation (B2.19) is expressed as a roots problem, 

     01)1221.0(412
2

2

2

2

2

=−+−=
ppp

f
ωωω , (B2.20) 

we see that values of p/ω  can be determined by finding the roots of equation 

(B2.20). 

A plot of equation (B2.20) is shown in Figure B2.3. This plot shows that equation 
(B2.20) has two positive roots that can be determined by the bisection method using 
MATLAB. The smaller value for p/ω  is found to equal 0.7300 in 18 iterations, 

with an estimated error of 0.000525% with lower and upper guesses of 0 and 1. The 
higher value of p/ω  is found to be 1.1864 in 17 iterations, with an estimated error 

of 0.00064% with lower and upper guesses of 1 and 2. 
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Figure B2.3. A plot of magnification factor as a function of ω/p for various damping factors. 

It is also possible to express equation (B2.19) as a polynomial equation 

     
4 2

1.9404 0.75 0
ω ω− + =
p p

. (B2.21) 

This validates the result obtained using bisection. It also suggests that, although it 
superficially appears to be a fourth-order equation in p/ω , equation (B2.21) is 

actually a quadratic equation in 2)/( pω .

The value of the natural frequency p  is given by equation (B2.11), namely, 

     
9

1
6

1.397 10
34.12 .

1.2 10
p s−×= =

×

The forcing frequencies, for which the maximum deflection is 0.2m, are then 
calculated as 

     
, 48.40)12.34(1864.1

 91.24)12.34(7300.0
1

1

−

−

==
==

s

s

ω
ω

     
which yield, using the equation 

     
2

D
v

ω
π

=
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velocities of 285km/h and 464km/hr, respectively.   

5. Model Validation 

Both MATLAB and MAPLE been used to validate the numerical results in Section 
4.2. For example, the values of / pω  from equation (B2.20) are obtained by 

MAPLE in Figure B2.4. 

> m:=1.2*10^6;
c:=1*10^7;
k:=fsolve(cos(0.05*sqrt(k/m-c^2/(4*m^2)))+c*sin(0.05*sqrt(k/m-
c^2/(4*m^2)))/sqrt(4*k*m-c^2),k);
c_c:=2*sqrt(k*m);
p:=sqrt(k/m);
solve({2*sqrt((1-x^2)^2+4*(c/c_c)^2*x^2)-1,x>0});

:=m 0.12000000 107

:=c 10000000
:=k 0.1396991571 1010

:=c_c 0.8188748098 108

:=p 34.11978373
,{ } = x 0.7299772551 { }= x 1.186373134

Figure B2.4. MAPLE validation of values of / pω  from equation (B2.20). 

This project has examined the free and forced vibration of an automobile. It has 
dealt with the cases which are (i) overdamped, (ii) underdamped and (iii) critically 
damped. The case where the car is subject to a periodic force is investigated in detail. 
Consequently consideration has been given to the stability of a proposed design 
which has good comfort on rough roads. 

Thus, using the above results and Figure B2.3, it is found that the proposed car 
design will behave acceptably for common driving speeds. At this point, the 
designer must be aware that the design would not meet suitability requirements at 
extremely high speeds (e.g., racing). 

This design problem has allowed us to obtain some analytical results that were used 
to validate the accuracy of our numerical methods for finding roots. Real cases are 
normally more complicated which means that solutions can be obtained only by 
using numerical methods. 

6. Interpretation and Conclusions 

This project shows the importance of differential equations in the modelling of the 
vibration of an engineering system. In this case the system is an automobile 
supported by springs and shock absorbers. The shock absorbers offer resistance to 
the motion and free vibrations result when the car is disturbed from equilibrium, e.g., 
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encountering a pothole in the road. It has been possible to devise a mathematical 
model for the system using both Hooke’s law and Newton’s second law of motion. 
This project includes a detailed analysis for the case when the car is subject to a 
periodic force. As a result graphs can be plotted to show how the amplitude 
magnification factor depends on the ratio of the actual damping to the critical 
damping and the ratio of the forcing frequency to the natural frequency. A realistic 
case has been considered which looked at the stability of a proposed design which 
leads to good comfort on rough roads. 

This work is relevant to the vibration of other types of engineering systems. 
Examples include the simple pendulum, a mass-spring system and electric circuits 
involving inductance and capacitance. The vibration of all of these systems may be 
damped by some energy absorbing mechanism. Also, the vibration may be free or 
subject to some external periodic disturbance. In the latter case, the motion is said to 
be forced. 

7. Computer Algorithms 

The computer algebraic systems MAPLE and MATLAB were sufficient to handle 
the numerical aspects of this project. 
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CANTILEVER BEAM SUBJECTED TO AN END 

LOAD

SUMMARY: This project investigates the mathematical modelling of a beam which 
is either imbedded at both ends or free at one end. The model involves a fourth-
order ODE together with boundary conditions which depend on the manner in which 
the beam is supported. Analytical solutions are obtained for a number of test cases. 

The particular case of a steel cantilever beam subjected to an end load is then 
investigated by using both analytical and numerical techniques. The deflection of 
the beam obtained by an analytical approach is validated by using finite difference 
methods and suggestions are given on possible finite element approaches.  

1. Background  

Consider a horizontal beam AB  as shown in Figure B3.1 with the assumption that 
the beam is uniform in cross section and of homogeneous material. If there is no 
load, the axis of symmetry is the straight line which is indicated by the solid line.  

Figure B3.1. A horizontal beam. 

However, when there are external loadings, the beam is distorted and the result is a 
curve called the deflection curve or elastic curve. Beams can be supported in many 
ways. A cantilever beam has one end rigidly fixed while the other end is free to 
move as shown in Figure B3.2(a). A beam which is supported at both ends A  and B

is called a simply supported beam (see Figure B3.2 (b)).  

A B
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Figure B3.2(a). A cantilever beam. (b) A simply supported beam.

Using calculus and the Bernoulli-Euler law, it is possible to develop a governing 
differential equation to represent the deflection of the beam. Also, it is possible to 
formulate boundary conditions associated with this differential equation which 
depend on the manner in which the beam is supported. 

2. Problem Statement 

Consider first the general problem of deflection of beams. Show that the deflection 
( )y x  of a beam of length l  subjected to a vertical load ( )W x such that x  denotes the 

distance from one end, satisfies the differential equation: 

     
4

4
( ),  0 ,

d y
EI W x x l

dx
= < <  (B3.1) 

where the modulus of elasticity ( E ) and moment of inertia ( I ) are known constants 
for a particular beam. 

Discuss the possible boundary conditions for problems of this type. 

Determine the deflection ( )y x  of the beam in the following cases: 

(a) A constant load 
0W  is distributed uniformly along its length 0 x l≤ ≤  and the 

beam is imbedded at both ends 0x =  and x l= .

(b)     0

2
1 , 0 ,

2( )

0 ,  ,
2

l
W x x

l
W x

l
x l

− < <
=

< <

 (B3.2) 

 and the beam is imbedded at both ends 0x =  and x l= .
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(c) A constant load 
0W  is distributed uniformly along its length 0 x l≤ ≤  and the 

beam is imbedded at 0x =  and free at x l= .

(d) A load 
0W  is concentrated at x l=  and the beam is imbedded at 0x =  and free 

at x l= .

Now consider the particular case of a steel cantilever beam subjected to an end load 
of 35,000N (see Figure B3.3 later). Assume the following data: 

Modulus of elasticity, E  = 0.210N/m2

Breadth of beam, b  = 0.04m 
Depth of beam, d  = 0.20m 
Overall length of beam, l  = 1.00m 
Load on the beam, 

0W  = 35,000N 

Poisson’s ratio, v  = 0.25 

Formulate a mathematical model stating clearly any assumptions made. Hence find 
the maximum deflection,

maxy , of the cantilever beam together with the bending 

moment, M , and the maximum stress, 
maxσ . Comment on the accuracy of this value 

of 
maxy  and suggest how it can be improved. Validate the model by using a finite 

difference approximation and suggest possible finite element approaches. 

3. Model Formulation 

To formulate a mathematical model and develop the governing differential equation, 
we consider here a cantilever beam which is built-in at the end 0x = , and the end 
x l=  is free to move. The deflection y  is measured positive downward as shown in 

Figure B3.2 (a). 

The Bernoulli-Euler law states that the curvature ρ  of the beam is proportional to 

the bending moment M , i.e.,  

     Mρα

or

    M

EI
ρ = , (B3.3) 

where E  is the Young’s modulus of elasticity and depends on the material used in 
designing the beam and I  is the moment of inertia of the cross-section of the beam 
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at x  with respect to a horizontal line passing through the centre of gravity of this 
cross-section. The quantity EI  is a measure of the flexural rigidity of the beam. 

From the calculus, the curvature is given by 

    2

22

1
.

1

d y

dxdy

dx

ρ = ⋅
+

 (B3.4) 

If the deflection y  is small, then so is the slope dy

dx
 and therefore the curvature is 

approximately equal to 
2

2

d y

dx
.

Thus, from equations (B3.3) and (B3.4), we have 

    
2

2

d y M

dx EI
= . (B3.5) 

But, the shear force S  is given by 

    dM
S

dx
=  (B3.6) 

and the load per unit length of the beam, ( )W x , is related to the shear force by

     ( )
dS

W x
dx

= . (B3.7) 

If there is no other load on the beam, then  

     
2 2 2

2 2 2
( )

dS d M d d y
W x EI

dx dx dx dx
= = = , (B3.8) 

which is subsequently written as 

     
4

4

( )
,  0 ,

d y W x
x l

dx EI
= < <  (B3.9) 

where E  and I  are given constants. 
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This is a fourth-order differential equation, the general solution of which will 
contain four arbitrary constants. Therefore, four boundary conditions must be given. 

For the problem considered here, the following conditions would be suitable: 

At 0x = :   (0) 0y =  (B3.10) 

     (0) 0y′ =  (B3.11) 

At x l= :   ( ) 0y l′′ =  (B3.12) 

     ( ) 0y l′′′ = , (B3.13) 

where y′ , y′′  and y′′′  denote the first, second and third derivatives of y  with 

respect to x .

Conditions (B3.10) and (B3.11) state that there is no deflection at the built-in or 
imbedded end, 0x = , and the slope of the tangent to the elastic curve at 0x =  is 
zero, respectively. Also, conditions (B3.12) and (B3.13) are obtained from the fact 
that the curvature of the elastic curve is zero at the free end, x l= , and the shearing 
force vanishes at the free end, x l= , respectively. 

In general, the boundary conditions associated with the differential equation (B3.9) 
depend on the manner in which the beam is supported. The most common boundary 
conditions are as follows: 

(1) Fixed end, built-in, imbedded, clamped end 

     0y y′= = .

(2) Hinged or simply supported end 

     0y y′′= = .

(3) Free end 

     0y y′′ ′′′= = .

This problem is an example of a two point boundary value problem in contrast to the 
initial value problem in which conditions are specified at a single point. 
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4. Mathematical Solution 

4.1 TEST EXAMPLE (A) 

In this case a constant load 
0W  is distributed uniformly along the length of the beam, 

0 x l≤ ≤ , and the beam is imbedded at both ends, 0x =  and x l= .

In this case, the deflection ( )y x  must satisfy the boundary conditions: 

     (0) 0y = , ( ) 0y l = , (0) 0y′ = , ( ) 0y l′ = . (B3.14) 

The first two conditions indicate that there is no vertical deflection at the ends; the 
last two conditions mean that the line of the deflection is horizontal (zero slope) at 
the ends. 

Since a constant load 
0W  is uniformly distributed along the beam, we have 

     
0( ) ,  0 .W x W x l= < <  (B3.15) 

One possible approach is to use Laplace transforms. Transforming the equation 
(B3.9) gives 

     4 3 2 0( ) (0) (0) (0) (0)
W

s Y s s y s y sy y
EIs

′ ′′ ′′′− − − − = ,  (B3.16) 

where ( ) { ( )}Y s y x≡ .

Taking (0)A y′′=  and (0)B y′′′= , then 

     0
3 4 5

( )
WA B

Y s
s s EIs

≡ + +

since (0) (0) 0y y′= =  from equation (B3.14). 

Inverting gives 

1 1 10
3 4 5

42 3
0

2! 3! 4!
( )

2! 3! 4!

,
2 6 24

WA B
y x

s s EI s

W xAx Bx

EI

− − −= + +

= + +
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where 1−  denotes the inverse Laplace transform. 

Applying the given conditions ( ) ( ) 0y l y l′= =  gives 

42 3
0

32
0

0
2 6 24

0.
2 6

W lAl Bl

EI

W lBl
Al

EI

+ + =

+ + =

Solving gives 
2

0

12

W l
A

EI
=  and 0

2

W l
B

EI
= − .

Hence

     

2 2 3 4
0 0 0

2 2
0

( )
24 12 24

( )
.

24

W l x W lx W x
y x

EI EI EI

W x x l

EI

= − +

−=

 (B3.16) 

4.2 TEST EXAMPLE (B) 

In this case the distribution of the load, ( )W x , along the beam  is given by equation 

(B3.2) and the boundary conditions are as follows: 

     (0) 0,  (0) 0,  ( ) 0,  ( ) 0.y y y l y l′ ′= = = =  (B3.17) 

Using the unit step function ( )U x , where  

     0 ,  0
( )

1 ,  0,

x
U x

x

<
=

>
 (B3.18) 

we can write 

     
0 0

2 2
( ) 1 1

2

x x l
W x W W U x

l l
= − − − −

from equation (B3.2). Hence 

     02
( ) .

2 2 2

W l l l
W x x x U x

l
= − + − −
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So our governing differential equation becomes 

     
4

0
4

2
.

2 2 2

Wd y l l l
x x U x

dx EIl
= − + − −  (B3.19) 

Taking Laplace transforms gives 

     

4 3 2

0 2
2 2

( ) (0) (0) (0) (0)

2 1 1
,

2

ls

s Y s s y s y sy y

W l
e

EIl s s s

−

′ ′′ ′′′− − − −

= − +

where { ( )} ( )y x Y s≡ .

Taking (0)A y′′=  and (0)B y′′′≡ , then  

     0 2
3 4 5 6 6

2 1 1
( )

2

ls
WA B l

Y s e
s s EIl s s s

−
≡ + + − +

since (0) (0) 0y y′= =  from equation (B3.17). 

Inverting gives 

1 1
3 4

1 1 10 2
5 6 6

52 3 4
50

2! 3!
( )

2! 3!

2 4! 1 5! 1 5!

2 4! 5! 5!

5
,

2 6 60 2 2 2

ls

A B
y x

s s

W l
e

EIl x s s s

WAx Bx lx l l
x x U x

EIl

− −

−− − −

= +

+ − +

= + + − + − −

where 1−  denotes the inverse Laplace transform. 

Applying the given conditions ( ) ( ) 0y l y l′= =  gives 

42 3
0

32
0

49
0

2 6 1920

85
0.

2 960

W lAl Bl

EI

W lBl
Al

EI

+ + =

+ + =
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Solving gives 
2

023

960

W l
A

EI
=  and 09

40

W l
B

EI
= − .

Hence

     

2 2 3
0 0

54
50

23 3
( )

1920 80

5
.

60 2 2 2

W l x W lx
y x

EI EI

W lx l l
x x U x

EIl

= −

+ − + − −

 (B3.20) 

4.3 TEST EXAMPLE (C) 

In this case a constant load 
0W  is distributed uniformly along the length of the beam, 

0 x l≤ ≤ , and the beam is imbedded at 0x =  and free at x l= .

In this case the deflection ( )y x  must satisfy the boundary conditions: 

     (0) 0,  (0) 0,  ( ) 0,  ( ) 0.y y y l y l′ ′′ ′′′= = = =  (B3.21) 

Again, we could use Laplace transforms, but in this case it is possibly easier to 
simply integrate the governing differential equation 

     
4

0
4

Wd y

dx EI
=  (B3.22) 

and impose the boundary conditions given in equation (B3.21). Integration of 
equation (B3.22) gives 

     0 .
W x

y A
EI

′′′ = +

Using condition ( ) 0y l′′′ =  gives 

     0 .
W l

A
EI

= −

Integrating again gives 

     20 .
2

W
y x Ax B

EI
′′ = + +
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Using condition ( ) 0y l′′ =  gives 

     
2 2 2

0 0 0 .
2 2

W l W l W l
B

EI EI EI
= − + =

Integrating again gives 

     
3 2

0 .
6 2

W x Ax
y Bx C

EI
′ = + + +

Using condition (0)y′  yields 

      0C =

and the final integration gives 

     
4 3 2

0 .
24 6 2

W x Ax Bx
y D

EI
= + + +

The condition (0) 0y =  yields 

     0D = .

Thus the solution can be written as 

     

4 3 2 2
0 0 0

4 3 2 20

( )
24 6 4

( 4 6 ).
24

W x W lx W l x
y x

EI EI EI

W
x lx l x

EI

= − +

= − +

 (B3.23) 

Hence the deflection at the free end, x l= , is given by 

     
4

4 4 40 0( 4 6 ) .
24 8

W W l
y l l l

EI EI
= − + =  (B3.24) 

4.4 TEST EXAMPLE (D) 

In this case a load 
0W  is concentrated at x l=  which means that we must introduce 

the unit impulse or Dirac delta function ( )x lδ − , defined by 
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0

1
( ) lim { ( ) ( )} .x l U x U x l

ε
δ

ε→
− = − −  (B3.25) 

This means that ( ) 0x lδ − =  for all x l≠  and that  

     ( ) 1.x l dxδ
∞

−∞
− =

Hence, the governing differential equation in this case is  

     
4

0
4

( )
Wd y

x l
dx EI

δ= −  (B3.26) 

and the boundary conditions are as follows: 

     (0) 0,  (0) 0,  ( ) 0,  ( ) 0.y y y l y l′ ′′ ′′′= = = =  (B3.27) 

Again, applying Laplace transforms gives 

     4 3 2 0( ) (0) (0) (0) (0) ,slW
s Y s s y s y sy y e

EI

−′ ′′ ′′′− − − − =

where ( ) { ( )}Y s y x≡ .

Taking (0)A y′′=  and (0)B y′′′≡ , then  

     0
3 4 4

( ) slWA B
Y s e

s s EIs

−≡ + +

since (0) (0) 0y y′= =  from equation (B3.27). 

Inverting gives 

1 1 10
3 4 4

32 3
0

2! 3! 3!
( )

2! 3! 3!

( )
,

2 6 6

slWA B e
y x

s s EI s

W x lAx Bx

EI

−
− − −= + +

−= + +

where 1−  denotes the inverse Laplace transform. 
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Applying the given conditions ( ) ( ) 0y l y l′′ ′′′= =  gives 

0

0

0.

A Bl

W
B

EI

+ =

+ =

Solving gives 0W l
A

EI
=  and 0W

B
EI

= − .

Hence

     
2 3 3 2

0 0 0 0( ) (3 )
( ) .

2 6 6 6

W lx W x W x l W x l x
y x

EI EI EIl EI

− −= − + =  (B3.28) 

The deflection at the free end, x l= , is given by 

     
3

0 .
3

W l
y

EI
=  (B3.29) 

4.5 STEEL CANTILEVER BEAM SUBJECTED TO AN END LOAD 

Now we consider the realistic case of a steel cantilever beam subjected to an end 
load of 35,000N (see Figure B3.3). In Test Example (D) in Section 4.4 we have 
found analytically an expression for the deflection ( )y x  of the beam at a distance x

along the beam, namely 

     
2

0( ) (3 )
6

W x
y x l x

EI
= − , (B3.30) 

with the maximum deflection occurring at the end at which the load is applied and 
given by  

     
3

max .
3

Wl
y

EI
=  (B3.31) 

In this realistic problem, we use the following data: 

Modulus of elasticity, E  = 210,000N/mm2

Load on the beam, 
0W  = 35,000N 

Overall length of beam, l  = 1,000mm. 
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The moment of inertia, I , of the cross-section about the neutral axis is given by 

     
2

12

bd
I = , (B3.32) 

     Figure B3.3. Steel cantilever beam subjected to an end load.

where  

     breadth of beam (40mm)

depth of beam (200mm).

b

d

=
=

Hence, the moment of inertia is given by 

     
3

4(40)(200)
mm

12
I =

and so the maximum deflection is 

     
3

max 4 3

35,000 (1000) 12

3 21 10 40 (200)

2.083mm.

y
× ×=

× × × ×
=

In the above analysis it is assumed that the applied load produces a distortion in pure 
bending only. However, shear stresses act across the cross-section and these produce 
an additional deflection of the centroid of the end section. This small additional 
deflection due to shear has been ignored in the above calculation. 

200mm

2210000N/mmE =

35000N

40mm

1000mm
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The bending moment M  is given by 

     
2

2
,

d y
M EI

dx
= −  (B3.33) 

where from equation (B3.30) 

     
2

0
2

( )
Wd y

l x
dx EI

= −

and so 
     

0 ( )M W l x= − − . (B3.34) 

At 0x = , 6
0 35 10 NmmM W l= − = × .

The maximum stress occurs when 0x =  and is given by  

     
max 2

6M

bd
σ =

as illustrated in Figure B3.4. Thus 2
max 131.25N/mmσ = .

Figure B3.4. The maximum stress at 0x =

5. Model Validation 

5.1 FINITE DIFFERENCE METHOD 

A finite difference approximation is used to solve the bending moment equation 

     
2

02
( )

d y
EI W l x

dx
= −  (B3.35) 

subject to the boundary conditions 

26 /M bdσ =

26 /M bdσ = −

M
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     (0) 0,  (0) 0.y y′= =  (B3.36) 

The beam is divided into n  equal parts of length h  as shown in Figure B3.5. The 
deflection at the ends of the parts are

0 1 2, , , , ny y y y⋅ ⋅ ⋅ . The second derivative in 

equation (B3.35) is approximated at 
ix  by the expression 

     1 1
2

2i i iy y y

h

+ −− +

leading to the approximate bending moment equation 

     
2

0
1 12 ( ).i i i i

W h
y y y l x

EI
+ −− + = −  (B3.37) 

Figure B3.5. Division of the beam into n  equal parts. 

Remembering that 
0 0y =  and adding a fictitious deflection 

1 1y y− =  to give 

(0) 0y′ = , we obtain the following system of linear equations 

     

0

1 0

2 1 1

3 2 1 2

1 2 1

0

2 ( )

2 ( )

2 ( )

2 ( ),n n n n

y

y C l x

y y C l x

y y y C l x

y y y C l x− − −

=
= −

− = −
− + = −

− + = −

 (B3.38) 

where 
2

0 .
W h

C
EI

=

These equations are solved for 4,8,16,32n =  and 64 and the results are compared 

with the exact value given by equation (B3.30) up to 5 decimal places. Selected 
values of x  are given in Table B3.1. 
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     Table B3.1. Finite difference results. 

x 0 250 500 750 1000 
( 4)y n = 0 0.19531 0.68359 1.36719 2.14844 
( 8)y n = 0 0.18311 0.65918 1.33057 2.09961 
( 16)y n = 0 0.18005 0.65308 1.32141 2.08740 
( 32)y n = 0 0.17929 0.65155 1.31912 2.08435 
( 64)y n = 0 0.17910 0.65117 1.31855 2.08359 
(exact)y 0 0.17904 0.65104 1.31836 2.08833 

To obtain results close to the exact values, we require to use 64n = . Of course, the 
finite difference approximation used is only 2( )O h  and more accurate results could 

be obtained by using higher order finite difference approximations. 

5.2 FINITE ELEMENT METHOD 

Below we give some suggestions for possible finite element approaches without 
going to the extent of performing the calculations. Figure B3.6 shows the beam 
approximated by 4 finite elements, the elements being rectangular blocks each with 
eight nodes. The nodes are numbered as shown in Figure B3.6. Note that each finite 
element is connected to the neighbouring one by three nodes. For example, nodes 11, 
12 and 13 connect the second and third finite elements of the beam.  

     Figure B3.6. The beam approximated by 4 rectangular finite elements. 

The second possibility would be to use the simple element commonly used in two 
dimensional plane stress problems, namely, the rectangular four noded element. The 
structure can then be divided into rectangular elements with a typical element as 
shown in Figure B3.7. The element with nodes ,  ,  ,  i j k l  is assumed to have nodal 

coordinates ( , )i ix y , ( , )j jx y , ( , )k kx y , ( , )l lx y . Then a displacement function is 
chosen to provide the displacements within the element, given the displacements at 

the nodes: ( , , , , , , , )i i j j k k l lu v u v u v u v .
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Figure B3.7. Structure of the rectangular four noded element. 

In this case it would be convenient to take the element as having sides parallel to the 
x  and y  axes of length a  and b  as shown in Figure B3.7 and choose the 

displacement function given by polynomials of the form 

     1 2 3 4

5 6 7 8 .

u c c x c y c xy

v c c x c y c xy

= + + +
= + + +

 (B3.39) 

The coefficients in equation (B3.39) can be obtained by substituting in turn the 
nodal coordinates and solving resulting systems of linear equations. 

Of course, in the application of the finite element method it is not necessary to 
actually perform the calculations but merely to input the nodal coordinates and the 
type of element we wish to use. However, it is necessary to be aware of the 
displacement functions that are being assumed within the chosen finite element 
computer package and the consequences involved. 

6. Interpretation and Conclusions 

This project has looked at the general problem of deflection of beams. A 
mathematical model has been formulated and a number of test cases have been 
considered, including (i) constant load distributed uniformly along the length of the 
beam; (ii) prescribed load which varies with the distance along the beam; (iii) 
concentrated load at a single point on the beam. 

Analytical solutions have been obtained for cases where the beam is imbedded at 
both ends or is free at one end. 

The realistic case of a steel cantilever beam (with prescribed parameters) subjected 
to an end load has been solved numerically. The results obtained from finite 
difference methods agree well with the analytical solution. Suggestions are also 
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included to indicate how the finite element method can be used to deal with the 
above problem. 

7. Computer Algorithms 

The finite difference method described in Section 5.1 resulted in a system of linear 
equations (B3.38). A computer program was developed to solve this system using 
forward substitution for a range of values of n .

There are quite a number of available finite element “black box” packages to solve 
the cantilever beam problem with an end load, which use the suggestions given in 
Section 5.2. 
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ODE Problems

1. The rate of change of the concentration of pollution in a lake is equal to the 
difference between the concentration of polluted water entering the lake and that 
leaving the lake. Assume that water containing a constant concentration of C

3kg / km of pollutants enters the lake at a rate of 150 3km / year , and water leaves 

the lake at the same rate. Also assume that the volume of the lake remains 
constant at 5000 3km .

 (a) Formulate a mathematical model to represent the rate of change of 
concentration of pollution in the lake. Find a mathematical solution. 

 (b) If the initial concentration of pollution is 40 3kg / km , find the particular 

solution to the problem.  

 (c) The fastest possible cleanup of the lake will occur if all pollution inflow 
ceases. This is represented by 0C = . If all pollution into the lake was 
stopped immediately, how long would it take to reduce pollution to 50% of 
its current value? 

 (d) Use the computer to graph your solution for the first 100 years after pollution 
stops. What happens to the concentration as time goes on? 

2. A projectile of mass 0.20kg is shot vertically upward with an initial velocity of 
10 m/sec. It is then slowed down due to the forces exerted by gravity and air 
resistance.
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 (a) If the force due to air resistance equals 0.005 times the square of the 
projectile’s instantaneous velocity acting in the opposite direction to the 
velocity, produce a mathematical model using an initial-value differential 
equation. Use velocity as the dependent variable. Solve to find an expression 
for velocity in terms of time t .

 (b) Apply a fourth-order Runge-Kutta method with 0.05h =  to estimate the 
projectile’s instantaneous velocity for time 0.05(0.05)1.00t = sec. Validate 

your results using the exact solution from (a).  

3. An automobile shock absorber coil spring system is designed to support 800lb, 
the portion of the automobile’s weight it supports. The spring has a constant of 50 
slugs/in. The effect of a bumpy road on the system can be described by the 
periodic function  

    ( ) 300sin 4f t t=  (in slug – 2in / sec ),

which acts upward on the tyre. The system is initially in equilibrium at rest.  

 (a) Assume that the automobile’s shock absorber is so worn that it provides no 
effective damping force. Find a particular solution which describes the 
vertical displacement of the automobile over time. Use the computer to graph 
the particular solution for the first ten seconds of motion. Describe the 
system’s performance.  

 (b) Now assume that the shock absorber is replaced. The new shock absorber 
exerts a damping force (in pounds) which is equal to 50 times the 
instantaneous vertical velocity of the system (in inches per second). Model 
this improved system with an initial value problem. Solve it subject to the 
conditions described in part (a). Use the computer to graph the resulting 
equation for the first 10 seconds of the motion. Explain how the system’s 
performance has improved. Is this system overdamped, underdamped or 
critically damped?  

4. A simple LRC electrical circuit consists of a capacitor with a capacitance of 0.02 
farads, a resistor with a resistance of 40 ohms and an inductor with an inductance 
of 8 henrys. The circuit is connected to a 24-volt battery. Initially there is no 
charge on the capacitor and no current in the circuit.  

Produce a mathematical model which gives the charge on the capacitor for any 
time after the switch is closed. Find the charge on the capacitor after 1 sec and 
the current in the circuit after 1 sec. 
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The LRC circuit is now connected to an alternating current source which applies 
a voltage 

    ( ) 100cos 2E t t=  (in volts). 

 There is no initial charge on the capacitor or current in the circuit. 

 (a) Find an equation which gives the charge on the capacitor for any time after 
the switch is closed. 

 (b) Find the charge on the capacitor after 1 sec. 

 (c) Find the current in the circuit after 1 sec. 

 (d) Would a 5-ampere fuse have its capacity exceeded in this circuit? 

 (e) Use the computer to graph the transient response of the circuit (i.e., the 
complementary function of the differential equation which models the 
circuit). 

 (f) Use the computer to graph the general solution to the differential equation 
which models the circuit. Explain what happens to the transient response as 
time increases. Also, explain what happens to the steady state solution. 

5. Consider the following economic model. Let P  be the price of a single item on 
the market and Q  be the quantity of the item available on the market. Both P

and Q  are functions of time t . By considering price and quantity as two 

interacting species, the following mathematical model can be proposed: 

    2
1

cdP
c P P

dt Q
= − ,

    
3 4( )

dQ
c Q c P Q

dt
= − ,

where 
1c ,

2c ,
3c  and 

4c  are positive constants. Justify and discuss the adequacy 

of this model. 

 (a) If 
1 1c = ,

2 10,000c = ,
3 1c =  and 

4 25c = , find the equilibrium points of this 

system. Classify each equilibrium point with respect to its stability. Give an 
explanation in cases where a point cannot be readily classified.  
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 (b) Use the computer to perform a graphical stability analysis to determine what 
will happen to the levels of P  and Q  as time increases. 

 (c) Give an economic interpretation of the curves that determine the equilibrium 
points. 

6. (a) For a simple RL  circuit, Kirchhoff’s voltage law requires that (if Ohm’s law 
holds)  

    0
dI

L RI
dt

+ = ,

where L  is inductance, R  is resistance and I  is current. Solve for I  in the 
case 2L R= =  and (0) 0.01I = . Use both an analytical method and a 

numerical method. 

 (b) In contrast to part (a), real resistors may not always obey Ohm’s law. For 
example, the voltage drop may be nonlinear and the circuit dynamics may be 
described by a relationship such as 

    
3

ref ref

0
dI I I

L R
dt I I

−+ + = ,

where all other parameters are as defined in (a) and 
refI is a known reference 

current equal to 1. Solve for I  as a function of time under the same 
conditions as specified in (a). 

7. Apart from inflow and outflow, another method by which mass can enter or 
leave a reactor is by a chemical reaction. For example, if the chemical decays, 
the reaction can sometimes be characterized as a first-order reaction, namely:  

    Reaction RVC= − ,

 where V =  volume ( 3m ), c = concentration ( 3moles/m ) and R =  reaction rate 

( 1min− ), which can generally be interpreted as the fraction of the chemical which 
goes away per unit time. So, if 10.1minR −= , for example, then approximately 
10% of the chemical in the reactor decays in one minute. On substituting the 
reaction into the mass-balance equation, we have 

in

dc
V Fc Fc RVc

dt
= − − ,
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 where F =  flow rate ( 3m / min ).

 (a) Find the steady-state concentration of the reactor in the case where R =
0.25 1min− , 3

in 50mg/minc = , 310m / minF =  and 3200mV = .

 (b) Repeat part (a), but compute the transient concentration response for the case 
3

0 m20mg/c = . Validate the results using Euler’s numerical method from

0t =  to 30 min. 

8. Biomedical and environmental engineers must frequently predict the outcome of 
predator-prey or host-parasite relationships. A simple model of such interacts is 
provided by the following system of ODE’s:  

    1
1 1 1 1 2

dx
g x d x x

dt
= − ,

    2
2 2 2 1 2

dx
d x g x x

dt
= − + ,

where 
1x and

2x  are the numbers of hosts and parasites, respectively. The d’s and 

g’s are death and growth rates, respectively, where the subscript 1 refers to the 
host and the 2 to the parasite. Notice that the deaths of the host and the growth of 
the parasite are dependent on both 

1x and
2x .

Use numerical methods to compute values of 
1( )x t  and 

2 ( )x t  from 0t =  to 10 

for the following case:

    
1(0) 10x = ,

2 (0) 2x = ,
1 1g = ,

1 0.2d = ,
2 0.01g = ,

2 0.5d = .

Use the computer to plot graphs of 
1( )x t  and 

2 ( )x t  against t. Interpret the results. 

9. A population of 1,000,000 people is subject to a disease which is seldom fatal 
and leaves the victim immune to future infections by this disease. Infection can 
only occur when a susceptible person comes into direct contact with an 
infectious person. The infectious period lasts approximately four weeks. Last 
week there were 25 new cases of the disease reported. This week there were 48 
new cases. It is estimated that 25% of the population is immune due to previous 
exposure.  

 (a) Develop a mathematical model as a discrete-time dynamical system. Hence 
find the eventual number of people who will become infected. 
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 (b) Estimate the maximum number of new cases in any one week. 

 (c) Conduct a sensitivity analysis to investigate the effect of any assumptions 
made in part (a) which were not supported by hard data. 

 (d) Perform a sensitivity analysis for the number (25) of cases reported last week. 
It is thought by some that in early weeks the epidemic might be under-
reported. 

10. Consider a uniform beam of length l  subject to a linearly increasing distributed 
load

   0( )
W x

W x
l

= , 0 x l< < .

 Assume the beam is hinged at the end 0x =  and imbedded at the end x l= .

 By solving the governing ODE 

   
4

4

( )d y W x

dx EI
= , 0 x l< < ,

where E  is Young’s modulus of elasticity and I  is the moment of inertia of the 
cross section about the neutral axis, show that the resulting deflection is given by 

   5 2 3 40 ( 2 )
120

W
y x l x l x

EIl
= − + − .

 Taking the following parameter values: 

   200inl = , 6 229 10 lb/inE = × ,

    4725inI = ,
0 100lb / ftW = .

use the computer to plot the elastic curve. Also use a numerical method to 
determine the point of maximum deflection, expressing your result in inches. 
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Case Study A3

CYLINDRICAL AND SPHERICAL 

SOLIDIFICATION IN HEAT TRANSFER 

SUMMARY: This case study uses mathematical modelling to describe, develop and 
compare several effective methods for the numerical solution of one-dimensional 
Stefan problems. It is not intended to be an exhaustive treatment but is restricted to a 
range of problems and geometries including melting in the half-plane, outward 
cylindrical solidification and outward spherical solidification. The methods used 
include the enthalpy method, boundary immobilization method, perturbation method, 
nodal integral method and heat balance integral method. From the comparison of 
numerical results obtained the models can be validated and some helpful comments 
can be made which may prove valuable in the future use of these methods for 
problems of this type. 

1. Background 

Phase change problems, also known as Stefan problems, occur naturally in many 
physical processes, such as, freezing and thawing of foods, production of ice, ice 
formation on pipe surface, solidification of steel and chemical reaction. 
Mathematically, melting/solidification problems are special cases of moving 
boundary problems. Problems in which the solution of a differential equation has to 
satisfy conditions on the boundary of a prescribed domain are referred to as 
boundary-value problems. However, in the case of melting/solidification, the 
boundary of the domain is not known in advance. This means that the solution of 
such problems requires solving the diffusion or heat conduction equation in an 
unknown region which has to be determined as part of the solution. 

There are very limited analytical solutions to melting/solidification problems and 
existing closed-form solutions to these significant problems are highly restrictive as 
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to permissible initial and boundary conditions. So numerical solution becomes the 
main tool in the study of moving-boundary problems. Two conditions are required 
in order to solve these moving-boundary problems, one to determine the boundary 
itself and the other to complete the definition of the solution of the differential 
equation. 

This case study involves a brief review of possible modelling and numerical 
approaches for one dimensional Stefan problems for simple geometries including 
plane, cylindrical and spherical. Numerical results are obtained from a range of 
methods researched by Caldwell and Kwan, including the enthalpy method, 
boundary immobilization method (BIM), perturbation method, nodal integral 
method (NIM) and heat balance integral method (HBIM). By comparing results, and 
in some cases making comparisons with analytical solutions (where possible), the 
models can be validated and some constructive comments can be made which will 
provide useful guidelines for the future use of these methods. 

2. Problem Statement  

First we consider the melting of material initially at its freezing temperature in the 
half-plane 0x >  subject to a time-dependent temperature change at 0x = . Then we 
extend this work to more realistic situations such as 

(1) outward cylindrical solidification 
(2) outward spherical solidification 

of a saturated liquid due to low temperature at the boundary. Our aim is to calculate 
the position of the moving boundary for different times. 

In order to gain confidence in the various models and methods we compare 
numerical results for test cases involving plane geometry, outward cylindrical and 
outward spherical solidification. For plane geometry there is an analytic solution but 
this does not apply to cylindrical and spherical geometries. Hence, it is important in 
these cases to validate results by comparing numerical results from a number of 
established methods to a number of test cases. 

3. Model Formulation 

3.1 MELTING IN THE HALF-PLANE  

Consider the melting of certain material initially at its freezing temperature 
fT  in the 

half-plane 0x >  subject to a time-dependent temperature change at 0x = . The 
governing equation for the process is 
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2

2

T T

t x

∂ ∂=
∂ ∂

, 0 ( )x s t< < , 0t > . (A3.1) 

subject to boundary conditions 

     ( 0, ) ( ),T x t f t= = ( ( ), ) 0,T x s t t= =  (A3.2) 

   
( )x s t

ds T

dt x
α

=

∂= −
∂

, (A3.3) 

where T  is the temperature, x  is the space variable, ( )s t  is the position of the 

moving boundary and 
f ref( ) /c T T Lα = −  is the Stefan number, where c  is the 

specific heat, L  is the latent heat and 
refT  is some reference temperature. For 

example, one can select 
refT  such that ( 0) 1f t = =  or 

final0
max | ( ) | 1

t t
f t

≤ ≤
= .

3.2 OUTWARD CYLINDRICAL SOLIDIFICATION 

Consider the outward cylindrical solidification of a saturated liquid due to low 
temperature at the boundary. The problem can be formulated as  

     1
,

T T
r

t r r r

∂ ∂ ∂=
∂ ∂ ∂

1 ( )r s t< < , 0t > , (A3.4) 

     ( 1, ) ( ),T r t f t= = ( ( ), ) 1T r s t t= = , (A3.5) 

   
( )r s t

ds T

dt r
α

=

∂=
∂

. (A3.6) 

3.3 OUTWARD SPHERICAL SOLIDIFICATION 

In the case of outward spherical solidification, the corresponding governing equation 
is

     ( )2

2

1 rTT

t r r

∂∂ =
∂ ∂

, 1 ( )r s t< < , 0t > , (A3.7) 

subject to boundary conditions (A3.5) and (A3.6). 



96 Case Study A3

4. Mathematical/Numerical Solution 

In this section we introduce a range of possible methods for the solution of Stefan 
problems of the type in question. Except for the heat balance integral method, where 
the formulation for cylindrical geometry is introduced, the other methods only 
include the formulation for the plane geometry since other applications will follow 
the same idea. Readers may refer to specific papers listed in the References for 
further details of the methods. 

4.1 ENTHALPY METHOD 

The enthalpy formulation is one of the most popular fixed-domain methods for 
solving the Stefan problem. In the formulation, the enthalpy function is introduced 
such that the flux condition is automatically satisfied across the phase front, which is 
realized as a jump discontinuity of the enthalpy. Date [12] has developed an 
enthalpy method which tracks the phase front easily. He has applied this method to 
one and two dimensional problems in plane geometry and has obtained good 
agreement with existing solutions. More recently, Caldwell et al. [2, 3] have also 
successfully applied the method to cylindrical and spherical geometries. 

First, the enthalpy function H  is defined by 

     ( )lH T f Tα′= + , (A3.8) 

where 1α
α

′ =  and lf  is the local liquid fraction given by  

     ( ) 1 if 1,

0 if 0.l

T
f T

T

≥
=

<

Hence H  is identical to the temperature except when phase change occurs, in which 
case H  has a jump of α′ . Substituting H  into the heat equation, we obtain 

     
2

2

H T

t x

∂ ∂=
∂ ∂

. (A3.9) 

Discretization of (A3.9) will result in a set of non-linear equations. Date [12] 
introduces a simple method which at the same time provides an effective means of 
tracking the phase boundary. From (A3.8) we can write T H H ′= + , where   

     ( )
if ,

if 0 ,

0 if 0.
l

H

H f T H H

H

α α
α α

′ ′− ≥
′ ′ ′= − = − < <

≤

 (A3.10) 
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Also, we note that /H α′ ′−  is the local liquid fraction while 1 /H α′ ′+  is the local 
solid fraction.

The implicit discretization of (A3.9) is 

( 1) ( ) ( 1) ( 1) ( 1)
1 1

2

2

( )

k k k k k

i i i i iH H T T T

t x

+ + + +
− +− − +=

∆ ∆
, 1,2, , 1i N= − , (A3.11) 

where x∆  and t∆  represent the space and time steps, respectively. Using the 
relation ( ) ( ) ( )k k k

i i iT H H ′= +  with ( )k

iH ′  obtained from (A3.10), we have  

( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1)
1 1 1 1(1 2 ) ( 2 )k k k k k k k

i i i i i i iH H H H H H Hγ γ γ γ+ + + + + +
− + − +′ ′ ′− + + − = + − + , (A3.12) 

where 2/( )t xγ = ∆ ∆  . This results in a set of nonlinear equations. To solve this 

system we employ an iterative scheme, where terms involving H ′  are set to lag 
behind terms involving H  for one iteration. Using the value of H  from the 
previous time step as the initial guess, the values of H ′  are calculated from (A3.10). 
The new value of H  is then obtained from (A3.12). This process is continued until 
the iterations converge. Then we can continue to the next time step. Note that each 
iteration involves solving a tridiagonal system, and can be done effectively by the 
Thomas algorithm. 

Recalling that /iH α′ ′−  is the liquid fraction in the i th control volume, there is a 

simple way to calculate the position of the phase front. Consider the integral I ,
which represents the volume of solid in the range 0 ( )x s t≤ ≤ :

     ( )

0
1 ' 2

Ns t
i

i

H x
I dz x

α=

′ ∆= ≈ ∆ − + .

The last term is due to the fact that the first cell is always occupied by liquid. Here, 
the summation can be carried out over all the cells since the cells behind the phase-
front give zeros to /iH α′ ′− . Hence we have ( )s t I= .

Note that in the cases of outward cylindrical and spherical solidification, there are 
small differences in the formulae for I  and ( )s t . The corresponding equations for 

outward cylindrical solidification are 

     ( )

1
1

1
2

Ns t
i

i

i

H z
I zdz z z

α=

′ ∆= = ∆ + +
′

,

( ) 1 2s t I= +
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and the equations for outward spherical solidification are

( ) 2 2

1
1

1 ,
2

Ns t
i

i

i

H z
I z dz z z

α=

′ ∆= = ∆ + +
′

3( ) 1 3s t I= + .

4.2 BOUNDARY IMMOBILIZATION METHOD (BIM) 

With a suitable transformation, it is possible to fix the moving boundary. This 
method was first applied to a finite difference scheme by Crank [11]. Kutluay et al. 
[16] have also successfully applied the method to various problems. 

Under the transformation 

     

* x
x

s
= , * *( , ) ( , )T x t T x t= ,

the problem (A3.1)-(A3.3) can be transformed to one in the fixed domain 0 1r′≤ ≤ :

     
2

* 2 * *
2 *

**

T T ds T
s x s

t dt xx

∂ ∂ ∂= +
∂ ∂∂

 (A3.13) 

subject to  

      * *( 0, ) ( )T x t f t= = , * *( 1, ) 0T x t= = , (A3.14) 

      
*

*

*

1x

ds T
s

dt x
α

=

∂= −
∂

. (A3.15) 

A finite difference discretization of (A3.13) implicit in *T  and explicit in s  is 

   ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( ) 2 ( )
1 1 ( )k k k k k k k k

i i i i i i ia T b T c T s T+ + + + + +
− ++ + = ,  (A3.16) 

where  

      
( )

( 1) ( ) 1
2

k

k k

i i

x ds
a x s

dt
γ+ ∆= − ,

      ( 1) ( ) 2( ) 2k k

ib s γ+ = + ,
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      ( 1) ( 1) 2k k

i ic a γ+ += − − ,

      

( )
( ) ( )

1 2( )
(4 )

k

k k

N Nk

ds
T T

dt s

α
− −= − , (A3.17) 

and 2/( )t xγ = ∆ ∆ . At each time step, the temperature distribution is obtained by 

solving the tridiagonal system (A3.16) and the position of the moving boundary is 
updated via the formula 

      
( )

( 1) ( )
k

k k ds
s s t

dt

+ = + ∆ . (A3.18) 

Note that a starting solution for small time is required by the BIM. For plane 
geometry one can use the analytic solution for the problem with constant boundary 
condition as the starting solution (see Caldwell and Savovic [4]). Readers may refer 
to Caldwell and Kwan [5] for the starting solutions for other geometries. More 
recently, the finite-difference/BIM approach has been extended to deal with the 
Stefan problem with periodic boundary conditions (see Savovic and Caldwell [19]). 

4.3 PERTURBATION METHOD 

The perturbation method only works for small Stefan number. It has been 
successfully applied to Stefan problems with simple boundary conditions in 
different geometries; see Huang and Shih [15], Pedroso and Domoto [17], Stephan 
and Holzknecht [20]. More recently, Caldwell and Kwan [6] successfully applied 
the method to Stefan problems with time-dependent boundary conditions. Further 
benchmark cases are presented by Caldwell et al. [8] showing a high degree of 
agreement and accuracy when nodal integral and finite-difference solutions are 
compared with exact solutions. 

Since ( )s t  is expected to be a monotonic function of t , we may replace t  by s  as 

the second independent variable in the governing equations. By making use of 
(A3.3), (A3.1) can be written as  

      
2

2
x s

T T T

x s x
α

=

∂ ∂ ∂= −
∂ ∂ ∂

. (A3.19) 

On the other hand, the boundary condition at 0x =  is written as  

      ( ) ( )T f t F s= =  on 0x = . (A3.20) 
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We now derive a three term perturbation solution of the form  

      2
0 1 2( , ) ( , ) ( , ) ( , )T x s T x s T x s T x sα α= + + . (A3.21) 

Substituting (A3.21) into (A3.19) and (A3.20), the governing equations for 
0T ,

1T

and
2T  are

     0α :
2

0
2

0
T

x

∂ =
∂

,

     
0 ( 0, ) ( )T x s F s= = ,

0 ( , ) 0T x s s= = .

     α :
2

0 01
2

x y

T TT

x s x =

∂ ∂∂ = −
∂ ∂ ∂

,

     
1( 0, ) 0T x s= = ,

1( , ) 0T x s s= = .

     2α :
2

0 02
2

i i

x s x s

T T T TT

x s x s x= =

∂ ∂ ∂ ∂∂ = − −
∂ ∂ ∂ ∂ ∂

,

     
2 ( 0, ) 0T x s= = ,

2 ( , ) 0T x s s= = . (A3.22) 

The solutions of the above equations are  

   
0 ( , ) ( )(1 )T x s F s z= − ,

   
1

1
( , ) ( ) ( 1)[ ( )( 1) ( ) ( 2)]

6
T x s F s z z F s z F s s z′= − + − − ,

    

      (A3.23) 

where /z x s= . Thus, the position of the moving boundary follows the equation 

      (A3.24) 
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1
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5 ( ) ( ) (3 5 17)

( ) ( ) ( 2)(3 6 4)],

T x s F s z z F s z z F s y z

F s F s s z z

F s F s s z z z

− ′= − + + + +

′+ + +
′′+ − − −

20 1 2

2

3 2 2

1 1
( ) ( ) ( )
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F s F s F s s F s F s F s F s s
s

α α α

α α

α

=

∂ ∂ ∂= − + +
∂ ∂ ∂

′= − +

′ ′ ′′+ + + −
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The final step is to substitute back ( )f t  for ( )F s . With the relations 

    
1

( ) ( )dF s df t ds

ds dt dt

−

= ,
22 2

2 2

( ) ( )d F s d f t ds

ds dt dt

−

= ,

(A3.24) can be rewritten in the form 

     

3 2

( , ) ( . ) ( , ) 0
ds ds ds

a t s b t s c t s
dt dt dt

+ + + = , (A3.25) 

where  

     
2

2( ) 7
( , ) 1 ( ) ( )

3 45

f t
a t s f t f t

s

α α α= − − + ,

     2 1 25
( , ) ( ) ( ) ( )

6 72
b t s f t f t f t

αα ′= − ,

      

     3 25 13
( , ) ( ) ( ) ( ) ( )

36 360
c t s f t s f t f t f tα ′ ′′= − − .

By solving the cubic equation (A3.25), the value of ds

dt
 is obtained and s  can be 

found by numerical integration. On the other hand, the temperature distribution can 
be obtained by substituting (A3.16) into (A3.14). 

4.4 NODAL INTEGRAL METHOD (NIM) 

A semianalytical nodal method to solve the one-dimensional Stefan problem was 
recently developed by Rizwan-uddin [18]. We give a brief description of the method 
here. The space-time domain ( 0 1x≤ ≤ ;

final0 t t≤ ≤ ) is first discretized into space-

time nodes. Each node is identified by the subscript ( , )i j . The space-averaged, 

time-dependent temperature and time-averaged, space-dependent temperature for 
each node are respectively defined as 

   ( )1
( ) ,

i

i

x xx

i
x

T t T x t dt
x

+∆
≡

∆
,

1

1
( ) ( , )

j

j

tt

j
t

T x T x t dt
t −

≡
∆

.

First, (A3.15) is integrated over the time step 
1j jt t t− ≤ ≤  to yield 
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     2 2
1 1

( 1)
( ) ( ) 2 ( )

t

j

j j

dT x
s t s t Ste t t

dx
− −

== − − ,
1j jt t t− ≤ ≤ .

Next, for each space-time node, a time-step-averaged, second-order ODE is obtained 

for ( )
t

jT x  by operating on (A3.13) with 
1

1 j

j

t

t
dt

t −∆
, and a space-averaged, first-order 

ODE for ( )
x

iT t is obtained by operating on (A3.13) with 1 i

i

x x

x
dx

x

+∆

∆
. After 

introducing some simplifying assumptions, the second-order ODE in space is solved 
using the Dirichlet boundary conditions at the left and right edge of the node, 
leading to a solution of the form 

      3
1 2( ) ( )

t C x
jT x C C x g e

−= + + ,

where 
mC  ( 1,2,3,m = ) are constants. On the other hand, the first-order ODE in 

time is solved using the initial condition at the beginning of the time step, leading to 
a solution of the form 

      
1 4 5 1( ) ( ) ln[1 ( )]

x x

i i j jT t T t C C t t− −= + − − .

Further details of the method and its application to two problems with time-
dependent boundary conditions are given by Caldwell and Kwan [7]. A comparison 
of numerical results with those from the enthalpy method is also included. 
Benchmark cases are presented by Caldwell et al. [8] involving two test examples 
with the aim of producing very high accuracy when validated against the exact 
solutions.

4.5 HEAT BALANCE INTEGRAL METHOD (HBIM) 

The heat balance integral method was first proposed by Goodman [13, 14]. 
Goodman’s idea is to assume a particular temperature profile, and then integrate the 
heat equation over an appropriate interval to obtain a set of heat-balance integral 
equations. The equations are then solved to obtain the motion of the phase boundary. 
Later Bell [1] proposed a systematic method to improve the accuracy of HBIM, 
which we will present below. The main idea is to subdivide the dependent variable 
T , and assume a linear profile within each subdivision. Accuracy can be improved 
by increasing the number of subdivisions. A detailed description of the method can 
also be found in Caldwell and Chiu [9]. 

The method is as follows: First we divide the range [0,1]  into N  parts, that is 
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i

i
T

N
= ,

and denote the corresponding position of the isotherm by 
iZ . Assume a linear 

profile within each subdivision 
1[ , ]i iZ Z + ,

      
( )1

( ) i

i i

r Zi
T r

N N Z Z+

−= +
−

 for 
1i iZ r Z +≤ ≤ . (A3.26) 

Multiplying (A3.4) by r and integrating over 
1[ , ]i iZ Z +  gives 

      1 1i i

i i

Z Z

Z Z

T T
r dr r dr

t r r

+ +∂ ∂ ∂=
∂ ∂ ∂

.

Taking the derivative outside the integral sign, we obtain  

    1

1

2 2
1 1

2 2
i

i
i i

Z i i i i

Z
Z Z

Z T Z Td T T
rT dr r r

dt r r

+

+

+ + ∂ ∂− + = −
∂ ∂

.

Replacing T  by the linear profile and ensuring that the expression representing 
change in flux is approximated by the discontinuous change in adjacent profile 
gradients, we obtain a system of ordinary differential equations for the penetration 
depth 

iZ , namely, 

1
1 1

1 2 1

66
(2 1)

1

Z
Z Z

Z Z Z
+ = −

− −
,

1
1 1 1

1 2 1

6 6
(2 ) ( 2 ) i i

i i i i i i

i i i i

Z Z
Z Z Z Z Z Z

Z Z Z Z

+
+ + +

+ + +

+ + + = −
− −

, 1, 2, , 2i N= − ,

   1
1 1 1

1

6
[2(1 3 / ) ] ( 2 ) N

N N N N N N

N N

Z
N Z Z Z Z Z Z

Z Z
α −

− − −
−

+ + + + =
−

. (A3.27) 

It can be seen that the system (A3.27) is stiff, at least for small t  where the distances 
between adjacent isotherms are small. Hence a stiff ODE solver is required to solve 
the system. Besides, a starting solution is required by the HBIM. Readers may refer 
to Caldwell and Chiu [10] for a choice of the starting solution. An alternative choice 
would be the one mentioned in the BIM. 

5. Model Validation 

In this section we present and discuss the numerical results in applying the above 
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methods to different test cases. 

5.1 TEST EXAMPLE 1 

The first example corresponds to the melting in plane geometry with 0.2α =  and 
( ) 1f t = . The analytic solution to the problem is  

    ( /(2 ))
( , ) 1

( )

erf x t
T x t

erf λ
= − , ( ) 2s t tλ= , (A3.28) 

where erf denotes the error function and λ  is the solution of the transcendental 

equation 

      2exp( ) ( )erfπ λ λ λ α= . (A3.29) 

The numerical results for this example are presented in Table A3.1. Note that an 
adaptive ODE solver is used in the perturbation method and so the time step is not 
constant.

5.2 TEST EXAMPLE 2 

The second example corresponds to the melting in plane geometry with 1.0α =  and 
( ) exp( ) 1f t t= − . The analytic solution to the problem is  

      ( , ) exp( ) 1T x t t x= − − , ( )s t t= . (A3.30) 

The numerical results for this example are presented in Table A3.2. 

5.3 TEST EXAMPLE 3 

This example corresponds to the outward cylindrical solidification with 0.2α =  and 
( ) 0f t = . There is no known analytical solution to the problem. The numerical 

results for this example are presented in Table A3.3. Note that the adaptive ODE 
solver is also used in the HBIM. 

5.4 TEST EXAMPLE 4 

The last example corresponds to the outward spherical solidification with 0.2α =
and ( ) 0f t = . There is also no known analytical solution to the problem. The 

numerical results for this example are presented in Table A3.4. 
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5.5 DISCUSSION 

In the case of plane melting, as reflected in Tables A3.1 and A3.2, the methods 
employed give good results in predicting the position of the moving boundary when 
compared with the analytic solutions. In the cases of cylindrical and spherical 
solidification, where the analytic solutions are not available, the methods employed 
give very similar results, as reflected in Tables A3.3 and A3.4. The good agreement 
achieved gives us confidence in using the methods to solve the Stefan problem 
numerically for different geometries. 

6. Interpretation and Conclusions 

Here we give some general comments on the methods, which can serve as a 
guideline for solving a particular Stefan problem. 

The enthalpy method is popular because of its easy formulation. As the governing 
equation for the enthalpy is very similar to that for temperature, only little extra 
effort is required in programming. However, the iterative nature of the solution 
procedure makes the computational time longer. Besides, normally the enthalpy 
method produces an unphysical oscillating solution near the moving boundary. The 
extension of the method to higher-dimensional problems is also difficult due to the 
lack of efficient methods of locating the moving boundary. 

Table A3.1. Melting in plane geometry ( 0.2α = , ( ) 1f t = ).

Time Exact Enthalpy BIM Perturbation NIM 
0.100 0.19380 0.19400 0.19433 0.19386 0.19382
0.200 0.27407 0.27425 0.27456 0.27416 0.27410 
0.300 0.33567 0.33572 0.33612 0.33578 0.33571 
0.400 0.38759 0.38756 0.38802 0.38772 0.38764 
0.500 0.43334 0.43345 0.43375 0.43349 0.43340 
0.600 0.47470 0.47487 0.47509 0.47486 0.47476
0.700 0.51274 0.51281 0.51311 0.51291 0.51280 
0.800 0.54814 0.54811 0.54850 0.54832 0.54821 
0.900 0.58139 0.58141 0.58174 0.58158 0.58146 
1.000 0.61284 0.61291 0.61318 0.61304 0.61292 
1.100 0.64275 0.64282 0.64309 0.64297 0.64283 
1.200 0.67133 0.67135 0.67166 0.67156 0.67142 
1.300 0.69875 0.69872 0.69906 0.69898 0.69883 
1.400 0.72512 0.72520 0.72543 0.72536 0.72521 
1.500 0.75057 0.75057 0.75088 0.75082 0.75067 
1.600 0.77519 0.77526 0.77549 0.77545 0.77529 
1.700 0.79905 0.79903 0.79934 0.79931 0.79915 
1.800 0.82221 0.82225 0.82250 0.82248 0.82232 
1.900 0.84474 0.84487 0.84503 0.84502 0.84485 
2.000 0.86669 0.86668 0.86697 0.86697 0.86680 

N  100 100 NA 8 
t∆  0.001 0.001 NA 0.01 
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Table A3.2. Melting in plane geometry ( 1.0α = , ( ) exp( ) 1f t t= − ).

Time Exact Enthalpy BIM NIM 
0.050 0.05000 0.05053 0.05001 0.05000

0.100 0.10000 0.10053 0.10002 0.10000

0.150 0.15000 0.15052 0.15002 0.15000

0.200 0.20000 0.20053 0.20003 0.20000

0.250 0.25000 0.25054 0.25004 0.25000

0.300 0.30000 0.30055 0.30005 0.29999 
0.350 0.35000 0.35056 0.35005 0.34999 
0.400 0.40000 0.40057 0.40006 0.39998 
0.450 0.45000 0.45058 0.45007 0.44998 
0.500 0.50000 0.50059 0.50008 0.49997 
0.550 0.55000 0.55061 0.55008 0.54996 
0.600 0.60000 0.60062 0.60009 0.59994 
0.650 0.65000 0.65063 0.65010 0.64993 
0.700 0.70000 0.70064 0.70010 0.69991 
0.750 0.75000 0.75066 0.75011 0.74989 
0.800 0.80000 0.80067 0.80011 0.79986 
0.850 0.85000 0.85068 0.85012 0.84984 
0.900 0.90000 0.90070 0.90013 0.89981 
0.950 0.95000 0.95071 0.95013 0.94977 
1.000 1.00000 1.00072 1.00014 0.99974 

N  100 100 8 
t∆  0.001 0.001 0.01 

Table A3.3. Outward cylindrical solidification ( 0.2α = , ( ) 0f t = ).

Time Enthalpy BIM Perturbation HBIM 
0.100 1.18850 1.18989 1.18882 1.18824 
0.200 1.26415 1.26504 1.26421 1.26349 
0.300 1.32101 1.32190 1.32120 1.32032 
0.400 1.36847 1.36932 1.36869 1.36766 
0.500 1.40997 1.41072 1.41016 1.40898 
0.600 1.44715 1.44786 1.44735 1.44603 
0.700 1.48117 1.48179 1.48132 1.47986 
0.800 1.51264 1.51318 1.51274 1.51114 
0.900 1.54197 1.54251 1.54209 1.54036 
1.000 1.56954 1.57010 1.56971 1.56785 
1.100 1.59573 1.59623 1.59586 1.59387 
1.200 1.62058 1.62108 1.62073 1.61863 
1.300 1.64446 1.64483 1.64449 1.64227 
1.400 1.66711 1.66759 1.66727 1.66492 
1.500 1.68901 1.68947 1.68917 1.68670 
1.600 1.71013 1.71057 1.71027 1.70770 
1.700 1.73053 1.73095 1.73066 1.72798 
1.800 1.75027 1.75067 1.75040 1.74760 
1.900 1.76940 1.76980 1.76954 1.76664 
2.000 1.78799 1.78839 1.78814 1.78512 

N 100 100 NA 32 
t∆ 0.001 0.001 NA NA 
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Table A3.4. Outward spherical solidification ( 0.2α = , ( ) 0f t = ).

Time Enthalpy BIM Perturbation HBIM 
0.100 1.18368 1.18499 1.18375 1.18309 
0.200 1.25469 1.25564 1.25469 1.25378 
0.300 1.30732 1.30831 1.30751 1.30635 
0.400 1.35092 1.35176 1.35105 1.34965 
0.500 1.38856 1.38936 1.38872 1.38709 
0.600 1.42217 1.42284 1.42225 1.42041 
0.700 1.45261 1.45321 1.45267 1.45062 
0.800 1.48054 1.48115 1.48064 1.47839 
0.900 1.50652 1.50711 1.50662 1.50418 
1.000 1.53087 1.53142 1.53096 1.52833 
1.100 1.55389 1.55432 1.55389 1.55108 
1.200 1.57556 1.57603 1.57561 1.57262 
1.300 1.59620 1.59668 1.59627 1.59312 
1.400 1.61595 1.61640 1.61601 1.61268 
1.500 1.63496 1.63529 1.63492 1.63143 
1.600 1.65308 1.65345 1.65308 1.64943 
1.700 1.67052 1.67093 1.67058 1.66676 
1.800 1.68739 1.68780 1.68746 1.68349 
1.900 1.70380 1.70411 1.70378 1.69966 
2.000 1.71954 1.71991 1.71959 1.71532 

N 100 100 NA 32 
t∆ 0.001 0.001 NA NA 

The BIM can effectively remove the moving nature of the boundary at the expense 
of solving a more complicated equation. Besides, a starting solution is required in 
order that the method can be started. One benefit of the BIM is that the computation 
time is comparatively short and so it is possible to achieve higher accuracy by 
refining the mesh size. 

The perturbation method can transform the Stefan problem into an ODE for the 
position of the boundary. However, the formulation of the perturbation method is 
complicated and cannot be done easily without symbolic mathematical packages. 
Besides, the perturbation method only works for small Stefan numbers. Since α  can 
be arbitrarily small by selecting 

refT  close enough to 
fT , a constraint on ( )f t  is also 

required. Experience suggests that requiring 
final0

max | ( ) | 1
t t

f t
≤ ≤

≤  is a good constraint. In 

the case ( ) 1f t = , it is found that by adding more terms in the perturbation solution 

the method can work well for Stefan numbers as large as around 0.7. 

The NIM can produce better results with comparatively small numbers of intervals. 
However, as the number of intervals increases the iteration will become more and 
more difficult to converge. Also the extension of the method to other geometries is 
difficult. 
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The HBIM gives good results for problems with constant boundary conditions.
However, the extension to time-dependent problems is difficult. The complicated 
formulation also makes it less attractive. For these reasons the HBIM is normally 
used for validation purposes. 

7. Computer Algorithms 

Computer software has been developed for the five methods described in Section 4 
but is too extensive to include here. 
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Case Study A4

ELASTIC ANALYSIS OF A SQUARE PLATE 

WITH CIRCULAR HOLES

SUMMARY: The problem under consideration involves the elastic analysis of a 
square plate subjected to a uniform pressure. In the first instance a square section 
with a central hole is considered using generalized plane strain element. The 
pressure is applied to the surface of a circular hole located at the centre of the 
section. This problem is then generalized to that of a square section with nine holes 
subjected to internal pressure. Results involving stresses and displacements are 
obtained for both cases using the BEASY Boundary Element software package from 
Computational Mechanics Ltd. A check on the accuracy is obtained by using Lamé 
thick cylinder theory at selected points. The good agreement obtained gives 
confidence in the use of the boundary element method for problems of this type. 

1. Background 

Elastic analysis of plates with various geometries, and in some cases containing 
holes, is important in many traditional engineering industries. Even in the food 
manufacturing industry it is important to be able to perform an elastic analysis of a 
plate with circular holes/cavities. In some cases the cavities may be representative of 
the structure of food itself. This means that one should be able to deal with the 
simplified problem when pressure is applied to the surface of a circular hole located 
at the centre of the section. An obvious extension is to both orderly and randomly 
arranged holes/cavities with pressure/shear. A typical application in the food 
industry would be to ice-cream boxes which contain holes. It is important to be able 
to calculate hoop stresses on cone stems to prevent damage in transit. 

For problems of this type boundary element methods have advantages over finite 
element methods. For this reason the Boundary Element Analysis System (BEASY) 
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software package from Computational Mechanics Ltd. has been chosen to carry out 
the analysis. Two useful references for this work are the book by Brebbia [2] which 
discusses the mathematical foundations of the work and a review paper by George 
[4] which discusses the relative merits of BE analysis and FE methods. 

The boundary element method (BEM) has been successfully used in the solution of 
problems in linear elastostatic stress analysis. This case study outlines the basic 
underlying theory together with relevant analysis associated with a hollow cylinder 
subjected to uniform pressures on the inner and outer surfaces. 

Results are obtained for the case of a square plate with a central hole subjected to 
internal pressure and generalized to the case of a square plate with nine holes. The 
stresses and displacements are computed by using the BEASY software package and 
validated in certain cases by using Lamé thick cylinder theory. Certain conclusions 
are drawn which include the advantages of the BEM over the FEM for problems of 
this type. 

2. Problem Statement 

At the first stage the geometry under consideration is a square section with a single 
central hole. An elastic analysis is required when the plate is subjected to a uniform 
pressure. The pressure is applied to the surface of a circular hole located at the 
centre of the section. 

In the model only one quarter of the section need be considered due to symmetry 
(see Figure A4.1). It is assumed that the material behaves elastically with a Young’s 
modulus of 4 250 10 lb / in×  and Poisson’s ratio of 0.2. The thickness of the section is 

taken to be 1 in and a uniform pressure of 21000lb / in  is applied to the inner surface 

of the hole. For the boundary conditions, zero displacements are assumed to exist on 
the lines of symmetry, i.e., 

     0u =  at 0x = ,
     0v =  at 0y = .

At the second stage the geometry under consideration is generalized to one which 
contains 9 holes placed symmetrically in the square section. Again, in the model 
only one-quarter of the section need be considered due to symmetry (see Figure 
A4.2).

3. Model Formulation 

3.1 BOUNDARY ELEMENT METHOD FOR ELASTOSTATIC PROBLEMS 

The BEM is an ideal tool for the solution of problems in linear elastostatic stress 
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analysis. The BEASY software package can be used to estimate the stresses and 
displacements which occur in a body subjected to a prescribed loading. 
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Figure A4.1. Geometry plot with defined elements for square section with a hole under internal pressure.

The principle of virtual displacements for linear elastic analysis of a problem 
domain V  bounded by the boundary S  may be written 

    ( ) ( ) ( )
2 1

* * *
,jk j k k k k k k k k

V S S
b u dV p p u dS u u p dSσ + = − + − ,

in which the boundary ‘tractions’ (or pressures) p  satisfy the boundary condition 

p p=  on the portion 
2S  of the problem boundary S , and the displacements u

satisfy the boundary condition u u=  on the portion 
1S of S . The term 

,jk jσ
represent the derivatives of the stress tensor and 

kb  are the acting body forces. Also 
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*
ku  and *

kp  are the displacements and tractions corresponding to the virtual system. 

41 40 39 38 37 36 35 34 33 32 31

29

28

26

25

24

23

22

21

27

30

1 2
3

4

5

6

7

17 18

8

9

10

11

12
13 14 15

16

17

18

19

20

45
44
43
42
41
40
39
38
37
36

42 43
44

45

46

47

48

49

50

51

52
5354

74

75

76

77
78 56

57

58

59

60

55

61

62

63

64

65
6667

73

72

71

70

69

71

68

16

15

13

12

11

10

9

14

1 2 4 5 7 8

19 20 21 22 23 24 25 26

27

28

29

30

31

32

33

34

35

x

y

Figure A4.2. Geometry plot with nine holes under internal pressure.

Integrating this equation by parts twice and applying a ‘fundamental’ solution of the 
type

     *
, 1 0i

jk jσ + ∆ = ,

where 
1
i∆  is the Dirac delta function representing a unit load at ‘ i ’ in the ‘1’ 

direction, we obtain  

     * * *
1
i

k k k k k k
S S V

u u p dS p u dS b u dV+ = + . (A4.1)  

In the absence of body forces 
kb , this equation represents the boundary integral 
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formulation for elastostatic analysis. However, the final term in equation (A4.1) may 
be transformed to an integral over the boundary S  enabling problems involving 
rotational or gravitational loads to be solved. 

Equation (A4.1) consists of a set of n  equations and containing 2n  unknowns (the 
traction and displacement in each direction at each node). However, in practice 
either the traction or the displacement (or some relationship between the two) is 
known at every node point and the number of unknowns may be reduced to n ,
enabling the equations to be solved. 

For problems of this type the BEM is preferable to the use of finite elements in that 
only the ‘boundary’ of the problem need be modelled. This results in a dramatic 
reduction in data preparation costs and reduces possible errors at this important 
stage. Also the mesh can be modified very easily using BEASY which is important 
when variations are made in the number, size and position of the holes in the section. 

4. Mathematical Solution 

4.1 LAMÉ THICK CYLINDER THEORY 

Two-dimensional problems in elastostatics arise naturally in two distinct ways. In 
the first case the body being deformed is a long right cylinder acted upon by external 
forces which are so arranged that the component of the displacement in the direction 
of the axis of the cylinder vanishes, and the remaining components remain constant 
along the length of the cylinder – such a body is said to be in a state of plane strain.
In the second case the body being deformed is a thin plate acted upon by external 
forces so distributed that the normal component of stress across the plate vanishes – 
the plate is said to be in a state of plane stress. Our problems fall into the former 
class, i.e., plane strain.

For our plane strain problems it is advantageous to use polar coordinates r , θ . In 
these coordinates the equations of equilibrium reduce to (see Timoshenko and 
Goodier [5]) 

     1
0r rr

r r r

θ θτ σ σσ
θ

∂ −∂ + + =
∂ ∂

 (A4.2) 

     21
0r rr

r r r

θ θτ τσ
θ

∂∂ + + =
∂ ∂

. (A4.3) 

When the body force is zero these equations (A4.2) and (A4.3) are satisfied by 
putting
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2

2 2

1 1
r

r r r

χ χσ
θ

∂ ∂= +
∂ ∂

,

     
2

2r
θ

χσ ∂=
∂

, (A4.4) 

     
2

2

1 1
r

r r r
θ

χ χτ
θ θ

∂ ∂= −
∂ ∂ ∂

.

These are valid solutions for plane strain or plane stress if χ , considered as a 

function of r  and θ , satisfies the bi-harmonic equation 

      4
1 0χ∇ = , (A4.5) 

where 2
1∇  denotes the two-dimensional Laplacian operator 

      
2 2

2 2x y

∂ ∂+
∂ ∂

.

In polar coordinates, this becomes 

    
2 2 2 2

2 2 2 2 2 2

1 1 1 1
0

r r r r r r r r

χ χ χ
θ θ

∂ ∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂ ∂

. (A4.6)  

Now consider the case of stress distribution symmetrical about an axis 0r = . Since 
the distribution is now independent of θ , equation (A4.6) reduces to the ordinary 
differential equation 

    
4 3 2

4 3 2 2 2

2 1 1
0

d d d d

dr r dr r dr r dr

χ χ χ χ+ − + = , (A4.7) 

which has the general solution  

    2 2ln lnA r Br r Cr Dχ = + + + . (A4.8) 

Substitution of this function in the expression (A4.4) gives, for axial symmetry, the 
stress components 

      2/ (1 2 ln ) 2 ,r A r B r Cσ = + + +
     2/ (3 2 ln ) 2A r B r Cθσ = − + + + , (A4.9) 
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     0rθτ = .

   
These results (A4.9) can readily be used to solve the problem of a hollow cylinder 
subjected to uniform pressures on the inner and outer surfaces. The boundary 
conditions are 

      
r apσ = −  at r a= ,

      
r bpσ = −  at r b= , (A4.10) 

where a b< .

If u , v  are the radial and tangential components of the displacement, respectively, 
then for plane strain the radial component of strain is given by 

    
[ ]

[ ]2

1
(1 )

1
/ (1 4 ) (2 4 ) ln (2 4 ) ,

r

u
v

r E

A r B r C
E

θ
ν ν σ σ

ν ν ν ν

∂ += − −
∂

+= + − − − + −

where ν  is Poisson’s ratio and E  is Young’s modulus. Hence 

    [ ]1
/ (2 4 ) ln (2 4 ) ( )u A r Br B r r C r f

E

ν ν ν θ+= − − + − + − + , (A4.11) 

where ( )f θ  is a function of θ  only. 

The tangential component of strain is  

    
[ ]

[ ]2

1 1
(1 )

1
/ (3 4 ) ln (2 4 )

r

u v

r r E

A r B r C
E

θ
ν νσ ν σ

θ
ν ν ν

∂ ++ = − + −
∂

+= − + − + −

and, using equation (A4.11), we find that  

    
24 (1 )

( ) ( )
B

v r f d g r
E

ν θ θ θ−= − + , (A4.12) 

where ( )g r  is a function of r only. 
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Since

     0rθτ = , 1
0r

u v v

r r r
θγ

θ
∂ ∂= + − =
∂ ∂

and by substitution from equations (A4.11) and (A4.12) 

     1 1 1
( ) ( ) ( ) ( )f g r f d g r

r r r
θ θ θ′ ′+ = +

so that  

     ( )g r Fr= , ( ) sin cosf H Kθ θ θ= + ,

     
where F , H  and K  are constants to be determined. Substituting these functions in 
equation (4.12), we find that the tangential displacement is  

    
24 (1 )

cos sin
B r

v Fr H K
E

ν θ θ θ−= + + − .

Clearly, the displacement is not single valued unless 0B = , and this is the required 
condition, enabling the stress distribution to be determined unambiguously. 

Putting 0B =  in the expression (A4.9) and using the boundary conditions (A4.10), 
we find that 

     
2 2

2 2

( )b ap p a b
A

b a

−=
−

,

      
2 2

2 22( )
a ba p b p

C
b a

−=
−

, (A4.13) 

and, by subtraction, the stress components are  

     
2 2 2 2

2 2 2 2 2

( )

( )
b a a b

r

a b p p a p b p

b a r b a
σ − −= +

− −
,

     
2 2 2 2

2 2 2 2 2

( )

( )
b a a ba b p p a p b p

b a r b a
θσ − −= − +

− −
. (A4.14) 



A4. ELASTIC ANALYSIS OF A SQUARE PLATE WITH CIRCULAR HOLES 119 

In the present case, the displacement must be axially symmetrical, so that ( ) 0f θ ≡ .

Then, substituting from equations (A4.13) in expressions (A4.11) and (A4.12), the 
components of displacements are found to be 

    
2 2

2 2
2 2

( )1
(1 2 )( )

( )
a b

a b

a b p p
u a p b p r

E b a r

ν ν−+= + − −
−

, (A4.15) 

    v Fr= , (A4.16) 

where the tangential component v  is merely a pure rotation. 

5. Model Validation 

5.1 SQUARE SECTION WITH CENTRAL HOLE 

The BEASY analysis uses conditions of plane strain and because of symmetry it is 
only necessary to consider one quarter of the body. It should be noted that BEASY 
can also deal with plane stress. The geometry plot with the defined elements is 
shown in Figure A4.1. 

It is important to note that elements are only defined on the actual boundary and not 
on lines of symmetry. Also quadratic elements with three node points are used. 
Three elements are placed along the quadrant representing the hole and five along 
each (half) edge of the block. 

A variety of internal points has been defined, namely, two linear arrays, i.e., one 
horizontal (points 13-22) and one at 45° to the axis (points 23-32) together with one 
rectangular array in the corner (16 points). The only loading is the 21000lb / in
pressure on the inside of the hole. (Note that a negative value is used in the data 
since compression stress is implied). 

BEASY has been used to calculate the normal and shear stresses at all internal 
points together with the corresponding principal stresses. In the latter case it is 
possible to include values of shear stress calculated according to the von Mises and 
Tresca theories of shear yielding in complex stress (see Benham and Warnock [1]). 

A typical stress plot is given in Figure A4.3 which also shows the variations along 
the line of internal points 23 to 32 at 45° to the horizontal axis. In order to build up 
confidence in these results comparisons have been made with solutions to the 
problem of a pressurized hollow thick cylinder, found by using: 

(1) Lamé thick cylinder theory as previously described  
(2) thick cylinder analysis in BEASY. 
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In Lamé thick cylinder theory the stress components 
rσ  and θσ  are given by 

equation (A4.14) and the displacement u  is given by equation (A4.15), where  

     1ina = , 5inb = , 21000lb / inap = , 0bp =
     0.2v = , 4 250 10 lb / inE = × .

Internal node points 23-32 along a line at 45 degrees to the axis
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Figure A4.3. Typical stress plot for square section with hole under internal pressure.

Computed values of normal stresses 
rσ  and θσ  at points equivalent to internal 

points 13 to 22 on the horizontal axis are presented in Table A4.1 by using 

(1) BEASY 
(2) BEASY thick cylinder analysis 
(3) Lamé thick cylinder theory. 

Clearly there is good agreement which gives confidence in results at other internal 
points produced by BEASY. Also computed values of the displacement u at the 
same internal points produced by BEASY and Lamé thick cylinder theory are 
presented in Table A4.2 and again there is close agreement. 

The actual values of displacements for all mesh points have been calculated using 
BEASY and Figure A4.4 shows exaggerated displacements indicating the deformed 
shape and the movement of internal points. As an example, the horizontal 
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displacement at point 7 on element 3, i.e., on the edge of the hole, is computed by 
BEASY to be 32.5474 10−× in. This compares well with the BEASY thick cylinder 
analysis value of 32.5677 10−× in and the Lamé thick cylinder theory value of 

32.5600 10−× in. The latter value is obtained by using equation (A4.15) with 1r = .

Table A4.1. Computed values of normal stresses 
rσ and

θσ  at internal points 13 to 22 (see Figure A4.1) 

using BEASY and Lamé thick cylinder theory. 

- Position 
BEASY 

BEASY 
Thick Cylinder 

Lamé 
Thick Cylinder 

Internal r rσ θσ rσ θσ rσ θσ
Point in 2lb/in 2lb/in 2lb/in 2lb/in 2lb/in 2lb/in

13 1.100 821.2 891.0 820.3 902.1 819.2 902.5 
14 1.211 670.0 742.0 668.9 751.6 668.5 751.8 
15 1.322 555.4 628.4 554.4 637.3 554.2 637.5 
16 1.433 466.3 539.9 465.5 548.6 465.4 548.7 
17 1.544 395.7 469.8 395.1 478.3 395.0 478.4 
18 1.656 338.7 413.2 338.4 421.6 338.4 421.7 
19 1.767 292.1 366.9 292.1 375.3 292.1 375.4 
20 1.878 253.4 328.5 253.8 337.0 253.7 337.1 
21 1.989 221.0 296.4 221.7 304.9 221.7 305.0 
22 2.100 193.5 269.2 194.5 277.8 194.5 277.9 

Table A4.2. Computed values of the displacement at internal points 13 to 22 (see Figure A4.1) using 
BEASY and Lamé thick cylinder theory. 

 Position BEASY 
Lamé Thick 

Cylinder 
Internal r

3( 10 )u −× 3( 10 )u −×
Point in in in 

13 1.100 2.3254 2.3387 
14 1.211 2.1238 2.1369 
15 1.322 1.9572 1.9701 
16 1.433 1.8175 1.8302 
17 1.544 1.6990 1.7114 
18 1.656 1.5974 1.6094 
19 1.767 1.5095 1.5211 
20 1.878 1.4329 1.4440 
21 1.989 1.3657 1.3763 
22 2.100 1.3066 1.3165 
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5.2 SQUARE SECTION WITH NINE HOLES 

This is a generalization of the single hole problem in which nine holes are placed 
symmetrically in the square section. Again, plane strain is assumed and symmetry 
means that only one quarter of the section need be considered. The corresponding 
geometry plot with mesh points is shown in Figure A4.2. 

            

10 9 8 7

12 33 34 5

1 2 3 4

    

    

    

    

    

    

11 35 36 6

32
31

30
29

28
27

26
25

24

10 9 8 7

12 33 34 5

1 2 3 4

    

    

    

    

    

    

11 35 36 6

32
31

30
29

28
27

26
25

24

x

y

Figure A4.4. Square section with a hole under internal pressure.

It is important to note that the command file was produced by simply editing that for 
the single hole case. In this way any distribution of holes, whether uniform or 
random, can readily be described. For the chosen example of nine holes a significant 
number of internal mesh points have been defined. 

A complete set of results as for the single hole case can be obtained including 
- normal and shear stresses at internal points; 
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- principal stresses; 
- displacements at boundary; 
- displacements internally; 
- stress plot for internal points 36 to 45; 
- deformed shape. 

The stress plot for internal points 36 to 45 is presented in Figure A4.5 and the 
deformed shape in Figure A4.6. 
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Figure A4.5. Typical stress plot for square section with 9 holes under internal pressure.

6. Interpretation and Conclusions 

Using the BEASY software package has meant that the definition of the computer 
model is a fairly straightforward task. This is an inherent advantage of boundary 
element analysis over the more usual finite element method. Since elements are 
defined on the boundary of the plate and holes only, then changing the number of 
elements or the geometry of the boundaries has little impact on the users data file 
(.GAT). This contrasts strongly with the FE approach which would imply a totally 
new mesh to be defined in either of these cases. Similar advantages would be 
exhibited for three dimensional problems. 

It is also worth noting that BEASY permits free choice of the positions of internal 
points which are not linked to any meshes as is the case for FE analysis. However, 
they should not be placed too close to the boundary as unpredictable results can 
sometimes be produced. To enable contouring of stress to be performed it is 
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necessary to have a significant number of internal points evenly spread throughout 
the geometry.
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Figure A4.6. Exaggerated displacements indicating the deformed shape and movement of internal points 
for a square section with 9 holes under internal pressure.

The results obtained for the single hole case based on linear plane strain analysis are 
excellent. Comparisons with thick cylinder analysis show good agreement on 
stresses and displacements. This has been backed up by a separate exercise using FE 
software which is not described in this case study. The free choice of position of 
internal points in BEASY shows an advantage when a fine description of stress 
variation is required. The stress gradient near the holes is steep and it is clearly 
advantageous to be able to define the stress in such regions by having internal points 
close together. 

The square section with nine holes problem has shown the ease with which changes 
in the model can be made in BEASY. The basic editing of the user command file 
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(.GAT) required only a few minutes of effort to modify that for the single hole case. 
An excellent description of the stresses and displacements for the nine hole problem 
is obtained by using a substantial number of freely defined internal points. In 
particular, the close definition of stress variation between two of the holes is clearly 
demonstrated. 

The real significance of this work is that it demonstrates the powerfulness of the 
boundary element software (BEASY) in the computation of stresses and 
displacements of plates/sections with orderly or randomly arranged holes/cavities 
with pressure/shear. Problems of this type arise in the food manufacturing industry. 

7. Computer Algorithms 

The Boundary Element Analysis System (BEASY) software package available from 
Computational Mechanics Ltd., Southampton, UK was used to carry out the analysis. 
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Project B4

MOTION OF FLUID LAYERS 

SUMMARY: This project investigates the flow of two parallel layers of oil and 
water which are located between two plates. Starting from the rest position the top 
plate is moved at a constant velocity which immediately affects the motion of the 
neighbouring oil layer. Eventually this will affect the motion of the lower water 
layer. A mathematical model is formulated which involves parabolic PDEs. Of 
course, the equations cannot be solved separately in the two layers because of the 
boundary conditions at the oil-water interface. A numerical solution is obtained 
using an implicit finite divided difference scheme in terms of time and space. In this 
way the velocity of the two fluid layers is obtained at various distances from the 
plates at different times. Clearly the effects of motion will be more noticeable as 
time proceeds. The results are validated against the steady state solution for large 
time. 

1. Background 

Many practical engineering problems particularly in the area of petroleum 
engineering involve fluid flow. For those problems where two layers are involved, 
e.g., oil and water, it may be possible to examine the motion by considering fluid 
layers. An interesting problem arises when a layer of oil and one of water are 
sandwiched between two parallel horizontal plates. When the top plate is moved at a 
constant velocity it is possible to predict the motion of both fluid layers at various 
distances from the plates for different time values. 

The equations governing the motion of the fluids will involve parabolic PDE’s and it 
is possible to formulate relationships which hold true at the oil-water interface 
involving both the velocities and viscosities of the oil and water. This system of 
equations cannot be solved analytically in the general case because of the boundary 
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conditions at the oil-water interface. However, the PDEs can be solved numerically 
by a range of finite difference methods. 

2. Problem Statement 

Consider two parallel horizontal plates spaced 10 cm apart, as shown in Figure B4.1. 
Initially, both plates and the two fluid layers (oil and water) are at rest. Starting from 

0=t , the top plate is moved at a constant velocity of 7cm/s. The equations 
governing the motion of the fluids are  

     
2
oil

2

oil
oil

x

v

t

v

∂
∂

=
∂

∂ µ

and

     
2

water
2

water
water

x

v

t

v

∂
∂

=
∂

∂ µ .

The following relationships hold true at the oil-water interface 

     
wateroil vv =

and

     
x

v

x

v

∂
∂

=
∂

∂ water
water

oil
oil µµ .

    Figure B4.1. Two plates spaced 10 cm apart containing layers of oil and water. 

Find the velocity of the two fluid layers at 5.0=t , 1 and 1.5s at distances 2=x , 4, 6, 
and 8 cm from the bottom plate. Note that the viscosities 

waterµ  and 1oil =µ  and 3 cp, 

respectively. Validate the numerical results for large time t .
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3. Model Formulation 

First, we introduce the following key parameters: 

water

oil

water

oil

( , ) velocity of water

( , ) velocity of oil

viscosity of water

viscosity of oil.

v x t

v x t

µ
µ

=
=
=
=

We then have two parabolic PDE Initial Boundary Value problems involving the 
velocities of the two fluids, namely: 

     

2
water water

water 2

water

water

water oil

oil water
oil water

6 6

,  0 6,
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 (B4.1)  
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∂ ∂=
∂ ∂

 (B4.2) 

We cannot solve the equations (B4.1) and (B4.2) separately, because they share the 
same boundary conditions at the oil-water interface (i.e., 6=x ).

The first interface condition ),6(),6( oilwater tvtv =  confirms the positional continuity 

of velocity of the two fluids at the interface. The second interface condition 

6
oil

oil6
water

water == ∂
∂=∂

∂
xx x

v

x

v µµ  refers to the tangent at the oil-water interface. If 
waterµ

and
oilµ  are chosen to be the same value (i.e., the same fluid), this confirms the 

tangential continuity of velocity of two fluids at the interface. With 
oilwater µµ ≠ , we 

have
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µ , (B4.3) 

and so the tangents differ by a coefficient ratio of 
wateroil / µµ  at the interface of the 

fluids. 

To formulate a mathematical model we make the following assumptions: 

A1.No viscosity at the top plate.  
A2.The top plate is moved at a constant velocity of 7cm/s throughout. 
A3.At the oil-water interface (i.e., 1

water
+l

m
v , 1

oil
+l

m
v ), this process introduces nodes that 

lie outside the interface, i.e., 1

1water
+
+

l

m
v and 1

1oil
+
−

l

m
v  are introduced. 

To obtain the solution numerically, we apply an implicit scheme on equations (B4.1) 
and (B4.2) with finite divided differences in time and space, respectively. This gives 
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which can be expressed as 
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for  1 , ,1 , −+= nmmj , respectively. 

Starting from the bottom of the water, i.e., 1=i ,
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From the first boundary condition of equation (B4.1), we have 
0),0( 1

0waterwater == +l
vtv .

Therefore, equation (B4.8) becomes 
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A similar exercise can be performed for the interface, where the original difference 
equations are  
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The 1

1water
+
+

l

m
v  and 1

1oil
+
−

l

m
v  can be removed by invoking the second interface condition. 

At the oil-water interface, the following condition must hold 
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A finite divided difference can be substituted for the derivatives to give 
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which can be solved to yield 
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Substituting equation (B4.14) into equation (B4.10), gives 
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Also, the first interface condition tells us 
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Adding equations (B6.11) and (B.15) together, yields 
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Starting from the oil-water interface, i.e., 1+= mj ,
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A similar exercise can be performed for the top plate, where the original difference 
equation is  
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From the first boundary condition of equation (B4.2), we have 7),10( 1
oiloil == +l

n
vtv .

Therefore, equation (B4.19) becomes 
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The initial conditions of equations (B4.1) and (B4.2) tell us that l

i
vwater

 and 0oil =l

j
v

for all mi  , ,2 ,1= , 1 , ,1 , −+= nmmj .

When equations (B4.6), (B4.7), (B4.9), (B4.17), (B4.18) and (B4.20) are written for 
all the interior nodes, we have a resulting system of ( 1−n ) equations in ( 1−n )
unknowns. In addition, the system is tridiagonal. Thus, we can apply the Thomas 
algorithm for tridiagonal systems. 

Table B4.1 shows the velocity of the two fluid layers at 5.0=t , 1 and 1.5s for 
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distances 2=x , 4, 6, and 8 cm from the bottom plate with 
waterµ  and 1oil =µ  and 3 

cp, respectively. 

   Table B4.1 Velocity at distance x = 2, 4, 6, 8cm for different times.

Velocity cm/s cm2=x 4cmx = 6cmx = 8cmx =
s5.0=t 0.0012 0.0200 0.3386 1.3809 

1.0st = 0.0158 0.1189 0.8792 2.2588 
1.5st = 0.0491 0.2611 1.3384 2.8202 

Figure B4.2 shows the velocity of the two fluid layers at 5.0=t , 5 and 50s for 
distances 100 ≤≤ x , with 

waterµ  and 1oil =µ  and 3 cp, respectively. 

Figure B4.2. Velocity of the two fluid layers against distance for  t = 0.5, 5 and 50s. 

As expected, the velocity increases as the time increases. If t  is allowed to be 
sufficiently large, then we approach the steady state situation and equations (B4.1) 
and (B4.2) reduce to simple ODE’s and their solutions are given by 

    oil
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oil water
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    water oil water
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oil water oil water

7 21( )
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6 4 3 2
v x x

µ µ µ
µ µ µ µ
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+ +

, 106 ≤≤ x . (B4.22) 

The derivation of these equations is given in Section 5. 
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5. Model Validation 

In this project the two systems of PDEs (B4.1) and (B4.2) cannot be solved 
analytically but for model validation purposes we can compare the numerical 
solution in Section 4 against the steady state solution for large time. First, we should 
derive the steady state solution given by equations (B4.21) and (B4.22). 

In the steady state case, the set of equations (B4.1) reduces to  
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and clearly 0B =  from (B4.24), thus giving the solution 
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Now the set of equation (B4.2) reduces to  
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Hence  

     
oil ( ) ,  6 10v x Cx D x= + ≤ ≤  (B4.30) 

and the boundary conditions (B4.27) and (B4.28) give 

     10 7C D+ =  (B4.31) 

and

     6 6C D A+ = . (B4.32) 
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Finally, equation (B4.29) gives  
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On solving (B4.31) – (B4.33), we obtain 
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So the final steady state solution is 
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Now we produce computer graphs of the numerical results from Section 4 for large 
time t . Clearly, they approach the above linear steady state results (see Figure B4.3). 

Figure B4.3. Large time behaviour of velocity of two fluid layers against distance for t = 1000s. 
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6. Interpretation and Conclusions 

This project demonstrates how it is possible to deal with the motion of two adjacent 
fluid layers (in this case, oil and water) in cases where we have prescribed 
knowledge of the velocities and viscosities of the two fluids involved. Inevitably a 
mathematical model will result in the problem being formulated in terms of PDEs 
with prescribed boundary and initial conditions provided we make a number of 
simplifying assumptions. A finite difference solution will result in a system of linear 
equations, which, in this case, is tridiagonal. For efficiency, the Thomas algorithm is 
then called into play. For model validation purposes the results can be extended and 
compared to the steady state solution for large values of time. Clearly, this project 
should help to promote ideas on how to deal with other more realistic situations 
involving the motion of fluid layers. 

7. Computer Algorithms 

A computer program was developed for the finite difference method for the solution 
of the PDEs. Again, this resulted in the solution of a tridiagonal system of linear 
equations using the Thomas algorithm (see Section 7 of Project B1). 
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Project B5

MASS BALANCE OF A REACTOR WITH TIME 

DEPENDENCY

SUMMARY: Project B1 considered the one-dimensional mass balance of a 
cylindrical chemical reactor in steady state. This meant that the governing parabolic 
PDE reduced to an ODE. This project now extends the work in Project B1 to include 
time dependency which involves the full PDE. An analytical solution is no longer 
possible but a numerical solution is obtained using finite difference methods. As a 
result computer graphs are plotted which show the variation of concentration of the 
chemical with distance along the longitudinal axis of the reactor at different times. 
For model validation purposes, these results for large time are compared with the 
exact results obtained in Project B1 for the steady state case. 

1. Background 

The background to this project is the same as that for Project B1. The previous work 
is now extended to deal with a chemical whose concentration depends on both 
distance and time. This means that we have to deal with the full parabolic PDE and 
not the simplified steady state case of the ODE. Figure B1.1 in Project B1 still 
applies. 

2. Problem Statement 

Figure B1.1 in Project B1 shows an elongated cylindrical reactor with a single entry 
and exit point. Using the same modelling assumptions as in Project B1, the same 
mass balance can be performed on a finite segment of length x∆  to produce 
equation (B1.1). 
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Use this mass balance in the limit as x∆  and t∆  tend to zero to formulate the 
governing parabolic PDE and the associated boundary and initial conditions. State 
clearly any modelling assumptions made in the formulation. Then consider the 
solution of this PDE. 

Use finite differences to produce a numerical solution of this parabolic PDE initial-
boundary value problem and hence show how the concentration of chemical varies 
with distance at different times during the build-up of chemical in the reactor. 

Finally, validate the model with reference to the steady state solution obtained in 
Project B1. 

3. Model Formulation 

To formulate a mathematical model we make the following assumptions: 

A1.Chemical being modelled is subject to first-order decay. 
A2.The tank is well mixed vertically and laterally. 
A3.Dispersion in the reactor does not affect the exit rate. 
A4.Prior to 0t =  the reactor is filled with water which contains no chemical. 
A5.Starting from 0t =  the chemical is injected into the reactor’s inflow at a constant 

level of 
inc .

Then as 0x∆ →  and 0t∆ → , and using the modelling assumptions A1 and A2, 
equation (B1.1) approaches in the limit 

     
2

2

c c c
D U c

t x x
γ∂ ∂ ∂= − −

∂ ∂ ∂
, 0 x L< < , (B5.1) 

where 
c/U F A=  is the velocity of the water flowing through the tank. 

It should be noted here that the steady state case of this equation (B5.1) has been 
solved in Project B1. 

The modelling assumption A3 means that chemical leaves the reactor purely as a 
function of flow through the outlet pipe. This leads to the boundary condition 

     ( , ) 0c L t′ = , 0t > . (B5.2) 

The modelling assumption A4 leads to the initial condition 

     ( ,0) 0c x = , 0 x L< < . (B5.3) 
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1lt +

lt

1ix +ix1ix −

Finally, the modelling assumption A5 leads to the boundary condition 

     
in(0, ) (0, )

D
c t c c t

U
′= + , 0t > . (B5.4) 

Hence we have the initial-boundary value problem 
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 (B5.5) 

4. Numerical Solution 

The PDE together with initial and boundary conditions given in equation (B5.5) 
cannot be solved analytically. Just as for the steady state ODE case in Project B1, 
the parabolic PDE can be solved by substituting finite divided differences for the 
partial derivatives. However, in contrast to the ODE, we must now consider changes 
in time as well as in space. Because of their time-variable nature, solutions to these 
equations involve a number of new issues, notably stability. We present two 
fundamental solution approaches based on numerical accuracy  Implicit and 

Crank-Nicolson schemes.

4.1 IMPLICIT METHOD 

In the implicit method, the spatial derivative is approximated at an advanced time 
level 1+l  (see Figure B5.1).

Figure B5.1. A computational molecule for the simple implicit method (×: Grid point involved in time 
difference, ο: Grid point involved in space difference). 

A forward finite divided difference is used to approximate the time derivative, 
namely 
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which has an error of )( tO ∆ .

The first and second space derivatives would be approximated by  
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which are second-order accurate. When these approximations are substituted into the 
original PDE, the resulting difference equation contains several unknowns. Thus, it 
cannot be solved explicitly by simple algebraic rearrangement. Instead, the entire 
system of equations must be solved simultaneously. This is possible because, along 
with the boundary conditions, the implicit formulation results in a set of linear 
algebraic equations with the same number of equations as unknowns. Thus, the 
method reduces to the solution of a set of simultaneous linear equations at each 
point in time. 

To illustrate how this is done, we substitute equations (B5.6)-(B5.8) into (B5.5) to 
give 

     
1 1 1 1 1 1

11 1 1 1
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which can be expressed as 

1 1 1
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The initial condition )0,(xc  tells us that 0=l

ic  for all ni  , ,1 ,0= ; 0l = .

This equation can be written for each of the system nodes. At the ends of the reactor, 
this process introduces nodes that lie outside the system. For example, at the inlet 
node ( 0=i ),

1 1 1
1 0 1 02 2 2

1 2 1

( ) 2 ( ) ( ) 2
l l l lD U D D U

c c c c
x x t x x x t

γ+ + +
−+ − + + + − = −
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. (B5.11) 
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The 1
1
+

−
lc  can be removed by invoking the boundary condition (B5.4). At the inlet, 

the following mass balance must hold 

     ),0(),0( in tc
U

D
ctc ′+= , (B5.12) 

where ),0( tc  = concentration at 0=x  and for 0>t . Thus, this boundary condition 

specifies that the amount of chemical carried into the tank by advection through the 
pipe must be equal to the amount carried away from the inlet by both advection and 
turbulent dispersion in the tank. A finite divided difference can be substituted for the 
derivative, namely 
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which can be solved to give 
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This can be substituted into equation (B5.11) to give 
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A similar exercise can be performed for the outlet, where the original difference 
equation is  
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The boundary condition at the outlet is 

     0),( =′ tLc . (B5.17) 

As with the inlet, a divided difference can be used to approximate the derivative as 
follows: 
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Inspection of this equation leads us to conclude that 1
1

1
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+
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n cc . In other words, the 
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slope at the outlet must be zero for equation (B5.18) to hold. Substituting this result 
into equation (B5.16) and simplifying gives 

     1 1
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2 1 2 1
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Equations (B5.10), (B5.15) and (B5.19) are written for all the interior nodes 
resulting in a system of n  equations in n  unknowns. In addition, the method has the 
added bonus that the system is tridiagonal. Thus, we can apply the Thomas 
algorithm again for tridiagonal systems. 

Whereas the implicit method described is stable and convergent, it has the defect 
that the time difference approximation is first-order accurate, whereas the spatial 
difference approximation is second-order accurate. To remedy this situation, we 
present an alternative implicit method, namely, the Crank-Nicolson method. 

4.2 CRANK-NICOLSON METHOD 

The Crank-Nicolson method provides an alternative implicit scheme that is second-
order accurate in both space and time. To provide this accuracy, difference 
approximations are developed at the midpoint of the time increment (see Figure 
B5.2). 

Figure B5.2. A computational molecule for the Crank-Nicolson method (×: Grid point involved in time 
difference, ο: Grid point involved in space difference). 

To do this, the first time derivative can be approximated at 2/1+lt  by 
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The first and second derivatives in space can be determined at the midpoint by 
averaging the difference approximations at the beginning ( lt ) and at the end ( 1+lt )
of the time increment as follows: 
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Substituting equations (B5.20)-(B5.22) into equation (B5.5) gives 
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which can be expressed as 
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Again, the initial condition )0,(xc  tells us that 0=l
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At the inlet node ( 0=i ), we have 
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Substituting 1
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lc  from equation (B5.14) into equation (B5.25), gives 
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A similar exercise can be performed for the outlet, where the original difference 
equation is 
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Substituting 1
1

1
1

+
−

+
+ = l

n

l

n cc  into equation (B5.27), gives 

1 1
1 12 2 2 2

1 1

( ) ( ) 2 ( ) ( ) 2
l l l l

n n n n

D D D D
c c c c

x t x x t x

γ γ+ +
− −− + + = − − − −

∆ ∆ ∆ ∆ ∆ ∆
. (B5.28) 

Although equations (B5.24), (B5.26) and (B5.28) are slightly more complicated than 
equations  (B5.10), (B5.15) and (B5.19), the system is also tridiagonal and, therefore, 
can be solved efficiently. 

5. Model Validation 

The numerical results (using implicit and Crank-Nicolson schemes) are plotted in 
Figure B5.3 for 2=D , 2=U , 0.2γ = , 100in =c  and 25.0=∆x , where the 

concentration in the tank is 0 at time zero. As expected, the immediate impact is 
near the inlet. With increasing time values, the solution eventually approaches the 
steady state level .

Figure B5.3a. Concentration versus distance at different times during the build-up of chemical in a 
reactor by implicit scheme. 

To assess the accuracy of the finite difference schemes, Table B5.1 presents the 
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results to 14D at 500t =  from the implicit and Crank-Nicolson methods both using 
intervals 0.25x∆ = , 0.025t∆ = , for the case 1D = , 1U = , 0.2γ = , 100in =c .

Figure 5.3b. Concentration versus distance at different times during the build-up of chemical in a reactor 
by Crank-Nicolson scheme. 

These results are further compared with the steady state results in Table B5.1 and 
clearly there is excellent agreement. 

Table B5.1. Comparison of concentration results at 500t =  using finite difference methods with intervals 

0.25x∆ = , 0.025t∆ =  (for  1D = , 1U = , 0.2γ = ,
in 100c = , 10L = ).

x Implicit Method Crank-Nicolson method Steady state solution 
0 85.40949391791340 85.40949391791396 85.41021790798811 

2.5 55.72990523497404 55.72990523497476 55.72454779633919 
5 36.36967495688857 36.36967495688973 36.36263229460928 

7.5 23.84430920620443 23.84430920620534 23.84077640806307 
10 17.69873908593070 17.69873908593142 17.73340643352621 

It should be noted that in such dynamic calculations, the time step is constrained by 
the stability criterion  

     
2

2

( )

2 ( )

x
t

D xγ
∆∆ ≤

+ ∆
. (B5.29) 

Thus, the reaction terms act to make the time step smaller.
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6. Interpretation and Conclusions 

This project has considered the mass balance of a chemical reactor and has extended 
Project B1 to deal with the important case of time dependency. This has meant that 
the full PDE requires to be solved. Numerical results obtained from an implicit 
method and Crank-Nicolson method show excellent agreement. These results are 
validated against the steady state results obtained from Project B1 and again the 
agreement is good. A more detailed examination of the numerical results from this 
project and from Project B1 would show conclusively how the instability of a 
solution can be due to the nature of the PDE rather than the properties of the 
numerical method. 

7. Computer Algorithms 

Computer programs have been developed for both the implicit scheme and Crank-
Nicolson method. In both cases the resulting system of linear equations is 
tridiagonal and so the Thomas algorithm (see Section 7 of Project B1) has been used 
in the solution. 
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FLOW THROUGH POROUS MEDIA 

SUMMARY: A rectangular plate with fixed boundary conditions is an ideal context 
for demonstrating how elliptic PDEs can be solved numerically. However, more 
realistic problems involve geometries with irregular shape. This project considers 
the flow of liquid through porous media. The geometry to be considered involves a 
rectangular region with an irregular edge. Values of the head and its partial 
derivatives are specified on the boundary of the region. A mathematical model is 
formulated after making some simplifying assumptions. Numerical methods are then 
used to solve the governing Laplace’s equation and including irregular boundary 
conditions. Consequently numerical results are obtained for the distribution of the 
head by using MATLAB. 

1. Background 

Elliptic partial differential equations arise usually from equilibrium or steady-state 
problems and their solutions frequently maximize or minimize an integral 
representing the energy of the system. The best known elliptic equations are 
Poisson’s equation 

     
2 2

2 2
( , )

u u
f x y

x y

∂ ∂+ =
∂ ∂

 (B6.1) 

and Laplace’s equation 

     
2 2

2 2
0

u u

x y

∂ ∂+ =
∂ ∂

. (B6.2) 
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Poisson’s equation represents, for example, the slow motion of incompressible 
viscous fluid and the inverse square law theories of electricity, magnetism and 
gravitating matter at points where the charge density, pole strength or mass density, 
respectively, are non-zero. Laplace’s  equation arises in the theories associated with 
the steady flow of heat or electricity in homogeneous conductors, with the 
irrotational flow of incompressible fluid and with potential problems in electricity, 
magnetism and gravitating matter at points devoid of these entities. 

The domain of integration of a two-dimensional elliptic equation is always an area 
S  bounded by a closed curve C . The boundary condition usually specifies either 
the value of the function or the value of its normal derivative at every point on C , or 
a mixture of both. For Laplace’s equation it can be shown that the solution 
throughout S  is bounded by the extreme values of u  on C  and has no maxima or 
minima. 

In this project we will consider the case of fluid flow through porous media which 
can be described by Laplace’s equation. In the numerical solution we will expend 
our capabilities to address realistic problems involving boundaries at which the 
derivative is specified and boundaries that are irregularly shaped. 

2. Problem Statement 

Consider the flow of fluid through porous media. The geometry to be considered is 
shown in Figure B6.1 and involves a rectangular region with an irregular edge at the 
bottom right hand corner. 

Figure B6.1. Rectangular porous media with an irregular shaped boundary. 

Values of the head h  and its partial derivatives are as specified on the boundary of 
the region. 

20h =

0
dh

dn
=

0
dh

dy
=

1
dh

dx
=

0
dh

dy
=

2 1

1

1
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We will use numerical methods to determine the distribution of head for the system 
shown in Figure B6.1. Any assumptions made in the mathematical model will be 
clearly stated. 

3. Model Formulation 

In this project the flow through porous media can be described by Laplace’s 
equation 

     
2 2

2 2
0,

h h

x y

∂ ∂+ =
∂ ∂

 (B6.3) 

where h  is the head. In formulating the mathematical model we make the following 
assumptions: 

A1.The porous media has the same depth everywhere. 
A2.The head is fixed at the right hand edge (i.e., 20h = ).
A3.The irregular shaped boundary at the right bottom corner is a perfect circular arc. 
A4.There is no physical factor (e.g., wind) acting which will affect the water flow. 

In order to simplify the solution, we use a square mesh of size 0.5x y∆ = ∆ = . Then 

the important mesh points involved in the determination of the distribution of head 
for the porous media can be classified into four types: 

(1)  given boundary points, i.e., 20h =  (indicated by  in Figure B6.2) 
(2)  interior points (indicated by  in Figure B6.2) 
(3)  regular boundary points (indicated by x in Figure B6.2) 
(4)  irregular boundary points (indicated by  in Figure B6.2). 

Figure B6.2. Classification of the node points for the porous media. 
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For points of type (1) h  is given. We use for points of type (2) central finite 
difference approximations 

     
2

1, , 1,

2 2

2

( )
i j i j i jh h hh

x x

+ −− +∂ ≅
∂ ∆

 (B6.4) 

and

     
2

, 1 , , 1

2 2

2
,

( )
i j i j i jh h hh

y y

+ −− +∂ ≅
∂ ∆

 (B6.5) 

which have errors 2(( ) )O x∆  and 2(( ) )O y∆ , respectively. For points of type (3) and (4) 

we require to use other techniques. 

The case where derivative boundary conditions are given is commonly referred to as 
Neumann boundary conditions. Figure B6.3 illustrates a node (0, )j  at the left edge 

of the porous media. 

Figure B6.3. An imaginary point (-1,j) lying outside the boundary with node (0,j) at the left edge of the 
porous media. 

To deal with this type of boundary condition, an imaginary point ( 1, )j−  is located a 

distance x∆  beyond the edge to approximate the x -derivative at the edge. Although 
this exterior point might appear to represent a problem, it actually serves as the 
vehicle for incorporating the derivative boundary condition into the problem. We 
can represent the first x -derivative at the point (0, )j  by the divided difference to 

give

     1, 1,

2
j jh hh

x x

−−∂ ≅
∂ ∆

 (B6.6) 

from which we obtain 

     
1, 1, 2 .j j

h
h h x

x
−

∂= − ∆
∂

 (B6.7) 

0, 1jh −

0, jh 1, jh1, jh−

0, 1jh +
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The points of type (4) are more difficult to deal with because they involve derivative 
conditions for irregularly shaped boundaries. Figure B6.4 shows two such points 
near the irregular boundary where the normal derivative is specified. The normal  

Figure B6.4. A curved boundary where the normal gradient is specified. 

derivative at nodes a  and c  can be approximated by the gradient between nodes 
(4,1) and b , nodes (5,2) and d , respectively. This gives 

     4,1 b

a a

h hh

n L

−∂ ≅
∂

 (B6.8) 

and

     5,2 ,d

c c

h hh

n L

−∂ ≅
∂

 (B6.9) 

where 
aL  is the distance between node (4,1) and b , and 

cL  is the distance between 

node (5,2) and d .

4. Numerical Solution 

We now use the equations in Section 3 to help us to find a numerical solution for the 
problem specified in Section 2. First of all, we require some mathematical 
manipulation of the equations to enable us to formulate a system of linear equations 
using finite difference techniques. 

Using equations (B6.4) and (B6.5), Laplace’s equation (B6.3) can be approximated 
at the general internal mesh point ( , )i j  by 

     1, , 1, , 1 , , 1

2 2

2 2
0,

( ) ( )
i j i j i j i j i j i jh h h h h h

x y

+ − + −− + − +
+ =

∆ ∆
 (B6.10) 

θ

φ

d

c

a

b

(3,0)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(5,2) (6,2)

(5,3) (6,3)
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where 
, ( , )i jh h i x j y= ∆ ∆ , 0,1, 2, ,i M= , 0,1, 2, ,j N=  . 

In our case we will use a square mesh ( x y∆ = ∆ ) which means that equation (B6.10) 

simplifies to 

     
1, 1, , 1 , 1 ,4 0.i j i j i j i j i jh h h h h+ − + −+ + + − =  (B6.11) 

For points on the boundary containing derivative boundary conditions we substitute 
equation (B6.7) into equation (B6.11) to give at the point (0, )j

     
1, 0, 1 0,2 2 4 0.j j j

h
h x h h

x
+

∂− ∆ + − =
∂

 (B6.12) 

Similar relationships can be developed for incorporating the derivative boundary 
conditions at the other edges. 

We now return to the points of type (4) mentioned in Section 3. Figure B6.4 shows 
that when the angles θ  and φ  are less than 45° , the distance from node (3,1) to b  is 

tanx θ∆  and the distance from node (5,3) to d  is tany φ∆ . Linear interpolation can 

then be used to estimate 
bh  and 

dh  in equations (B6.8) and (B6.9). This gives 

     
3,1 3,2 3,1

tan
( )b

x
h h h h

y

θ∆= + −
∆

 (B6.13) 

and

     
5,3 4,3 5,3

tan
( ) .d

y
h h h h

x

φ∆= + −
∆

 (B6.14) 

The lengths 
aL  and 

bL  in equations (B6.8) and (B6.9) are equal to 
cos

x
θ

∆  and 
cos

y

φ
∆ ,

respectively. These lengths, together with the approximations 
bh  and 

dh  in equations 

(B6.13) and (B6.14), respectively, can be substituted back into equations (B6.8) and 
(B6.9) to give 

     
4,1 3,2 3,1

tan tan
1

cos a

x h x x
h h h

n y y

θ θ
θ

∆ ∂ ∆ ∆= + + −
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 (B6.15) 

and
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tan tan
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y h y y
h h h

n x x

φ φ
φ

∆ ∂ ∆ ∆= + + −
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 (B6.16) 

Such equations provide a means for incorporating the normal derivative into the 
finite difference approach. Thus, now all the four types of points can be included to 
determine the distribution of head for the porous media. 

The numerical solution then proceeds as follows: 

(1) For 0i = , 0j = , applying equation (B6.11) gives 

     
1,0 1,0 0,1 0, 1 0,04 0h h h h h− −+ + + − = . (B6.17) 

Since we have both x - and y - derivative boundary conditions for the left hand 

corner node point (0,0), then by finite differences we have 
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1,0 1,0 1,0 1
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h hh h
h h h

x x x
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and

     0,1 0, 1
0, 1 1,0 0,12

h hh h
h h h

y y y

−
−

−∂ ∂≅ = − =
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. (B6.19) 

This can be substituted into equation (B6.17) to give 

     
1,0 0,1 0,02 2 4 1h h h+ − = . (B6.20) 

(2) For 0i = , 1j = , applying equation (B6.12) gives 

     
1,1 0,2 0,0 0,12 4 1h h h h+ + − = . (B6.21) 

The equations for all the other regular boundary points in Figure 6.2 can be 
formulated by the same method. 

(3) For the two irregular boundary points (4,1) and (5,2), we apply equations (B6.15) 
and (B6.16) to give 

     
4,1 3,2 3,1

1 1
0 1

2 2
h h h= + + −



154 Project B6

and

     
5,2 4,3 5,3

1 1
0 1

2 2
h h h= + + −

since 1
2tan tanθ φ= = . This implies that 

     
3,1 4,1 3,22 0h h h− + =  (B6.22) 

and

     
5,2 4,3 5,32 0h h h− + + = . (B6.23) 

Thus, we can now formulate the system of linear equations as 
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     (B6.24) 

By solving the above linear system of equations, we obtain the values of the head 

,i jh  at the 27 node points ( , )i j  where 0,1, ,4i = , 0,1, ,4j =  [with exception of 

(4,0)] and the points (5,2), (5,3), (5,4). The calculated values of the water flow 
velocity at all the above node points are presented in Figure B6.5. 
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Figure B6.5. Water flow velocity distribution through porous media subject to irregular boundary 
conditions.

4.1 MATLAB APPROACH 

For the porous media with irregular boundary, we should first determine which node 
points need to be considered and which can be ignored. This can be done by 
calculating the distance from the point to the central point of the circular arc. Since 
the irregular boundary is a circular arc with radius 1 unit, then if this distance is less 
than or equal to 1 this point need not be considered. 

The algorithm for this MATLAB approach is given in Section 7. When this 
procedure is applied with the testing data ( 0.5x y∆ = ∆ = ), the index ( , )x y  will store 

the values as follows: 

From the above results, 0 means that the point is outside the porous media (i.e., 
within the circular arc of radius 1) and so can be ignored. We also see that 15, 21 
and 27 are duplicated because these three points lie on the top right hand boundary, 
which means that they need not be considered. We simply set the values to the given 
boundary condition ( 20h = ).

Once the computer knows which points should be considered, it can classify them 

 12.82 13.34 13.92 14.61 15.59 17.20 20 

 12.79 13.31 13.86 14.48 15.27 16.60 20 

12.74 13.24 13.72 14.16 14.41 13.94 20 

12.70 13.19 13.64 14.03 14.29 

12.69 13.17 13.62 14.03 
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into one of the above four types and then formulate the equations for each point. 
After finding the global stiffness matrix, values of the water flow velocity v  have 
been calculated as follows: 

(12.6893,13.1740,13.6238,14.0336,12.7046,13.1914,13.6439,14.0336,14.2934,

12.7463,13.2131,13.7268,14.1635,14.4170,13.9400,12.7944,13.3078,13.8568,

14.4765,15.2712,16.6024,12.8156,13.3369,13.9163,14.61

=v

45,15.5888,17.198)T

A 3-dimensional graph showing the water flow velocity distribution through the 
porous media subject to these irregular boundary conditions is given in Figure B6.6. 

Figure B6.6. Graph of the distribution of head through the irregular shaped porous media. 

5. Model Validation 

It is important to validate the numerical results obtained in Section 4. This has been 
done by using another computer program. 

For the derivative boundary condition 1
h

x

∂ =
∂

, applying equation (B6.12) gives 
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1
(2 2 ).

4j j j j

h
h h x h h

x
+ −

∂= − ∆ + +
∂

 (B6.25) 

Similar relationships can be developed for derivative boundary conditions 0
h

y

∂ =
∂

 at 

the other edges to give 
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and
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For the irregular boundary condition 0
h

n

∂ =
∂

, applying equations (B6.22) and (B6.23) 

gives

     4,1 3,2 3,1

1 1

2 2
h h h= +  (B6.28) 

and

     5,2 4,3 5,3

1 1
.

2 2
h h h= +  (B6.29) 

Now we have the equations to deal with all the interior points, the derivative 
boundary points and the irregular boundary points. By running the program using 
the above equations, we calculate the values of the elements of the head velocity 
matrix H , namely,  

     

0,4 1,4 2,4 3,4 4,4 5,4 6,4

0,3 1,3 2,3 3,3 4,3 5.3 6,3

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,1 1,1 2,1 3,1 4,1 5,1 6,1

0,0 1,0 2,0 3,0 4,0 5,0 6,0

h h h h h h h

h h h h h h h

h h h h h h hH

h h h h h h h

h h h h h h h

=  (B6.30) 

After the first iteration, the results are 

0.4160 0.1587 0.0575 0.0201 0.0072 7.4966 20

0.3320 0.1094 0.0356 0.0114 0.0043 4.9968 20

0.3281 0.1055 0.0332 0.0100 0.0058 0.0086 20

0.3125 0.0938 0.0273 0.0068 0.0132 0 0

0.2500 0.0625 0.0156 0.0000 0 0 0

H

− − − − −
− − − − −

= − − − − − −
− − − − −
− − −
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After two iterations, we have 

0.5972 0.2813 0.1237 0.0578 2.4776 8.8942 20

0.5356 0.2353 0.0966 0.0381 1.2328 6.5496 20

0.5078 0.2144 0.0823 0.0313 0.0203 2.5312 20

0.4883 0.1953 0.0723 0.0256 0.0370 0 0

0.4375 0.1602 0.0537 0.0068 0 0 0

H

− − − −
− − − −

= − − − − − −
− − − − −
− − − −

The sequence of iterations is continued until the maximum percentage relative 
difference between successive values is 0.001%. On this basis we find that after 693 
iterations, we have 

12.8040 13.3255 13.9055 14.6047 15.5807 17.1932 20

12.7827 13.2963 13.8459 14.4664 15.2624 15.5961 20

12.7344 13.2314 13.7156 14.1528 14.4067 13.9288 20

12.6926 13.1796 13.6324 14.0226 14.2829 0 0

12.6772 13.1621 13.6123 14.0225 0

H =

0 0

On comparing these results with MATLAB results in Section 4, the maximum 
percentage difference is 0.0954% which is small and hence give us confidence in the 
accuracy of the results. 

6. Interpretation and Conclusions 

This project has dealt with the realistic problem of flow of liquid through porous 
media with irregular shaped boundary. Boundary conditions involving derivatives 
have been dealt with on both regular and irregular sections of the boundary. Good 
agreement has been obtained from numerical results obtained by MATLAB and 
other programs. 

This project could be extended by realizing that the velocity of water flow through 
the porous media can be related to head by D’Arcy’s law 

     
,n

dh
q

dn
κ= −

where κ  is the hydraulic conductivity and nq  is the discharge velocity in the normal 
n  direction. So, in this way, it would be possible to compute the water velocity for 
the problem for particular values of κ .
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7. Computer Algorithms 

The computer algorithm for the MATLAB approach in Section 4.1 is given below: 

Initialize a index(x,y) array 
Set count = 0 
for j = 1 to y 
 for i = 1 to x 
  Calculate distance of point(i,j) to the right bottom corner 
  if distance > 1 (i.e. outside the irregular boundary) 
   if not right boundary 
    Increase count by 1 
   end 
   Set index(i,j) = count 
  end 
  if distance  1 and point at right boundary 
   Set index(i,j) = count 
  end 
 end 
end
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PDE Problems  

1. Write a computer program to determine the numerical solution of Laplace’s 
equation  

     
2 2

2 2
0

u u

x y

∂ ∂+ =
∂ ∂

 and Poisson’s equation 

      
2 2

2 2

u u
f

x y

∂ ∂+ =
∂ ∂

,

for a rectangular object of variable width and height. The object could have 
Dirichlet, Neumann or Cauchy boundary conditions. The value of f  in 

Poisson’s equation should be assumed constant. Use this program to find the 
solution of the following problems: 

 (a) A thin metal plate of dimension 2ft ×  2ft is subjected to four heat sources 
which maintain the temperatures on its four edges as follows:  

( ,0) 400u x C°= , (0, ) 200u y C°= ,

( , 2) 50u x C°= , (2, ) 100u y C°= .

     
The flat sides of the plate are insulated so that no heat is transferred through 
these sides. Calculate the temperature profiles within the plate. 
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 (b) Perfect insulation is installed on two edges (right and top) of the plate of part 
(a). The other two edges are exposed to heat sources. This means that the set 
of Dirichlet and Neumann boundary conditions is  

( ,0) 400u x C°= , (0, ) 200u y C°= ,

,2

0
x

u

y

∂ =
∂

,
2,

0
y

u

x

∂ =
∂

.

Calculate the temperature profiles within the plate and compare these with 
the results from part (a). 

 (c) The thin metal plate of part (a) is made of an alloy which has a melting point 
of 600 C°  and a thermal conductivity of 15 Btu/(hour. ft. C° ). The plate is 
subjected to an electric current which creates a uniform heat source within 
the plate. The amount of heat generated is Q = 100,000 Btu/(hour. 3ft ). The 

edges of the plate are in contact with heat sinks which maintain the 
temperature 50 C°  on all four edges. Examine the temperature profiles within 
the plate to ascertain whether the alloy will begin to melt under these 
conditions.  

 (d) Determine the optimum value of the overrelaxation parameter for the 
conditions used in part (a).  

2. Modify the computer program in Problem 1 to solve the three-dimensional 
problem  

      
2 2 2

2 2 2
0

u u u

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

.

Apply this program to calculate the distribution of the dependent variable within 
a solid body which is subjected to the following boundary conditions: 

     (0, , ) 200u y z = , (2, , ) 200u y z = ,

     ( ,0, ) 0u x z = , ( , 2, ) 0u x z = ,

     ( , ,0) 100u x y = , ( , , 2) 100u x y = .
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3. (a) Solve Laplace’s equation with the following boundary conditions 

     (0, ) 80u y = ,
5,

20
y

u

x

∂ =
∂

,

     

,0

0
x

u

y

∂ =
∂

,

,1

0
x

u

y

∂ =
∂

.

Discuss the results and determine the optimum value of the overrelaxation 
parameter for this problem. 

 (b) Extend the computer program in (a) to include Robbins boundary conditions 
of the form: 

     ( )f

u
k h u u

x

∂ = −
∂

 at 0x =  and 0t ≥ ,

     ( )f

u
k h u u

x

∂− = −
∂

 at x C=  and 0t ≥ ,

where u  is the value of the dependent variable at the boundary and 
fu  is a 

known value of the dependent variable in the fluid next to the boundary; k ,
h  and C  are known constants. 

Apply this program to solve the following problem: The ambient temperature 
surrounding a house is 60 F° . The heating in the house has been turned off 
and so the internal temperature is also 60 F°  at t = 0. The heating system is 
turned on and raises the internal temperature to 75 F°  at the rate of 5 F° /hour. 
The ambient temperature remains at 60 F° . The wall of the house is 0.4 ft 
thick and is made of material which has an average thermal diffusivity 

20.01ft /hourα =  and a thermal conductivity 0.2k = Btu/(hour. ft. F° ). The 
heat transfer coefficient on the inside of the wall is 

2
in 1.2Btu/(hour. ft . )h F= °  and the heat transfer coefficient on the outside is 

2
out 2.0Btu/(hour. ft . )h F= ° . Estimate how long it will take to reach a steady-

state temperature distribution across the wall. 

4. Develop the finite difference approximation of Fick’s second law of diffusion in 
polar coordinates, namely  
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2 2 2

2 2 2 2

1 1c c c c c
D

t r r r r zθ
∂ ∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂

,

where ( , , )c r zθ  represents the concentration and D  the diffusivity. Hence write 

a computer program which can be used to solve the following problem:  

A wet cylinder of agar gel at 278 K°  with a uniform concentration of urea of 0.1 
kg. 3mol/m  has a diameter of 3cm and is 4cm long with flat parallel ends. The 
diffusivity is 10 24.5 10 m /s−× . Calculate the concentration at the midpoint of the 
cylinder after 100 hours for the following cases if the cylinder is suddenly 
immersed in turbulent pure water: 

 (a) Radial diffusion only. 
 (b) Diffusion that occurs radially and axially. 

5. Consider a first-order chemical reaction being carried out under isothermal 
steady-state conditions, in a tubular-flow reactor. On the assumptions of laminar 
flow and negligible axial diffusion, the material balance equation is  

     
2 2

0 2

1
1 0

r c c c
v D kc

R z r r r

∂ ∂ ∂− − + + − =
∂ ∂ ∂

,

0where velocity of central stream line

tube radius

reaction-velocity constant

radial diffusion constant

concentration of reactant

axial distance down the tube

radial distance from the centre.

v

R

k

D

c

z

r

=
=
=
=
=
=
=

 After defining the following dimensionless variables: 

     
0

kz

v
α = ,

0

c
C

c
= ,

2

D

kR
β = , r

V
R

= ,

 the equation becomes 

     
2

2
2

1
(1 )

C C C
V C

V V V
β

α
∂ ∂ ∂− = + −
∂ ∂ ∂

,
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 where 
0c  is the entering concentration of the reactant to the reactor. 

 (a) Choose a set of appropriate boundary conditions for this problem and explain 
your choice.  

 (b) What class of PDE is the above equation (hyperbolic, parabolic or elliptic)? 

 (c) Set up the equation for numerical solution using finite difference 
approximations. 

 (d) Does your choice of finite differences result in an explicit or implicit set of 
equations? Give details of the procedure for the solution of this set of 
equations. 

 (e) Discuss stability considerations with respect to the method you have chosen. 

6. A square membrane of side 12in (no bending or shear stresses), with a square 
hole of side 3in in the middle, is fastened at the inside and outside boundaries as 
shown in Figure 1. If a highly stretched membrane is subjected to a pressure p ,

the PDE for the deflection u  in the z -direction is  

     
2 2

2 2

u u p

x y T

∂ ∂+ = −
∂ ∂

,

where T  is the tension (lb/in). For a highly stretched membrane, the tension T
may be assumed constant for small deflections. Assume the following values of 
pressure and tension: 

     210lb/inp = (uniformly distributed) 

     200lb/inT = .

 (a) Express the differential equation in finite difference form to obtain the 
deflections u  of the membrane. 

 (b) List all the boundary conditions needed for the numerical solution of the 
problem. Utilize some or all of these boundary conditions to simplify the 
finite difference equations in part (a). 

 (c) Develop a computer program for the solution of this problem. 
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0

y

x

3 in

4.5 in

3 in

4.5 in

12 in

12 in

Figure 1. Stretched membrane fastened at the inside and outside boundaries. 

7. Figure 2 shows the cross section of a long cooling fin of thickness t , width w

and thermal conductivity k  which is bonded to a hot wall, maintaining its base 
(at 0x = ) at a temperature 

0T . Heat is conducted steadily through the fin in the 

plane of Figure 2 so that the fin temperature T  obeys Laplace’s equation  

      
2 2

2
0

T T

x y

∂ ∂+ =
∂ ∂

.

 Temperature variations along the length of the fin in the z -direction are ignored.  

Heat is lost from the sides and tip of the fin by convection to the surrounding air 
(radiation is neglected at sufficiently low temperatures) at a local rate  
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      ( )s aQ h T T= − 2Btu/(hour.ft ) .

t

Q

w

T(x,y)

Air at Ta

Wall at T0

t

Figure 2. Cross section of a long cooling fin. 

Here, 
sT and

aT  (in degrees Fahrenheit) are the temperatures at a point on the fin 

surface and of the air, respectively. If the surface of the fin is vertical, the heat 
transfer coefficient h  obeys the dimensional correlation  

      
1

30.2( )s ah T T= − .

 (a) Set up the equation for a numerical solution of this problem to determine the 
temperature at a finite number of points within the fin and at the surface of 
the fin.  

 (b) Describe in detail the step-by-step procedure for solving the equation in part 
(a) and evaluating the temperatures within the fin and at the surface. 

 (c) Develop a computer program to find the numerical solution of this problem 
using the following data: 

      0.5int = , 26k = Btu/(hour. ft. F° ),
     210wT F°= , 60aT F°=
     1.0inw = .

8. Compute the steady-state distribution of concentration for the tank shown in 
Figure 3. The PDE governing this system is  

     
2 2

2 2
0

c c
D kc

x y

∂ ∂+ − =
∂ ∂
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and the boundary conditions are as shown. Employ a value of 0.2 for D  and 0.1 
for k .

Open 

boundary

60

20

Wall

20

50c =

2 0c =

Figure 3. Dimensions and distribution of concentration of a tank.

9. An insulated composite rod is formed of two parts arranged end to end, with 
both halves of equal length. Part a has thermal conductivity 

ak  for 0 1/ 2x≤ ≤ ,

and part b has thermal conductivity 
bk  for 1/ 2 1x≤ ≤ .

The nondimensional transient heat conduction equations which describe the 
temperature T  over the length x  of the composite rod are  

     
2

2
,

T T

x t

∂ ∂=
∂ ∂

0 1/ 2x≤ ≤ ,

     
2

2
,

T T
r

x t

∂ ∂=
∂ ∂

1/ 2 1x≤ ≤ ,

where T =  temperature, x =  axial coordinate, t =  time and
a br k k= . The 

boundary conditions are 

     (0, ) 1T t = , (1, ) 1T t = ,

     
a b

T T

x x

∂ ∂=
∂ ∂

, 1

2
x = ,
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 and the initial condition is  
     ( ,0) 0T x = , 0 1x< < .

Solve this set of equations for the temperature distribution as a function of time. 
Use second-order finite difference approximations for the derivatives with a 
Crank-Nicolson formulation to integrate in time. Develop a computer program 
for the solution and choose values of x∆ and t∆ to ensure high accuracy. Plot the 
temperature T  versus length x  for a range of values of time t . Generate 
separate curves for the following values of the parameter r :

     r = 1, 0.1, 0.01, 0.001 and 0. 

10.  Solve the nondimensional transient heat conduction equation in two dimensions, 
which represents the transient temperature distribution in an insulated plate. The 
governing equation is  

     
2 2

2 2

T T T

x y t

∂ ∂ ∂+ =
∂ ∂ ∂

,

where T =  temperature, x  and y  are spatial coordinates and t =  time. The 

boundary conditions are 

     ( ,0, ) 0T x t = , ( ,1, ) 1T x t = ,

     (0, , ) 0T y t = , (1, , ) 1T y t = ,

 and the initial condition is  

     ( , ,0) 0T x y = , 0 1x≤ < , 0 1y≤ < .

Solve using the alternating direction-implicit (ADI) technique. Develop a 
computer program to implement the solution. Plot the results using a three-
dimensional plotting routine where the horizontal plane contains the x  and y

axes and the z  axis is the dependent variable T . Construct several plots at 
various times, including the following: 

 (a) the initial conditions; 
 (b) one intermediate time, approximately halfway to steady state; 
 (c) the steady-state condition. 
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Part III 

OPTIMIZATION
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Case Study A5

LINEAR PROGRAMMING PROBLEM

INVOLVING WINE PRODUCTION 

SUMMARY: This case study involves the formulation of a wine production 
problem as a linear programming problem. A vintner producing two types of wine 
( M  and D ) to sell to the local shop knows the profit figures ($/gal) for each type. 
The requirements of each type of wine in terms of the ingredients, namely, grapes, 
sugar and extract are also known. As the vintner has some constraints on these 
ingredients, he wishes to know how best to proceed. A mathematical solution is 
obtained using the simplex method and sensitivity analysis is used to study the 
effects of changes in the key parameters on the optimal solution. In this way the 
vintner obtains important information on how to use his resources to maximize 
profit. The solution is validated by using the linear programming computer package 
LINDO and the mathematical software package MAPLE. 

1. Background  

One of the most important tools of optimization is "linear programming" (L.P.). A 
linear programming problem is specified by a linear, multi-variable function which 
is to be optimized (maximized or minimized) subject to a number of linear 
constraints. The mathematician, G. B. Dantzig [3] developed an algorithm called the 
"simplex method" to solve problems of this type. The original simplex method has 
been modified into an efficient algorithm to solve large L.P. problems by computer. 
Problems from a wide variety of fields can be formulated and solved by means of 
L.P. This includes resource allocation problems in government planning, network 
analysis for urban and regional planning, production planning problems in industry 
and the management of transportation distributive systems. Hence L.P. is one of the 
successes of modern optimization theory. The mathematical structure of L.P. also 
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allows important questions to be answered concerning the sensitivity of the optimum 
solution to data changes. 

This case study involves the production of two types of wine by a local vintner with 
the purpose of selling it to the local shop. He knows the profit ($/gal) for both types, 
i.e., medium white ( M ) and dry white ( D ). Production of the wine requires a 
combination of grapes, sugar and extract. The exact requirements are known for 
both M  and D . The constraints for this problem are given by the limitations for 
grapes, sugar and extract. Obviously, the objective here is that the vintner should 
maximize his profit in selling to the local shop. Clearly, there is sufficient 
information to formulate in mathematical form a linear programming problem. This 
L.P. problem is solved using the simplex method. Also, sensitivity analysis is 
employed to examine the effects of changes in the parameters on the optimal 
solution. The solution is validated by using LINDO and MAPLE. 

2. Problem Statement 

A local wine producer makes two types of wine, medium white ( M ) and dry white 
( D ), to sell to the local shop. He makes $5 profit per gallon from M  and $4 a 
gallon from D . Now M  requires 3 boxes of grapes, 4 lb of sugar and 2 pints of 
extract per gallon. Also, D  requires 4 boxes of grapes, 2 lb of sugar and 1 pint of 
extract per gallon. The vintner has 14 boxes of grapes, 8 lb of sugar and 6 pints of 
extract left before selling his business. We wish to decide how to use these resources 
to maximize profit. 

(a) We will create and solve the dual linear programming problem. Then we will 
find the optimal solution to the primal problem by interpreting the optimal dual 
tableau.

(b) By performing sensitivity analysis we will determine for what range of profit for 
dry white wine the present optimal basis remains optimal.  

(c) Suppose the wine producer wishes to vary the supply of grapes he requires in the 
production of his two white wines. He wants to know if his wine-making 
business will still be profitable if for some reason there is a shortage of grapes. 
We will then determine how much below 14 boxes the supply can drop for the 
present basis to be still optimal. 

(d) We return to the original problem but suppose now that the medium white wine 
requires 1

27  units of extract. We will use sensitivity analysis to determine how 

this affects the solution.  
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3.  Model Formulation 

Let
1x  (gal) and 

2x  (gal) be the amount of medium white wine ( M ) and dry white 

wine ( D ), respectively. In mathematical form, the problem is: 

Primal  Maximize: 
021 45 xxx =+   

1 2

1 2

1 2

1

2

subject to: 3 4 14

4 2 8

2 6

0

0.

x x

x x

x x

x

x

+ ≤
+ ≤

+ ≤
≥
≥

  

      
Since the number of constraints is greater than the number of variables, the problem 
is more easily solved when its dual is created. The problem can be written as follows: 

Dual  Minimize: 
1 2 3 014 8 6y y y y′+ + =

   
1 2 3

1 2 3

1 2 3

subject to: 3 4 2 5

4 2 4

, , 0.

y y y

y y y

y y y

+ + ≥
+ + ≥

≥

In standard form the new problem is 

Maximize:
075321 6814 yMyMyyyy =−−−−−

1 2 3 4 5

1 2 3 6 7

subject to: 3 4 2 5

4 2 4

0,  1, 2, ,7,

+ + − + =
+ + − + =

≥ =i

y y y y y

y y y y y

y i

where we have introduced slack variables 
4y ,

5y ,
6y ,

7y .

4. Mathematical/Numerical Solution  

(a) The tableaux required to solve the problem are displayed next  

1y 2y 3y 4y 5y 6y 7y r.h.s. 
 3 4 2 1− 1 0 0 5 
 4 2 1 0 0 1− 1 4 

0y 14 8 6 0 M 0 M 0
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1y 2y 3y 4y 5y 6y 7y r.h.s. Ratio 

 3 4 2 −1 1 0 0 5 5
3

4 2 1 0 0 −1 1 4 4
4

0y (7 14)M− − (6 8)M− − (3 6)M− − M 0 M 0 9M−

1y 2y 3y 4y 5y 6y 7y r.h.s. Ratio 

 0 5
2

5
4 −1 1 3

4
3
4− 2 4

5

 1 1
2

1
4 0 0 1

4− 1
4 1 2 

0y 0 5
2( 1)M− − 5 5

2 2( )M− − M 0 3 7
4 2( )M− − 7 14

4
M − (2 14)M− +

1y 2y 3y 4y 5y 6y 7y r.h.s. 

 0 1 1
2

2
5− 2

5
3

10
3

10− 4
5

 1 0 0 1
5

1
5− 2

5− 2
5

3
5

0y 0 0 2 2
5

10 4
10
M − 16

5
5 8

5
M − 74

5−

Hence the solution to the original minimization problem is  

     

* *
1 2

*

*
0

3 4
,  ,

5 5

0,  otherwise,

74 4
14 .

5 5

i

y y

y

y

= =

=

= =

The solution to the primal problem can be found by observing the slack variables 
4y

and
6y , in the objective function row. Thus *

1x  has value 2
5

 and *
2x  has value 16

5
.

The wine producer should produce 2
5

 gallon of the medium white wine and 1
53

gallons of the dry white wine. He would then maximize his profit at $ 14.80. 

(b) In this part an objective function coefficient has been changed. Here we examine 
the effect that this has on the optimal solution and its value by solving the 
original problem and then performing sensitivity analysis. 

Consider the primal L.P. problem of (a): 

Maximize:
21 45 xx +
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1 2

1 2

1 2

1 2

subject to: 3 4 14

4 2 8

2 6

, 0.

x x

x x

x x

x x

+ ≤
+ ≤

+ ≤
≥

The problem now becomes: 

Maximize:
21 45 xx +

1 2 3

1 2 4

1 2 5

subject to: 3 4 14

4 2 8

2 6

0, 1,2, ,5.i

x x x

x x x

x x x

x i

+ + =
+ + =
+ + =

≥ =

This problem is now solved using the simplex method 

1x 2x 3x 4x 5x r.h.s. Ratio 

 3 4 1 0 0 14 14
3

4 2 0 1 0 8 2 
 2 1 0 0 1 6 3 

0x −5 −4 0 0 0 0  

1x 2x 3x 4x 5x r.h.s. Ratio 

 0 5
2 1 3

4− 0 8 16
5

 1 1
2 0 1

4 0 2 4 

 0 0 0 1
2− 1 2  

0x 0 3
2− 0 5

4 0 10  

1x 2x 3x 4x 5x r.h.s. 

 0 1 2
5

3
10− 0 16

5

 1 0 1
5− 2

5 0 2
5

 0 0 0 1
2− 1 2 

0x 0 0 3
5

4
5 0 4

514

Suppose 
2c  is changed from 4 to p+4 . Then the initial simplex tableau for the 

problem becomes 
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1x 2x 3x 4x 5x r.h.s. 
 3 4 1 0 0 14 
 4 2 0 1 0 8 
 2 1 0 0 1 6 

0x −5 (4 )p− + 0 0 0 0 

The corresponding tableau from this table would be 

1x 2x 3x 4x 5x r.h.s. 

 0 1 2
5

3
10− 0 16

5

 1 0 1
5− 2

5 0 2
5

 0 0 0 1
2− 1 2 

0x 0 p− 3
5

4
5 0 4

514

In order for the present basis to remain optimal, 
2x  must still be basic. Therefore the 

2x  value in the 
0x  row must have zero value. This results in the following tableau: 

1x 2x 3x 4x 5x r.h.s. 

 0 1 2
5

3
10− 0 16

5

 1 0 1
5− 2

5 0 2
5

 0 0 0 1
2− 1 2 

0x 0 0 3 2
5 5 p+ 34

5 10 p− 0 74 16
5 5 p−

For the present basis to remain optimal all 
0x  row values must be non-negative. 

Thus

     

3 2
0

5 5
4 3

0.
5 10

p

p

+ ≥

− ≥

This implies  

     3 8

2 3
p− ≤ ≤ .

Hence the range for 
2c  is

     3 8 5 20
2 3 2 3(4 ,  4 ) ( , )− + = .
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(c) Again we solve the L.P. problem by the simplex method and analyze the effect 
of changing a r.h.s. constant. 

Consider the problem: 

Maximize:
021 54 xxx =+

1 2

1 2

1 2

subject to: 3 4 14

4 2 8

2 6.

x x

x x

x x

+ ≤
+ ≤

+ ≤

The final tableau is: 

1x 2x 3x 4x 5x r.h.s. 

 0 1 2
5

3
10− 0 16

5

 1 0 1
5− 2

5 0 2
5

 0 0 0 1
2− 1 2 

0x 0 0 3
5

4
5 0 4

514

Suppose we change the r.h.s. constant of the first constraint from 14 to 14 y+ . Since 

3x  is the slack variable for this constraint, all the r.h.s. values in the final tableau 

will change to  

16 2

5 5
2 1

.
5 5

y

y

+

−

However, in order that the solution is feasible these values must be non-negative. 
Thus

16 2
0 8

5 5
2 1

0 2.
5 5

y y

y y

+ ≥ ≥ −

− ≥ ≤

Note that 8−≥y  implies that the r.h.s. constant must be greater than 6 and 2≤y

implies that the r.h.s. constant must be smaller than 16 in order for the solution to be 
feasible. Thus the range is 28 ≤≤− y , with a r.h.s. constant range of 6 to 16. This 

means that for the problem to have an optimal and feasible solution the number of 
boxes of grapes can be no less than 6 or no greater than 16. 
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(d) In the previous L.P. problem, one of the l.h.s. constraint coefficients is changed 
from its original value. It is possible to analyze the effect of this change by using 
sensitivity analysis rather than solving the entire problem again from scratch. 

From part (b), the tableau: 

1x 2x 3x 4x 5x r.h.s. 
3 4 1 0 0 14 
4 2 0 1 0 8 
2 1 0 0 1 6 

−5 −4 0 0 0 0 

becomes at optimality: 

1x 2x 3x 4x 5x r.h.s. 

0 1 2
5

3
10− 0 16

5

1 0 1
5− 2

5 0 2
5

0 0 0 1
2− 1 2 

0 0 3
5

4
5 0 74

5

If
31a  becomes 1

27  instead of 2, the same iterations produce: 

1x 2x 3x 4x 5x r.h.s. 

0 1 2
5

3
10− 0 16

5

1 0 1
5− 2

5 0 2
5

11
2 0 0 1

2− 1 2 

0 0 3
5

4
5 0 74

5

which in canonical form is 

1x 2x 3x 4x 5x r.h.s. 

0 1 2
5

3
10− 0 16

5

1 0 1
5− 2

5 0 2
5

0 0 11
10

27
10− 1 1

5−
0 0 3

5
4
5 0 74

5

This is not feasible, as 03 <x . Using the dual simplex method, 
4x  replaces 

5x  in the 

basis (the only negative ratio): 
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1x 2x 3x 4x 5x r.h.s. 

0 1 5
18 0 1

9− 29
9

1 0 7
27− 0 4

27
10
27

0 0 11
27− 1 10

27− 2
27

0 0 25
27 0 8

27− 398
27

Thus the new optimal solution is 

     

*
1

*
2

*
0

10
,

27
29

,
9

398
.

27

x

x

x

=

=

=

5. Model Validation 

The primal and dual problems formulated in Section 3 have been validated by 
LINDO and MAPLE, respectively (see Figure A5.1 and Figure A5.2). 

MAXIMIZE 5x1 + 4x2 
SUBJECT TO
         3x1 + 4x2 <= 14 
         4x1 + 2x2 <= 8 
         2x1 + x2 <= 6
         x1 >= 0 
         x2 >= 0 
END
LP OPTIMUM FOUND AT STEP      2 
        OBJECTIVE FUNCTION VALUE 
        1)      14.80000 
  VARIABLE        VALUE          REDUCED COST 
        X1         0.400000          0.000000 
        X2         3.200000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.600000 
        3)         0.000000          0.800000 
        4)         2.000000          0.000000 
        5)         0.400000          0.000000 
        6)         3.200000          0.000000 
 NO. ITERATIONS=       2 

Figure A5.1a. Optimal solution to the wine production problem (primal) using the linear programming 

package LINDO.



182 Case Study A5

MINIMIZE 14 y1 + 8y2 + 6y3 
SUBJECT TO
         3y1 + 4y2 + 2y3 >= 5 
         4y1 + 2y2 + y3 >= 4 
         y1 >= 0 
         y2 >= 0 
         y3 >= 0 
END
LP OPTIMUM FOUND AT STEP      1 
        OBJECTIVE FUNCTION VALUE 
        1)      14.80000 
  VARIABLE        VALUE          REDUCED COST 
        Y1         0.600000          0.000000 
        Y2         0.800000          0.000000 
        Y3         0.000000          2.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000         -0.400000 
        3)         0.000000         -3.200000 
        4)         0.600000          0.000000 
        5)         0.800000          0.000000 
        6)         0.000000          0.000000 
 NO. ITERATIONS=       1

Figure A5.1b. Optimal solution to the wine production problem (dual) using the linear programming 

package LINDO.

> with(simplex):
cnsts := {3*x1+4*x2<=14,4*x1+2*x2<=8,2*x1+x2<=6}: 
obj := 5*x1+4*x2: 
maximize(obj,cnsts union {x1>=0,x2>=0});

{ }, = x2
16
5

 = x1
2
5

Figure A5.2a. Optimal solution to the wine production problem (primal) using the mathematical software 

package MAPLE.

> with(simplex):
cnsts := {3*y1+4*y2+2*y3>=5,4*y1+2*y2+y3>=4}: 
obj := 14*y1+8*y2+6*y3: 
minimize(obj,cnsts union {y1>=0,y2>=0,y3>=0});

{ }, , = y3 0  = y2
4
5

 = y1
3
5

Figure A5.2b. Optimal solution to the wine production problem (dual) using the mathematical software 

package MAPLE.

The results obtained in Sections 4.1 (b) and (c) have also been validated using the 
linear programming package LINDO (see Figure A5.3) 

RANGES IN WHICH THE BASIS IS UNCHANGED: 
                           OBJ COEFFICIENT RANGES 
 VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE 
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                   COEF          INCREASE         DECREASE 
       X1        5.000000         3.000000         2.000000 
       X2        4.000000         2.666667         1.500000 
                           RIGHTHAND SIDE RANGES 
      ROW         CURRENT        ALLOWABLE        ALLOWABLE 
                    RHS          INCREASE         DECREASE 
        2       14.000000         2.000000         8.000000 
        3        8.000000         4.000000         1.000000 
        4        6.000000         INFINITY         2.000000 
        5        0.000000         0.400000         INFINITY 
        6        0.000000         3.200000         INFINITY 

Figure A5.3.  Sensitivity analysis of Sections 4 (b) and (c) using the linear programming package LINDO.

6. Interpretation and Conclusions 

This case study formulates a wine production problem in the form of a linear 
programming problem. It is intended to be illustrative in that it involves the use of 
the simplex method (by hand) in finding the optimal solution in the primal problem 
by interpreting the optimal dual tableau. Furthermore, sensitivity analysis is 
demonstrated by making small amendments to the key parameters. For problems of 
this type, model validation is essential. In fact, most realistic problems may be so 
complex that the computer is the only option. So it is important to have some 
experience in the use of appropriate L.P. software packages (e.g., LINDO, EXCEL, 
etc.) and popular computer algebra systems (e.g., MAPLE, MATHEMATICA, etc.). 

7. Computer Algorithms 

As this case study has been formulated in the form of a L.P. problem, it has been 
possible to validate the results using both the L.P. software package LINDO and the 
mathematical software package MAPLE. 
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Case Study A6 

TRANSPORTATION PROBLEM INVOLVING 

BREWERIES AND HOTELS 

SUMMARY: In the business world, a Manager must recognize the typical task of 
allocating units from sources of supply to destinations of demand to minimize cost 
and that various transportation methods can be applied to effect this allocation of 
units. How to distribute products in such a manner as to minimize the total cost of 
their distribution constitutes a good example of an everyday problem that 
transportation methods can be used to solve. 

This case study involves the supply system of 4 breweries, which supply the needs 
of 4 hotels. Figures are available for the production capacities (barrels/day) of the 
breweries and the demands (barrels/day) of the hotels. The transportation costs for a 
barrel of beer from each brewery to each hotel are also tabulated. A transportation 
problem is formulated in mathematical form and solved to produce a minimum cost 
schedule by using a number of approaches, including: 

(a) northwest corner method; 
(b) least cost method; 
(c) Vogel approximation method; 
(d) stepping stone algorithm and Dantzig's method. 
.
The results are validated by comparing results from the various methods and by 
using the linear programming package LINDO and the mathematical software 
package MAPLE. 
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1. Background

The transportation problem is a special type of linear programming. It can be solved 
more efficiently by a modification of the simplex method than by the simplex 
method itself because of its structure. This can be demonstrated by considering a 
supply system comprising three factories which must supply the needs for a single 
commodity of three warehouses. The unit cost of shipping one item from each 
factory to each warehouse is known. There is a known limit to the production 
capacity of each factory. Also, each warehouse must receive a minimum number of 
units of the commodity. The problem is to find the minimum cost supply schedule 
which satisfies the production and demand constraints. 

Problems which belong to this class of L.P. problems are called "transportation 
problems". However, many of the problems of this class do not involve the 
transportation of a commodity between sources and destinations. The algorithm for 
the solution of the transportation problem assumes that supply and demand are 
balanced. Of course, well formulated problems may arise in which "supply" exceeds 
"demand", or vice versa, as the problems may not involve the transportation of a 
commodity. In such cases, a fictitious "warehouse" or "factory" is introduced, 
whichever is required. Its "capacity" or "demand" is defined so as to balance total 
supply with total demand. All unit transportation costs to or from the fictitious 
location are defined to be zero. Then the value of the optimal solution to this 
balanced problem equals that of the original problem. 

As already mentioned, because of its structure, the transportation problem can be 
solved efficiently by a modified simplex procedure. This structure is as follows: 

(1) All l.h.s. constraint coefficients are either zero or one. 
(2) All l.h.s. unit coefficients are always positioned in a distinctive pattern in the 

initial simplex tableau representing the problem (ignoring slack variables). 
(3) All r.h.s. constraint constants are integers. 

This structure implies that the optimal values of the decision variables will be 
integer, which is a very important result. 

In solving problems by hand using the simplex method, it is convenient to display 
each iteration in a tableau. This is also done in the transportation problem, except a 
different type of tableau is used. The difference is that the value of each decision 
variable is written in each cell. There are a number of important methods by which 
an initial feasible solution can be identified and these are outlined below. 



A6. TRANSPORTATION PROBLEM INVOLVING BREWERIES AND HOTELS 187 

1.1 THE NORTHWEST CORNER METHOD 

This method starts by allocating as much as possible to the cell in the northwest 
corner of the tableau of the problem, i.e., cell (1,1) (row 1, column 1). This means 
that we look in the row and column margins for the smallest demand or supply 
applicable and write the number in the northwest corner cell. Further cell allocations 
are made by moving down or to the right in the direction of leftover demand or 
supply and inserting the maximum feasible quantity at each step. We stop when the 
southeast corner has been allocated. 

1.2 THE LEAST COST METHOD 

Although the northwest corner method is easy to implement and always produces a 
feasible solution, it takes no account of the relative unit transportation costs. It is 
quite likely that the solution thus produced will be far from optimal. The methods of 
this section and the next usually produce less costly initial solutions. The least cost 
method starts by allocating the largest possible amount to the cell in the tableau with 
the least unit cost. This procedure will always satisfy a row or column which is 
removed from consideration. The cell with the next smallest unit cost is identified 
and the maximum is allocated to it. This procedure continues until all demand is met. 

1.3 THE VOGEL APPROXIMATION METHOD 

The Vogel approximation method often produces solutions which are even better 
than those of the least cost method. However, the price of this attractiveness is 
considerably more computation than the previous two methods. The Vogel 
approximation method begins by first reducing the matrix of unit costs. This 
reduction is achieved by subtracting the minimum quantity in each row from all 
elements in that row. The costs are further reduced by employing this procedure on 
the columns of the new cost matrix. 

A penalty is then calculated for each cell which currently has zero unit cost. Each 
cell penalty represents the unit cost incurred if a positive allocation is not made to 
that cell. Each cell penalty is found by adding together the second smallest costs of 
the row and column of the cell. 

The cell with the largest penalty is identified. The maximum amount possible is then 
allocated to this cell. Ties are settled arbitrarily. This procedure will always satisfy a 
row or column (or both), which is then removed from further consideration. This 
removal may require a further reduction in the cost matrix and a recalculation of 
some penalties. This process is repeated until all demand is met. 
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1.4 THE STEPPING STONE ALGORITHM 

Once an initial feasible solution has been found by one of the three preceding 
methods, it can be transformed into the optimal solution. This is achieved by the 
stepping stone algorithm. To determine whether an initial feasible solution is 
optimal or not, it is necessary to ask, for each cell individually, if the allocation of 
one unit to that cell would reduce the total cost. This is done only for those cells 
which presently have no units assigned to them. 

1.5 DANTZIG'S METHOD 

The stepping stone method guarantees to find the minimal solution for any well 
formulated transportation problem in a finite number of steps. However, its 
implementation becomes very laborious on all but the smallest problems. For 
realistically sized problems a simpler method due to Dantzig is recommended. Like 
the stepping stone method it evaluates each empty cell in order to decide whether it 
would be profitable to make a positive assignment to it. This evaluation is based on 
the theory of duality, i.e., values are calculated for variables in the dual of the 
transportation problem regarded as a L.P. problem. 

Unlike the stepping stone method, Dantzig's method does not create a circuit of cells 
in order to evaluate the value of an empty cell. Instead, it calculates values for the 
dual variables and these enable one to determine which empty cell should be filled. 
It then creates one circuit of cells in order to determine how much should be 
allocated and which cell leaves the basis. As only one circuit is created at each 
iteration, this method is much simpler than the preceding one. 

1.6 CASE STUDY 

The above methods are tested out on a transportation problem involving the supply 
system of four breweries, supplying the needs of four hotels for beer. Transportation 
costs are available for a barrel of beer from each brewery to each hotel. The 
production capacities (barrels/day) of the breweries and the demands (barrels/day) 
of the hotels are also given. The methods outlined in the previous sections are 
employed to help find the minimum cost schedule and the results are validated by 
comparing results from the various methods. A modification is included to show 
clearly the steps involved in using the stepping stone algorithm and Dantzig’s 
method. Further validation is achieved by using LINDO and MAPLE. 

2. Problem Statement 

We consider the following transportation problem which involves the supply system 
of 4 breweries, supplying the needs of 4 hotels for beer. The transportation cost for a 
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barrel of beer from each brewery to each hotel is given in Table A6.1. The 
production capacities of breweries 1, 2, 3 and 4 are 20, 10, 10 and 5 barrels per day, 
respectively. The demands of hotels A , B , C  and D  are 5, 20, 10 and 10 barrels 
per day, respectively. Find the minimum cost schedule. 

 Hotels 
A B C D

1 8 14 12 17 

Breweries 2
3
4

11
12
12

9
19

5

15
10
13

13
6
8

Table A6.1. Transportation costs for a barrel of beer from each brewery to each hotel. 

We will find an initial basis using the  

(a) northwest corner method; 
(b) least cost method; 
(c) Vogel approximation method. 

For model validation purposes we will solve the problem by the stepping stone 
algorithm and by Dantzig’s method, starting with each basis.  Further validation will 
be obtained using LINDO and MAPLE. 

Finally, we will solve the problem again by changing both the production capacity 
of brewery 4 and the demand of hotel A  from 5 to 15 barrels per day. 

3. Model Formulation 

Production constraints for breweries 1, 2, 3, 4 are 

     

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

20

10

10

5.

x x x x

x x x x

x x x x

x x x x

+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≤

Demand constraints for hotels A , B , C , D  are 

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

5

20

10

10.

x x x x

x x x x

x x x x

x x x x

+ + + ≥
+ + + ≥
+ + + ≥
+ + + ≥
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All quantities transported must be nonnegative. Thus 

     0ijx ≥ , , 1, 2,3, 4i j = .

The objective is to find a supply schedule with minimum cost. The total cost is the 
sum of all costs from all breweries to all hotels. This cost 

0x  can be expressed as 

0 11 12 13 14 21 22 23 24

31 32 33 34 41 42 43 44

8 14 12 17 11 9 15 13

12 19 10 6 12 5 13 8 .

x x x x x x x x x

x x x x x x x x

= + + + + + + +
+ + + + + + + +

The problem can now be summarized in linear programming form: 

0 11 12 13 14 21 22 23 24

31 32 33 34 41 42 43 44

Minimize: 8 14 12 17 11 9 15 13

12 19 10 6 12 5 13 8 ,

= + + + + + + +
+ + + + + + + +

x x x x x x x x x

x x x x x x x x

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

subject to: 20

10

10

5

5

20

10

10

0, , 1, 2,3, 4.ij

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x i j

+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≥
+ + + ≥
+ + + ≥
+ + + ≥

≥ =

The tableau for this case study is given below. 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels

A B C D  Supply 

Demand 5 20 10 10

1

2

3

4

20

10

10

5
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4. Mathematical/Numerical Solution 

Identification of initial feasible solution by the four required methods follows. 

4.1 THE NORTHWEST CORNER METHOD 

The method starts by allocating as much as possible to the cell in the northwest 
corner of the tableau of the problem, cell (1,1) or row 1, column 1. The maximum 
that can be allocated is 5 units, as the demand of hotel A  is 5 units. Column 1 is 
removed and cell (1,2) becomes the new northwest corner. A maximum of 15 units 
is allocated to this cell, all that remains in brewery 1. Row 1 is removed and cell (2,3) 
becomes the new northwest corner. This procedure continues until all demand is met. 
The tableau shows the feasible solution obtained. 

Conclusion 

Brewery 1 supplies 5 units to hotel A  and 15 units to hotel B .
Brewery 2 supplies 5 units to hotel B  and 5 units to hotel C .
Brewery 3 supplies 5 units to hotel C  and 5 units to hotel D .
Brewery 4 supplies 5 units to hotel D .

Total cost: 490 units.  

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 

 Demand 5 20 10 10 

1

2

3

4

20

10

10

5

 5 15 

  5 5 

   5 5 

    5
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4.2 THE LEAST COST METHOD 

This method starts by allocating the largest possible amount to the cell in the tableau 
with the least unit cost. This means allocating 5 units to cell (4,2), and row 4 is 
removed. The demand of cell (2,2) and cell (1,2) is reduced to 10 and 5 units 
respectively. The cell with the next smallest cost is identified, i.e., cell (3,4) and 10 
units are allocated to it removing row 3 and column 4. This procedure continues 
until all the demand is met. The following tableau illustrates the feasible solution 
which is obtained.  

Conclusion 

Brewery 1 supplies 5 units to hotel A , 5 units to hotel B  and 10 units to hotel C .
Brewery 2 supplies 10 units to hotel B .
Brewery 3 supplies 10 units to hotel D .
Brewery 4 supplies 5 units to hotel B .

Total cost: 405 units.  

4.3 THE VOGEL APPROXIMATION METHOD 

This method begins by first reducing the matrix of unit costs. This reduction is 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 

 Demand 5 20 10 10 

1

2

3

4

20

10

10

5

 5 5 10 

  10 

    10 

  5 
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achieved by subtracting the minimum quantity in each row from all elements in that 
row. This results in the following tableau: 

The costs are further reduced by carrying out this procedure on the columns of the 
new cost matrix: 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

 Demand 5 20 10 10

1

2

3

4

(−8) 20 

(−9) 10 

(−6) 10 

(−5) 5 

0  6 4 9

2  0 6 4

6  13 4 0

7  0 8 3

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

(0) (0) (−4) (0)

1

2

3

4

(−8) 20 

(−9) 10 

(−6) 10 

(−5) 5 

 0  6 0 9

 2  0 2 4

 6  13 0 0

 7  0 4 3
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A penalty is then calculated for each cell which currently has zero unit cost. Each 
cell penalty is found by adding together the second smallest costs of the row and 
column of the cell: 

The penalties are shown on the right-hand side of each appropriate cell and the cell 
with the largest penalty is identified. The maximum amount possible is then 
allocated to this cell. Cell (3,4) will be arbitrarily chosen and 10 units are allocated 
to it. Row 3 and column 4 are removed from consideration. A further reduction in 
the cost matrix and a recalculation of some penalties is necessary. This results in the 
following tableau: 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 

(2) (0) (0) (4)

1

2

3

4

(0) 20 

(2) 10 

(0) 10 

(4) 5 

 0 2 6 0 0 9

 2  0 2 2 4

 6  13 0 0 0 3

 7  0 3 4 3

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 

 Demand 5 20 10 
  (2) (0) (2) 

1

2

3

4

20 (0)

10 (2)

5 (4)

 0 2 6 0 0

 2  0 2 2

    10

 7  0 3 4
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Cell (4,2) is chosen and 5 units are allocated to it. Row 4 is then removed from 
consideration. This process is repeated until all demand is met.  

Cell (2,2) is chosen and 10 units are allocated to it, removing column 2 from 
consideration.

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

 Demand 5 20 10 
(2) (0) (2)

1

2

3

4

20 (0)

10 (2)

 0 2 6 0 0

 2  0 2 2

    10

   5

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

 Demand 5 20 10 
(2) (0) (2)

1

2

3

4

20 (0)

10 (2)

 0 2  5 0 2

 2   10 2

    10

   5
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Cell (1,1) is arbitrarily chosen and 5 units are allocated to it, removing column 1. 
Cell (1,3) must be allocated 10 units in order that all demand shall be met.  

The final allocation is shown in the following tableau: 

Conclusion 

Brewery 1 supplies 5 units to hotel A , 5 units to hotel B  and 10 units to hotel C .
Brewery 2 supplies 10 units to hotel B .
Brewery 3 supplies 10 units to hotel D .
Brewery 4 supplies 5 units to hotel B .

Total cost: 405 units.  

A comparison of the three above techniques shows that the northwest corner method 
produced an initial solution of 490 units, the least cost method and the Vogel 
approximation method produced the same solution with value 405 units. This value 
of 405 units is, in fact, the optimal solution. Once an initial solution has been found 
by one of the three preceding methods, then it should be transformed into the 
optimal solution. This can be achieved by the stepping stone algorithm. The 
stepping stone method will guarantee to find the minimal solution for any well 
formulated transportation problem in a finite number of steps. This is discussed 
further in Section 5. 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

 Demand 5 20 10 10 

1

2

3

4

20 (0)

10 (2) 

10

5

  5   5 10

    10

    10

   5
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5. Model Validation 

5.1 STEPPING STONE ALGORITHM 

Consider the initial feasible solution found by the northwest corner method. To 
determine whether this solution is optimal or not it is necessary to ask for each cell 
individually if the allocation of one unit to that cell would reduce the total cost. This 
is done for the cells which at present have no units assigned to them. 

Cell (4,2) has the greatest decrease (11 units) and as much as possible, (5 units) is 
allocated to this cell. This means a decrease in cost of $(11 5) $55× = .

The new solution is displayed in the following tableau. 

The same procedure occurs – all empty cells in the new tableau are examined as 
before and the process is repeated. Since a basic feasible solution should contain 
( 1m n+ − ) basic variables, one of the empty cells is assigned a zero.  

The process is repeated, but there is no allocation which will cause a cost reduction. 
Thus the optimal solution has already been found in Sections 4.2 and 4.3. 

Conclusion 

Brewery 1 supplies 5 units to hotel A , 5 units to hotel B  and 10 units to hotel C .
Brewery 2 supplies 10 units to hotel B .
Brewery 3 supplies 10 units to hotel D .

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D Supply

 Demand 5 20 10 10

1

2

3

4

20

10

10

5

 5 15

10

10

  5
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Brewery 4 supplies 5 units to hotel B .

Total cost: 405 units.  

It should be noted that the implementation of the stepping stone algorithm has not 
been continued to conclusion above as it is laborious to perform. This is true in 
general for all but the smallest problems. For realistically sized problems a simpler 
method due to Dantzig is recommended. This method is demonstrated in Section 5.3 
for a modified problem obtained by altering some of the key parameters of the 
original problem. 

5.2 MODIFIED PROBLEM 

In order to clarify the steps involved in the stepping stone algorithm and Dantzig’s 
method, the original problem is modified by changing both the production capacity 
of brewery 4 and the demand of hotel A  from 5 to 15 barrels per day. 

The modified tableau is now 

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 

 Demand 15 20 10 10 

1

2

3

4

20

10

10

15
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First, we consider the initial feasible solution found by the northwest corner method. 

Conclusion 

Brewery 1 supplies 15 units to hotel A  and 5 units to hotel B .
Brewery 2 supplies 10 units to hotel B .
Brewery 3 supplies 5 units to hotel B  and 5 units to hotel C .
Brewery 4 supplies 5 units to hotel C  and 10 units to hotel D .

Total cost: 570 units. 

Next we use the stepping stone algorithm and Dantzig’s method to determine 
whether this solution is optimal or not. We must ask for each cell individually if the 
allocation of one unit to that cell would reduce the total cost. This is done for the 
cells which at present have no units assigned to them. 

Cell (4,2) has the greatest decrease (17 units) and as much as possible, (5 units) is 
allocated to this cell. This means a decrease in cost of $(17 5) $85× = .

8 14 12 17

11 9 15 13

12 19 10 6

12 5 13 8

Breweries Hotels 

A B C D  Supply 
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The new solution is as follows: 

The same procedure occurs, i.e., all empty cells in the new tableau are examined as 
before and the process is repeated. Since a basic feasible solution should contain  
( 1m n+ − ) basic variables, one of the empty cells is assigned a zero. Cell (4,2) has 
the greatest decrease (19 units) and as much as possible (10 units) is allocated to this 
cell. This means a decrease in cost of $(19 5) $95× = . The new solution is then as 

follows: 
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The process is repeated and cell (2,3) with a decrease of 8 units is allocated 5 units. 
This means a decrease in cost of $(8 5) $40× = . The tableau then becomes 

The process is repeated, but there is now no allocation which will cause a cost 
reduction. Thus the optimal solution has been found. 

Conclusion 

Brewery 1 supplies 15 units to hotel A  and 5 units to hotel C .
Brewery 2 supplies 5 units to hotel B  and 5 units to hotel C .
Brewery 3 supplies 10 units to hotel D .
Brewery 4 supplies 15 units to hotel B .

Total cost: 435 units. 

5.3 COMPUTER VALIDATION 

The results obtained in Sections 4.2, 4.3 and 4.4 have be validated by the linear 
programming package LINDO and MAPLE (see Figures A6.1 and A6.2). 

MINIMIZE 8x11 + 14x12 + 12x13 + 17x14 + 11x21 + 9x22 + 15x23 + 13x24 + 
12x31 + 19x32 + 10x33 + 6x34 + 12x41 + 5x42 + 13x43 + 8x44 
SUBJECT TO 
          x11 + x12 + x13 + x14 <= 20 
          x21 + x22 + x23 + x24 <= 10 
          x31 + x32 + x33 + x34 <= 10 
          x41 + x42 + x43 + x44 <= 5 
          x11 + x21 + x31 + x41 >= 5 
          x12 + x22 + x32 + x42 >= 20 
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          x13 + x23 + x33 + x43 >= 10 
          x14 + x24 + x34 + x44 >= 10 
          x11 >= 0 
          x12 >= 0 
          x13 >= 0 
          x14 >= 0 
          x21 >= 0 
          x22 >= 0 
          x23 >= 0 
          x24 >= 0 
          x31 >= 0 
          x32 >= 0 
          x33 >= 0 
          x34 >= 0 
          x41 >= 0 
          x42 >= 0 
          x43 >= 0 
          x44 >= 0 
END
LP OPTIMUM FOUND AT STEP     11 
        OBJECTIVE FUNCTION VALUE 
        1)      405.0000 
  VARIABLE        VALUE          REDUCED COST 
       X11         5.000000          0.000000 
       X12         5.000000          0.000000 
       X13        10.000000          0.000000 
       X14         0.000000          9.000000 
       X21         0.000000          8.000000 
       X22        10.000000          0.000000 
       X23         0.000000          8.000000 
       X24         0.000000          0.000000 
       X31         0.000000          6.000000 
       X32         0.000000          7.000000 
       X33         0.000000          0.000000 
       X34        10.000000          0.000000 
       X41         0.000000         13.000000 
       X42         5.000000          0.000000 
       X43         0.000000         10.000000 
       X44         0.000000          9.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.000000 
        3)         0.000000          5.000000 
        4)         0.000000          2.000000 
        5)         0.000000          9.000000 
        6)         0.000000         -8.000000 
        7)         0.000000        -14.000000 
        8)         0.000000        -12.000000 
        9)         0.000000         -8.000000 
       10)         5.000000          0.000000 
       11)         5.000000          0.000000 
       12)        10.000000          0.000000 
       13)         0.000000          0.000000 
       14)         0.000000          0.000000 
       15)        10.000000          0.000000 
       16)         0.000000          0.000000 
       17)         0.000000        -10.000000 
       18)         0.000000          0.000000 
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       19)         0.000000          0.000000 
       20)         0.000000          0.000000 
       21)        10.000000          0.000000 
       22)         0.000000          0.000000 
       23)         5.000000          0.000000 
       24)         0.000000          0.000000 
       25)         0.000000          0.000000 
 NO. ITERATIONS=      11 

Figure A6.1. Optimal solution to the transportation problem using the linear programming package 

LINDO.

> with(simplex):
cnsts := {x11+x12+x13+x14<=20,x21+x22+x23+x24<=10, 
          x31+x32+x33+x34<=10,x41+x42+x43+x44<=5, 
          x11+x21+x31+x41>=5,x12+x22+x32+x42>=20, 
          x13+x23+x33+x43>=10,x14+x24+x34+x44>=10}: 
obj := 8*x11+14*x12+12*x13+17*x14+11*x21+9*x22+15*x23+13*x24+ 
      12*x31+19*x32+10*x33+6*x34+12*x41+5*x42+13*x43+8*x44: 
minimize(obj,cnsts union 
{x11>=0,x12>=0,x13>=0,x14>=0,x21>=0,x22>=0,x23>=0,x24>=0,
 x31>=0,x32>=0,x33>=0,x34>=0,x41>=0,x42>=0,x43>=0,x44>=0});

 = x21 0  = x23 0  = x24 0 = x33 0 = x43 0 = x44 0 = x31 0 = x22 10 = x13 10  = x14 0, , , , , , , , , ,{

 = x32 0  = x41 0  = x34 10  = x11 5  = x42 5  = x12 5, , , , , }

Figure A6.2. Optimal solution to the transportation problem using the mathematical software package 
MAPLE.

6. Interpretation and Conclusions 

This case study involves a typical transportation problem. Here the problem under 
consideration is the supply of beer from 4 breweries to 4 hotels. Rather than trying 
to use the simplex method, the problem can be solved more efficiently by using a 
modification of the simplex method. The case study has been carefully chosen so 
that the optimal values of the decision variables are integral. Three important 
techniques have been used to identify an initial feasible solution, namely, 

(1) northwest corner method;  
(2) least cost method; 
(3) Vogel approximation method.  

Once an initial feasible solution has been found by one of these methods, it is then 
important to transform it into the optimum solution. This has been achieved by using 
the stepping stone algorithm which guarantees to find the optimal solution for any 
well formulated transformation problem in a finite number of steps. This approach 
has been used in this case study for model validation purposes. Furthermore, the 
original problem has been modified and solved to help clarify the important steps in 
the solution process. 
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It should be noted that for realistically sized problems, the method due to Dantzig is 
recommended. Like the stepping stone method, it evaluates each empty cell in order 
to determine whether or not it should be profitable to make a positive assignment to 
it. Such evaluation is based on the theory of duality in L.P. problems. In effect, 
values are calculated for variables in the dual of the transportation problem which is 
regarded as a L.P. problem. 

7. Computer Algorithms 

The data for this particular case study have been particularly chosen so that the 
tableaux can be successfully manipulated by hand. In this way it has been possible 
to describe more clearly the various solution techniques. This has meant that 
computer algorithms have not been required. However, we do use LINDO and 
MAPLE to validate the results. Of course, for more complex larger problems, 
computer algorithms would be essential. 

It is possible to solve large L.P. and transportation problems on a digital computer 
with the aid of properly organized calculations. In spite of the recent tremendous 
advancement in the computational power and memory size of modern computers, 
computational difficulties still arise in solving large L.P. problems. New techniques 
have been developed to overcome some of these. Such techniques include the 
revised simplex method, the dual simplex method, the primal-dual algorithm and 
Wolfe-Dantzig decomposition. 
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Project B7

PROFIT FROM AN ENGINEERING PLANT 

SUMMARY: This project considers the manufacture of three major products ( A ,
B  and C ) by an engineering plant. Figures are available on the resources required 
for the manufacture of each product together with the total resource availability. The 
problem is formulated as a linear programming (L.P.) problem which requires the 
maximization of the objective function (which is profit in this case) subject to three 
linear constraints which involve raw materials, production time and warehouse 
space. The L.P. problem is solved by hand using the simplex method and the results 
are validated using the L.P. software package LINDO. An extension is included to 
show the flexibility in the use of such software packages.  

1. Background 

This project deals with an optimization problem where constraints come into play 
and so it is classed as a constrained optimization problem. We are dealing with an 
engineering plant which manufactures three products and we have data on the raw 
materials, production time and profits for each product. This means that both the 
objective function and the constraints are linear. Hence we have a L.P. problem 
which involves maximizing profit subject to limited resources which take the form 
of known linear constraints. 

Problems of this type can best be solved by the simplex method. In this case the 
problem is sufficiently simple to solve by hand using tableaux. However, it is 
important, for problems of this type, to validate the results using a L.P. software 
package. An advantage of such packages is that they are sufficiently user friendly to 
help answer other relevant questions. This may involve changes to the initial data, or 
in this case, examining the effects on the profit of making small increases on each of 
the resources. In this way it is possible to evaluate the most effective means of 
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increasing the profits.  

2. Problem Statement 

An engineering plant makes three major products on a weekly basis. Each of these 
products requires a certain quantity of raw material and different production times, 
and yields different profits. The relevant information is displayed in Table B7.1. 
Note that there is sufficient warehouse space at the plant to store a total of 
450kg/week. 

(a) Set up a linear programming problem to maximize the profit. 
(b) Solve the linear programming problem using the simplex method. 
(c) Validate the results in (b) by solving the problem using a software package. 
(d) Evaluate which of the following options will raise profits the most: increasing 

raw material, production time or storage.  

Table B7.1. Data on the manufacture of products A , B  and C  by an engineering plant. 

 Product A  Product B Product C Resource Availability 
Raw material 5kg/kg 4kg/kg 10kg/kg 3000kg 
Production time 0.05hr/kg 0.1hr/kg 0.2hr/kg 55hr/week 
Profit $30/kg $30/kg $35/kg  

3. Model Formulation 

The objective of this problem is to maximize the profit of an engineering plant. The 
plant makes three major products, namely, A , B  and C . Each product requires 
different amounts of raw material, has different production times and yields 
different profits. Furthermore, the problem is constrained because of the following 
limitations on resources:  

(1) Total availabiltiy of raw materials = 3000kg. 
(2) Total availabiltiy of production time = 55hr/week. 
(3) Total availabiltiy of warehouse space at the plant = 450kg/week. 

To formulate a mathematical model, we define the following list of variables: 

1x =  amount of Product A (kg) 

2x =  amount of Product B (kg) 

3x =  amount of Product C (kg). 

We now deal in turn with the constraints on raw material, production time and 
warehouse space, respectively. The raw material required for Products A , B  and C
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is
15x ,

24x  and 
310x , respectively. Since the available raw material is 3000kg/week, 

this leads to the constraint inequality 

     
1 2 35 4 10 3,000.x x x+ + ≤  (B7.1) 

Similarly, the production time required for Products A , B  and C  is 
10.05x ,

20.1x

and
30.2x , respectively. Since the available production time is 55hr/week, we have 

the second constraint inequality 

     
1 2 30.05 0.1 0.2 55.x x x+ + ≤  (B7.2) 

Finally, since there is a limitation of 450kg/week on warehouse space, we have the 
third constraint inequality 

     
1 2 3 450.x x x+ + ≤  (B7.3) 

Our objective is to maximize the profit. Since the profit ($/kg) from Products A , B
and C  are 30, 30 and 35, respectively, the total profit, P , is given by 

     
1 2 330 30 35 .P x x x= + +  (B7.4) 

Letting y P=  be the quantity we wish to maximize with decision variables 
1x ,

2x

and
3x , then our problem is to maximize the objective function 

     
     (B7.5) 

This means that we have now formulated the following linear programming problem: 

Maximize:
1 2 330 30 35y x x x= + + (B7.6) 

1 2 3

1 2 3

1 2 3

1 2 3

subject to: 5 4 10 3,000

0.05 0.1 0.2 55

450

, , 0.

x x x

x x x

x x x

x x x

+ + ≤
+ + ≤

+ + ≤
≥

(B7.7) 

In standard form the problem is 

Maximize:
1 2 330 30 35y x x x= + +

1 2 3

1 2 3

( , , )

30 30 35 .

y f x x x

x x x

=
= + +
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1 2 3 4

1 2 3 5

1 2 3 6

subject to: 5 4 10 3000

0.05 0.1 0.2 55

450

0, 1,2, ,6.i

x x x x

x x x x

x x x x

x i

+ + + =
+ + + =
+ + + =

≥ =

4. Mathematical Solution 

This problem is now solved using the simplex method 

1x 2x 3x 4x 5x 6x r.h.s. Ratio 
 5 4 10 1 0 0 3000 600 
 0.05 0.1 0.2 0 1 0 55 1100 

1 1 1 0 0 1 450 450 
y −30 −30 −35 0 0 0 0

1x 2x 3x 4x 5x 6x r.h.s. Ratio 

 0 −1 5 1 0 −5 750 150 
 0 0.05 0.15 0 1 −0.05 32.5 217 
 1 1 1 0 0 1 450 450 
y 0 0 −5 0 0 30 13500  

1x 2x 3x 4x 5x 6x r.h.s. Ratio 

 0 −0.2 1 0.2 0 −1 150  
 0 0.08 0 −0.03 1 0.1 10 125 
 1 1.2 0 −0.2 0 2 300 250 
y 0 −1 0 1 0 −20 14250  

1x 2x 3x 4x 5x 6x r.h.s. 

 0 0 1 0.125 2.5 −0.75 175 
 0 1 0 −0.375 12.5 1.25 125 
 1 0 0 0.25 −15 0.5 150 
y 0 0 0 0.625 12.5 26.25 14375 

The optimal solution is  

     

*
1

*
2

*
3

150,

125,

175,

14375.

x

x

x

y

=

=

=
=
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This means that a maximum profit of $14, 375 is obtained by producing 150kg of 
product A , 125kg of product B  and 175kg of product C .
     
5. Model Validation 

The results in Section 4 have been validated by using LINDO and MAPLE (see 
Figures B7.1 and B7.2, respectively). 

MAXIMIZE 30x1 + 30x2 + 35x3
SUBJECT TO 
 5x1 + 4x2 + 10x3 <= 3000 
 0.05x1 + 0.1x2 + 0.2x3 <= 55 
 x1 + x2 + x3 <= 450 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
LP OPTIMUM FOUND AT STEP      3 
        OBJECTIVE FUNCTION VALUE 
        1)      14375.00 
  VARIABLE        VALUE          REDUCED COST 
        X1       150.000000          0.000000 
        X2       125.000000          0.000000 
        X3       175.000000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.625000 
        3)         0.000000         12.500000 
        4)         0.000000         26.250000 
        5)       150.000000          0.000000 
        6)       125.000000          0.000000 
        7)       175.000000          0.000000 
 NO. ITERATIONS=       3 

Figure B7.1. Optimal solution to the engineering plant problem using the linear programming package 

LINDO.

> with(simplex):
cnsts := {5*x1+4*x2+10*x3<=3000, 
          0.05*x1+0.1*x2+0.2*x3<=55, 
          x1+x2+x3<=450}: 
obj := 30*x1+30*x2+35*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0};

{x2 = 125., x3 = 175.0000000, x1 = 150.0000000} 
Figure B7.2. Optimal solution to the engineering plant problem using the mathematical software package 

MAPLE.

In order to solve part (d) of the problem stated in Section 2, we consider separately 
the effects on the profit of increasing the raw material, production time and storage. 
Firstly, we increase the raw material by 10% and solve the L.P. problem again to 
determine the new maximum profit (see Figures B7.3a and B7.3b for the results 
using LINDO and MAPLE, respectively). 
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MAXIMIZE 30x1 + 30x2 + 35x3
SUBJECT TO 
 5x1 + 4x2 + 10x3 <= 3300 
 0.05x1 + 0.1x2 + 0.2x3 <= 55 
 x1 + x2 + x3 <= 450 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
 LP OPTIMUM FOUND AT STEP      3 
        OBJECTIVE FUNCTION VALUE 
        1)      14562.50 
  VARIABLE        VALUE          REDUCED COST 
        X1       225.000000          0.000000 
        X2        12.500000          0.000000 
        X3       212.500000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.625000 
        3)         0.000000         12.500000 
        4)         0.000000         26.250000 
        5)       225.000000          0.000000 
        6)        12.500000          0.000000 
        7)       212.500000          0.000000 
 NO. ITERATIONS=       3 

Figure B7.3a. Optimal solution to the engineering plant problem with 10% increase in raw material using 

the linear programming package LINDO.

> with(simplex):
cnsts := {5*x1+4*x2+10*x3<=3300, 
          0.05*x1+0.1*x2+0.2*x3<=55, 
          x1+x2+x3<=450}: 
obj := 30*x1+30*x2+35*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0};

{x2 = 12.50000000, x3 = 212.5000000, x1 = 225.0000000} 
Figure B7.3b. Optimal solution to the engineering plant problem with 10% increase in raw material using 

the mathematical software package MAPLE.

Next, we increase the production time by 10% and repeat the solution (see Figures 
B7.4a and B7.4b for the results using LINDO and MAPLE, respectively). 

MAXIMIZE 30x1 + 30x2 + 35x3
SUBJECT TO 
 5x1 + 4x2 + 10x3 <= 3000 
 0.05x1 + 0.1x2 + 0.2x3 <= 60.5 
 x1 + x2 + x3 <= 450 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
 LP OPTIMUM FOUND AT STEP      3 
        OBJECTIVE FUNCTION VALUE 
        1)      14443.75 
  VARIABLE        VALUE          REDUCED COST 
        X1        67.500000          0.000000 
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        X2       193.750000          0.000000 
        X3       188.750000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.625000 
        3)         0.000000         12.500000 
        4)         0.000000         26.250000 
        5)        67.500000          0.000000 
        6)       193.750000          0.000000 
        7)       188.750000          0.000000 
 NO. ITERATIONS=       3 

Figure B7.4a. Optimal solution to the engineering plant problem with 10% increase in production time 

using the linear programming package LINDO.

> with(simplex):
cnsts := {5*x1+4*x2+10*x3<=3000, 
          0.05*x1+0.1*x2+0.2*x3<=60.5, 
          x1+x2+x3<=450}: 
obj := 30*x1+30*x2+35*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0};

{x3 = 188.7500000, x2 = 193.7500000, x1 = 67.50000000} 
Figure B7.4b. Optimal solution to the engineering plant problem with 10% increase in production time 

using the mathematical software package MAPLE.

Finally, we increase the storage by 10% and repeat the solution (see Figures B7.5a 
and B7.5b for the results using LINDO and MAPLE, respectively). 

MAXIMIZE 30x1 + 30x2 + 35x3
SUBJECT TO 
 5x1 + 4x2 + 10x3 <= 3000 
 0.05x1 + 0.1x2 + 0.2x3 <= 55 
 x1 + x2 + x3 <= 495 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
LP OPTIMUM FOUND AT STEP      3 
        OBJECTIVE FUNCTION VALUE 
        1)      15556.25 
  VARIABLE        VALUE          REDUCED COST 
        X1       172.500000          0.000000 
        X2       181.250000          0.000000 
        X3       141.250000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.625000 
        3)         0.000000         12.500000 
        4)         0.000000         26.250000 
        5)       172.500000          0.000000 
        6)       181.250000          0.000000 
        7)       141.250000          0.000000 
 NO. ITERATIONS=       3 

Figure B7.5a. Optimal solution to the engineering plant problem with 10% increase in storage using the 

linear programming package LINDO.
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> with(simplex):
cnsts := {5*x1+4*x2+10*x3<=3000, 
          0.05*x1+0.1*x2+0.2*x3<=55, 
          x1+x2+x3<=495}: 
obj := 30*x1+30*x2+35*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0};

{x1 = 172.5000000, x2 = 181.2500000, x3 = 141.2500000} 
Figure B7.5b. Optimal solution to the engineering plant problem with 10% increase in storage using the 

mathematical software package MAPLE.

6. Interpretation and Conclusions 

This engineering plant problem has been formulated as a L.P. problem and solved 
using the simplex method. The mathematical solution by hand using tableaux in 
Section 4 has been validated in Section 5 by using both LINDO and MAPLE. The 
extension of the problem, namely, part (d) in Section 2, has also been solved in 
Section 5. Profit figures have been obtained in Figures B7.3, B7.4 and B7.5 for a 
10% increment in the three key parameters of raw material, production time and 
storage, respectively. These figures together with the respective percentage relative 
increase in profit figures are summarized in Table B7.2. From the figures in the final 
column, we can draw conclusions on the relative effectiveness of increasing the raw 
material, production time and storage. The respective profit ratio figures for raw 
material:production time:storage is 1.30:0.48:8.20 which implies 2.71:1:17.08. 
Clearly, storage space is the most important factor in terms of increasing profits. 

Table B7.2. Increases in the profit due to 10% increments in the key parameters. 

Parameter 
Original maximum 

profit 

Profit after 10% 
increment of the 

parameter 

Relative increase of 
the profit (%) 

Raw material $14,375 $14,562.50 1.30% 
Production time $14,375 $14,443.75 0.48% 

Storage $14,375 $15,556.30 8.20% 

A more detailed analysis has been carried out by performing separate simulations 
for further increases, namely, 20%, 30%, …, 100% in the resource parameters. 
Consequently, profit ratio figures have been evaluated and these are presented in 
Table B7.3. Clearly, increasing storage will have the most effect on raising the 
profits. The maximum profit ratio of raw material: production time:storage is 
1.67:1:49 and this occurs for the case 20%:20%:60% increase, respectively. Also it 
is clear that the profit figures stop increasing at certain percentage levels even after 
further increases in resources. In fact, there is no further increase in profits after 
20%, 20% and 60% increase in raw materials, production time and storage, 
respectively.
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Table B7.3. Table showing the effect on the profit of different percentage increments in each of the 
resources. 

 Raw material
Production 

time 
Storage Profit ratio 

Profit of plant after 
10% increase of 

$14,562.50 $14,443.75 $15,556.30 2.71:1:17.08 

Profit of plant after 
20% increase of 

$14,583.33 $14,500.00 $16,737.50 1.67:1:18.89 

Profit of plant after 
30% increase of 

$14,583.33 $14,500.00 $17,918.75 1.67:1:28.35 

Profit of plant after 
40% increase of 

$14,583.33 $14,500.00 $19,100.00 1.67:1:37.08 

Profit of plant after 
50% increase of 

$14,583.33 $14,500.00 $20,281.25 1.67:1:47.25 

Profit of plant after 
60% increase of 

$14,583.33 $14,500.00 $20,500.00 1.67:1:49.00 

Profit of plant after 
70% increase of 

$14,583.33 $14,500.00 $20,500.00 1.67:1:49.00 

Profit of plant after 
80% increase of 

$14,583.33 $14,500.00 $20,500.00 1.67:1:49.00 

Profit of plant after 
90% increase of 

$14,583.33 $14,500.00 $20,500.00 1.67:1:49.00 

Profit of plant after 
100% increase of 

$14,583.33 $14,500.00 $20,500.00 1.67:1:49.00 

7. Computer Algorithms 

This project has been solved using a number of runs of the L.P. software package 
LINDO and the mathematical software package MAPLE. 
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Project B8

OPTIMIZATION OF MANUFACTURE OF 

PERSONAL COMPUTERS 

SUMMARY: In this project a manufacturer of personal computers is planning the 
introduction of two new products, a basic model and an enhanced model. Using 
unconstrained optimization which involves standard solution methods of multi-
variable calculus, an analytical model is built to determine the production levels of 
the two types of computer. Constraints are then introduced based on the available 
production capacity and a model is developed using Lagrange multiplier methods. 
The problem is then reformulated as a linear programming problem by introducing 
some simplifying assumptions and solved to obtain the optimum production levels. 
Sensitivity analysis is also introduced involving both the profit and optimal 
production levels.  

1. Background  

Nowadays computers play a very important role in both the home and the workplace. 
Therefore the demands in the use of computers are great and different types of 
computers are being produced to meet the varying demands of people. Clearly, the 
formulation of a real life optimization problem involving computer manufacture will 
include a number of independent variables.  

In this project a manufacturer of personal computers develops two new computer 
products. The total profits earned by the manufacturer will be affected by a number 
of factors, such as the number of computers sold, the selling price of the computers, 
the fixed costs of manufacturing, and so on. The objective here is to help the 
manufacturer decide how many computers should be made and sold in order to 
achieve the maximum annual profits.  
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In the case where there are no constraints (i.e., unconstrained optimization), a 
mathematical model can be developed and solved using the techniques of multi-
variable calculus. However, this solution makes the assumption that the company 
has the potential to produce an unlimited number of computers per year. In a real 
life situation, constraints have to be imposed on the available production capacity 
which can depend on a number of factors. So a mathematical model can be 
formulated and solved using constrained optimization. This involves the use of 
Lagrange multiplier methods and linear programming to cater for the introduction of 
imposed constraints. Sensitivity analysis can also be employed to consider the 
effects of variations in the key parameters. 

2. Problem Statement 

A manufacturer of personal computers is planning the introduction of two new 
products, a basic model with retail price of $1250 and an enhanced model with retail 
price of $1500. The cost to the company is $700 and $850 for basic and enhanced 
models, respectively, plus an additional $500,000 in fixed costs. In a competitive 
market, the number of sales per year will affect the average selling price. It is 
estimated that for each type of computer, the average selling price will drop by $0.1 
for each additional unit sold. Also, sales of the basic model will affect sales of the 
enhanced model, and vice versa. It is estimated that the average selling price for the 
basic model will be reduced by an additional $0.03 for each enhanced model sold, 
and the price for enhanced models will decrease by $0.04 for each basic model sold.  

(a) Develop an analytical model to determine how many units of each type should 
be manufactured. 

(b) Now introduce constraints based on the available production capacity. It is 
estimated that the available production capacity will be sufficient to produce 
4,000 computers per year. Due to restriction of vital electronic parts, the supplier 
is able to supply parts for 2,000 basic models per year and for 3,000 enhanced 
models per year. How should the company set production levels? 

 [Suggestion: Develop a mathematical model using Lagrange multiplier methods] 

(c) Reconsider the above mathematical model but now make the simplifying 
assumptions that the company makes a profit of $300 per basic model and $375 
per enhanced model. 

 (i) Find the optimum production levels by solving as a linear programming 
problem using the computer. 

 (ii) Determine the shadow prices for each constraint and explain what they 
mean. Which constraints are binding on the optimal solution? 

(iii) Determine the sensitivity to the objective function coefficients (profit per 
unit). Consider both profit and optimal production levels. 
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(iv) Draw a graph of the feasible region and include a picture of f∇  at the 

optimum, where f  is the objective function. 

3. Model Formulation 

To formulate our model, we first define a list of variables to be used, namely, 

1

2

1

2

number of basic model computers sold (per year)

number of enhanced model computers sold (per year)

selling price for basic model computers ($)

selling price for enhanced model computers($)

c

x

x

p

p

C

=
=
=
=
= ost of manufacturing computers ($/year)

revenue from the sale of computers ($/year)

profit from the sale of computers ($/year).

R

P

=
=

A list of assumptions is stated to guarantee the model is valid 

1 1 2

2 1 2

1 1 2 2

1 2

1

2

1250 0.1 0.03

1500 0.04 0.1

500,000 700 850

0

0.

p x x

p x x

R p x p x

C x x

P R C

x

x

= − −
= − −
= +
= + +
= −
≥
≥

Our objective is to maximize the profit P ($/year) from the sale of computers. 

The profit from the sale of the computers is given by 

1 1 2 2 1 2

1 2 1 1 2 2

1 2

500,000 700 850

(1250 0.1 0.03 ) (1500 0.04 0.1 )

(500,000 700 850 ).

P R C

p x p x x x

x x x x x x

x x

= −
= + − − −
= − − + − −
− + +

 (B8.1) 

Letting Py =  be the quantity we wish to maximize with decision variables 
1x  and 

2x , then our problem is to maximize 
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for 
1x  and 

2x  nonnegative. 

4. Mathematical Solution 

4.1 UNCONSTRAINED OPTIMIZATION 

Now, we proceed to solve the problem, using standard solution methods of the 
multi-variable calculus. The problem is to maximize the function given by (B8.2) 
over the region 

1 0x ≥ ,
2 0x ≥ . Figure B8.1 shows a 3-D graph of the function f .

We compute the partial derivatives of ),( 21 xxf  with respect to  
1x  and 

2x

respectively, which, on setting equal to 0, give 

     

.085003.02.004.01500

,070004.003.02.01250

221
2

221
1

=−−−−=
∂
∂

=−−−−=
∂
∂

xxx
x

f

xxx
x

f

 (B8.3) 

Figure B8.1. Graph of profit 1 2( , )y f x x=  versus production levels 1x (basic computers) and 2x

(enhanced computers). 
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This is equivalent to solving the linear system  

      
.6502.007.0

,55007.02.0

21

21

=+
=+

xx

xx  (B8.4) 

which, using Cramer’s rule, gives  

     
1

2

550 0.07
,

650 0.2

0.2 550
,

0.07 650

x D

x D

=

=

 (B8.5) 

where D  is the determinant of the coefficient matrix of equation (B8.4), which is 
given by 0351.007.007.02.02.0 =×−×=D .

Therefore, we have  

     

.607,2
0351.0

5.91

0351.0

5.38130

,838,1
0351.0

5.64

0351.0

5.45110

2

1

≅=−=

≅=−=

x

x
 (B8.6) 

The point ),( 21 xx  given by (B8.6) represents the global maximum of f . The 

maximum value of the objective function is obtained by substituting (B8.6) into 
equation (B8.2), which yields 

    

.564,852

)850700000,500(

)1.004.01500()03.01.01250(

21

221121

≅
++−

−−+−−=
xx

xxxxxxy
 (B8.7) 

The manufacturer simply needs to manufacture about 1838 units of the basic model 
and 2607 units of the enhanced model computers per year in order to achieve the 
maximum annual profit of $852,564. These figure indicate a profitable venture, so 
the company should be recommended to proceed with the introduction of these new 
products. 

4.2 CONSTRAINED OPTIMIZATION 

The objective function remains the same as in Section 3, namely, 
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subject to the constraints 

.0

0

000,4

000,3

000,2

2

1

21

2

1

≥
≥
≤+
≤
≤

x

x

xx

x

x

To find the maximum profit, we apply the method of Lagrange multipliers. We first 
compute 

    )2.007.0650,07.02.0550( 2121 xxxxf −−−−=∇ . (B8.8) 

Since 0≠∇f  in the interior of the domain enclosed by the constraints, the 

maximum must occur on the boundary. Consider the segment of the boundary on the 
constraint line 
     000,4),( 2121 =+= xxxxg . (B8.9) 

Hence,  (1,1)g∇ = , and so the Lagrange multiplier equations are  

     1 2

1 2

550 0.2 0.07

650 0.07 0.2 .

λ
λ

− − =
− − =

x x

x x
 (B8.10) 

Solving equations (B8.10) together with equation (B8.9), we have 

     

1

2

420
1,615

0.26
2,385

60.

x

x

λ

= ≅

≅
=

 (B8.11) 

Substituting the values in equation (B8.11) into the objective function, we have the 
estimated annual profit ~ $685,079. 
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Figure B8.2. Graph showing the feasible region of production levels 1x  (basic computers) and 2x

(enhanced computers).

Figure B8.2 shows a graph of the feasible region for this problem. So the company 
can maximize profits by producing 1,615 basic computers and 2,385 enhanced 
computers for a total of 4,000 computers per year. This venture will produce an 
estimated profit of $685,079 per year. 

4.3 COMPUTER SOLUTION (L.P. PROBLEM) 

Now we assume the objective function 
      
     

1 2300 375y x x= + . (B8.12) 

Our objective is to maximize 1 2 1 2( , ) 300 375y f x x x x= = +  subject to the constraints 

1

2

1 2

2,000

3,000

4,000

x

x

x x

≤
≤

+ ≤
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     1

2

0

0.

x

x

≥
≥

We use LINDO to calculate that the maximum of y  is 1,425,000 attained at 

1 1,000x = , 2 3,000x = . We suggest that the company should manufacture 1,000 of 

the basic models and 3,000 of the enhanced models per year, with estimated profit 
of $1,425,000 per year (see Figure B8.5 later).

4.3.1 Shadow prices and senstitivity analysis  

The shadow prices, or dual prices, are $0 per basic model, $75 per enhanced model 
and $300 per unit of production capacity. The binding constraints are those with 
non-zero shadow prices. If the manufacturer could produce more enhanced model 
computers, he should be willing to pay up to $75 per unit. If the manufacturer could 
free up some additional production capacity, that would be worth $300 per unit.  

We generalize the objective function (B8.12) and write 

       
1 1 2 2y c x c x= + , (B8.13) 

where currently 
1 300c =  and 

2 375c = . For a small change in 
1c  or 

2c , the optimum 

will still be at the corner point (1000,3000) , and the sensitivity of 
1x  or 

2x  to 
1c  or 

2c  are all zero, that is, 

     1 1 1 2

2 1 2 2

( , ) ( , ) 0

( , ) ( , ) 0.

S x c S x c

S x c S x c

= =
= =

 (B8.14) 

The sensitivity of the objective function y  to 
1c  and 

2c  is given by 

     
1

1
1

2
2

2

300
( , ) (1,000) 0.21

1, 425,000

375
( , ) (3,000) 0.79.

1,425,000

cy
S y c

c y

cy
S y c

c y

∂= ⋅ = ≈
∂
∂= ⋅ = ≈
∂

 (B8.15) 

Alternatively, we could use LINDO to re-optimize with the new objective functions 

     
1 2303 375y x x= +  and 

1 2300 378.75y x x= + .  (B8.16) 

to see that 
1x  and 

2x  do not change, but y  changes to  
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     1, 428,000y =  and 1, 436,250y = , (B8.17) 

respectively.

We now consider the sensitivity of the optimal production levels 1x and 2x  and the 
resulting profit y  to the available manufacturing capacity of 4,000 units per year. 
We simply replace the equation (B8.9) by the more general form  

     
1 2 1 2( , )g x x x x c= + = . (B8.18) 

In this case, the feasible region is more or less the same to that pictured in Figure 
B8.2, but now the slanted constraint line is shifted a bit (with the same slope as 

1 2 4,000x x+ =  with 
2x -intercept c= ); see Figure B8.3. For values of c  near 4,000, 

the maximum will be either (2000, 2000)c −  or ( 3000,3000)c − .

The level set with the largest value of c which still intersects the feasible region 
gives the maximum. Currently this occurs at (1000,3000) .

Since
1 2(300,375) ( , )f c c∇ = = , we consider the angle that the gradient vector 

1 2( , )c c  makes with the constraint line 1 2 4,000x x+ =  at this point. This vector 

rotates as 1c  and 2c  change. We have the following 3 cases: 

(i) 
2 1c c> , the situation is essentially the same as before.

(ii) 1 2c c> , the optimal value moves to the adjacent corner point (2000, 2000)c − .

(iii) 1 2c c= , the gradient vector is perpendicular to the constraint line 

1 2 4,000x x+ =  and so the level sets of (B8.13) are parallel to this line. In this 
case, the objective function attains its maximum at every point along the line 
segment joining the two corner points (2000, 2000)c −  and ( 3000,3000)c − ;
see Figure B8.4. 

5. Model Validation 

In order to make sure the results obtained in Section 4 are correct, we propose to use 
the mathematical software MAPLE and software package LINDO to validate our 
answers.

The optimal functional value of equation (B8.2) can be obtained using “maximize” 
command in MAPLE, that is
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Figure B8.3. Graph showing the set of all feasible production levels 1x  of basic models and 2x of

enhanced models for the personal computer problem with constraints.

> maximize((1250-0.1*X1-0.03*X2)*X1+(1500-0.04*X1-0.1*X2)*X2-
(500000+700*X1+850*X2),X1=0..infinity,X2=0..infinity,location);

,852564.100 { }[ ],{ },= X1 1837.606838 = X2 2606.837607 852564.100

Since both 1x  and 2x  are required to be integral, we choose 
1 1838x = ,

2 2607x = as 

the number of computers to be manufactured in order to achieve the maximum profit  
of $852,564. 

Figure B8.4. Graph showing the set of all feasible production levels 1x  of basic models and 2x of

enhanced models for the personal computer problem with constraints together with different gradient 

vector ∇f.
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For the constrained optimization with linear coefficients, we use the optimization 
software to maximize the objective function 1 2 1 2( , ) 300 375y f x x x x= = + (see 

Figure B8.5). Clearly, the company should manufacture 1,000 of the basic models 
and 3,000 of the enhanced models per year to give an estimated annual profit of 
$1,425,000.

MAXIMIZE 300X1 + 375X2 

SUBJECT TO 

    X1 <= 2000 

    X2 <= 3000 

    X1 + X2 <= 4000 

    X1 >= 0 

    X2 >= 0 

END

LP OPTIMUM FOUND AT STEP      1 

        OBJECTIVE FUNCTION VALUE 

        1)      1425000. 

  VARIABLE        VALUE          REDUCED COST 

        X1      1000.000000          0.000000 

        X2      3000.000000          0.000000 

       ROW   SLACK OR SURPLUS     DUAL PRICES 

        2)      1000.000000          0.000000 

        3)         0.000000         75.000000 

        4)         0.000000        300.000000 

        5)      1000.000000          0.000000 

        6)      3000.000000          0.000000 

 NO. ITERATIONS=       1 

Figure B8.5. Optimal solution to the personal computer problem using the linear programming package 

LINDO.

6. Interpretation and Conclusions 

This project has considered the manufacture of two types of personal computer. 
Optimization was required in that advice must be given to the manufacturer to help 
him decide how many computers of each type should be made and sold to achieve 
maximal annual profits. This involved the optimization of a function of two 
variables in this case. 

The project is illustrative in that it was first solved as an unconstrained optimization 
problem. Mathematical software such as MATLAB was helpful here particularly in 
producing 3D graphs. For nonlinear problems, computational techniques such as 
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Newton’s method in several variables can prove helpful in locating the maximum or 
minimum point of the objective function. 

Constraints were then added to demonstrate the techniques of constrained 
optimization. Here the method of Lagrange multipliers can play an important role. 
For simple projects such as this it was possible to use the computer to graph the 
feasible region. Furthermore, the results were validated by formulating as a L.P. 
problem and using a software package (in this case LINDO) to produce numerical 
results by means of the simplex method. Consequently, optimum production levels 
which maximize profits have been found. Information on the shadow prices for each 
constraint has been determined and explained. By generalizing the objective 
function, a sensitivity analysis has been performed which considers both profit and 
production levels. 

It is important to note that such techniques can be extended to more realistic 
problems which involve higher dimensions and more complicated constraints. 
Clearly, computational techniques and the use of linear and non-linear programming 
become more important for such cases. 

7. Computer Algorithms

In order to locate the optimal point of the objective function 
1 2( , )f x x , we first 

compute 
1 2( , )f x x∇ and solve for the zeros. However, as it is generally difficult to 

obtain the zeros analytically, we propose the use of Newton’s method in two 
variables for such problems. 

Algorithm (Newton’s method in two variables)

Initial guess: 0
1x , 0

2x .
Define 

11 2 1 2( , ) ( , )xF x x f x x=  and 
21 2 1 2( , ) ( , )xG x x f x x= .

For 1n =  to N

1

1 1
1 2: ( , )n n

xa F x x− −=

2

1 1
1 2: ( , )n n

xb F x x− −=

1

1 1
1 2: ( , )n n

xc G x x− −=

2

1 1
1 2: ( , )n n

xd G x x− −=
1 1

1 2: ( , )n np F x x− −= −
1 1

1 2: ( , )n nq G x x− −= −
:D ad bc= −

1
1 1: ( ) /n nx x pd qb D−= + −

1
1 1: ( ) /n ny y aq cp D−= + −

END
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For constrained optimization, the simplex method has been used. 
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Project B9

AIR FREIGHT TRANSPORTATION PROBLEM  

SUMMARY:  This project involves the shipping of cargo by air. Apart from the 
weight constraints, the company has limited volume of aircraft storage 
compartments. Full details are available on an average daily basis of three types of 
cargo in terms of weight (tons) and volume ( 3ft / ton ). The amount of each type of 
cargo which should be shipped by air each day is found in order to maximize 
revenue ($). The problem is modelled using constrained optimization techniques and 
solved using Lagrange multipliers. The shadow prices are calculated for each 
constraint and the results are interpreted. An extension is considered which involves 
the company in reconfiguring some of its older planes to help increase the size of the 
cargo areas. In this way decisions can be made on whether or not to include 
alterations and to what extent. The numerical results are validated by solving as a 
linear programming problem using the computer software package LINDO and the 
mathematical software package MAPLE. 

1. Background 

Most optimization problems require the simultaneous consideration of a number of 
independent variables. The simplest category of multivariable optimization 
problems can be solved using unconstrained optimization and computer algebra 
systems such as MAPLE or MATHEMATICA prove helpful in dealing with the 
more complicated algebraic computations. 

The simplest type of multivariable optimization problems involves finding the 
maximum or minimum of a differentiable function of several variables over a 
specified region. Complications arise in the solution of multivariable optimization 
models when the region over which we optimize is more complex. Most real 
problems lead to complicated models involving the existence of constraints on the 
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independent variables. This leads us into the area of constrained optimization. One 
important technique for dealing with such problems involves the use of Lagrange 
multipliers. Essentially we have an objective function and a number of constraint 
functions. The set formed by the constraint functions is called the feasible region 
and the objective function is maximized or minimized over this set by the use of 
Lagrange multiplier techniques. In the solution process important information can be 
found by finding the shadow prices for each constraint. 

The simplest type of multivariable constrained optimization problem is one where 
the objective function and the constraint functions are linear. The study of 
computational methods for such problems is called linear programming. Typical 
large-scale problems involve thousands of decision variables and thousands of 
constraints. The software for such problems is very flexible and user friendly and 
enables the user to amend the data and parameters as required which could produce 
results leading to important decision making. 

2. Problem Statement 

Consider a shipping company which uses air freight to move cargo which is stored 
in aircraft storage compartments. The company has the capacity to move 100 
tons/day by air and charges $250/ton for air freight. Apart from the weight 
constraint, the company can only move 350,000ft of cargo per day because of 

limited volume of aircraft storage compartments. Table B9.1 gives a breakdown of 
the average cargo available on a daily basis. 

Table B9.1. Average cargo available each day. 

Cargo Volume ( 3ft /ton ) Weight (tons) 
A 550 30 
B 800 40 
C 400 50 

(a) Formulate a mathematical model as a constrained optimization problem and 
solve using Lagrange multiplier techniques. Use this approach to determine how 
much of each cargo should be shipped by air each day in order to maximize 
revenue. 

(b) Hence calculate the shadow prices for each constraint and explain the meaning 
of these results. 

(c) Now consider the following extension of the problem. The company has the 
capacity to reconfigure some of its older aeroplanes to increase the size of the 
cargo areas. The alternations would cost $200,000 per aeroplane and would add 

32,500ft  per aeroplane. The weight limits would be unchanged. Make the 



B9. AIR FREIGHT TRANSPORTATION PROBLEM 231

assumption that the aeroplanes fly 250 days per year and that the remaining 
lifetime of the older aeroplanes is approximately 5 years. Would it be worth 
while financially to make the alterations and, if so, to how many aeroplanes? 

(d) Validate the above results by solving as a linear programming problem using an 
appropriate software package. 

3. Model Formulation 

To formulate our model, we first define a list of variables to be used, namely, 

     

1

2

3

3

cargo  (tons)

cargo  (tons)

cargo  (tons)

total volume (ft )

total weight (tons)

total freight charges ($).

x A

x B

x C

V

W

F

=
=
=

=
=
=

The following assumptions are required to ensure the model is valid: 

     

1 2 3

1 2 3

1

2

3

550 800 400

250

50,000

100

0 30

0 40

0 50.

V x x x

W x x x

F W

V

W

x

x

x

= + +
= + +
=
≤
≤
≤ ≤
≤ ≤
≤ ≤

The objective of the model is to optimize the total freight charges F . Setting y F= ,

we can write 

     
1 2 3 1 2 3( , , ) 250 250 250y f x x x x x x= = + +

and our objective is to optimize y  over the domain for which 

     



232 Project B9

     

1 2 3

1 2 3

1

2

3

100

550 800 400 50,000

0 30

0 40

0 50.

x x x

x x x

x

x

x

+ + ≤
+ + ≤

≤ ≤
≤ ≤
≤ ≤

4. Mathematical Solution 

(a) We now solve the model using Lagrange multipliers. The objective function is 
linear and so the gradient of 

1 2 3( , , )f x x x  is never zero. This means that there are 

no interior extreme points. The restriction of 
1 2 3( , , )f x x x  to a plane or a line is 

still linear. This means that there are no local extrema along any of the faces or 
the edges of the feasible region. Hence the maximum must occur at one of the 
corners.

We now check each corner in turn to determine the optimum. Clearly it cannot be 
optimal to set any of 

1x ,
2x ,

3x  equal to zero. Then there are five remaining linear 

constraints:

     

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1

4 1 2 3 2

5 1 2 3 3

( , , ) 100

( , , ) 550 800 400 50,000

( , , ) 30

( , , ) 40

( , , ) 50.

g x x x x x x

g x x x x x x

g x x x x

g x x x x

g x x x x

= + + =
= + + =
= =
= =
= =

By solving any three of these we get the coordinates of a corner point. If these 
coordinates satisfy the inequality constraints, then the corner point represents a 
feasible solution. By checking all 10 corner points, we find that the optimum occurs 
at the intersection of constraint lines 

2g ,
3g  and 

5g given by 
1 2 3( , , )x x x =

(30,16.875,50)  at which we find 

     
1 2 3250( ) 24, 218.75y x x x= + + = .

So the optimal strategy is to ship the maximum of 30 tons/day of cargo A  and 50 
tons/day of cargo C . Then, because of volume constraints, we can only ship 16.875 
tons/day of cargo B . This will yield a total shipping charge of $24,218.75 per day. 
It is important to note that the weight constraint is not binding, i.e., we do not have 
enough volume in the cargo holds to ship all 100 tons of available cargo. 
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(b) Next we calculate and discuss the shadow prices for each constraint. The 
gradient vectors for the binding constraints are as follows: 

      
2 2

3 3

5 5

(550,800,400)

(1,0,0)

(0,0,1)

v g

v g

v g

= ∇ =
= ∇ =
= ∇ =

and (250,250,250)w f= ∇ =  for the objective function f .

The Lagrange multiplier equations are 

       
2 2 3 3 5 5w v v vλ λ λ= + +

so that  

     
2 3

2

2 5

250 550

250 800

250 400 .

λ λ
λ
λ λ

= +
=
= +

     
Hence 

2 0.3125λ = ,
3 78.125λ =  and 

5 125λ = .

These figures give the shadow prices, which effectively mean that additional cargo 
capacity is worth approximately $0.31 per cubic foot. The net advantage of being 
able to ship more of cargo A  is $78.13 per ton, and for cargo C  the figure is $125 
per ton. 

For all of the other constraints, which are all nonbinding, the shadow prices are zero. 
So, for example, the company would not be willing to pay to increase the weight 
capacity of the aeroplanes, since the current optimal solution does not use all of the 
available weight capacity. 

(c) Next we use the above sensitivity results to solve the extension to the problem. 
We know that additional cargo space is worth $0.31 per cubic foot. Over the 
useful lifetime of the aeroplanes (i.e., 5 years), the proposed modification would 
allow the company to ship  

      5 250 2000 2,500,000× × =

additional cubic feet of cargo, which should be worth 

     $0.31 2,500,000 $775,000× = .
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Since this figure is well above the $200,000 cost of the reconfiguration, the 
company should proceed with this plan. 

The remaining cargo not currently being shipped consists of  

     40 16.875 = 23.125−

tons per day of cargo B , which would fill a volume of  

     23.125 800 18,500× =

cubic feet. The current daily load uses all of the available volume and weighs 96.875 
tons. Each modified aeroplane can carry an additional 2,500 cubic feet of cargo B ,
which weighs  

     2,500 / 800 3.125tons= .

Although there is enough additional cargo to fill 7 or 8 modified aeroplanes, there is 
only enough total weighs capacity to carry an additional 3.125 tons per day. This 
means that we should only modify one of the aeroplanes. If we modify one plane 
then the binding constraints are 

3g ,
5g  and the modified constraint 

2 52,500g ≤ .

So now we solve 

       
1 2 3550 800 400 52,500x x x+ + =

subject to 

       
1 30x = ,

3 50x = .

This gives 
2 20x =  and so in this case we ship 20 tons of cargo B  and obtain the 

shipping charges of $25,000 since 

     ( )1 2 3250( ) 250 30 20 50 25,000x x x+ + = + + = .

     
5. Model Validation 

Now we validate the results obtained in Section 4 by solving as a linear 
programming problem using the simplex method. We have chosen the LINDO 
software package to carry out the computation. 

(a) Of course, the list of variables and assumptions are the same as in Section 4. So 
our objective is to maximize 
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1 2 3250 250 250x x x+ +

     
subject to the constraints 
       

      

1 2 3

1 2 3

1

2

3

550 800 400 50,000

100

30

40

50.

x x x

x x x

x

x

x

+ + ≤
+ + ≤

≤
≤
≤

     

The L.P. optimum found at step 3 using LINDO is 24,218.75. This maximum is 
attained at 

1 30x = ,
2 16.875x = 3 50x =  (see Figure B9.1 for LINDO results and 

Figure B9.2 for MAPLE results). So we recommend that the company ships 30 tons 
of cargo A , 16.875 tons of cargo B  and 50 tons of cargo C  per day. This should 
result in the company collecting a shipping charge of $24,218.75 per day. 

MAXIMIZE 250x1 + 250x2 + 250x3 
SUBJECT TO 
 550x1 + 800x2 + 400x3 <= 50000 
 x1 + x2 + x3 <= 100 
 x1 <= 30 
 x2 <= 40 
 x3 <= 50 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
 LP OPTIMUM FOUND AT STEP      3 
        OBJECTIVE FUNCTION VALUE 
        1)      24218.75 
  VARIABLE        VALUE          REDUCED COST 
        X1        30.000000          0.000000 
        X2        16.875000          0.000000 
        X3        50.000000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.312500 
        3)         3.125000          0.000000 
        4)         0.000000         78.125000 
        5)        23.125000          0.000000 
        6)         0.000000        125.000000 
 NO. ITERATIONS=       3 

Figure B9.1. Optimal solution to the air freight transportation problem (a) using the linear programming 
package LINDO. 

(b) Next we validate the shadow prices for each constraint found in Section 4. The 
Lagrange multipliers or shadow prices are now computed automatically by 
LINDO under the heading of “DUAL PRICES”. Row 2 is the volume constraint 
and the corresponding dual price is 0.3125. This is the shadow price for volume. 
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> with(simplex):
cnsts := {550*x1+800*x2+400*x3<=50000, 

          x1+x2+x3<=100, 
     x1<=30,  

          x2<=40,
          x3<=50}: 
obj := 250*x1+250*x2+250*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0}); 

Figure B9.2. Optimal solution to the air freight transportation problem (a) using the mathematical 
software package MAPLE.

Row 4 is the upper bound on the amount of cargo A  available, and the 
corresponding dual price is 78.125. This is the shadow price for a ton of cargo A .
Row 6 is the upper bound on the amount of cargo C  available, and the 
corresponding dual price is 125. This is the shadow price for a ton of cargo C . Extra 
cargo space is worth $0.3125 per cubic foot. Additional cargo of type A  is worth 
$78.13 per ton, and additional cargo of type C  is worth $125 per ton. 

(c) Finally, we validate the results for the extension to the original problem. The 
cost of upgrade is $160 per aeroplane per day. To ascertain if it is better to 
modify one aeroplane, we modify the volume constraint so that it now becomes 

     
1 2 3550 800 400 52,500x x x+ + ≤

     
and reoptimize. The modification is worth while if the objective function increases 
by more than 160. 

Using LINDO (see Figure B9.3) and MAPLE (see Figure B9.4) we find that that the 
new optimum is 25,000, so that the new net income is $25,000 per day. This is 
clearly better than the result in (a) and so it is worth while modifying one plane. The 
optimum of 25,000 occurs at 

1 30x = ,
2 20x =  and 

3 50x = .

As there is a restriction of 100 tons on the total daily load, we should not modify 
more than one aeroplane. 

The LINDO software package is very user friendly and can be run a number of 
times. For example, if we wished to decide whether it is better to modify a second 
aeroplane, we simply change the volume constraint to  

     
1 2 3550 800 400 52,500x x x+ + ≤

and reoptimize. Another LINDO run would yield the optimum and the 
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corresponding values of 
1x ,

2x  and 
3x . The net profit would be less than before. 

Note also that from here on we use all the available weight capacity and so there is 
no point in considering the addition of cargo capacity to any more aeroplanes. 

MAXIMIZE 250x1 + 250x2 + 250x3 
SUBJECT TO 
 550x1 + 800x2 + 400x3 <= 52500 
 x1 + x2 + x3 <= 100 
 x1 <= 30 
 x2 <= 40 
 x3 <= 50 
 x1 >= 0 
 x2 >= 0 
 x3 >= 0 
END
LP OPTIMUM FOUND AT STEP      4 
        OBJECTIVE FUNCTION VALUE 
        1)      25000.00 
  VARIABLE        VALUE          REDUCED COST 
        X1        30.000000          0.000000 
        X2        20.000000          0.000000 
        X3        50.000000          0.000000 
       ROW   SLACK OR SURPLUS     DUAL PRICES 
        2)         0.000000          0.312500 
        3)         0.000000          0.000000 
        4)         0.000000         78.125000 
        5)        20.000000          0.000000 
        6)         0.000000        125.000000 
 NO. ITERATIONS=       4

Figure B9.3. Optimal solution to the air freight transportation problem (c) using the linear programming 
package LINDO. 

> with(simplex):
cnsts := {550*x1+800*x2+400*x3<=52500, 

          x1+x2+x3<=100, 
     x1<=30,  

          x2<=40,
          x3<=50}: 
obj := 250*x1+250*x2+250*x3: 
maximize(obj,cnsts union {x1>=0,x2>=0,x3>=0}); 

{x1 = 30, x3 = 50, x2 = 20} 

Figure B9.4. Optimal solution to the air freight transportation problem (c) using the mathematical 
software package MAPLE. 

6. Interpretation and Conclusions 

This project is interesting in that it involves the use of air freight for transporting 
cargo by a shipping company. Since it only deals with three types of cargo and the 
key parameters of weight and volume, the number of constraints is small and 
therefore easily handled in a mathematical solution. Also the mathematical solution 
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can easily be validated by the use of a number of linear programming software 
packages on the market. 

It should be pointed out that more realistic shipping and transportation problems are 
usually much more complex because of the larger dimensions and the complexity of 
the constraints. So, for example, graphical techniques are not available for 
dimensions 3n > , and solving 0f∇ =  becomes more complicated as the number of 

independent variables increases. Constrained optimization is also more difficult 
becomes the geometry of the feasible region can be more complicated. 

In general, multivariable optimization problems with constraints are almost always 
difficult to solve. Of course, linear programming is an important tool in the solution 
of such problems where both the objective function and the constraint functions are 
linear. Software packages for linear programming are widely available and are in 
frequent use for problems in manufacturing, investment, transportation, farming and 
government. Typical large-scale problems involve thousands of decision variables 
and thousands of constraints.  

Although a variety of computational techniques have been developed to handle 
special types of multivariable optimization problems, good general methods do not 
yet exist even at the most sophisticated levels. The area of research that covers the 
development of new computational methods for such problems is called nonlinear 
programming, and it is very active. 

7. Computer Algorithms 

The mathematical solution of this problem given in Section 4 has involved the use 
of MAPLE to obtain some numerical results. For the model validation in Section 5, 
the popular linear programming software package LINDO has been used to carry 
out a number of runs. 
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Optimization Problems 

1. Weekly production schedules are required for the manufacture of two products 
A  and B . Each unit of A  uses one component made in the factory, while each 
unit of B  uses two of the components. The factory has a maximum output of 
100 components per week. Each unit of A  and B  requires 12 hours of 
subcontracted work and agreements have been arranged with subcontractors for 
a weekly minimum of 240 hours and a maximum of 600 hours. The marketing 
department says that all production of B  can be sold but there is a maximum 
demand of 60 units of A , in spite of a long-term contract to supply 10 units of 
A  to one customer. The net profit on each unit of A  and B  is $300 and $400, 
respectively.

 (a) Formulate the above as a linear programming problem. 

 (b) Use a graphical method to find an optimum solution. Validate this result 
using the computer. 

2. An electrical components manufacturer produces two types of tester, Basic and 
Enhanced. The production time (hours/hundred units) of each type and the 
capacity of each production process are given in Table 1 below. All testers made 
can be sold and the profits on each unit of Basic and Enhanced are $16 and $20, 
respectively.

 (a) By formulating as a linear programming problem, find the maximum 
monthly profit. 

 (b) Find the spare capacities in production facilities. Also calculate the shadow 
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prices of production facilities. 

 (c) It has been suggested that the selling price of the Basic tester should be 
raised. To what level could the profit be raised without changing the optimal 
production pattern? 

 (d) A new tester is planned, which could go through Pressing, Wiring and 
Assembly at a rate of 400 units/hour on each process. What profit is required 
before this new tester is made? 

Table 1. Electrical components data. 

Process Basic Enhanced 
Capacity 

(hours/month) 
Pressing 4 8 320 
Wiring 12 4 480 

Assembly 8 8 400 

3.  A box manufacturing company makes medium and extra-large units. Medium 
boxes each require 8 square feet of wood, while extra-large ones consume 12. All 
boxes require 1 hour of labour irrespective of size. Wood is limited to 480 square 
feet and only 24 hours of labour are available. Due to floor-space limitations, no 
more than 24 extra-large boxes can be made each day. Also, customers can 
absorb at most 30 medium  boxes. Subject to these constraints, any number of 
medium boxes may be made. Medium boxes produce a profit of $6 but extra-
large ones earn only $3. 

Using the notation: 

     number of medium boxes to be made

number of extra-large boxes to be made,
m

l

x

x

=
=

 show that this produces the linear programming problem: 

 Maximize: 6 3m lP x x= +
subject to: 8 12 480 (wood)

24 (labour)

24 (floor space)

30 (customer)

, 0.

m l

m l

l

m

m l

x x

x x

x

x

x x

+ ≤
+ ≤

≤
≤
≥
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By introducing slack variables, solve this problem using the simplex method. 
Validate the results by computer. 

4. A food products company has established a new products division to develop and 
test market new snack foods. The manager of this division is considering three 
promising products: A , B  and C . He feels that linear programming (the simplex 
method) offers the best means for determining an optimum production schedule 
which would allow producing these products simultaneously. The company has 
three basic manufacturing departments: mixing, frying and packing. The time 
requirements for each product and the total available monthly hours are as shown 
in Table 2 below. 

Table 2. Time requirements for each product and total available monthly hours. 

      Department 
Product 

Mixing (hour) Frying (hour) Packing (hour) 
A 0.2 0.2 0.1 
B 0.3 0.5 0.1 
C 0.4 0.3 0.1 

Available 
monthly hours 

6,000 5,000 4,000 

It is estimated that the contribution for products A , B  and C  are $0.40, $0.50 
and $0.60, respectively. 

Use the simplex method to find the optimum quantity for each product and total 
contribution based on the data for the monthly time available in each department 
and for product contribution in Table 2. Validate the results by computer. 

5. A cooker manufacturing company makes two types of cooker, one electric and 
one gas. There are four stages in the production of each of these, with details 
given in Table 3 below. The electric cooker has variable costs of $300 per unit 
and a selling price of $450 while the gas cooker has variable costs of $240 and a 
selling price of $360. Fixed overheads are $100,000 per week and the company 
works a 50-week year. The marketing department suggests maximum sales of 
1000 electric and 1200 gas cookers per week. 

 (a) Formulate this as a profit-maximizing linear programming problem. Use the 
simplex method to find an optimal product mix for the company. What is the 
expected annual profit? 

 (b) Find the used and spare capacity of each manufacturing stage. What are the 
shadow prices of each manufacturing stage? 
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Table 3. Data on the production of electric and gas cookers. 

Time required 
(hours/unit) 

Manufacturing 
stage

electric gas 

Total time 
available

(hours/week) 
Forming 4 3 4,000 

Machine shop 12 9 12,000 
Assembly 6 3 6,000 
Testing 2 2 3,000 

 (c) An outside consultant offers his testing services to the company. What price 
should the company be willing to pay for this service and how many hours 
should be bought per week? 

 (d) A new cooker is planned, which would use the manufacturing stages for 4, 
10, 6 and 2 hours, respectively. At what selling price should the company 
consider making this cooker if the other variable costs are $250 per unit? 

 (e) Validate the above results, where possible, by computer. 

6. A company has consistently followed a policy of producing only those products 
which contribute the highest amounts to fixed costs and profit. However, 
consideration has always been given to producing the minimum weekly sales 
requirements, which for products A , B , C  and D  are 20 units, 25 units, 25 
units and 20 units, respectively. The production requirements and time available 
for next week are given in Table 4 below. At present the weekly production mix 
(considering the minimum sales requirements) is as follows: 

  product A , 1,500; product B , 30; product C , 40; product D , 30. 

Table 4. Production requirements and time available for next week. 

Time required per product (hours) 

A B C D

Time available 
for next week 

(hours) 

Department 1 0.2 0.25 0.1 0.2 500 
Department 2 0.3 0.4 0.4 0.3 1,000 
Department 3 0.25 0.3 0.2 0.25 500 
Department 4 0.2 0.3 0.3 0.25 600 

Contribution per 
unit 

$10 $9 $8 $10  
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 Produce a mathematical model to help answer the following questions: 

 (a) Are the present product mix and contribution for the firm optimum? If not, 
what should they be? 

 (b) What recommendations concerning production facilities should be made to 
the firm? 

 Validate, where possible, the above answers by computer. 

7. A company is considering manufacturing a new product line which includes four 
products. Each product can be made by two different and distinct methods, one 
of which has two processes and the other three. All products will be made on a 
second-shift basis. Data on the product’s selling price and variable costs together 
with the probable quantities that can be sold on the basis of current marketing 
research are given in Table 5 below. Also the firm’s manufacturing section has 
determined the manufacturing times for each process and this information is 
given in Table 6 below. 

Table 5. The product’s selling price and variable costs plus the probable quantities that can be sold on the 

basis of current marketing research. 

Product 
1 2 3 4 

Selling price to wholesaler 
(40% discount) 

$100 $160 $130 $140 

Variable costs – method A  $90 $140 $120 $135 
Variable costs – method B  $110 $160 $100 $120 
Quantity that can be sold 1,000 2,000 4,000 6,000 

Table 6. Manufacturing times for each process. 

Product 
1 2 3 4 

Method A     
Department 10 2.8 3.4 2.0 3.6 
Department 11 8.0 10.0 8.0 9.0 
Department 12 1.0 0.8 0.5 0.5 

Method B     
Department 21 4.0 3.0 2.0 4.0 
Department 22 4.0 8.0 5.0 4.0 
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 Monthly hours available are as follows: 

 Department 10 20,000 
 Department 11 40,000 
 Department 12 10,000 
 Department 21 10,000 
 Department 22 10,000. 

Produce a mathematical model to decide what the firm should do, in light of the 
production times and the possible production bottlenecks, in order to maximize 
total monthly contribution. 

8. An oil company makes two blends of fuel by mixing three oils. Figures on the 
costs and daily availability of the oils are given in Table 7 below. Also, the 
requirements of the blends of fuel are given in Table 8. 

Table 7. Costs and daily availability of the oils. 

Oil
Cost 

($/litre) 
Amount available 

(litres)
A 0.30 6,000 
B 0.40 10,000 
C 0.48 12,000 

Table 8. Requirements of the blends of fuel. 

at least 30% of A

at most 50% of BBlend 1 
at least 30% of C

at most 40% of A

at least 35% of BBlend 2 
at most 40% of C

Each litre of blend 1 can be sold for $1.10 and each litre of blend 2 can be sold 
for $1.20. Long-term contracts require at least 10,000 litres of each blend to be 
produced. 

Formulate this blending problem as a linear programming problem and find the 
optimal solution using the simplex method. Validate the results by computer. 

9. A large department store chain faces the problem of allocating men’s suits from 
warehouses to various retail stores in the chain. Each store has a different price 
for this item. Furthermore, the shipping cost for sending suits from the 
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warehouse to the store depends on the particular warehouse/store combination. 
Additionally, there are not as many suits available as have been requested by 
managers of each of the stores. Information is given in Table 9 below on the 
selling price and costs of suits for each store, the requests of each store and the 
supplies of each warehouse. 

Table 9. Data on selling price, costs, shipping costs, store requests and warehouse supplies of suits. 

 Selling Price Cost
Store A  $60 $35 
Store B  $45 $35 
Store C $50 $35 

From Warehouse To store Cost per Suit
1 A $5
1 B $6
1 C $3
2 A $0
2 B $0
2 C $4

Store Requests Warehouse Supplies
A  – 8 suits 1 – 12 suits 

B  – 16 suits 2 – 18 suits 
C  – 14 suits 

10.  A shipping company ships from three factories ( 1F , 2F , 3F ) to six warehouses 
( 1W , 2W , …, 6W ). Having a Management Science (MS) group, the company 
has kept shipping quantities optimal and up to date with respect to varying 
shipping costs. However, some months ago, the city expressed interest in 
acquiring the land on which one factory ( 1F ) and one warehouse ( 1W ) are 
located. Recognizing the importance of social responsibility, the company built a 
new factory ( 4F ) and a new warehouse ( 7W ) and sold the land to the city. The 
transportation quantities and related costs before the move are given in Table 10 
below. 

Table 10. Transportation quantities and related costs before the move. 

Warehouses 
1 2 3 4 5 6 

Factory
capacity

Factory 1 $5 $6 $4 $5 $5 $9 8,000 
Factory 2 $4 $6 $2 $4 $4 $8 4,000 
Factory 3 $6 $6 $7 $5 $4 $8 7,000 

Warehouse 
requirements 

1,000 2,000 5,000 4,500 2,500 4,000 19,000 
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 (a) Treat as a transportation problem and find the optimum shipping schedule for 
the present factories and warehouses using Vogel’s approximation method or 
other suitable method. 

 (b) Find the optimum schedule assuming that the new factory and new 
warehouse have been implemented, if  

  (i) the shipping costs from the new factory ( 4F ) to the warehouses ( 2W ,
3W , …, 7W ) are $9, $7, $5, $5, $9, $7, respectively; and  

  (ii) the shipping costs from the two factories ( 2F  and 3F ) to the new 
warehouse ( 7W ) are $7 and $8, respectively. 

Assume that the capacity of the new factory is 9,000 and that the requirements 
for the new warehouse are 1,000. Again use Vogel’s approximation method or 
other suitable method. 

 (c) Determine whether the total shipping cost has increased or decreased, and by 
how much. 
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Theory. 2003 ISBN 1-4020-1183-0
26. C. Costara and D. Popa: Exercises in Functional Analysis. 2003 ISBN 1-4020-1560-7
27. J.S. Golan: The Linear Algebra a Beginning Graduate Student Ought to Know. 2004

ISBN 1-4020-1824-X
28. J. Caldwell and D.K.S. Ng: Mathematical Modelling. Case Studies and Projects. 2004

ISBN 1-4020-1991-2

KLUWER ACADEMIC PUBLISHERS – DORDRECHT / BOSTON / LONDON


	Preliminaries
	TABLE OF CONTENTS
	Preface
	Introduction
	Deterministic Model in Contagious Disease
	Electromagnetic Forces in High Field Magnet Coils
	Mass Balance of a Reactor in Steady State
	The Free and Forced Vibration of an Automobile
	Cantilever Beam Subjected to an End Load
	Cylindrical and Spherical Solidification in Heat Transfer
	Elastic Analysis of a Square Plate with Circular Holes
	Motion of Fluid Layers
	Mass Balance of a Reactor with Time Dependency
	Flow through Porous Media
	Linear Programming Problem Involving Wine Production
	Transportation Problem Involving Breweries and Hotels
	Profit from an Engineering Plant
	Optimization of Manufacture of Personal Computers
	Air Freight Transportation Problem
	Optimization Problems
	Subject Index

