HW Evolutionary Games

Due at March 7, 2014

Problem 1 Consider evolution of three species:

G (Good neighbors) The population of the size P_G has original average fitness $F_1 = 1$, and the fitness increases k times (k = 1.2) in each time period. In each time period, a certain portion p of agents G becomes sick and looses a part of its fitness, which becomes $F_2 = .333$, $(F_2 < F_1)$. The agents in G group are helping the sick agents, restoring their fitness back to $F_1 = 1$. In the process, they loose a part of their own fitness that becomes $F_3 = .667$, where $F_1 > F_3 > F_2$. If sick agents are not helped, they die in the next time period, their fitness becomes zero, $F_4 = 0$.

C (*Cheaters*) Agents in C behave exactly like agents in G, except C never help anyone. The G agents are helping the sick C agents in the same manner as they are helping sick G agents, restoring their fitness to F_1 and loosing a part of their fitness that becomes F_3 .

J (Judges) Agents J behave as G and C, with one difference: The help only those who helps, namely only G and J and they do not help C.

Build an evolutionary model and replicator equation that fits the description, set the parameters, and model discrete dynamics for the following initial conditions

a) $P_G = 10, P_C = 1, P_J = 0$

b) $P_G = 10, P_C = 3, P_J = 2$

Problem 2. Stability of evolution Consider the rock-scissor-paper game with a slightly alternated payoff matrix

$$A = \left(\begin{array}{rrr} 1 + \epsilon & 2 & 0\\ 0 & 1 & 2\\ 2 & 0 & 1 \end{array} \right)$$

where ϵ is a small number, $|\epsilon| \ll 1$, in continuous time.

Build the replicator equation and model the dynamics starting from the point 1/2, 1/4, 1/4. Does the trajectory converge to a stable point? Consider two cases, $\epsilon > 0$ and $\epsilon > < 0$.