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Chapter 1

Introduction

1.1 Preliminary Remarks

Optimization The desire for optimality (perfection) is inherent in humans.
The search for extremes inspires mountaineers, scientists, mathematicians, and
the rest of the human race. The development of Calculus of Variation was driven
by this noble desire. A mathematical technique of minimization of curves was
developed in eighteen century to solve the problems of the best possible objects:
The minimal surface, the shortest distance, or the trajectory of fastest travel.

In twentieth century, control theory emerged to address the extremal prob-
lems in science, engineering, and decision-making. These problems specialize the
available the degrees of freedom by the so-called controls; these are constrained
functions that can be optimally chosen. Optimal design theory addresses space-
dependent analog of control problems. Minimax problems address optimization
in a conict situation or in undetermined environment. A special branch of the
theory uses minimization principles to create e�ective algorithms such as �nite
element method to computing the solution.

Description of fundamental laws of Nature For centuries, scientists tried
to proof that the Universe is rational, symmetric, or optimal in another sense.
The attempts were made to formulate laws of natural sciences as extreme prob-
lems (variational principles)and to use the variational calculus as a scienti�c
instrument to derive and investigate the motion and equilibria in Nature (Fer-
mat, Lagrange, Gauss, Hamilton, Gibbs..). It was observed by Fermat that light
"chooses" the trajectory that minimizes the time of travel, many equilibria cor-
respond to the local minimum of the energy, motion of mechanical systems
correspond to stationarity of a functional called the action, etc. In turn, the
variational principles link together conservation laws and symmetries.

Does the actual trajectory minimize the action? This question motivated
great researcher starting from Leibnitz and Fermat to develop variational meth-
ods to justify the Nature's "desire" to choose the most economic way to move,

13
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and it caused much heated discussions that involved philosophy and theology.
The general principle by Maupertuis proclaims: If there occur some changes
in nature, the amount of action necessary for this change must be as small as
possible. In a sense, this principle would prove that our world is "the best of all
worlds" { the conclusion defended by Fermat, Leibnitz, Maupertuis, and Euler
but later ridiculed by Voltaire. It turns out that the action is minimized by
short trajectories, but delivers stationary value for long ones, because of viola-
tion of so-called Jacobi conditions. This mathematical fact was disappointing for
philosophical speculations, \a beautiful conjunction is ruined by an ugly fact."
However, the relativity and the notion of the world lines returns the principle
of minimization of a quantity at the real trajectory over all other trajectories.

Convenient description of the state of an object No matter do the
real trajectories minimize the action or not, the variational methods in physics
become an important tool for investigation of motions and equilibria. First, the
variational formulation is convenient and economic: Instead of formulation of
equations it is enough to write down a single functional that must be optimized
at the actual con�guration. The equations of the state of the system follow from
the optimality requirement. Second, variational approach allows for accounting
of symmetries, for invariants of the con�guration, and (through the duality) for
di�erent di�erential equations that describe the same con�guration in di�erent
terms.

There are several ways to describe a shape or a motion. The most explicit
way is to describe positions of all points: Sphere is described by the functions
�
p
1� x2 � y2 � z(x; y) �

p
1� x2 � y2. The more implicit way is to formu-

late a di�erential equation which produces these positions as a solution: The
curvature tensor is constant everywhere in a sphere. An even more implicit
way is to formulate a variational problem: Sphere is a body with given volume
that minimizes its surface area. The minimization of a single quantity pro-
duces the "most economic" shape in each point. Such implicit description goes
back to Platonic ideals and is opposite to the Aristotelian principle to explicit
description/classi�cation of factual events (here, the explicit functions)

New mathematical concepts Working on optimization problems, mathe-
maticians met paradoxes related to absence of optimal solution or its weird
behavior; resolving these was useful for the theory itself and resulted in new
mathematical development such as weak solutions of di�erential equations and
related functional spaces (Hilbert and Sobolev spaces), various types of con-
vergence of functional sequences, distributions and other limits of function's
sequences, and other fundamentals of modern analysis.

Many computational methods as motivated by optimization problems and
use the technique of minimization. Methods of search, �nite elements, itera-
tive schemes are part of optimization theory. The classical calculus of variation
answers the question: What conditions must the minimizer satisfy? while the
computational techniques are concern with the question: How to �nd or ap-
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proximate the minimizer?
The list of main contributors to the calculus of variations includes the most

distinguish mathematicians of the last three centuries such as Leibnitz, Newton,
Bernoulli, Euler, Lagrange, Gauss, Jacobi, Hamilton, Hilbert.

History For the rich history of Calculus of variation we refer to such books
as [Kline, Boyer].. Here we make several short remarks about the ideas of its
development. The story started with the challenge:

Given two points A and B in a vertical plane, what is the curve
traced out by a point acted on only by gravity, which starts at A
and reaches B in the shortest time. 1

The brachistochrone problem was posed by Johann Bernoulli in Acta Eru-
ditorum in June 1696. He introduced the problem as follows:

I, Johann Bernoulli, address the most brilliant mathematicians in

the world. Nothing is more attractive to intelligent people than an

honest, challenging problem, whose possible solution will bestow fame

and remain as a lasting monument. Following the example set by

Pascal, Fermat, etc., I hope to gain the gratitude of the whole scien-

ti�c community by placing before the �nest mathematicians of our

time a problem which will test their methods and the strength of

their intellect. If someone communicates to me the solution of the

proposed problem, I shall publicly declare him worthy of praise.

Within a year �ve solutions were obtained, Newton, Jacob Bernoulli, Leibniz
and de L'Hôpital solving the problem in addition to Johann Bernoulli.

The May 1697 publication of Acta Eruditorum contained Leibniz's solution
to the brachistochrone problem on page 205, Johann Bernoulli's solution on
pages 206 to 211, Jacob Bernoulli's solution on pages 211 to 214, and a Latin
translation of Newton's solution on page 223. The solution by de L'Hpital was
not published until 1988 when, nearly 300 years later, Jeanne Pei�er presented
it as Appendix 1 in [1].

Johann Bernoulli's solution divides the plane into strips and he assumes
that the particle follows a straight line in each strip. The path is then piecewise
linear. The problem is to determine the angle of the straight line segment in
each strip and to do this he appeals to Fermat's principle, namely that light
always follows the shortest possible time of travel. If v is the velocity in one
strip at angle a to the vertical and u in the velocity in the next strip at angle b
to the vertical then, according to the usual sine law v/sin a = u/sin b.

The optimal trajectory turns out to be a cycloid (see Section ?? for the
derivation). Cycloid was a well investigated curve in seventeen century. Huygens

1Johann Bernoulli was not the �rst to consider the brachistochrone problem. Galileo in

1638 had studied the problem in 1638 in his famous work Discourse on two new sciences. He

correctly concluded that the straight path is not the fastest one, but made an error concluding

that an optimal trajectory is a part of a circle.
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had shown in 1659, prompted by Pascal's challenge, that the cycloid is the
tautochrone of isochrone: The curve for which the time taken by a particle
sliding down the curve under uniform gravity to its lowest point is independent
of its starting point. Johann Bernoulli ended his solution with the remark:
Before I end I must voice once more the admiration I feel for the unexpected

identity of Huygens' tautochrone and my brachistochrone. ... Nature always

tends to act in the simplest way, and so it here lets one curve serve two di�erent

functions, while under any other hypothesis we should need two curves.

The methods which the brothers developed to solve the challenge problems
they were tossing at each other were put in a general setting by Euler in Metho-

dus inveniendi lineas curvas maximi minimive proprietate gaudentes sive so-

lutio problematis isoperimetrici latissimo sensu accepti published in 1744. In
this work, the English version of the title being Method for �nding plane curves

that show some property of maxima and minima, Euler generalizes the prob-
lems studies by the Bernoulli brothers but retains the geometrical approach
developed by Johann Bernoulli to solve them. He found what has now come
to be known as the Euler-Lagrange di�erential equation for a function of the
maximizing or minimizing function and its derivative.

The idea is to �nd a function which maximizes or minimizes a certain quan-
tity where the function is constrained to satisfy certain constraints. For example
Johann Bernoulli had posed certain geodesic problems to Euler which, like the
brachistochrone problem, were of this type. Here the problem was to �nd curves
of minimum length where the curves were constrained to lie on a given surface.
Euler, however, commented that his geometrical approach to these problems was
not ideal and it only gave necessary conditions that a solution has to satisfy. The
question of the existence of a solution was not solved by Euler's contribution.

Lagrange, in 1760, published Essay on a new method of determining the
maxima and minima of inde�nite integral formulas. It gave an analytic method
to attach calculus of variations type problems. In the introduction to the paper
Lagrange gives the historical development of the ideas which we have described
above but it seems appropriate to end this article by giving what is in e�ect a
summary of the developments in Lagrange's words:-

The �rst problem of this type [calculus of variations] which mathematicians
solved was that of the brachistochrone, or the curve of fastest descent, which
Johann Bernoulli proposed towards the end of the last century.

1.2 Properties of the extremals

Every optimization problem has several necessary components. It deals with a
set X of admissible elements x, that can be real or complex numbers, di�eren-
tiable curves, integrable functions, shapes, people in the town, or ants in the
colony. A real-valued function I(x) called objective is put it correspondence to
each admissible element. It could be the absolute value of a number, integral of
a function over an interval, value of the function at a point, weight or a person,
or length of an ant. The goal is to �nd or characterize the element x0 called
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minimizer, such that

I(x0) � I(x); 8x 2 X
We denote this element as

x0 = argmin
x2X

I(x)

and we denote the value I(x0 as

I(x0) = min
x2X

I(x)

Next, we list the basic properties of any extreme problem that are based on
the de�nition of the minimizer.

1. Minimum over larger set is smaller than minimum of the smaller set

If X1 � X2, then

min
x2X1

F (x) � min
x2X2

F (x)

2. Minimum of a function F (x) is equal to the negative of maximum of
�F (x),

min
x2X

F (x) = �max
x2X

(�F (x))

This property allows us not to distinguish between minimization and max-
imization problem: We always can reformulate the maximization problem
in the minimization form.

3. Minimum of sum is not smaller than the sum of minima.

min
x
[f(x) + g(x)] � min

x
f(x) + min

x
g(x)

4. Linearity: If b and c > 0 are real numbers, than

min
x

(c f(x) + b) = c
�
min
x
f(x)

�
+ b

5. The minimizer is invariant to the superposition with any monotonic func-
tion. Namely, The minimizer

x0 = argmin
x
f(x)

where f : X ! Y � R1 is also the minimizer of the problem

x0 = argmin
x2X

g (f(x))

where g : Y ! R1 is monotone everywhere on Y .
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6. Maximum of several minima is not larger than minimum of several max-
ima:

max
n
min
x
f1(x); : : :min

x
fN (x)

o
� min

x
fmax(x)

where

fmax(x) = maxff1(x); : : : fN (x)g

7. Minimax theorem

max
y

min
x
f(x; y) � min

x
max
y

f(x; y)

The listed properties can be proved by the straightforward use of the de�nition
of the minimizer. We leave the prove to the reader.

1.3 Variational problem

The extremal (variational) problem requires to �nd an optimal function u0(x)
which can be visualized as a curve (or a surface). The function u0(x) belongs to
a set of admissible functions U : u 2 U ; it is assumed that U is a set of di�eren-
tiable function on the interval [a; b] that is denoted as C1[a; b]. To measure the
optimality of a curve, we de�ne a functional (a real number) I(u) which may
depend on u(x), and its derivative u0(x) as well as on the independent variable
x. The examples of variational problems are: The shortest path on a surface,
the surface of minimal area, the best approximation by a smooth curve of the
experimental data, the most economical strategy, etc.

The classical variational problem is formulated as follows: Find

I(u0) = min
u(x)2Ub

J(u) Ub = fu : u 2 C1(a; b); u(a) = �; u(b) = �g (1.1)

where x 2 [a; b], u0(x) is an unknown function called the minimizer, the bound-
ary values of u are �xed, J(u) is the functional of the type

J(u) =

Z b

a

F (x; u(x); u0(x))dx: (1.2)

F is a function of three arguments, x; u(x); u0(x), called Lagrangian, and it is
assumed that the integral in (1.2) exists.

The value of the objective functional I(u) (also called the cost functional)
is a real number. Since real numbers are ordered, one can compare functionals
J(u1); J(u2); : : : of di�erent admissible functions u1; u2; : : :, and build minimiz-

ing sequences of functions

u1; u2; : : : ; un; : : :

with the property:

I(u1) � I(u2) � : : : � I(un) : : :
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The limit u0 of a minimizing sequence (if it exists) is called the minimizer; it
delivers the minimum of I

I(u0) � I(u) 8u 2 U (1.3)

The minimizing sequence can always be built independently of the existence of
the minimizer.

Generalization The formulated problem can be generalized in several ways.

� The minimizer and an admissible function can be a vector-function; the
functional may depend of higher derivatives, and be of a more general
form such as the ratio of two integrals.

� The integration can be performed over a spacial domain instead of the
interval [a; b]; this domain may be completely or partly unknown and
should be determined together with the minimizer.

� The problem may be constrained in several ways: The isoperimetric prob-
lem asks for the minimum of I(u) if the value of another functional Ir(u)
is �xed. Example: �nd a domain of maximal area enclosed by a curve of a
�xed length. The restricted problem asks for the minimum of I(u1; : : : un)
if a function(s) �(u1; : : : un) is �xed everywhere. Example: The problem
of geodesics: the shortest distance between two points on a surface. In
this problem, the path must belong to the surface in everywhere.

Outline of the methods There are several groups of methods aimed to �nd
the minimizer of an extremal problem.

1. Methods of su�cient conditions. These methods directly establish
the inequality I(u0) � I(u);8u 2 U . These rigorous methods are appli-
cable to a small variety of problems, and the results are logically perfect.
To establish the above inequality, the methods of convexity are commonly
used. The method often requires a guess of the global minimizer u0 and
is applicable to relatively simple extremal problems.

2. Methods of necessary conditions (variational methods). Using
these methods, we establish necessary conditions for u(x) to provide a local
minimum. In other words, the conditions tell that there is no other curve
u+ �u that is (i) su�ciently close to the chosen curve u (that is assuming
k�uk is in�nitesimal), (ii) satis�es the same boundary conditions, and (iii)
corresponds to a smaller value I(u+�u) < I(u) of the objective functional.
The closeness of two compared curves allows for a relative simple form of
the resulting variational conditions of optimality; on the other hand it
restricts the generality of the obtained conditions.

Variational methods yield to only necessary conditions of optimality be-
cause it is assumed that the compared trajectories are close to each other
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in a sense; they detect locally optimal curves provided that the assump-
tions are correct. On the other hand, variational methods are regular
and robust; they are applicable to a great variety of extremal problems
called variational problems. Necessary conditions are the true workhorses
of extremal problem theory, while exact su�cient conditions are rare and
remarkable exceptions.

3. Direct optimization methods These are aimed to building the mini-
mizing sequence fusg and provide a sequence of better solutions. Gener-
ally, the convergence to the true solution may not be required, but it is
guaranteed that the solutions are improved on each step of the procedure:
I(us) � I(us�1) for all s. These method require no a priori assumption
of the dependence of functional on the minimizer, but only the possibility
to compare a project with an improved one and chose the best of two. Of
course, additional assumptions help to optimize the search but it can be
conducted without these. The method can be applied to even discontinu-
ous functionals.

Global methods Variational meth-
ods

Algorithmic search

Objectives Search for the
global minimum

Search for a local
minimum

An improvement of
existing solution

Means Su�cient condi-
tions

Necessary condi-
tions

Algorithms of
sequential improve-
ment

Tools Inequalities, Fixed
point methods

Analysis of features
of optimal trajecto-
ries

Gradient-type
search

Existence
of solution

Guaranteed Not guaranteed Not discussed

Applicability Special problems Large class of prob-
lems

Universal

Table 1.1: Approaches to variational problems

There are many books that expound the calculus of variations, including [?, ?,
?, ?, ?, ?, ?, ?, ?].
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Geometric problems and

Su�cient conditions

2.1 Convexity

The best source for the theory of convexity is probably the book [?].

2.1.1 De�nitions and inequalities

Convexity is the most important and general feature of a function allowing for
establishing inequalities. We start with de�nitions.

De�nition 2.1.1 The set 
 in Rn is convex, if the following property holds. If
any two points x1 and x2 belong to the set 
, all points xh with coordinates
xh = �x1 + (1� �)x2 belong to 


The interior of an ellipsoid or paraboloid are convex sets, the crescent is not
convex. Convex sets are simply connected (do not have holes). The whole space
Rn is a convex set, any linear hyperplane is also a convex set. The intersection
of two convex sets is also a convex set, but the union of two convex sets may
not be convex.

Next, we can de�ne a convex function.

De�nition 2.1.2 Consider a scalar function f : 
 ! R1 
 � Rn of vector
argument. Function F is called convex if it possesses the property

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2) 8x1; x2 2 Rn; 8� 2 [0; 1] (2.1)

Geometrically, the property (2.1) states that the graph of the convex function
lies below the chord.

21
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Figure 2.1: Basic property of convex function: real caption

Figure 2.2: Graph of nonconvex function f(x) = exp(�jxj)

Example 2.1.1 Function f(x) = x2 is convex. Indeed, f(�x1 + (1� �)x2) can
be represented as follows

(�x1 + (1� �)x2)
2 = �(x1)

2 + (1� �)(x2)
2 � C

where C = �(1� �)(x1 � x2)
2 � 0 is nonnegative. Therefore, (2.1) is true.

Properties of convex functions One can easily show (try!) that the func-
tion is convex if and only if

f

�
x1 + x2

2

�
� f(x1) + f(x2)

2
8x1; x2 2 Rn:

The convex function is di�erentiable almost everywhere. If it has second
derivatives, the Hessian He(f; x) is nonnegative everywhere

He(f; x) =

0
@ @2f

@x1@x1
: : : @2f

@x1@xn
: : : : : : : : :
@2f

@x1@xn
: : : @2f

@xn@xn

1
A � 0:

Particularly, the convex function of one variable has the nonnegative second
derivative:

f 00(x) � 0 8x 2 R1: (2.2)

Convexity is a global property. If the inequality (2.2) is violated at one point,
the function may be nonconvex everywhere. Consider, for example, f(x) =
exp(�jxj). Its second derivative is positive everywhere, f 00 = exp(�jxj) except
x = 0 where it does not exist. This function is not convex, because

f(0) = 1 >
1

2
(f(x) + f(�x)) = exp(�jxj) 8x 2 R:

Jensen's inequality The de�nition (2.1) is equivalent to the so-called Jensen's
inequality

f(x) � 1

N

NX
i=1

f(x+ �i) 8�i :
NX
i=1

�i = 0 (2.3)

for any x 2 
. (Show the equivalence!)
Jensen's inequality enables us to de�ne convexity in a point: The function

f is convex at the point x if (2.3) holds.
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Example 2.1.2 Function f(x) = x4�x2 is convex if x 62 [�p3;p3]. Notice that
the inequality f 00(x) � 0 holds in a smaller interval x 62 [�1; 1]. At the intervals
[�p3;�1] and [1;

p
3] the second derivative of F is positive, but F is not convex.

Integral form of Jensen inequality Increasing the number N of vectors �i
in (2.3), we �nd the integral form of Jensen inequality:

Function F (z) is convex if and only if the inequality holds

F (z) � 1

b� a

Z b

a

F (z + �(x))dx (2.4)

where Z b

a

�(x)dx = 0 (2.5)

and all integrals exist.

Remark 2.1.1 (Stability to perturbations) The integral form of the Jensen's
inequality can be interpreted as follows: The minimum of an integral of a convex
function corresponds to a constant minimizer. No perturbation with zero mean
value can increase the functional.

Another interpretation is: The average of a convex function is larger then the
function of an averaged argument.

Example 2.1.3 Assume that F (u) = u2. We have

0 � 1

b� a

Z b

a

(z + �(x))2dx = z2 +
2z

b� a

Z b

a

�(x)dx +
1

b� a

Z b

a

�(x)2dx

The second integral in the right-hand side is zero because of (2.5), the third integral
is nonnegative. The required inequality

z2 � 1

b� a

Z b

a

(z + �(x))2dx

(see (2.4) follows.

Next, we illustrate the use of convexity for solution of optimization problems.
Being global property, convexity allow for establishing the most general between
the optimal trajectory and any other trajectory.

2.1.2 Minimal distance at a plane, cone, and sphere

Let us start with the simplest problem with an intuitively expected solution:
Find the minimal distance between the points (a; �) and (b; �) on a plane.

Consider any piece-wise di�erentiable path x(t); y(t), t 2 [0:1] between these
points. We set

x(0) = a; x(1) = b; y(0) = �; y(1) = �
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The length of the path is

L(x; y) =

Z 1

0

p
(x0)2 + (y0)2dx

(We need the piece-wise di�erentiability of x(t) and y(t) to be able de�ne the
length of the pass) We have in mind to compare the path with the straight line
(which we might expect to be a solution); therefore, we assume the representa-
tion

x(t) = a+ t(b� a) +

Z t

0

 1(t)dt; y(t) = �+ t(� � �) +

Z t

o

 2(t)dt

the terms dependent on � and  de�ne the deviation from the straight path.
The deviation in the beginning and in the end of the trajectory is zero, therefore
we require Z 1

0

 1(t)dt = 0

Z 1

0

 2(t)dt = 0; (2.6)

We prove that the deviation are identically zero at the optimal trajectory.
First, we rewrite the functional L in the introduced notations

L( 1;  2) =

Z 1

0

p
((b� a) +  1(t))2 + ((� � �) +  2(t))2dx

where the Lagrangian W (( 1;  2) is

W (( 1;  2) =
p
((b� a) +  1(t))2 + ((� � �) +  2(t))2

and we use expressions for the derivatives x0; y0:

x0 = (b� a) +  1(t); y0 = (� � �) +  2(t):

The LagrangianW (( 1;  2) is a convex function of its arguments  1;  2. Indeed,
it is twice di�erentiable with respect to them and the Hessian He is

He(W ) =

�
y2(x2 + y2)�

3
2 xy(x2 + y2)�

3
2

xy(x2 + y2)�
3
2 x2(x2 + y2)�

3
2

�

where x = (b�a)+ 1(t) and y = (���)+ 2(t). The eigenvalues of the Hessian
are equal to 0 and (x2 + y2)�

1
2 respectively, and therefore it is nonnegative

de�ned (as the reader can easily check, the graph of W (( 1;  2) is a cone).
Due to Jensen's inequality in integral form, the convexity of the Lagrangian

and the boundary conditions (2.6) lead to the relation

L( 1;  2) � L(0; 0) =

Z 1

0

p
(b� a)2 + (� � �)2dx

and to the minimizer  1 = 0;  2 = 0.
Thus we prove that the straight line corresponds to the shortest distance

between two points. Notice that (1) we compare all di�erentiable trajectories
no matter how far away from the straight line are they, and (2) we used our
correct guess of the minimizer (the straight line) to compose the Lagrangian.
These features are typical for the global optimization.
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Geodesic on a cone Consider the problem of shortest path between two
points of a cone, assuming that the path should lie on the conical surface. This
problem is a simplest example of geodesics, the problem of the shortest path on
a surface discussed below in Section ??.

Because of simplicity of the cone's shape, the problem can be solved by pure
geometrical means. Firstly, we show that it exists a ray on a cone that does not
intersect with the geodesics between any two point if none of then coincide with
the vertex. If this is not the case, than a geodesics makes a whole spiral around
the cone. This cannot be because one can shorten the line replacing spiral part
of a geodesics by an interval if a ray.

Now, let us cut the cone along this ray and straighten the surface: It becomes
a wedge of a plane with the geodesics lying entirely inside the wedge. Obviously,
the straighten does not change the length of a path. The coordinates of any
point of the wedge can be characterized by a pair r; � where r > 0 is the distance
from the vertex and �, 0 � � � � is the angle counted from the cut. Parameter
� characterizes the cone itself.

The problem is reduced to a problem of a shortest path between two points
that lies within a wedge. Its solution depends on the angle � of the wedge. If
this angle is smaller that �, � < �, the optimal path is a straight line

r = A tan � +B sec � (2.7)

One can observe that the r(�) is a monotonic function that passes through two
positive values, therefore r(�) > 0 { the path never goes through the origin.
This is a remarkable geometric result: no geodesics passes through the vertex on

a cone if � < �!: There always is a shorter path around the vertex.
At the other hand, if � > �, then a family of the geodesics will path through

the vertex and consist of two straight intervals. This happens if � > �. Notice
that in this case the original cone, when cut, becomes a wedge with the angle
larger than 2� and consist of at least two overtopping sheets.

Distance on a sphere: Columbus problem Consider the problem of
geodesics on a sphere. Let us prove that a geodesics is a part of the great
circle.

Suppose that geodesics is a di�erent curve, or that it exists an arc that is
a part of the geodesics but does not coincide with the arc of the great circle.
This arc can be replaced with its mirror image { the reection in the plane that
passes through the ends of the arc and the center of the sphere. The reected
curve has the same length of the path and it lies on the sphere, therefore the
new path remains a geodesics.

At the other hand, the new path is broken in two points, and therefore cannot
be the shortest path. Indeed, consider a part of the path in an in�nitesimal circle
around the point of breakage and �x the points A and B where the path crosses
that circle. This path can be shorten by a arc of a great circle that passes
through the points A and B. To illustrate this part, it is enough to imagine a
human-size scale on Earth: The in�nitesimal part of the round surface becomes
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at and obviously the shortest path correspond to a straight line and not to a
zigzag line with an angle.

The same consideration shows that the length of geodesics is no larger than �
times the radius of the sphere or it is shorter than the great semicircle. Indeed,
if the length of geodesics is larger than the great semicircle one can �x two
opposite points { the poles of the sphere { on the path and turn around the axis
the part of geodesics that passes through these points. The new path lies of
the sphere, has the same length as the original one, and is broken at the poles,
thereby its length is not minimal.

To summarize geodesics on a sphere is a part of the great circle that joins

the starting and end points and which length is less that a half of the equator.

Remark 2.1.2 This geometric consideration, when algebraically developed and
generalized to larger class of extremal problems, yields to the so-called Jacobi test,
see below Section 6.3. The Jacobi test is violated if the length of geodesics is larger
than � times the radius of the sphere.

The argument that the solution to the problem of shortest distance on a
sphere bifurcates when its length exceeds a half of the great circle was in fact
famously used by Columbus who argued that the shortest way to India passes
through the Western route. As we know, Columbus wasn't be able to prove or
disprove the conjecture because he bumped into American continent discovering
New World for better and for worst.

2.1.3 Minimal surface

A three-dimensional generalization of the geodesics is the problem of the min-
imal surface that is the surface of minimal area stretched on a given contour.
If the contour is plane, the solution is obvious: the minimal surface is a plane.
The proof is quite similar to the above proof of the minimal distance on the
plane.

In general, the contour can be any closed curve in three-dimensional space;
the corresponding surface can be very complicated, and nonunique. It may
contain several smooth branches with nontrivial topology (see the pictures).
The example of such surface is provided by a soap �lm stretched on a contour
made from a wire: the surface forces naturally minimize the area of the �lm.
Theory of minimal surfaces is actively developing area, see the books [?, ?].

In contrast with the complexity of a minimal surface in the large scale, caused
by the complexity of the supporting contour, the local feature of any minimal
surface is simple; we show that any smooth segment of the minimal surface has
zero mean curvature.

We prove the result using an in�nitesimal (variational) approach. Let S be
an optimal surface, and s0 be a regular point of it. Assume that S is a smooth
surface in the neighborhood of so and introduce a local Cartesian coordinate
system �1; �2; Z so oriented that the normal to the surface at a point s0 coincides
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with the axes Z. The equation of the optimal surface can locally be represented
as

Z = D +A�21 + 2C�1�2 +B�22 + o(�21 ; �
2
2) = 0

Here, the linear with respect to �1 and �2 terms vanish because of orientation
of Z-axis. In cylindrical coordinates r; �; Z, the equation of the surface F (r; �)
becomes

0 � r � �; � � � � �;

and

F (r; �) = D + a r2 + b r2 cos(2� + �0) + o(r2) (2.8)

Consider now a cylindrical �-neighborhood of s0 { a part r � � of the surface
inside an in�nite cylinder with the cental axes Z. The equation of the contour
�{ the intersection of S with the cylinder r = � { is

�(�) = F (r; �)jr=� = D + �2a+ �2b cos(2� + �0) + o(�2) (2.9)

If the area of the whole surface is minimal, its area inside contour � is
minimal among all surfaces that passes through the same contour. Otherwise,
the surface could be locally changed without violation of continuity so that its
area would be smaller.

In other words, the coe�cients D; a; b; �0 of the equation (2.8) for an ad-
missible surface should be chosen to minimize its area, subject to restrictions
following from (2.9): The parameters b, �0 and D + �2a are �xed. This leaves
only one degree of freedom { parameter a { in an admissible smooth surface.
Let us show that the optimal surface corresponds to a = 0.

We observe, as in the previous problem, that the surface area

A =

Z 2�

0

Z �

0

0
@
s
1 +

�
@F

@r

�2

+

�
1

r

@F

@�

�2
1
A r drd�

is a strictly convex and even function of a (which can be checked by substitution
of (2.9) into the formula and direct calculation of the second derivative). This
implies that the minimum is unique and correspond to a = 0.

Another way is to use the approximation based on smallness of �. The
calculation of the integral must be performed up to �3, and we have

A = ��2 +
1

2

Z 2�

0

Z �

0

 �
@F

@r

�2

+

�
1

r

@F

@�

�2
!
r drd� + o(�3):

After substitution of the expression for F from (2.8) into this formula and
calculation, we �nd that

A = ��2 +
8

3
��3(a2 + b2) + 0(�3)
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The minimum of A corresponds to a = 0 as stated. Geometrically, the result
means that the mean curvature of a minimal surface is zero in any regular point.
The minimal surface area

Amin = ��2 +
8

3
��3b2 + 0(�3)

depends only on the total variation 2b = (max��min�) of � as expected.
In addition, notice that the minimal area between all surfaces enclosed in a

cylinder that do not need to pass through a �xed contour is equal to the area
��2 of a circle and corresponds to a at contour b = 0, as expected.

Proof by symmetry Another proof does not involve direct calculation of the
surface. We only states that the minimal surface S locally is entirely determined
by the in�nitesimal contour �. Therefore, a transform of the coordinate system
that keeps the contour unchanged cannot change the minimal surface inside it.
Observe, that the in�nitesimal contour (2.9) is invariant to transform

Z 0 = �Z + 2(D + �2a); r0 = r; �0 = � + 90�: (2.10)

that consists of reverse of the direction of Z axes, shift along Z, and rotation
on 90� across this axes. The minimal surface (2.8) must be invariant to this
transform as well, which again gives a = 0.

Remark 2.1.3 This proof assumes uniqueness of the minimal surface.

Thin �lm model The equation of the minimal surface can be deduced from
the model of a thin �lm as well. Assume that the surface of the �lm shrinks
by the inner tangent forces inside each in�nitesimal element of it, and there are
no bending forces generated that is forces normal to the surface. The tangent
forces at a point depend only on local curvatures at this point.

Separate again the cylindrical neighborhood and replace the inuence of
the rest of the surface by the tangential forces applied to the surface at each
point of the contour. Consider conditions or equilibrium of these forces and the
inner tangent forces in the �lm. First, we argue that the average force applied
to the contour is zero. This force must be directed along the z-axes, because
the contour is invariant to rotation on 180� degree around this axes. If the
average force (that depends only on the geometry) had a perpendicular to z
component, this component would change its sign. The z-component of the
average force applied to the contour is zero too, by the virtue of invariance of
the transform (2.10). By the equilibrium condition, the average z-component
of the tangent force inside the surface element must be zero as well. Look of
the representation (2.8) of the surface: The average over the area force depends
on a and b: F = F (a; b; �0). The force is in fact independent of �0, because
of symmetry; The dependence on b is even, because the change of sign of b
corresponds to 90� rotation of the contour that leaves the force unchanged.
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The dependence on a is odd, because the change of the direction of the force
correspond to change of the sign of a.

F = constant(�0); F (a; b) = F (a;�b) = �F (�a; b) 8�0; a; b:

Therefore, zero average force corresponds to a = 0, as stated.
The direction of average along the contour and over the surface forces cannot

depend on b because the 180� degree rotation of the contour leaves is invariant,
therefore the force remains invariant, too.

2.1.4 Shortest path around an obstacle: Convex envelope

A helpful tool in the theory of extremal problem is the convex envelope. Here,
we introduce the convex envelope of a �nite set in a plane as the solution of a
variational problem about the minimal path around an obstacle. The problem is
to �nd the shortest closed contour that contains �nite not necessarily connected
domain 
 inside. This path is called the convex envelope of the set 
.

De�nition 2.1.3 (Convex envelope of a set) The convex envelope C
 of a
�nite closed set 
 is the minimal of the sets that (i) contain 
 inside, C
 � 
 and
(ii) is convex.

We argue that the minimal path � is convex, that is every straight line
intersects its boundary not more than twice. Indeed, if a component is not
convex, we may replace a part of it with a straight interval that lies outside
of � thus �nding another path �0 that encircles a larger set but has a smaller
perimeter. Perimeter of a convex set is decreased only when the encircled set �
is lessen.

Also, the strictly convex (not straight) part of the path coincides with the
boundary of 
. Otherwise, the length of this boundary can be decreased by
replacing an arc of it with the chord that lies completely outside of 
.

We demonstrated that a convex envelope consists of at most two types of
lines: the boundary of 
 and straight lines (shortcuts). The convex envelope of
a convex set coincide with it, and the convex envelope of the of the set of �nite
number of points is a convex polygon that is supported by some of the points
and contains the rest of them inside.

Properties of the convex envelope The following properties are geomet-
rically obvious and the formal proofs of then are left to the interested reader.

1. Envelope cannot be further expanded.

C(C(
)) = C(
)

2. Conjunction property:

C(
1 [ 
2) � C(
1) [ C(
2)
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3. Absorbtion property: If 
1 � 
2 then

C(
1 [ 
2) = C(
2)

4. Monotonicity: If 
1 � 
2 then

C(
2) � C(
1)

Shortest trajectory in a plane with an obstacle
Find the shortest path p(A;B;
) between two points A and B on a plane if a
bounded connected region (an obstacle) 
 in a plane between them cannot be
crossed.

� First, split a plane into two semiplanes by a straight line that passes
through the connecting points A and B.

� If the interval between A and B does not connect inner points of 
, this
interval is the shortest pass. In this case, the constraint (the presence of
the obstacle) is inactive, p(A;B;
) = kA�Bk independently of 
.

� If the interval between A and B connects inner points of 
, the constraint
becomes active. In this case, obstacle 
 is divided into two parts 
+ and

� that lie in the upper and the lower semiplanes, respectively, and have
the common boundary along the divide { an interval @0; @0 lies inside the
original obstacle 
.

Because of the connectedness of the obstacle, the shortest path lies entirely
either in the upper or lower semiplane, but not in both; otherwise, the
path would intersect @0. We separately determine the shortest path in the
upper and lower semiplanes and choose the shortest of them.

� Consider the upper semiplane. Notice that points A and B lie on the
boundary of the convex envelope C(
+; A;B) of the set 
 and the con-
necting points A and B.

The shortest path in the upper semiplane p+(A;B;
) coincides with the
upper component of the boundary of C(
+; A;B), the component that
does not contains @0. It consists of two straight lines that pass through the
initial and �nal points of the trajectory and are tangents to the obstacle,
and a part that passes along the boundary of the convex envelope C
 of
the obstacle only.

� The path in the lower semiplane is considered similarly. Points A and
B lie on the boundary of the convex envelope C(
�; A;B). Similarly to
the shortest path in the upper semiplane, the shortest path in the lower
semiplane p�(A;B;
) coincides with the lower boundary of C(
�; A;B).

� The optimal trajectory is the one of the two pathes p+(A;B;
) and
p�(A;B;
); the one with smaller length.
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Analytical methods cannot tell which of these two trajectories is shorter,
because this would require comparing of non-close-by trajectories; a straight
calculation is needed.

If there is more than one obstacle, the number of the competing trajectories
quickly raises.

Convex envelope supported at a curve Consider a slightly di�erent prob-
lem: Find the shortest way between two points around the obstacle assuming
that the these points lie on a curve that passes through the obstacle on the
opposite sides of it. The points are free to move along the curve it this would
decrease the length of the path. Comparing with the previous problem, we
asking in addition where the points A and B are located. The position of the
points depends on the shape of the obstacle and the the curve, but it is easy to
establish the conditions that must be satis�ed at optimal location.

Problem: Show that an optimal location of the point A is either on the point
of intersection of the line and an obstacle, or the optimal trajectory p�(A;B;
)
has a straight component near the point A and this component is perpendicular
to the line at the point A.

Lost tourists

Finally, we consider a variation of the theme of convex envelope, the problem
of the lost tourists. Crossing a plain, tourists have lost their way in a mist.
Suddenly, they �nd a pole with a message that reads: "A straight road is a mile
away from that pole." The tourists need to �nd the road; they are shortsighted
in the mist: They can can see the road only when they step on it. What is the
shortest way to the road even if the road is most inauspiciously located?

The initial guess would suggest to go straight for a mile in a direction, then
turn 90�, and go around along the one-mile-radius circumference. This route
meets any straight line that is located at the one mile distance from the central
point. The length of this route is 1 + 2� � 7:283185 miles.

However, a detailed consideration shows that this strategy is not optimal.
Indeed, there is no need to intersect each straight line (the road) at the point of
the circle but at any point and the route does not need to be closed. Any route
that starts and ends at two points A and B at a tangent to a circle and goes
around the circle intersects all other tangents to that circle. In other words, the
convex envelope of the route includes a unit circle. The problem becomes: Find
the curve that begins and ends at a tangent AB to the unit circle, such that
(i) its convex envelope contains a circle and (ii) its length plus the distance 0A
from the middle of this circle to one end of the curve is minimal.

The optimal trajectory consists of an straight interval OA that joints the
central point O with a point A outside of the circle C and the convex envelope
(ACB) stretched on the two points A and B and circle C.

The boundary of the convex envelope is either straight or coincide with the
circle. More exactly, it consists of two straight intervals AA1 supported by the



32CHAPTER 2. GEOMETRIC PROBLEMSAND SUFFICIENT CONDITIONS

point A and a point A1 at the circumference and AA1 supported by the end
point B and a point B1 of circumference. These intervals are tangent to the
circumference at the points A1 and B1, respectively. Finally, line AB touches
the circumference a point V .

Calculation The length L of the trajectory is

L = L(OA) + L(AA1) + L(A1 B1) + L(B1B)

where L is the length of the corresponding component. These components are
but straight lines and an circle's arch; the problem is thus parameterized. To
compute the trajectory, we introduce two angles � and �� from the point V
there the line AB touches the circle. Because of symmetry, the points A1 and
B1 correspond to the angles 2� and �2�, respectively, and we compute

L(OA) = 1

cos�
; L(AA1) = tan�

L(A1 B1) = 2� � 2�� 2�; L(B1 B) = � tan�;

plug these expressions into the expression for L, solve the conditions dL
d�

= 0

and dL
d�

= 0, and �nd optimal angles:

� =
�

6
; � = ��

4
;

The minimal length L equal to L = 7
6� +

p
3 + 1 = 6:397242.

Solution without calculation One could �nd solution to the problem with-
out any trigonometry but with a bit of geometric imagination. Consider the
mirror image Cm of the circle C assuming that the mirror is located at the
tangent AB. Assume that the optimal route goes around that image instead
of original circle; this assumption evidently does not change the length of the
route. This new route consists of three pieces instead of four: The straight line
OA0m that passes through the point O and is tangent to the circumference Cm,
the part A0mB

0
m of this circumference, and the straight line B0

mB that passes
through a point B on the line and is tangent to the circumference Cm.

The right triangle OmA
0
mO has the hypothenuse O0O equal to two and the

side OmA
0
m equal to one; the length of remaining side OA0 equals to

p
3 and

the angle OmOA
0
m is �

3 . The line B0
mB is perpendicular to AB, therefore its

length equals one. Finally, the angle of the arch A0mB
0
m equals to 7

6�. Summing

up, we again obtain L = 7
6� +

p
3 + 1.

Generalization The generalization of the concept of convex envelope to the
three-dimensional (or multidimensional) sets is apparent. The problem asks for
set of minimal surface area that contains a given closed �nite set. The solution
is again given by the convex envelope, de�nition (2.1.4) is applicable for the
similar reasons.
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Consider the three-dimensional analog of the problem 2.1.4 assuming in ad-
dition that the obstacle 
 is convex. Repeating the arguments for the plane
problem, we conclude that the optimal trajectory belongs to the convex en-
velope C(
; A;B). The envelope is itself a convex surface and therefore the
problem is reduced to geodesics on the convex set { the envelope C(
; A;B).
The variational analysis of this problem allows to disqualify as optimal all (or
almost all) trajectories on the convex envelope one by comparing near-by tra-
jectories that touch the obstacle in close-by points.

If the additional assumption of convexity of obstacle is lifted, the problem
becomes much more complex because the passes through "tunnels" and in folds
in the surface of 
 should be accounted for. If at least one of the points A or B
lies inside the convex envelope of a nonconvex obstacle, the minimal path partly
goes inside the convex envelope C
 as well. We leave this for the interested
reader.

2.1.5 Formalism of convex envelopes

The notion of convex envelope can be transformed from sets to functions. A
graph of any function y = f(x) divides the space into two sets, and the convex
envelope of a function is the convex envelope of the set y > f(x). It the function
is not de�ned for all x 2 Rn (like logx is de�ned only for x � 0), we extend the
de�nition of a function assigning the improper value +1 to function of in all
unde�ned values arguments.

De�nition 2.1.4 (Convex envelope of a function) The convex envelope Cf(x)
of a function f : Rn ! R1 is the maximal of the functions g(x) that (i) do not
surpass f(x) everywhere, g(x) � f(x);8x and (ii) is convex.

The Jensen's inequality produces the following de�nition of the convex en-
velope:

De�nition 2.1.5 The convex envelope CF (v) is a solution to the following mini-
mal problem:

CF (v) = inf
�

1

l

Z l

0

F (v + �)dx 8 � :
Z l

0

�dx = 0: (2.11)

This de�nition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen's
inequality (??).

To compute the convex envelope CF one can use the Carath�eodory theorem
(see [?, ?]). It states that the argument �(x) = [�1(x); : : : ; �n(x)] that minimizes
the right-hand side of (2.11) takes no more than n + 1 di�erent values. This
theorem refers to the obvious geometrical fact that the convex envelope con-
sists of the supporting hyperplanes to the graph F (�1; : : : ; �n). Each of these
hyperplanes is supported by no more than (n+ 1) arbitrary points.
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The Carath�eodory theorem allows us to replace the integral in the right-
hand side of the de�nition of CF by the sum of n+1 terms; the de�nition (2.11)
becomes:

CF (v) = min
mi2M

min
�
i
2�

(
n+1X
i=1

miF (v + �i)

)
; (2.12)

where

M =

(
mi : mi � 0;

n+1X
i=1

mi = 1

)
(2.13)

and

� =

(
�i :

n+1X
i=1

mi�i = 0

)
: (2.14)

The convex envelope CF (v) of a function F (v) at a point v coincides with
either the function F (v) or the hyperplane that touches the graph of the function
F . The hyperplane remains below the graph of F except at the tangent points
where they coincide.

The position of the supporting hyperplane generally varies with the point v.
A convex envelope of F can be supported by fewer than n + 1 points; in this
case several of the parameters mi are zero.

On the other hand, the convex envelope is the greatest convex function that
does not exceed F (v) in any point v [?]:

CF (v) = max�(v) : �(v) � F (v) 8v and �(v) is convex: (2.15)

Example 2.1.4 Obviously, the convex envelope of a convex function coincides
with the function itself, so all mi but m1 are zero in (2.12) and m1 = 1; the
parameter �1 is zero because of the restriction (2.14).

The convex envelope of a \two-well" function,

�(v) = min fF1(v); F2(v)g ; (2.16)

where F1; F2 are convex functions of v, either coincides with one of the functions
F1; F2 or is supported by no more than two points for every v; supporting
points belong to di�erent wells. In this case, formulas (2.12){(2.14) for the
convex envelope are reduced to

C�(v) = min
m;�

fmF1(v � (1�m)�) + (1�m)F2(v +m�)g : (2.17)

Indeed, the convex envelope touches the graphs of the convex functions F1
and F2 in no more than one point. Call the coordinates of the touching points
v+ �1 and v+ �2, respectively. The restrictions (2.14) become m1�1 +m2�2 =
0; m1 +m2 = 1. It implies the representations �1 = �(1�m)� and �2 = m�.
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Example 2.1.5 Consider the special case of the two-well function,

F (v1; v2) =

�
0 if v21 + v22 = 0;
1 + v21 + v22 if v21 + v22 6= 0:

(2.18)

The convex envelope of F is equal to

CF (v1; v2) =
�
2
p
v21 + v22 if v21 + v22 � 1;

1 + v21 + v22 if v21 + v22 > 1:
(2.19)

Here the envelope is a cone if it does not coincide with F and a paraboloid if it
coincides with F .

Indeed, the graph of the function F (v1; v2) is rotationally symmetric in the
plane v1; v2; therefore, the convex envelope is symmetric as well: CF (v1; v2) =
f(
p
v21 + v22). The convex envelope CF (v) is supported by the point v�(1�m)� =

0 and by a point v +m� = v0 on the paraboloid �(v) = 1 + v21 + v22 . We have

v0 =
1

1�m
v

and

CF (v) = min
m

�
(1�m)�

�
1

1�m
v

��
: (2.20)

The calculation of the minimum gives (2.19).

Example 2.1.6 Consider the nonconvex function F (v) used in Example ??:

F (v) = minf(v � 1)2; (v + 1)2g:
It is easy to see that the convex envelope CF is

CF (v) =
8<
:
(v + 1)2 if v � �1;
0 if v 2 (�1; 1);
(v � 1)2 if v � 1:

Example 2.1.7 Compute convex envelope for a more general two-well function:

F (v) = minf(av)2; (bv + 1)2g:
The envelope CFn(v) coincides with either the graph of the original function or the
linear function l(v) = Av+B that touches the original graph in two points (as it is
predicted by the Carath�eodory theorem; in this example n = 1). This function can
be found as the common tangent l(v) to both convex branches (wells) of F (v):�

l(v) = av21 + 2av1(v � v1);
l(v) = (bv22 + 1) + 2bv2(v � v2);

(2.21)

where v1 and v2 belong to the corresponding branches of Fp:�
l(v1) = av21 ;
l(v2) = bv22 + 1:

(2.22)
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Solving this system for v; v1; v2 we �nd the coordinates of the supporting points

v1 =

s
b

a(a� b)
; v2 =

r
a

b(a� b)
; (2.23)

and we calculate the convex envelope:

CF (v) =

8><
>:

av2 if jvj < v1;

2v
q

ab
a�b � b

a�b if v 2 [v1; v2];

1 + bv2 if jvj < v2

(2.24)

that linearly depends on v in the region of nonconvexity of F .

Hessian of Convex Envelope We mention here a property of the convex
envelope that we will use later. If the convex envelope CF (v) does not coincide
with F (v) for some v = vn, then CF (vn) is convex, but not strongly convex.

At these points the Hessian He(F ) = @2

@vi@vj
F (v) is semipositive; it satis�es the

relations
He(CF (v)) � 0; detH(CF (v)) = 0 if CF < F; (2.25)

which say that He(CF ) is a nonnegative degenerate matrix. These relations can
be used to compute CF (v).

Remark 2.1.4 (Convex envelope as second conjugate) We may as well com-
pute convex envelope in more regular way as a second conjugate of the original
function as described later in Section 8.3.

Proof that
(i) The global minimum of a function coincides with the minimum of its

convex envelope.
(ii) Convex envelope of a function does not have minima that are local but

not global.
Convex envelope are used below in Chapter 7 to address ill-posed variational

problems.

2.2 Symmetrization

An interesting geometric method, symmetrization, is based on convexity in-
equality; it allows for solution of several isoperimetric problem. The detailed
discussion can be found in the books by Blaschke [], P�olya and Szeg�o [?]

The idea of symmetrization Consider a plane �nite domain 
 and a straight
line A. The transformation of 
 is called a symmetrization with respect to A if
it moves each interval that crosses 
 and is orthogonal to A parallel to itself so
that the middle of the interval belongs to A.

One can easily see that the symmetrization of a polygon is a polygon with
equal or larger number of angles than the original one.
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2.2.1 Symmetrization of a triangle

Let us prove that unilateral triangle has minimal perimeter among all triangles
with given area.

Consider an arbitrary nonunilateral triangle ABC and apply symmetrization
to it. Generally, the symmetrization transforms a triangle into a quadrangle; the
triangle remains a triangle only if the axis of symmetrization is orthogonal to
one of the side. In this case, an arbitrary triangle becomes an isosceles triangle,
the base a and the hight h remain unchanged. This implies that symmetrization
leaves the area A of the triangle unchanged.

Let us show that symmetrization decreases the perimeter. Let the coordi-
nates of the vertexes be

A = (a; 0); B = (�a; 0); C = (c; h)

and let the axes of symmetrization be the Y axes. After symmetrization, the
coordinates A and B remain the same, and the vertex C moves to C 0 = (0; h).

The sum of the two sides' lengths equal to

L =
p
h2 + (a� c)2 +

p
h2 + (a+ c)2

becomes
LS = 2

p
h2 + a2:

We prove that
LS � L (2.26)

and the equality sign corresponds to the only case c = 0.
Consider the length of a side as a function of c:

L(c) =
p
h2 + (a+ c)2

the function f is strictly convex since

L00(c) =
h2

(h2 + (a+ c)2)
3
2

> 0

and is even. The inequality of convexity (13.21) implies that

L(c) + L(�c) � 2f(0)

that is, the inequality (2.26)
If the obtained rectangle is not unilateral, the symmetrization procedure can

be repeated, using one of the equal legs as the base. The new triangle has the
same area and smaller perimeter.

Consider now a sequence of symmetrizations applied to an arbitrary triangle.
On each step, symmetrization preserves one side, makes two other sides equal
to each other, and decreases their total length. The area of the triangle is
preserved, its perimeter decreases and is obviously bounded from below, say
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by zero. Therefore the sequence of symmetrizations is a monotone bounded
sequence and it must have a unique stable point: A triangle that is stable
against symmetrization. This is of course a unilateral triangle. We have proved
the theorem:

Theorem 2.2.1 Among all triangles with equal area, the unilateral triangle has
the smallest perimeter.

2.2.2 Symmetrization of quadrangle and circle

Symmetrization of a quadrangle Let is apply symmetrization to an arbi-
trary quadrangle, requiring that the quadrangle remains quadrangle after the
symmetrization.

At the �rst step, we have to perform symmetrization orthogonal to one of two
diagonals. The resulting quadrangle has two pairs of neighboring sides of equal
lengths. At the second step, we symmetrize orthogonally to the other diagonal,
the resulting �gure is a rhombus of equal area but of smaller perimeter than the
original quadrangle.

Now we may start a two-steps sequence of symmetrizations. Firstly, we
transform the rhombus into a rectangle using the side as an axis of symmetriza-
tion. Secondly, we transform the rectangle back to rhombus, using the diagonal
as the axis of symmetrization. The obtained rhombus has smaller ratio of the
larger diagonal to the smaller one (compute the change of this ratio!) and the
smaller perimeter, but its area stays unchanged. This monotonic sequence has
a stable point. The stable point is the square, which enables us to formulate
the next theorem.

Theorem 2.2.2 Among all quadrangles with equal area, the square has the small-
est perimeter.

Circle Symmetrization can be applied to an arbitrary �nite bounded domain
F (x; y) � 0 with the boundary F (x; y) = 0. For de�niteness let assume that
the y-axis is the axis of symmetrization.

Dissect the plane by a family fykg of equidistant parallel lines

y0; y1 = y0 +�; y2 = y0 + 2�; : : : ; yN = y0 +N�

. Assume that this division covers the �gure F (x; y) = 0 and that the number
N is arbitrary large so that the distance between two neighboring parallel lines
is in�nitesimal.

An in�nitesimal part of the domain F (x; y) = 0 located between two close-
by parallel lines can be approximated by a trapezoid. Symmetrization replaces
this trapezoid by a equilateral trapezoid of equal area, parallel sides of equal
length, but with smaller total length of the non-parallel sides (show this!). We
can formulate
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Theorem 2.2.3 The total area of the symmetrized domain remains constant, but
its perimeter (equal to the sum of the lengths of the sides of the trapezoids) de-
creases.

Now consider the sequence of symmetrization with variable axis. The se-
quence of the transformed �gures tends to a circle: The only �gure that is
stable against any symmetrization. Indeed, this sequence tends to its unique
stable point, and the circle is that point.

We came to the theorem

Theorem 2.2.4 Among all plane domains with equal �nite area, the circle has
the smallest perimeter.

Geometric proof of the theorem An independent geometric proof of the
theorem is elegant and does not require any in�nitesimal operation. However,
we need to assume the existence of an optimal shape which we do not need to
do in the previous consideration.

The proof requires the following steps:
1. We show that the optimal domain is convex. If it is not convex, we pass

to the convex envelope increasing the area and decreasing the perimeter at the
same time.

2. We cut the optimal domain by a straight line so that both parts have
the same area. This is always possible by moving a line across the domain and
keeping it parallel to itself. The two cut parts must have the same perimeter
too, otherwise the perimeter could be decreased replacing the part with larger
perimeter with the mirror image of the part with smaller perimeter. The re-
placement of one of the domain with the mirror image of the second one changes
neither the area nor the perimeter.

3. Consider the half of the optimal shape with the straight base. Choose
an arbitrary point C on it surface and connect it with the ends of the base by
two straight intervals. The domain is thus divided into two outer shapes and a
triangle.

4. We may change the length of the base without changing the perimeter.
This change keeps the areas of two outer domains constant but varies the angle
and by the area of the triangle. The maximal area of the triangle corresponds
to the angle C opposite the base being equal 90�. Indeed, by the geometric
theorem the area A equals to

A =
1

2
a b sinC

where the lengths a and b of the intervals are constant to the motion and the
angle arbitrary varies. The maximal area corresponds to C = 90�.

5. Because the point C was arbitrarily chosen, the angle between any point
of the surface and the base is equal 90�. The �gure must be a circle: the set of
points from which an interval (diameter) is visible on a right angle.



40CHAPTER 2. GEOMETRIC PROBLEMSAND SUFFICIENT CONDITIONS

2.2.3 Dido problem

Probably the �rst extremal problem known from the antic time is the Dido
problem. The problem is based on a passage from Virgil's Aeneid (cited from
[]):

"The Kingdom you see is Carthage, the Tyrians, the town of Agenor;

"But the country around is Libya, no folk to meet in war.

Dido, who left the city of Tyre to escape her brother,

Rules here { a long a labyrinthine tale of wrong

Is hers, but I will touch on its salient points in order

...

Dido, in great disquiet, organized her friends for escape.

They met together, all those who harshly hated the tyrant

Or keenly feared him: they seized some ships which chanced to be ready

...

They came to this spot, where to-day you can behold the mighty

Battlements and the rising citadel of New Carthage,

And purchased a site, which was named `Bull's Hide' after the bargain

By which they should get as much land as they could enclose with a bull's

hide."

According to the legend, the Trojans arrived in the North African shore of
Mediterranean Sea after the defeat by Greeks. Here, their leader, wise queen
Dido, purchased from the local tribe a piece land on the shore \that can be
covered by the Bull's hide." Sophisticated Trojans had a much more advanced
technology than the locals; in particular, they knew how to use sharp knifes to
cut hides into thin strips (and they knew some math, too!). So, they made a
long leather rope out of the hide and encircled by it enough land to build the
Carthage who later become a mighty rival of Rome.

The extremal problems that Dido brilliantly solved was: Given a curve of
a given length (the rope) and a straight line (the sea shore), encircle the do-
main of maximal area (place for future Carthage). This problem, known as
Dido problem, inspirited many generations by its cleverness; it inuenced the
development of theory of extremal problems, demonstrated usefulness of math-
ematics, and accustomed people to respect political leaders able to use brains
instead of brutal force.

Dido problem can be solved by symmetrization together with the following
trick: Assume that the seashore is a mirror and consider the domain 
 of the
enclosed land and its mirror image; obviously, the perimeter and area of 
 is
twice larger than the perimeter and area of the enclosed domain, respectively.
The symmetrization tells that 
 is a circle; thereby, the answer to Dido problem
is a semicircle with the shore as a diameter and the rope as a semi-circumference.

The reference of how to use Maple to work on Dido problem:

http://www.mapleapps.com/powertools/engineeringmath/html/Section
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2.2.4 Formalism of symmetrization

The considered symmetrization of a plane domain can be formalized as following:
Assume for simplicity that the boundary of the set F is y-simple: The set
F (x; y) � 0 described as

f�(x) � y � f+(x); a � x � b

The area A of the domain is equal to

A =

Z b

a

(f+ � f�)dx (2.27)

and the perimeter P is

P =

Z b

a

�q
1 + (f 0+)2 +

q
1 + (f 0�)2

�
dx

The symmetrized domain is described as

�1

2
(f+(x)� f�(x)) � y � 1

2
(f+(x)� f�(x)) ; a � x � b

Its area AS of the symmetrized domain is obviously given by the formula (2.27)
and its perimeter PS is

PS = 2

Z b

a

r
1 +

1

4
(f 0+ � f 0�)2 dx

If remains to prove that PS � P or

Z b

a

 q
1 + (f 0+)2 +

q
1 + (f 0�)2 � 2

r
1 +

1

4
(f 0+ � f 0�)2

!
dx � 0

We show that the integrant is nonnegative in each point. Starting with the
inequality q

1 + (f 0+)2 +
q
1 + (f 0�)2 � 2

r
1 +

1

4
(f 0+ � f 0�)2

we square its left- and right-hand sides, cancel equal terms, and obtain an
equivalent inequalityq�

1 + (f 0+)2
� �
1 + (f 0�)2

� � 1� f 0+ f
0
�

If the right-hand side is negative, the inequality is true, otherwise square it one
more time and obtain the true equivalent inequality

(f 0+ + f 0�)
2

The result is proved.
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3D symmetrization

Consider a bounded body

F (x; y; z) � 0

in three-dimensional space with the boundary

F (x; y; z) = 0:

Dissect it by a family of equidistant parallel planes

z = z0; z = z0 +�; z = z0 + 2�; : : : ; z = z0 +N�:

Replace a part of the body located between two planes by a conical surface,
replacing each closed contour F (x; y; z0 + k�) = 0 by the circle of equal area,
all centered at the z-axis

x2 + y2 = r2k; where �r2k = Area of F (x; y; z0 + k�)

Doing this, we obtain a body of revolution de�ned by the curve r(z) that revolves
around the z-axis.

We can show (do it yourself or look into [?]) that this transformation (sym-
metrization by Schwartz) (i) Conserves the volume of the body and (ii) decreases
its surface area.

Particularly, consider the domain bounded by the plane z = 0 and a non-
negative surface z = u(x; y) � 0 such that u(x; y) = 0 if (x; y) 2 � = @
. The
symmetrization

1. Replaces the base 
 with a circle of equal area:


S = A circle: j
j = j
S j

2. Conserves the volume:Z



u dx dy is stable to symmetrization

3. Decreases the surface area:Z



p
1 + (ru)2 dx dy decreases by symmetrization (2.28)

Using symmetrization, we may deduct some inequalities for the functionals
di�erent from the volume or the area. For example, assuming that u(x; y)� 1,
we notice that (2.28) implies the decrease of the Dirichlet integral:Z




(ru)2 dx dy decreases by symmetrization
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Extremal property of the sphere As in two-dimensional case, one applies
the series of symmetrization around all axes, look into the resulting stable point
and arrive at the theorem:

Theorem 2.2.5 Among all three-dimensional bodies with equal �nite volume, the
sphere has the smallest surface area.

Limits of the method

The method of symmetrization operates with special type of functionals (area,
perimeter, volume).

It cannot handle any additional constraints besides the �xed area, such the
requirement that a part of the boundary stays unchanged. In particular, it does
not preserve the number of edges in polygons of more than fourth order.

2.2.5 Summary

The su�cient conditions are the most elegant statements in the theory ex-
tremal problems. In these methods, the guessed optimal solution is directly
compared with all admissible solutions; thus the global optimum of the func-
tional is proven. By its nature, a su�cient conditions technique is irregular and
the area of its applicability is limited.

Symmetrization shows that is many problem a symmetric solution is better
than a nonsymmetric one. This principle is reected in an intuitive preference
to symmetric designs which are often considered to be more elegant or beautiful
that nonsymmetric ones.

2.3 Problems

1. Use Jensen inequality to prove the relation between arithmetic and har-
monic means:

a1 + : : :+ aN
N

� (a1 � : : : � aN ) 1
N 8a1 � 0; : : : aN � 0

2. Describe the area of a symmetrized ellipse.
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Part II

Calculus of Variations: One

variable

45





Chapter 3

Stationarity

Since, however, the rules hfor isoperimetric curves (or, in our words, ex-
tremal problems)i were not su�ciently general, the famous Euler under-
took the task of reducing all such investigations to a general method which
he gave in the work "Essay on a new method of determining the maxima
and minima of inde�nite integral formulas"; an original work in which
the profound science of the calculus shines through. Even so, while the
method is ingenious and rich, one must admit that it is not as simple as
one might hope in a work of pure analysis.

In "Essay on a new method of determining the maxima and minima of
inde�nite integral formulas", by Lagrange, 1760

3.1 Derivation of Euler equation

The technique was developed by Euler, who also introduced the name \Calculus
of variations" in 1766. The method is based on an analysis of in�nitesimal
variations of a minimizing curve.

The main scheme of the variational method is as follows: Assume that the op-
timal curve u(x) exist among smooth (twice-di�erentiable curves), u 2 C2[a; b].
Compare the optimal curve with close-by trajectories u(x)+�u(x), where �u(x)
is small in some sense. Using the smallness of �u, we simplify the comparison,
deriving necessary conditions for the optimal trajectory u(x) Variational meth-
ods yield to only necessary conditions of optimality because it is assumed that
the compared trajectories are close to each other; on the other hand, they are
applicable to a great variety of extremal problems called variational problems.

3.1.1 Euler equation (Optimality conditions)

Consider the problem called the simplest problem of the calculus of variations

min
u
I(u); I(u) =

Z 1

0

F (x; u; u0)dx; u(0) = a0; u(1) = a1: (3.1)

47
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where F is twice di�erentiable function of its three arguments. We suppose
that function u0 = u0(x) is a minimizer and replace u0 with a test function
u0 + �u, assuming that the normk�uk of the variation �u is in�nitesimal. The
test function u0 + �u satis�es the same boundary conditions as u0. If indeed
u0 is a minimizer, the increment of the cost �I(u0) = I(u0 + �u) � I(u0) is
nonnegative:

�I(u0) =

Z 1

0

(F (x; u0 + �u; (u0 + �u)0)� F (x; u0; u
0
0))dx � 0: (3.2)

If �u is not speci�ed, the equation (3.2) is not too informative. However, it
allows to �nd a minimizer if it can be simpli�ed due to a particular form of the
variation. Calculus of variations suggests a set of tests that di�er by various
assumed form of variations �u and corresponding form of (3.2).

Euler{Lagrange Equations The simplest variational condition (the Euler{
Lagrange equation) is derived assuming that the variation �u is in�nitesimal
small and localized:

�u =

�
�(x) if x 2 [x0; x0 + "];
0 if x is outside of [x0; x0 + "]:

(3.3)

Here �(x) is a continuous function that vanishes at points x0 and x0 + " and is
constrained as follows:

j�(x)j < "; j�0(x)j < " 8x: (3.4)

Linearizing (3.2) with respect to " and collecting linear terms, we rewrite it
as

�I(u0) = "

�Z 1

0

�
@F

@u
(�u) +

@F

@u0
(�u)0

�
dx

�
+ o(") � 0: (3.5)

Integration by parts of the underlined term in (3.5) givesZ 1

0

@F

@u0
(�u)0dx =

Z 1

0

�
� d

dx

@F

@u0
(�u)

�
dx+

@F

@u0
�u

����
x=1

x=0

and we obtain

0 � �I(u0) = "

Z 1

0

S(u; u0; x)�u dx+
@F

@u0
�u

����
x=1

x=0

+ o("); (3.6)

where

S(u; u0; x) = � d

dx

@F

@u0
+
@F

@u
: (3.7)

The nonintegral term in the right-hand side of (3.6) is zero, because the
boundary values of u are prescribed u(0) = a0 and u(1) = a1; therefore their
variations �ujx=0 and �ujx=1 equal zero,

�ujx=0 = 0; �ujx=1 = 0
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Due to the arbitrariness of �u, we conclude that any di�erentiable minimizer
u0 of the simplest variational problem solves the boundary value problem

S(x; u; u0) =
d

dx

@F

@u0
� @F

@u
= 0 8x 2 (0; 1); u(0) = u0; u(1) = u1; (3.8)

and the corresponding boundary conditions, called the Euler{Lagrange equation.
The Euler{Lagrange equation is also called the stationary condition since it
expresses stationarity of the variation. Indirectly, we assume in this derivation
that u0 is a twice di�erentiable function of x. Indeed, the left-hand side of
equation (3.8) can be rewritten as

S(x; u; u0) =
@2F

@u02
u00 +

@2F

@u0@u
u0 +

@2F

@u0@x
� @F

@u
(3.9)

using the chain rule.

Example 3.1.1 Compute the Euler equation for the problem

I = min
u(x)

Z 1

0

�
1

2
(u0)2 +

1

2
u2
�
dx u(0) = 1; u(1) = c

We compute @L
@u0

= u0; @L
@u

= u and the Euler equation becomes

u00 � u = 0 in (0; 1); u(0) = 1; u(1) = c:

The minimizer u0(x) is

u0(x) = cosh(x)� coth(1) sinh(x)

Remark 3.1.1 The stationarity test alone does not allow to conclude whether u0
is a true minimizer or even to conclude that a solution to (3.8) exists. For example,
the function u that maximizes I(u) satis�es the same Euler{Lagrange equation.
The tests that distinguish minimal trajectory from other stationary trajectories are
discussed in Chapter 6.

Remark 3.1.2 In many application, we consider a broken extremals that do not
have the second derivative at some points. In this cases, it is more convenient to
understand the Euler equation in the weak sense, or replace it with the integral
identity Z 1

0

�
@F

@u
v +

@F

@u0
v0
�
dx = 0 8v(x) 2 V (3.10)

that must be satis�ed for all di�erentiable functions v that vanish at the ends of
the interval:

V = fv(x) : v(x) 2 C1[0; 1]; v(0) = x(1) = 0g:
The reader notices that the arbitrary "trial function" v is but the variation �u.
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The de�nition of the weak solution naturally arise from the variational formu-
lation that does not check the behavior of the minimizer in each point but in each
in�nitesimal interval. The minimizer can change its values at a several points, or
even at a set of zero measure without alternation the objective functional. In am-
biguous cases, one should specify in what sense (Riemann, Lebesgue) the integral
is de�ned and change the de�nition of variation accordingly.

3.1.2 First integrals: Three special cases

In several cases, the Euler equation (3.8) can be integrated at least once. These
are the cases when Lagrangian F (x; u; u0) does not depend on one of arguments.
Below, we investigate them.

Lagrangian is independent of u0 Assume that F = F (x; u), and the mini-
mization problem is

J(u) =

Z 1

0

F (x; u)dx (3.11)

In this case, the variation does not involve integration by parts, and the mini-
mizer does not need to be continuous. Euler equation (3.8) becomes an algebraic
relation for u

@F

@u
= 0 (3.12)

Curve u(x) is determined in each point independently of neighboring points.
The boundary conditions in (3.8) are satis�ed by jumps of the extremal u(x) in
the end points; these conditions do not a�ect the objective functional at all.

Example 3.1.2 Consider the problem

min
u(x)

J(u); J(u) =

Z 1

0

(u� sinx)2dx; u(0) = 1; u(1) = 0:

The minimal value J(u0) = 0 corresponds to the discontinuous minimizer

u(x) =

8<
:
sinx if 0 � x � 1
1 if x = 0
0 if x = 1

Formally, the discontinuous minimizer contradicts the assumption posed when
the Euler equation were derived. To be consistent, we need to repeat the deriva-
tion of the necessary condition for the problem (3.11) without any assumption
on the continuity of the minimizer. This derivation is quite obvious.

Lagrangian is independent of u If Lagrangian is independent on u, F =
F (x; u0), Euler equation (3.8) can be integrated once:

@F

@u0
= constant (3.13)
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The �rst order di�erential equation (3.13) for u is the �rst integral of the prob-
lem; it de�nes a quantity that stays constant everywhere along the optimal
trajectory. To �nd the optimal trajectory, it remains to integrate the �rst order
equation (3.13) and determine the constants of integration from the boundary
conditions.

Example 3.1.3 Consider the problem

min
u(x)

J(u); J(u) =

Z 1

0

(u0 � cosx)2dx; u(0) = 1; u(1) = 0:

The �rst integral is
@F

@u0
= u0(x) � cosx = C

Integrating, we �nd the minimizer,

u(x) = � sinx+ Cx + C1:

The constants C and C1 are found from and the boundary conditions:

C1 = 1; C = �1� sin 1;

minimizer u0 and the cost of the problem become, respectively

u0(x) = sinx� x� sin 1 J(u0) =

Z 1

0

x2dx =
1

3

Notice that the Lagrangian in the example (3.1.2) is the square of di�erence
between the minimizer u and function sinx, and the Lagrangian in the example
(3.1.3) is the square of di�erence of their derivatives. In the problem (3.1.2),
the minimizer coincides with sinx, and jumps to the prescribed boundary val-
ues. The minimizer u in the example (3.1.3) does not coincide with sinx at any
interval. The di�erence between these two examples is that in the last problem
the derivative of the minimizer must exist everywhere. Formally, the discon-
tinuity of the minimizer would leave the derivative formally unde�ned. More
important, that an approximation of a derivative to a discontinuous function
would grow fast in the proximity of the point of discontinuity, this growth would
increase the objective functional, and therefore it is nonoptimal. We deal with
such problems below in Chapter 7.

Lagrangian is independent of x If F = F (u; u0), equation (3.8) has the
�rst integral:

W (u; u0) = constant (3.14)

where

W (u; u0) = u0
@F

@u0
� F
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Indeed, compute the x-derivative of W (u; u0) which must be equal to zero
by virtue of (3.14):

d

dx
W (u; u0) =�

u00
@F

@u0
+ u0

�
@2F

@u0@u
u0 +

@2F

@u02
u00
��

� @F

@u
u0 � @F

@u0
u00 = 0

where the expression in square brackets is the derivative of the �rst term of
W (u; u0). Cancelling the equal terms, we bring this equation to the form

u0
�
@2F

@u02
u00 +

@2F

@u0@u
u0 � @F

@u

�
= 0 (3.15)

The expression in parenthesis coincide with the left-hand-side term S(x; u; u0)
of the Euler equation in the form (3.9), simpli�ed for the considered case (F is
independent of x, F = F (u; u0)).

Example 3.1.4 Consider the Lagrangian

F =
1

2

�
(u0)2 � !2u2

�
The Euler equation is

u00 + !2u = 0

The �rst integral is

W = (u0)2 + !2u2 = C2 = constant

Let us immediately check the constancy of the �rst integral. The solution u of the
Euler equation is equal

u = A cos(!x) +B sin(!x)

where A and B are constants. Substituting the solution into the expression for the
�rst integral, we compute

W = (u0)2 + !2u2 = [�A! sin(cx) +B! cos(!x)]
2

+!2 [A cos(!x) +B sin(!x)]
2
= !2(A2 +B2)

We have shown that W is constant at the optimal trajectory. In mechanical appli-
cation, W is the whole energy of the oscillator.

Instead of solving the Euler equation, we may solve the �rst-order equation
W = 0 obtaining the same solution.

Later we discuss the methods to regularly �nd �rst integrals of Euler equa-
tions for more general variational problems.
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3.1.3 Variational problem as the limit of a vector problem

Consider a �nite-dimensional approximation of the simplest variational problem

min
u(x)

I(u); I(u) =

Z b

a

F (x; u; u0)dx

Assume in addition that the minimizer belongs to the class of piece-wise constant
functions UN :

�u(x) 2 UN ; if �u(x) = ui 8x 2
�
a+

i

N
(b� a)

�

A function �u in UN is de�ned by an N -dimensional vector fu1; : : : uNg:
Reformulation the variational problem, we replace the derivative u0(x) with

a �nite di�erence Di� (ui) where the operator Di� is de�ned at sequences UN
as follows

Di� (ui) =
1

�
(ui � ui�1); � =

b� a

N
; (3.16)

when N !1, this operator tends to the derivative.
The variational problem is replaced with the �nite-dimensional optimization

problem:

min
u1;:::;uN�1

IN IN =

NX
i=1

Fi(ui;Di� (ui)); Di� (zi) =
1

�
(zi � zi�1) (3.17)

Compute the stationary conditions for the minimum of IN (u)

@IN
@ui

= 0; i = 1: : : : ; N:

Notice that only two terms, Fi and Fi+1, in the above sum depend on ui: the
�rst depends on ui directly and also through the operator Di� (ui), and the
second{ only through Di� (ui):

dFi
dui

=
@Fi
@ui

+
@Fi

@Di� (ui)

1

�
;

dFi+1

dui
= � @Fi+1

@Di� (ui)

1

�
:

dFk
dui

= 0 k 6= i; k 6= i+ 1

Therefore, the stationary condition with respect to ui has the form

@IN
@ui

=
@Fi
@ui

+
1

�

�
@Fi

@Di� (ui)
� @Fi+1

@Di� (ui+1)

�
= 0

or, recalling the de�nition (3.16) of Di� -operator, the form

@IN
@ui

=
@Fi
@ui

�Di�

�
@Fi+1

@Di� (ui+1)

�
= 0:
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The initial and the �nal point u0 and uN enter the di�erence scheme only
once, therefore the optimality conditions are di�erent. They are, respectively,

@FN+1

@Di� (uN+1)
= 0;

@Fo
@Di� (u0)

= 0:

Formally passing to the limit N ! 1; Di� ! d
dx
, we simply replace the

index (i) with a continuous variable x, vector of values fukg of the piece-wise
constant function with the continuous function u(x), di�erence operator Di�
with the derivative d

dx
; then

NX
i=1

Fi(ui;Di�ui)!
Z b

a

F (x; u; u0)dx:

and
@Fi
@ui

�Di�

�
@Fi+1

@Di� (ui+1)

�
! @F

@u
� d

d x

@F

@u0

The conditions for the end points become the natural variational conditions:

@F

@u0(0)
= 0;

@F

@u0(T )
= 0;

Remarks on existence of a di�erentiable minimizer

So far, we followed the formal scheme of necessary conditions, thereby tacitly
assuming that all derivatives of the Lagrangian exist, the increment of the func-
tional is correctly represented by the �rst term of its power expansion, and the
limit of the sequence of �nite-dimensional problems exist and does not depend
on the partition fx1; : : : xNg if only jxk � xk�1j ! 0 for all k. We also indi-
rectly assume that the Euler equation has at least one solution consistent with
boundary conditions.

If all the made assumptions are correct, we obtain a curve that might be a
minimizer because it cannot be disproved by the stationary test. In other terms,
we �nd that is there is no other close-by classical curve that correspond to a
smaller value of the functional. This statement about the optimality seems to
be rather weak but this is exactly what the calculus of variation can give us. On
the other hand, the variational conditions are universal and, being appropriately
used and supplemented by other conditions, lead to a very detailed description
of the extremal as we show later in the course.

Remark on di�erentiability Freshet and Chateaux derivatives.

In this text, we do not fully discuss the assumptions restricting ourself with
remarks and references to more detailed sources.
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Remark on convergence In the above procedure, we assume that the limits
of the components of the vector fukg represent values of a smooth function in the
close-by points x1; : : : ; xN . At the other hand, uk are solutions of optimization
problems with the coe�cients that slowly vary with the number k. We need to
answer the question whether the solution of a minimization problem tends to is
a di�erentiable function of x; that is whether the limit

lim
k!1

uk � uk�1
xk � xk�1

exists and this is not always the case. We address this question later in Chapter
7

3.2 Boundary terms

3.2.1 Boundary conditions and Weierstrass-Erdman con-
dition

Variational conditions and natural conditions In some variational prob-
lems, the condition u(b) = ub on one or both ends of extremal can be not speci-
�ed. Also, the objective functional may contain terms de�ned on the boundary
only in which case the problem becomes

min
u(x):u(a)=ua

I(u); I(u) =

Z b

a

F (x; u; u0)dx+ f(u(b)) (3.18)

The Euler equation for the problem remain the same S(x; u; u0) = 0 but this time
it must be supplemented by a variational boundary condition that is derived from
the requirement of the stationarity of the minimizer with respect to variation
of the boundary term. This term is

�u
@F

@u0
+ �u

@f

@u

The �rst term comes from the integration by part in the derivation of Euler
equation (see (??)) and the second is the variation of the out-of-integral term
in the objective functional (3.18) The stationarity condition with respect to the
variation of �u(b)

@F

@u0
jx=b + @f

@u
jx=b = 0 (3.19)

expresses the boundary condition for the extremal u(x) at the endpoint x = b.
Similar condition can be derived for the point x = a if the value in this point is
not prescribed.

Example 3.2.1 Minimize the functional

I(u) = min
u

Z 1

0

1

2
(u0)2dx+Au(1); u(0) = 0
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Here, we want to minimize the endpoint value and we do not want the trajectory be
too steep. The Euler equation u00 = 0 must be integrated with boundary conditions
u(0) = 0 and (see (3.19)) u0(1)+A = 0 The extremal is a straight line, u = �Ax.
The cost of the problem is I = � 1

2A
2.

If no out-of-integral terms are presented, the condition becomes

@F

@u0
jx=b = 0 (3.20)

and it is called the natural boundary condition.

Example 3.2.2 The natural boundary condition for the problem with the La-
grangian L = (u0)2 + �(x; u) is u0jx=b = 0

Broken extremal and the Weierstrass-Erdman condition The classical
derivation of the Euler equation requires the existence of all second partials of
F , and the solution u of the second-order di�erential equation is required to be
twice-di�erentiable.

In many cases of interest, the Lagrangian is only piece-wise twice di�eren-
tiable; in this case, the extremal consists of several curves { solutions of the Euler
equation that are computed at the intervals of smoothness of the Lagrangian.
The question is: How to join these pieces together?

We always assume that the extremal u is di�erentiable everywhere so that the
�rst derivative u0 exists at all point of the trajectory. But the derivative u0itself
does not need to be continuous to solve Euler equation: Only the di�erentiability
of @F

@u0
is needed to ensure the exitance of the term d

dx
@F
@u0

in the Euler equation.
This requirement on di�erentiability of an optimal trajectory is yields to the
Weierstrass-Erdman condition on broken extremal.

At any point of the optimal trajectory, the Weierstrass-Erdman con-
dition must be satis�ed:�

@F

@u0

�+
�
= 0 along the optimal trajectory u(x) (3.21)

Here [z]+� = z+ � z� denotes the jump of the variable z.

Example 3.2.3 (Broken extremal) Consider the Lagrangian

F =
1

2
a(x)(u0)2 +

1

2
u2; a(x) =

�
a1 if x 2 [0; x�)
a2 if x 2 [x�; 1)

where x� is point in (0; 1).
The Euler equation that is hold everywhere in (0; 1) except of the point x�,

d

dx
[a1u

0]� bu = 0 if x 2 [0; x�)

d

dx
[a2u

0]� bu = 0 if x 2 [x�; 1);
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At x = x�, the Weierstrass-Erdman condition holds,

a1(u
0)(x� � 0) = a2(u

0)(x� + 0):

The derivative u0 itself is discontinuous; its jump is determined by the jump in
coe�cients:

u0(x� + 0) =

�
a1
a2

�
u0(x� � 0)

This condition, together with the Euler equation and boundary conditions allows for
determination of the optimal trajectory.

3.2.2 Non-�xed interval. Transversality condition

Free boundary Consider now the case when the interval (a; b) is not �xed,
and the end point is to be chosen to minimize the functional. Suppose �rst that
no conditions on the end point are imposed. We compute the di�erence between
two functionals

�I =

Z b+�x

a

F (x; u+ �u; u0 + �u0)dx�
Z b

a

F (x; u; u0)dx

The linear terms of the di�erence are

�I = Ax�x+Au�u

where Ax is the increment due to variation of the interval when u keeps its
stationary value, and Au is the increment due to variation �xu = du

dx
�x of u

when the interval keeps its stationary value. Let us compute these quantities.
We have

Ax =

Z b+�x

b

F (x; u; u0)dx +
@F

@u0

����
x=b

�xu

where �xu is the variation of u due to variation of the point b. It is equal

�xu = u(b+ �x)� u(b) = u0jx=b�x:
Substituting this into expression for Ax and rounding to o(�x), we obtain

Ax = �x

�
F (x; u; u0)� @F

@u0
u0
�
x=b

:

The increment's part Au is computed in a standard manner

Au =

Z b

a

�u (S(x; u; u0)) dx+
@F

@u0

����
x=b

�ujx=b

where S is the di�erential expression of the Euler equation and �u is the vari-
ation of the trajectory (that is independent of the variation of x. Because of
arbitrariness of �x and �u, we conclude that

Ax =

�
F (b; u(b); u0(b))� u0

@F

@u0

�
x=b

= 0 (3.22)
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and
@F

@u0

����
x=b

= 0 (3.23)

at the unknown end of the trajectory. Equation (3.22) together with boundary
conditions determine boundary values of u and the length of interval of integra-
tion, while the equation S(x; u; u0) = 0 2 (a; b) states that the Euler equation is
satis�ed along the optimal trajectory. The di�erential equation for extremal an
extra boundary condition (3.22) to satisfy, but is also has an additional degree
of freedom: the non-�xed length of the interval of integration.

Notice that the condition at the unknown end has the same form as the
�rst integral of the problem in the case when F (u; u0) is independent of x. This
shows that the condition (3.22) cannot be satis�ed at an isolated point of the
trajectory, unless the Lagrangian explicitly depends on x.
Check the next example

Example 3.2.4 Consider the problem

min
u(x);s

Z s

0

�
1

2
u02 � u+

3

2

�
dx u(0) = 0:

Euler equation u00 + 1 = 0 and the condition u(0) = 0 produces the solution

u = �1

2
x2 +Ax; u0 = x+A

where A is a constant. The conditions at the unknown point s are

@F

@u0
= s+A = 0 or A = �s

(condition (3.23)) and

Ax = F (s; u(s); u0(s))� u0
@F

@u0
= �1

2
(s+A)2 +

1

2
s2 �As� 3

2
=

3

2
s2 � 3

2
= 0

(condition (3.22)). Solving for A = �s, we obtain s = 1 and u = 1
2x

2 � x:

3.2.3 Extremal broken at the unknown point

Combining the techniques, we may address the problem of en extremal bro-
ken in an unknown point. The position of this point is determined from the
minimization requirement. Assume that Lagrangian has the form

F (x; u; u0) =
F�(x; u; u0) if x 2 (a; �)
F+(x; u; u

0) if x 2 (�; b)

where � is an unknown point in the interval (a; b) of the integration. The Euler
equation is

SF (u) =
SF�(u) if x 2 (a; �)
SF+(u) if x 2 (�; b)
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The stationarity conditions at the unknown point � are

@F+
@u0

=
@F0
@u0

(3.24)

(the stationarity of the trajectory) and

F+(u)� u0+
@F+
@u0

= F�(u)� u0�
@F�
@u0

(3.25)

(the stationarity of the position of the transit point). They are derived by the
same procedure as the conditions at the end point. The variation �x of the
transit point increases the �rst part of the trajectory and and increases the
second part, �x = �x+ = ��x� which explains the structure of the stationary
conditions.

In particular, if the Lagrangian is independent of x, the condition (3.25)
express the constancy of the �rst integral (??) at the point �.

Example 3.2.5 Consider the problem with Lagrangian

F (x; u; u0) =
a+u

02 + b+u
2 if x 2 (a; �)

a�u02 if x 2 (�; b)

and boundary conditions
u(a) = 0; u(b) = 1

The Euler equation is

S(F; u) =
a+u

00 � b�u = 0 if x 2 (a; �)
a�u00 = 0 if x 2 (�; b)

The solution to this equation that satis�es the boundary conditions is

u+(x) = C1 sinh
�q

b+
a+

(x� a)
�

if x 2 (a; �)

u�(x) = C2(x � b) + 1 if x 2 (�; b)
;

it depends on three constants �, C1, and C2 (Notice that the coe�cient a� does
not enter the Euler equations). These constants are determined from the thee
remaining conditions at the unknown point � which express
(1) continuity of the extremal

u+(�) = u�(�);

(2) the Weierstrass-Endmann condition

a+u
0
+(�) = a�u0�(�);

(3) and the transversality condition

�a+(u0+(�))2 + b+u(�)
2 = �a�(u0�(�))2:
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Let us analyze them. The transversality condition is the simplest one because it
states the equality of two �rst integral. It is simpli�ed to

C2
1b+ = C2

2a�

From the condition (2), we have

C1

p
a+b+ cosh q = C2; where q =

s
b+
a+

(� � a)

Together with the previous condition and the de�nition of q, it allows for determi-
nation of �:

cosh q =
p
a+a�; ) � = a+

a+
b+

cosh�1
p
a+a�

Finally, we de�ne constants C1 and C2 from the continuity condition:

C1 sinh q = 1 + C2(� � b)

and the transversality condition as

C1 =

p
a�p

a� sinh q �pb+(� � b)
; C2 =

p
b+p

a� sinh q �pb+(� � b)
;

3.3 Several minimizers

3.3.1 Euler equations and �rst integrals

The Euler equation can be naturally generalized to the problem with the vector-
valued minimizer

I(u) = min
u

Z b

a

F (x; u; u0)dx; (3.26)

where x is a point in the interval [a; b] and u = (u1(x); : : : ; un(x)] is a vector
function. We suppose that F is a twice di�erentiable function of its arguments.

Let us compute the variation �I(u) equal to I(u + �u) � I(u), assuming
that the variation of the extremal and its derivative is small and localized. To
compute the Lagrangian at the perturbed trajectory u+�u, we use the expansion

F (x; u+ �u; u0 + �u0) = F (x; u; u0) +
nX
i=1

@F

@ui
�ui +

nX
i=1

@F

@u0i
�u0i

We can perform n independent variation of each component of vector u applying
variations �iu = (0; : : : ; �ui : : : ; 0). The increment of the objective functional
should be zero for each of these variation, otherwise the functional can be de-
crease by one of them. But the stationary condition for any of considered
variation coincide with the one-minimizer case.

�iI(u) =

Z b

a

�
�ui

@F

@ui
+ �u0i

@F

@u0i

�
dx � 0 i = 1; : : : ; n:



3.3. SEVERAL MINIMIZERS 61

Proceeding as before, we obtain the system of di�erential equations of the order
2n,

d

dx

@F

@u0i
� @F

@ui
= 0; i = 1; : : : n (3.27)

and the boundary terms
nX
i=1

@F

@u0i
�ui

�����
x=b

x=a

= 0 (3.28)

Remark 3.3.1 The vector form of the system (3.27),

S(F; u) =
d

dx

@F

@u0
� @F

@u
= 0; �uT

@F

@u0

����
x=b

x=a

= 0 (3.29)

is identical to the scalar Euler equation. This system is but an algebraic de�nition
of di�erentiation on a vector argument u.

Example 3.3.1 Consider the problem with the integrand

F =
1

2
u021 +

1

2
u022 � u1u

0
2 +

1

2
u21 (3.30)

The system of stationarity conditions is computed to be

d

dx

@F

@u01
� @F

@u1
= u001 + u02 � u1 = 0

d

dx

@F

@u02
� @F

@u2
= (u02 + u1)

0 = 0:

If consists of two di�erential equations of second order for two unknowns u1(x) and
u2(x).

First integrals The earlier mentioned �rst integrals can be derived for the
vector problem as well.

1. If F is independent of u0k, then one of the Euler equations degenerates into
algebraic relation:

@F

@uk
= 0

and the order of the system (3.27) decreases by two. The variable uk(x)
can be a discontinuous function of x in an optimal solution. Since the
Lagrangian is independent of u0k, the jumps in uk(x) may occur along the
optimal trajectory.

2. If F is independent of uk, the �rst integral exists:

@F

@u0k
= constant
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For instance, the second equation in Example 3.3.1 can be integrated and
replaced by

u02 + u1 = constant

3. Finally, if F is independent of x, F = F (u;u0) then a �rst integral exist

W = u0T
@F

@u0
� F = constant (3.31)

Here

u0T
@F

@u0
=

nX
i=1

u0i �
@F

@u0i

For the Lagrangian in Example 3.3.1, this �rst integral is computed to be

W = u21 + u2(u2 � u1)�
�
1

2
u021 +

1

2
u022 � u1u

0
2 +

1

2
u21

�

=
1

2

�
u021 + u022 � u21

�
= constant

Clearly, these three cases do not exhaust all possible �rst integrals for vector
case; one can hope to �nd new invariants for instance by changing the variables.
The theory of �rst integrals will be discussed later in Sections 8.1 and 8.2.

Transversality and Weierstrass-Erdmann conditions These conditions
are quite analogous to the scalar case and their derivation is straightforward.
We simply listen here these conditions.

The expression @F
@u0

i

remain continuous at every point of an optimal trajec-

tory, including the points where ui is discontinuous.
If the end point of the trajectory is unknown, the condition

uT
@F

@u0
� F = 0

at the end point is satis�ed.

3.3.2 Variational boundary conditions

The �rst variation corresponds to solution of the equation (3.28) which must
produce 2n boundary conditions for the Euler equations (3.27). If the values of
all minimizers are prescribed at the end points,

ui(a) = uai ; ui(b) = ubi ;

then the equation (3.28) is satis�ed, because all variations are zero. If the values
of several components of u(a) or u(b) are not given, the corresponding natural
boundary conditions must hold:

Either
@F

@u0i

����
x=a;b

= 0 or �ujx=a;b = 0 (3.32)
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Therefore, the variational problem for a vector minimizer can be solved with
a number of boundary requirements that does not surpass n for both ends of
the interval. The missing boundary conditions will be supplemented by the
requirement of optimality of the trajectory.

Consider a more general case when p boundary conditions of the form

�k(u1; : : : ; un) = 0 k = 1; : : : ; p < n (3.33)

are prescribed and the end point x = b (the other end is considered simi-
larly). We need to �nd n � p supplementary variational constraints at this
point that together with (3.33) form n boundary conditions for the Euler equa-
tion (3.28). The conditions (3.33) are satis�ed at all perturbed trajectories,
�k(u1 + �u1; : : : ; un + �un) = 0, therefore the variations �ui are bounded by a
linear system

@�k
@u1

�u1 + : : :+
@�k
@un

�un; k = 1; : : : ; p

or, in the matrix form P�u = 0; where P is the p� n matrix with the elements
Pki =

@�k
@ui

. This system has n unknowns and p < n equations, and it is satis�ed
when the unknowns are expressed through (n� p)-dimensional arbitrary vector
v as follows �u = Qv. Here, (n � p)� n matrix Q is supplementary to P ; it is
computed solving the matrix equation PQ = 0. This representation, substituted
into second equation of (3.29), gives the missing boundary conditions

QT �uT
@F

@u0

����
x=b

= 0

(Here, use used the arbitrariness of potential vector v).

Example 3.3.2 Consider again the variational problem with the Lagrangian (3.30)
assuming that the following boundary conditions are prescribed

u1(a) = 1; �(u1(b); u2(b)) = u21(b) + u22(b) = 1

Find the complementary variational boundary conditions. At the point x = a, the
variation �u1 is zero, and �u2 is arbitrary. The variational condition is

@F

@u02

����
x=a

= u02(a)� u1(a) = 0

or, since u1(a) = 1, u02(a) = 1
At the point x = b, the variations �u1 and �u2 are connected by the relation

@�

@u1
�u1 +

@�

@u2
�u2 = 2u1�u1 + 2u2�u2 = 0

which implies the representation (�u = Qv)

�u1 = �u2v; �u2 = u1v
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where v is an arbitrary potential. The variational condition at x = b becomes�
� @F

@u01
u2 +

@F

@u02
u1

�
x=b

= (�u01u2 + (u02 � u1)u1)x=b v = 0 8v

or

�u01u2 + u1u
0
2 � u21

��
x=b

= 0:

We end up with four boundary conditions:

u1(a) = 1;
u02(a) = 1;

u21(b) + u22(b) = 1;
u1(b)u

0
2(b)� u1(b)

0u2(b)� u1(b)
2 = 0:

The conditions in the second raw are the variational conditions.

3.3.3 Lagrangian dependent on higher derivatives

Consider a more general type variational problem with the Lagrangian that
depends on the minimizer and its �rst and second derivative,

J =

Z b

a

F (x; u; u0; u00)dx

The Euler equation is derived similarly to the simplest case: The variation of
the goal functional is

�J =

Z b

a

�
@F

@u
�u+

@F

@u0
�u0 +

@F

@u00
�u00
�
dx

Integrating by parts the second term and twice the third term, we obtain

�J =

Z b

a

�
@F

@u
� d

dx

@F

@u0
+

d2

dx2
@F

@u00

�
�u dx

+

�
@F

@u0
�u+

@F

@u00
�u0 � d

dx

@F

@u00
�u

�x=b
x=a

(3.34)

The stationarity condition becomes the fourth-order di�erential equation

d2

dx2
@F

@u00
� d

dx

@F

@u0
+
@F

@u
(3.35)

supplemented by two natural boundary conditions on each end,

�u0
@F

@u00
= 0; �u

�
@F

@u0
� d

dx

@F

@u00

�
= 0 at x = a and x = b (3.36)

or by the correspondent main conditions posed on the minimizer u and its
derivative u0 at the end points.
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Example 3.3.3 The equilibrium of an elastic bending beam correspond to the
solution of the variational problem

min
w(x)

Z L

0

(
1

2
(E(x)w00)2 � q(x)w)dx (3.37)

where w(x) is the deection of the point x of the beam, E(x) is the elastic sti�ness
of the material that can vary with x, q(x) is the load that bends the beam. Any of
the following kinematic boundary conditions can be considered at each end of the
beam.
(1) A clamped end: w(a) = 0; w0(a) = 0
(2) a simply supported end w(a) = 0.
(3) a free end (no kinematic conditions).

Let us �nd equation for equilibrium and the missing boundary conditions in the
second and third case. The Euler equation (3.35) becomes

(Ew00)00 � q = 0 2 (a; b)

The equations (3.36) become

�u0(Eu00) = 0; �u ((Ew00)0) = 0

In the case (2) (simply supported end), the complementary variational boundary
condition is Eu00 = 0, it expresses vanishing of the bending momentum at the
simply supported end. In the case (3), the variational conditions are Eu00 = 0 and
(Ew00)0 = 0; the last expresses vanishing of the bending force at the free end (the
the bending momentum vanishes here as well).

Generalization Similarly, the stationary equations for Lagrangian
F
�
x; u; u0; : : : ; u(n)

�
dependent on �rst n derivatives of u is

nX
k=1

(�1)k d
k

dxk
@F

@u(k)
+
@F

@u
= 0

In this formula, u can be replaced by a vector, if the case of several minimizers
is considered.



66 CHAPTER 3. STATIONARITY



Chapter 4

Immediate Applications

4.1 Geometric optics and Geodesics

4.1.1 Geometric optics problem. Snell's law

A half of century before the calculus of variation was invented, Fermat suggested
that light propagates along the trajectory which minimizes the time of travel
between the source with coordinates (a;A) and the observer with coordinates
(b; B). This principle implies, that light travels along straight lines when the
medium is homogeneous and along curved trajectories in an inhomogeneous
medium in which the speed v(x; y) of light depends on the position. The exactly
same problem { minimization of the travel's time { can be formulated as the
best route for a cross-country runner; the speed depends on the type of the
terrains the runner crosses and is a function of the position. This problem is
called the problem of geometric optic.

In order to formulate the problem of geometric optics, consider a trajectory
in a plane, call the coordinates of the initial and �nal point of the trajectory
(a;A) and (b; B), respectively, assuming that a < b and call the optimal trajec-
tory y(x) thereby assuming that the optimal route is a graph of a function. The

time T of travel can be found from the relation v = ds
dt

where ds =
p
1 + y02dx

is the in�nitesimal length along the trajectory y(x), or

dt =
ds

v(x; y)
=

p
1 + y02

v
dx

where ds =
p
1 + y02dx is the di�erential of the path. From this, we immediately

�nd that

T =

Z b

a

dt =

Z b

a

p
1 + y02

v
dx

Let us consider minimization of T by the trajectory assuming that the
medium is layered and the speed v(y) = 1

 (y) of travel varies only along the

67
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y axes. The corresponding variational problem has the Lagrangian

F (y; y0) =  (y)
p
1 + y02:

This problem allows for the �rst integral, (see above)

 (y)
y02p
1 + y02

�  (y)
p
1 + y02 = c

or
 (y) = �c

p
1 + y02 (4.1)

Solving for y0, we obtain the equation with separated variables

dy

dx
= �

p
c2 2(y)� 1

c

with the solution

x = ��(u) =
Z

c dyp
 2(y)� c2

(4.2)

Notice that equation (4.1) allows for a geometric interpretation: Derivative
y0 de�nes the angle � of inclination of the optimal trajectory, y0 = tan�. In
terms of �, the equation (4.1) assumes the form

 (y) cos� = c (4.3)

which shows that the angle of the optimal trajectory varies with the speed v = 1
 

of the signal in the media. The optimal trajectory is bent and directed into the
domain where the speed is higher.

Snell's law of refraction

Assume that the speed of the signal in medium is piecewise constant; it changes
when y = y0 and the speed v jumps from v+ to v�, as it happens on the
boundary between air and water,

v(y) =

�
v+ if y > y0
v� if y < y0

Let us �nd what happens with an optimal trajectory. Weierstrass-Erdman con-
dition are written in the form"

v
y0p

1 + y02

#+
�
= 0

Recall that y0 = tan� where � is the angle of inclination of the trajectory to

the axis OX , then y0p
1+y02

= sin� and we arrive at the refraction law called

Snell's law of refraction
v+ sin�+ = v� sin��
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4.1.2 Brachistochrone

Problem of the Brachistochrone is probably the most famous problem of clas-
sical calculus of variation; it is the problem this discipline start with. In 1696
Bernoulli put forward a challenge to all mathematicians asking to solve the
problem: Find the curve of the fastest descent (brachistochrone), the trajectory
that allows a mass that slides along it without tension under force of gravity to
reach the destination point in a minimal time.

The problem was formulated by Galileo in "Besedy i math. dokazatelstvca"
check it!

To formulate the problem, we use the law of conservation of the total energy
{ the sum of the potential and kinetic energy is constant in any time instance:

1

2
mv2 +mgy = constant

where y(x) is the vertical coordinate of the sought curve. From this relation,
we express the speed v as a function of u

v =
p
C � gy

thus reducing the problem to a special case of geometric optics. (Of course
the founding fathers of the calculus of variations did not have the luxury of
reducing the problem to something simpler because it was the �rst and only
real variational problem known to the time)

Applying the formula (4.1), we obtain

1p
C � gy

=
p
1 + y02

and

x =

Z p
y � y0dyp

2a� (y � y0)

To compute the quadrature, we substitute

y = y0 + 2a sin2
�

2
;

then

x = 2a

Z
sin2

�

2
d� = a(� � sin �) + x0

To summarize, the optimal trajectory is

x = x0 + a(� � sin �);
y = y0 + a(1� cos �);

(4.4)

We recognize the equation of the cycloid in (4.4). Recall that cycloid is a curve
generated by a motion of a �xed point on a circumference of the radius a which
rolls on the given line y � y0.
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Remark 4.1.1 The obtained solution was formulated in a strange for modern
mathematics terms: "Brachistochrone is isochrone." Isochrone was another name
for the cycloid; the name refers to a remarkable property of it found shortly before
the discovery of brachistochrone: The period of oscillation of a heavy mass that
slides along a cycloid is independent of its magnitude. We will prove this property
below in Example ??.

Remark 4.1.2 Notice that brachistochrone is in fact solution to the problem of
optimal design: the trajectory must be chosen by a designer to minimize the goal
(time of travel).

4.1.3 Minimal surface of revolution

Another classical example of design problem solved by variational methods is
the problem of minimal surface that was discussed in Chapter 1. Here, we
formulate is for the surface of revolution: Minimize the area of the surface of
revolution supported by two circles. According to the calculus, the area J of
the surface is

J = �

Z a

0

y
p
1 + y02 dx

This problem is again a special case of the geometric optic, corresponding to
 (y) = y. Equation (4.2) becomes

x = ��(u) =
Z

dyp
c2y2 � 1

=
1

C
cosh�1(Cy)

and we �nd

y(x) =
1

C
cosh (C(x � x0)) + c1

Assume for clarity that the surface is supported by two equal circle parted
symmetric to OX axis; the equation (13.21) becomes

Cy = cosh (Cx)

The family of extremal lies inside the triangle jxj
y
� 2=3. Analysis of this

formula reveals unexpected features: The solution may be either unique, or has
two di�erent solutions (in which case, the one with smaller value of the objective
functional must be selected) or it may not have solutions at all. The last case
looks strange because the problem of minimal area obviously has a solution.

The defect in our consideration is the following: We tacitly assumed that
the minimal surface of revolution is a di�erentiable curve with �nite tangent
y0 to the axis of revolution. There is another solution: Two circles and an
in�nitesimal bar between them. The objective functional is

I0 = �(R2
1 +R2

2):

The minimizer (the Goldschmidt solution) is a distribution

y = �R1�(x � a) +R2(�(x� b)



4.1. GEOMETRIC OPTICS AND GEODESICS 71

where �(x) is the delta-function. Obviously, this minimizer does not belong to
the presumed class of twice-di�erentiable functions.

From geometrical perspective, the problem should be correctly reformulated
as the problem for the best parametric curve [x(t); y(t)] then y0 = tan� where
� is the angle of inclination to OX axis. The equation (4.3) that takes the form

y cos� = C

admits either regular solution C 6= 0 and y = C sec�, C 6= 0 which yields to
the catenoid (13.21), or the singular solution C = 0 and either y = 0 or � = �

2
which yield to Goldschmidt solution.

Geometric optics suggests a physical interpretation of the result: The prob-
lem of minimal surface is formally identical to the problem of the quickest path
between two equally distanced from OX-axis points, if the speed v = 1=y is
inverse proportional to the distance to the axis OX . The optimal path be-
tween the two close-by points lies along the arch of catenoid cosh(z) that passes
through the given end points. In order to cover the distance quicker, the path
sags toward the OX-axis where the speed is larger.

The optimal path between two far-away points is di�erent: The particle goes
straight to the OX-axis where the speed is in�nite, than transports instantly
(in�nitely fast) to the closest to the destination point at the axis, and goes
straight to the destination. This "Harry Potter Transportation Strategy" is
optimal when two supporting circles are su�ciently far away from each other.

In spite of these clari�cations, the concern still remain because geometric
explanation is not always available. We need a formal analysis of the discon-
tinuous solution and �-function-type derivative of an extremal. The analytical
tests that are able to detect such unexpected unbounded solutions in a regular
manner are discussed later, in Chapter 7.

4.1.4 Geodesics on an explicitly given surface

The problem of shortest on a surface path between two points on this surface is
called the problem of geodesics. We dealt with it in the Introduction. Now we
are able to formulate it as a variational problem

I = min
s(t)

Z t1

t0

ds

where s(t) is the arch on a surface, and t is a parameter. Depending on the used
representation of the surface, the problem can be formulated in several ways.

Geodesics on an explicitly given surface Assume that the surface is given
by an explicit relation z =  (x; y) and the geodesics is an spacial curve which
coordinates are given by an explicit formula [x; y(x);  (x; y(x)]. The unknown
function y(x) is the projection of geodesics on XY plane. In this case, the in-
�nitesimal distance ds along the surface can be found from Pythagorean relation
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ds2 = dx2 + dy2 + dz2 where

dy = y0dx; dz =

�
@ 

@y
y0 +

@ 

@x

�
dx:

The Lagrangian { an in�nitesimal length ds becomes

ds =

s
1 + y02 +

�
@ 

@x
+
@ 

@y
y0
�2

dx

Check that The Euler equation for y(x) is:

C
d2y

dx2
= A3

�
dy

dx

�3

�A2

�
dy

dx

�2

+A1

�
dy

dx

�
�A0

where

C = 1 +

�
@ 

@x

�2

+

�
@ 

@y

�2

is the square of the surface area and

A0 =
@ 

@y

@2 

@x2
; A1 =

@ 

@x

@2 

@x2
� 2

@ 

@y

@2 

@x@y
;

A3 =
@ 

@x

@2 

@y2
; A2 =

@ 

@y

@2 

@y2
� 2

@ 

@x

@2 

@x@y
:

When  = constant(x) or  = constant(x), the equation becomes ..
Problems: Find geodesics on cone, hyperboloid, paraboloid.

Geodesics on the sphere In some problem, it is natural to use curved coor-
dinate frame: Find the path of minimal length on a unit sphere D between two
points at this sphere. In spherical coordinates, the positions the two points are
�0; �0 and �1; �1 where � is the latitude and � is the longitude. The in�nitesimal
distance ds is found from Pythagorean triangle:

ds2 = sin2 �(d�)2 + (d�)2

Assuming that � = �(�) we have d� = �0d� and

D = min
�(�)

Z �1

�0

q
(�0)2 sin2 � + 1 d�; �(�0) = �0; �(�1) = �1

The Lagrangian is independent of �; there exist the �rst integral (see (13.21))

�0 sin2 �q
(�0)2 sin2 � + 1

= c
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Solve for �0:

�0 =
d�

d�
=

c

sin �
p
sin2 � � c2

and integrate

�(�) = �0 + c

Z �

�0

d�

sin �
p
sin2 � � c2

To de�ne c, we use the condition �(�1) = �1.
Proof the geodesics is a great circle.

Remark 4.1.3 A geometric proof was discussed earlier in ??

Geodesics through the metric tensor Properties of geodesics character-
ize the surface, or, more generally, a manifold in a metric space. For example,
geodesics are unique in simple-connected spaces with negative curvatures; in
spaces with positive curvatures there may be two or more geodesics that joint
two points and one has the choose the shortest path, using Calculus of variation
in the large that utilizes topological methods to investigate extremals on man-
ifolds, see Leng, Rashevsky, Milior. Geodesics naturally determine the tensor
of curvature in space; in general relativity, the curvature of light rays which
represented by the geodesics allows for physical interpretation of the curved
time-space continuum. These problems are beyond the scope of this book.

Here we only derive the equations of geodesics through the metric tensor of
a surface. Suppose that x1; x2 are the coordinates on the surface, similar to
the coordinates �; � on a sphere. We start with generalization of Pythagorean
theorem in curved coordinates:

ds2 = gijdxidxj

where gij is called the metric tensor. The problem of geodesics is: Minimize the
path Z

ds =

Z p
gij _xi _xjdt:

The Euler equation for the problem,�
d

dt

@

@ _xi
� @

@xi

�p
gij _xi _xj = 0

can be transformed to the form

d2xk
ds2

+ �kij
dxi

ds

dxj

ds
; k = 1; 2

where �kij is the Christo�el symbol de�ned as

�kij =
1

2

�
@gik
@xj

+
@gjk
@xi

� @gij
@xk

�
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Examples

4.2 Approximations with penalties

Consider the problem of approximation of a function by another one with better
smoothness or other favorable properties. For example, we may want to approx-
imate the noisy experimental curve by a smooth one, or approximate a curve
with a block-type piece-wise constant curve. The following method is used for
approximations: A variational problem is formulated to minimize the integral of
the square of the di�erence of the approximating function and the approximate
plus a penalty imposed the approximate for being non-smooth or having its
non-zero variation. The approximate compromises the closeness to the approxi-
mating curve and the smoothness properties. Here we consider several problem
of the best approximation.

4.2.1 Approximation with penalized growth rate

The problem of the best approximation of the given function h(x) by function
u(x) with a limited growth rate results a variational problem

min
u
J(u); J(u) =

Z b

a

1

2

�
�u0 2 + (h� u)2

�
dx (4.5)

Here, � � 0, the �rst term of the integrant represents the penalty for growth
and the second term describes the quality of approximation: the closeness of
the original and the approximating curve. The approximation depends on the
parameter �: When � ! 0, the approximation coincides with h(x) and when
When �!1, the approximation is a constant curve, equal to the mean value
of h(x).

The equation for the approximate (Euler equation of (4.8)) is

�u00 � u = h; u0(a) = u0(b) = 0

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval.

Integrating the Euler equation, we �nd

u(x) =
1

b� a

Z b

a

G(x; y)h(y)dy

where Green's function G(x; y) (see next section) is

G(x; y) =
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4.2.2 About Green's function

Green's function for approximations with quadratic penalty The so-
lution of a linear boundary value problem is most conveniently done by the
Green's function. Here we remind this technique.

Consider the linear di�erential equation with the di�erential operator L

L(x)u(x) = f(x) x 2 [a; b]; Ba(u; u
0)jx=a = 0; Bb(u; u

0)jx=a = 0: (4.6)

an arbitrary external excitation f(x) and homogeneous boundary conditions
Ba(u; u

0)jx=a = 0 and Bb(u; u
0)jx=a = 0. For example, the problem (??) corre-

sponds to

L(x)u =

�
�2

d2

dx2
� 1

�
u; Ba(u; u

0) = u0; Bb(u; u
0) = u0

To solve the equation means to invert the dependence between u and f , that is
to �nd the linear operator

u = L�1f

In order to solve the problem (4.6) one solves �rst the problem for a single
concentrated load �(x� �) applied at the point x = �

L(x)g(x; �) = �(x� �); Ba(g; g
0)jx=a = 0 Bb(g; g

0)jx=a = 0

This problem is usually simpler than (4.6). The solution g(x; �) is called the
Green's function, it depends on the point of the applied excitation � as well as
of the point x where the solution is evaluated. Formally, the Green's function
can be expressed as

g(x; �) = L(x)�1�(x� �) (4.7)

Then, we use the identity

f(x) =

Z b

a

f(x)�(x� �)d�

(essentially, the de�nition of the delta-function) to �nd the solution of (4.6). We
multiply both sides of (4.7) by f(�) and integrate over � from a to b, obtainingZ b

a

g(x; �)f(�)d� = L�1
 Z b

a

f(�)�(x � �)d�

!
= L�1f(x) = u(x):

Notice that operator L = L(x) is independent of � therefore we can move L�1

out of the integral over �.
Thus, we obtain the solution,

u(x) =

Z b

a

g(x; �)f(�)d�

that expresses u(x) as a linear mapping of f(x; �) with the kernel G(x; �). The
�nite-dimentional version of this solution is the matrix equation for the vector
u.



76 CHAPTER 4. IMMEDIATE APPLICATIONS

Green's function for approximation at an interval For the problem (??),
the problem for the Green's function is�

�2
d2

dx2
� 1

�
g(x; �) = �(x� �); u0(a) = u0(b) = 0

At the intervals x 2 [a; �) and x 2 (�; b] the solution is

g(x; �) =

�
g�(x; �) = A1 cosh

�
x�a
�

�
if x 2 [a; �)

g+(x; �) = A2 cosh
�
x�b
�

�
if x 2 (�; b]

This solution satis�es the di�erential equation for all x 6= � and the boundary
conditions. At the point of application of the concentrated force x = �, the
conditions hold

g+(�; �) = g�(�; �);
d

dx
g+(x; �)

����
x=�

� d

dx
g�(x; �)

����
x=�

= 1

that express the continuity of u(x) and the unit jump of the derivative u0(x).
These allow for determination of the constants

A1 = �
cosh

�
��b
�

�
sinh

�
b�a
�

� A2 = ��
cosh

�
��a
�

�
sinh

�
b�a
�

�
which completes the calculation.

Green's function for approximation in R1 The formulas for the Green's
function are simpler when the approximation of an integrable in R1 function
f(x) is performed over the whole real axes, or when a ! �1 and b ! 1. In
this case, the boundary terms u0(a) = u0(b) = 0 are3 replaced by requirement
that the approximation u is �nite,

u(x) <1 when x! �1

In this case, the Green's function is

g(x; �) =
1

2�
e
jx��j
�

One easily check that it satis�es the di�erential equation, boundary conditions,
and continuity and jump conditions at x = �.

The best approximation becomes simply an average

u(x) =
1

2�

Z 1

�1
f(�)e

jx��j
� d�

with the exponential kernel e
x��
� .
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4.2.3 Approximation with penalized smoothness

The problem of smooth approximation is similarly addressed but the penaliza-
tion functional is di�erently de�ned. This time the approximate is penalized for
being di�erent form a straight line by the integral of the square of the second
derivative u00. The resulting variational problem reads

min
u
J(u); J(u) =

Z b

a

1

2

�
�(u00)2 + (h� u)2

�
dx (4.8)

Here, � � 0, the �rst term of the integrant represents the penalty for non-
smoothness and the second term describes the closeness of the original curve
and the approximate. When �! 0, the approximation coincides with h(x) and
when �!1, the approximation is a straight line closest to h.

The equation for the approximate (Euler equation of (4.8)) is

�uIV + u = h; u00(a) = u00(b) = 0; u000(a) = u000(b) = 0;

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval.

Integrating the Euler equation, we �nd

u(x) =
1

b� a

Z b

a

G(x; y)h(y)dy

where Green's function G(x; y) (see []) is

G(x; y) =

4.2.4 Approximation with penalized total variation

This approximation penalizes the function for its total variation. The total
variation T (f) of a function u is de�ned as

T (u) =

Z b

a

ju0(x)jdx

For a monotonic function u one evaluates the integral and �nds that

T (u) = max
x2[a;b]

u(x)� min
x2[a;b]

u(x)

If u(x) has �nite number N of intervals Lk of monotonicity then the total
variation is

T (u) =
NX
k

�
max
x2Lk

u(x)� min
x2Lk

u(x)

�

The variational problem with total-variation penalty has the form

min
u
J(u); J(u) =

Z b

a

1

2

�
ju0j+ (h� u)2

�
dx (4.9)
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Here, � � 0, the �rst term of the integrant represents the total-variation penalty
and the second term describes the closeness of the original curve and the ap-
proximate. When � ! 0, the approximation coincides with h(x) and when
�!1, the approximation becomes constant equal to mean value of h.

The formal application of Euler equation:

(sign (u0))0 + u = h; sign (u0(a)) = sign (u0(b)) = 0 (4.10)

is not too helpful because it requires the di�erentiation of a discontinuous func-
tion sign ; besides, the Lagrangian (4.9) is not a twice-di�erential function of u0

as it is required in the procedure of derivation of the Euler equation.
Let us reformulate the problem in a regularized form, noticing thatZ b

a

ju0(x)jdx = lim
�!+0

Z b

a

p
u0(x)2 ++�2dx

and replacing the former by the later in the problem (4.9). We �x � > 0, derive
the necessary conditions and analyze them assuming that � ! +0. The Euler
equation is more regular,

(k(u0; �))0 = h� u+O(�); u0(a) = u0(b) = 0 (4.11)

where

k(u0; �) =
u0

(ju0j2 + �2)
1
2

Remark 4.2.1 Scale �

The term k(u0; �) is �- close to one outside of the
p
�-neighborhood of zero,

ju0 � p�, k 2 (0; �
3
2 ). Inside this neighborhood, is unbounded k 2 [0; �

2
2 ).

The stationary condition (4.11) is satis�ed (up to the order of �) in one of
two ways. When u = f and ju0j = jf 0j > �, the �rst term (k(u0; �))0 is of the
order smaller than � and it does not inuence the condition. Indeed, k(u0; �)
is approximately equal to one no matter what the value of ju0j � � is. When
u � constant and ju0j � �, the �rst term is extremely sensitive to the variation
of u0 and it can take any value; in particular, it can compensate the second term
u � f of the equality. This rough analysis shows that in the limit � ! 0, the
stationary condition (4.11) is satis�ed either when u(x) is a constant, u0 = 0,
or when u(x) coincides with h(x).

u(x) = h(x) or u0(x) = 0; 8x 2 [a; b]

The approximation cuts the maxima and minima of the approximating function.
Let us �nd the cutting points. For simplicity in notations we assume that

the function u monotonically increases at [a; b]. The approximation u is also
a monotonically increasing function, u0 � 0 that either coincides with h(x) or
stays constant cutting the maximum and the minimum of h(x):

u(x) =

8<
:
h(�) if x 2 [a; �]
h(x) if x 2 [�; �]
h(�) if x 2 [�; b]
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The cost of the problem

J =


2

"Z �

a

(h(x) � h(�))2dx+

Z b

�

(h(x)� h(�))2dx

#
+ h(�)� h(�)

depends on two unknown parameters, � and �, the coordinates on the cuts.
They are found by straight di�erentiation. The equation for � is

dJ

d�
= 

�
1

2
(h(x) � h(�))2jx=a + h0(a)

Z �

a

(h(x) � h(�))dx

�
� h0(a) = 0

or, noticing the cut point � is not a stationary point, h0(a) 6= 0Z �

a

[h(x)� h(�)]dx =
1



the equation for � is similar:

Z b

�

[h(x)� h(�)]dx =
1



Notice that the extremal is broken; regular variational method based the Euler
equation is not e�ective. These irregular problems will be discussed later in
Chapter 7.

4.3 Lagrangian mechanics

Leibnitz and Mautoperie suggested that any motion of a system of particles
minimizes a functional of action; later Lagrange came up with the exact de�-
nition of that action: the functional that has the Newtonian laws of motion as
its Euler equation. The question whether the action reaches the true minimum
is more complicated: Generally, it does not; Nature is more sophisticated and
diverse than it was expected. We will show that the true motion of particles
settles for a local minimum or even a saddle pint of action' each stationary point
of the functional correspond to a motion with Newtonian forces. As a result
of realizability of local minima, there are many ways of motion and multiple
equilibria of particle system which make our world so beautiful and unexpected
(the picture of the rock). The variational principles remain the abstract and
economic way to describe Nature but one should be careful in proclaiming the
ultimate goal of Universe.

4.3.1 Stationary Action Principle

Lagrange observed that the second Newton's law for the motion of a particle,

m�x = f(x)
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can be viewed as the Euler equation to the variational problem

min
x(t)

Z tf

t0

�
1

2
m _x2 � V (x)

�
dx

where V is the negative of antiderivative (potential) of the force f .

V = �
Z
f(x)dx

The minimizing quantity { the di�erence between kinetic and potential energy
{ is called action; The Newton equation for a particle is the Euler equations.

In the stated form, the principle is applicable to any system of free interacting
particles; one just need to specify the form of potential energy to obtain the
Newtonian motion.

Example 4.3.1 (Central forces) For example, the problem of celestial me-
chanics deals with system bounded by gravitational forces fij acting between any
pair of masses mi and mj and equal to

fij = 
mimj

jri � rj j3 (ri � rj)

where vectors ri de�ne coordinates of the masses mi as follows ri = (xi; yi; zj).
The corresponding potential V for the n-masses system is

V = �1

2

NX
i;j


mimj

jri � rj j

where  is Newtonian gravitational constant. The kinetic energy T is the sum of
kinetic energies of the particles

T =
1

2

NX
i

mi _r
2
i

The motion corresponds to the stationary value to the Lagrangian L = T � V , or
the system of N vectorial Euler equations

mi�ri �
NX
j


mimj

jri � rj j3 (ri � rj) = 0

for N vector-function ri(t).
Since the Lagrangian is independent of time t, the �rst integral (13.21) exist

T + V = constant

which corresponds to the conservation of the whole energy of the system.
Later in Section 13.21, we will �nd other �rst integrals of this system and

comment about properties of its solution.
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Example 4.3.2 (Spring-mass system) Consider the sequence of masses Con-
sider the sequence of masses lying on an axis with coordinates m1; : : : ;mn lying on
an axis with coordinates x1; : : : ; xn joined by the sequence of springs between two
sequential masses. Each spring generate force fi proportional to xi � xi+1 where
xi � xi+1 � li is the distance between the masses and li correspond to the resting
spring.

Let us derive the equations of motion of this system. The kinetic energy T of
the system is equal to the sum of kinetic energies of the masses,

T =
1

2
m( _x1 + : : :+ _xn)

the potential energy V is the sum of energies of all springs, or

V =
1

2
C1(x2 � x1)

2 + : : :+
1

2
Cn�1(xn � xn�1)2

The Lagrangian L = T � V correspond to n di�erential equations

m1�x1 + C1(x1 � x2) = 0

m2�x2 + C2(x2 � x3)� C1(x1 � x2) = 0

: : : : : :

mn�xn � Cn�1(xn�1 � xn) = 0

or in vector form

M �x = P TCPx

where x = (m1; : : : ; xn) is the vector of displacements, M is the n � n diagonal
matrix of masses, V is the (n� 1)� (n� 1) diagonal matrix of sti�ness, and P is
the n� (n� 1) matrix that shows the operation of di�erence,

M =

0
B@
m1 0 : : : 0
0 m2 : : : 0
: : : : : : : : : : : :
0 0 : : : mn

1
CA ; C =

0
B@
C1 0 : : : 0
0 C2 : : : 0
: : : : : : : : : : : :
0 0 : : : Cn�1

1
CA ; P =

0
B@

1 �1 : : : 0
0 1 : : : 0
: : : : : : : : : : : :
0 0 : : : 1

1
CA ;

When the masses and the springs are identical, m1 = : : : = mn = m and
C1 = : : : = Cn�1 = C, the system simpli�es to

m1�x1 + C1(x1 � x2) = 0

m2�x2 + C2(x2 � x3)� C1(x1 � x2) = 0

: : : : : :

mn�xn � Cn�1(xn�1 � xn) = 0

or in vector form,

�x+
C

m
P2x = 0
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where P2 is the n� n matrix of second di�erences,

P2 =

0
B@

1 �1 0 : : : 0
�1 2 �1 : : : 0
: : : : : : : : : : : : : : :
0 0 0 : : : �1

1
CA ;

4.3.2 Generalized coordinates

The Lagrangian concept allows for obtaining equations of motion of a con-
strained system. In this case, the kinetic and potential energy must be de�ned
as a function of generalized coordinates that describes degrees of freedom of mo-
tion consistent with the constraints. The constraints are be accounted either
by Lagrange multipliers or directly, by introducing generalized coordinates. If
a particle can move along a surface, one can introduced coordinates on this
surface and allow the motion only along these coordinates.

The particles can move along the generalized coordinates qi. Their num-
ber corresponds to the allowed degrees of freedom. The position x allowed by
constraints becomes x(q). The speed _x becomes a linear form of _q

_x =
X�

@x

@qi
_qi

�

For example, a particle can move along the circle of the radius R, the generalized
coordinate will be an angle � which determines the position x1 = R cos �, x2 =
R sin � at this circle and its speed becomes

_x1 = �R _� sin �; x _x2 = R _� cos �

This system has only one degree of freedom, because �xation of one parameter
� completely de�nes the position of a point.

When the motion is written in terms of generalized coordinates, the con-
straints are automatically satis�ed. Let us trace equations of Lagrangian me-
chanics in the generalized coordinates. It is needed to represent the potential
and kinetic energies in these terms. The potential energy V (x) is straightly
rewritten as W (q) = V (x(q)) and the kinetic energy T ( _x) =

P
imi _x

2
i becomes

a quadratic form of derivatives of generalized coordinates _q

T ( _x) =
X
i

mix
2
i = _qTR(q) _q

where the symmetric nonnegative matrix R is equal to

R = fRijg; Rij =

�
@T

@x

@x

@qi

�T �
@T

@x

@x

@qj

�

Notice that Tq( _q) is a homogeneous quadratic function of _q, Tq(k _q) = k2Tq( _q)
and therefore

@

@ _q
Tq(q; _q) � _q = 2Tq(q; _q) (4.12)
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the variational problem that correspond to minimal action with respect to gen-
eralized coordinates becomes

min
q

Z t1

t0

(Tq � Vq)dt (4.13)

Because potential energy V does not depend on _q, the Euler equations have the
form

d

dt

@Tq
@ _q

� @

@q
(Tq � Vq) = 0 (4.14)

which is similar to the form of unrestricted motion.
The analogy can be continued. When the Lagrangian is independent of t

the system is called conservative, In this case, the Euler equation assumes the
�rst integral in the form (use (4.12))

_q
@Tq
@ _q

� (Tq � Vq) = Tq + Vq = constant(t) (4.15)

The quantity � = Tq + Vq is called the whole energy of a mechanical system; it
is preserved along the trajectory.

The generalized coordinates help to formulate di�erential equations of mo-
tion of constrained system. Consider several examples

Example 4.3.3 (Isochrone) Consider a motion of a heavy mass along the cy-
cloid:

x = � � cos �; y = sin �

To derive the equation of motion, we write down the kinetic T and potential V
energy of the mass m, using q = � as a generalized coordinate. We have

T =
1

2
m _x2 + _y2 = m(1 + sin �) _�2

and V = my = �m sin �.
The Lagrangian

L = T � V = m(1 + sin �) _�2 +m sin �

allows to derive Euler equation

S(�; _�) =
d

dt

�
(1 + sin �)

d�

dt

�
� cos � = 0:

which solution is
�(t) = arccos(C1 sin t+ C2 cos t)

where C1 and C2 are constant of integration. One can check that �(t) is 2�-periodic
for all values of C1 and C2. This explains the name "isochrone" given to the cycloid
before it was found that this curve is also the brachistochrone (see Section ??)



84 CHAPTER 4. IMMEDIATE APPLICATIONS

Example 4.3.4 (Winding around a circle) Describe the motion of a mass
m tied to a cylinder of radius R by a rope that winds around it when the mass
evolves around the cylinder. Assume that the thickness of the rope is negligible
small comparing with the radius R, and neglect the gravity.

It is convenient to use the polar coordinate system with the center at the center
of the cylinder. Let us compose the Lagrangian. The potential energy is zero, and
the kinetic energy is

L = T =
1

2
m( _x2 + _y2)

=
1

2
m
�
_r cos � � r _� sin �

�2
+

1

2
m
�
_r sin � + r _� cos �

�2
=

1

2
m
�
_r2 + r2 _�2

�
The coordinates r(t) and �(t) are algebraically connected by Pythagorean relation
R2 + l(t)2 = r(t)2 at each time instance t. Here l(t) is the part of the rope that
is not winded yet; it is expressed through the angle �(t) and the initial length l0 of
the rope, l(t) = l0 �R�(t). We obtain

(l0 �R�(t))2 = r(t)2 �R2 8t 2 [0; t�nal] ;

and observe that the time of winding t�nal is �nite. The trajectory r(�) is a spiral.
The obtained relation allows for linking of _r and _�. We di�erentiate it and

obtain
r _r = �R(l0 �R�(t)) _� = �R(

p
r2 �R2 _�

or

_� = �
_l

R
= � r _r

R
p
r2 �R2

The Lagrangian becomes

L(r; _r) =
1

2
m _r2

�
1 +

r4

R2(r2 �R2)

�

Its �rst integral
1

2
m _r2

�
1 +

r4

R2(r2 �R2)

�
= C

shows the dependence of the speed _r on the coordinate r. It can be integrated in
a quadratures, leading to the solution

t(r) = C1

Z r

r0

r
r2 � R2

r4 +R2r2 �R4
dx

The two constants r0 and C1 are determined from the initial conditions.
The �rst integral allows us to visualize the trajectory by plotting _r versus r.

Such graph is called the phase portrait of the trajectory.
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4.3.3 More examples: Two degrees of freedom.

Example 4.3.5 (Move through a funnel) Consider the motion of a heavy
particle through a vertical funnel. The axisymmetric funnel is described by the
equation z = �(r) in cylindrical coordinate system. The potential energy of the
particle is proportional to z, V = �mgz = �mg�(r) The kinetic energy is

T =
1

2
m
�
_r2 + r2 _�2 + _z2

�
or, accounting that the point moves along the funnel,

T =
1

2
m
�
(1 + �02) _r2 + r2 _�2

�
:

The Lagrangian

L = T � V =
1

2
m
�
(1 + �02) _r2 + r2 _�2

�
+mg�(r)

is independent of the time t and the angle �, therefore two �rst integrals exist:

@L

@ _�
= � ) _� =

�

r2

and

T + V =
1

2
m
�
(1 + �02) _r2 + r2 _�2

�
�mg�(r) = �

The second can be simpli�ed by excluding _� using the �rst,

� =
1

2
m

�
(1 + �02) _r2 +

�2

r2
� g�(r)

�

Here, the constants � and � can be de�ned from the initial conditions. They
represent, respectively, the whole energy of the system and the angular momentum;
these quantities are conserved along the trajectory. These integrals alone allow for
integration of the system, without computing the Euler equations. Solving for _r,
we �nd

( _r2)2 = 2

�
2�
m

+ g�(r)
�
r2 � �2

1 + �02

Consequently, we can �nd r(t) and �(t) (see Problem ??.
A periodic trajectory corresponds to constant value _�(t) and constant value of

r(t) = r0 which is de�ned by the initial energy, angular momentum, and the shape
�(r) of the funnel, and sati�es the equation

�2

r20
� g�(r0) =

2�

m

This equation does not necessary has a solution. Physically speaking, a heavy
particle can either tend to evolve around the funnel, or fall down it.
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Example 4.3.6 (Three-dimensional pendulum) A heavy mass is attached
to a hitch by a rod of unit length. Describe the motion of the mass. Since the
mass moves along the spherical surface, we introduce a spherical coordinate system
with the center at the hitch. The coordinates of mass are expressed through two
spherical angles � and � which are the generalized coordinates. We compute

T = _�2 + _�2 cos�

and
V = g cos�

Two conservation laws follows
_� cos� = � (4.16)

(conservation of angular momentum) and

m( _�2 + _�2 cos�) + g cos� = � (4.17)

(conservation of energy)
The oscillations are described by these two �rst-order equations for � and �.

The reader is encouraged to use Maple to model the motion.
Two special cases are immediately recognized. When � = 0, the pendulum

oscillates in a plane, �(t) = �0, and _� = 0. The Euler equation for � becomes

m��+ g sin� = 0

This is the equation for a plane pendulum. The angle �(t) is a periodic function
of time, the period depends on the magnitude of the oscillations. For small �, the
equation becomes equation of linear oscillator.

When �(t) = �0 = constant, the pendulum oscillates around a horizontal
circle. In this case, the speed of the pendulum is constant (see (4.16)) and the
generalized coordinate { the angle � is

� =
�

cos�0
t+ �0

The motion is periodic with the period

T =
2� cos�0

�

Next example illustrates that the Euler equations for generalized coordinates
are similar for the simplest Newton equation m�x = f but m becomes a non-
diagonal matrix.

Example 4.3.7 (Two-link pendulum) Consider the motion of two masses se-
quentially joined by two rigid rods. The �rst rod of length l1 is attached to a hitch
and can evolve around it and it has a mass m1 on its other end. The second rod
of the length l2 is attached to this mass at one end and can evolve around it, and



4.3. LAGRANGIAN MECHANICS 87

has a mass m2 at its other end. Let us derive equation of motion of this system in
the constant gravitational �eld.

The motion is expressed in terms of Cartesian coordinates of the masses x1; y1
and x2; y2. We place the origin in the point of the hitch: This is the natural
stable point of the system. The distances between the hitch and the �rst mass, and
between two masses are �xed,

l1 = x21 + y21 ; l2 = (x1 � x2)
2 + (y1 � y2)

2;

which reduces the initial four degrees of freedom to two. The constraints are
satis�ed if we introduce two generalized coordinates: two angles �1 and �2 of the
corresponding rods to the vertical, assuming

x1 = l1 cos �1; y1 = l1 sin �1

x2 = l1 cos �1 + l2 cos �2; y2 = l1 sin �1 + l2 sin �2:

The state of the system is de�ned by the angles �1 and �2.

The potential energy V (�1; �2) is equal to the sum of vertical coordinates of the
masses multiplied by the masses,

V (�1; �2) = m1y1 +m2y2 = m1l1 cos �1 +m2(l1 cos �1 + l2 cos �2):

The kinetic energy T = T1 + T2 is the sum of the kinetic energy of two masses:

T1 =
1

2
m1(x

2
1 + y21) =

1

2
m1

�
(�l1 _�1 sin �1)2 + (l1 _�1 cos �1)

2
�
=

1

2
m1l

2
1
_�21

and similarly

T2 =
1

2
m2

�
(�l1 _�1 sin �1 � l2 _�2 sin �2)

2 + (l1 _�1 cos �1 + l2 _�2 cos �2)
2
�

=
1

2
m2

�
l21
_�21 + l22

_�22 + 2l1l2 cos(�1 � �2) _�1 _�2

�
Combining these expression, we �nd

T =
1

2
_�TR(�1; �2) _�

where � is a vector of generalized coordinates� = (�1; �2)
T , and

R(�1; �2) =

�
(m2 +m1) l

2
1 m2l1l2 cos(�1 � �2)

m2l1l2 cos(�1 � �2) m2l
2
2

�

is the inertia matrix for the generalized coordinates. The Lagrangian is composed
as

L = T1 + T2 � V



88 CHAPTER 4. IMMEDIATE APPLICATIONS

Now we immediately derive the equations (4.14) for the motion:

s1 =
d

dt

�
m1l

2
1
_�1 +m2l

2
2
_�1 + 2m2l1l2 _�1 cos(�1 � �2)

�
+ 2m2l1l2 sin(�1 � �2) _�1 _�2 + (m1l1 +m2l2) sin �1 = 0

s2 =
d

dt

�
m2l

2
2
_�2 + l1l2 cos(�1 � �2) _�1

�
� 2l1l2 sin(�1 � �2) _�1 _�2

� m2l2 sin �2 = 0

and notice that the whole energy T1 + T2 + V is constant at all time.
The linearized equations of motion can be derived in an additional assumption

jqij � 1; j _qij � 1; i = 1; 2. they are

sl1 =
�
m1l

2
1 +m2l

2
2

�
��1 + l1l2 ��2 + (m1l1 +m2l2)�1 = 0

sl2 =
�
m2l

2
2
��2 +m2l1l2 ��1

�
�m2l2�2 = 0

or, in the vector form
M �� + C� = 0

where

M =

�
m1l

2
1 +m2l

2
2 m2l1l2

m2l1l2 m2l
2
2

�
; C =

�
m1l1 +m2l2 0

0 m2l2

�

Notice that the matrixM that plays the role of the masses show the inertial elements
and it not diagonal but symmetric. The matrix C shows the sti�ness of the system.
The solution is given by the vector formula

�(t) = A1 exp(iBt) +A2 exp(�iBt); B = (M�1C)
1
2



Chapter 5

Constrained problems

We pass to consideration of extremal problem with additional constraints im-
posed on the minimizer. These constraints may prescribe the values of integrals
of some function of minimizer as the isoperimetric problem does, or they may
pose the restriction on the minimizer on each point of an admissible trajectory,
as the geodesics problem required.

5.1 Constrained minimum in vector problems

5.1.1 Lagrange Multipliers method

Reminding of the technique discussed in calculus, we �rst consider a �nite-
dimensional problem of constrained minimum. Namely, we want to �nd the
condition of the minimum:

J = min
x
f(x); x 2 Rn; f 2 C2(R

n) (5.1)

assuming that m constraints are applied

gi(x1; : : : xn) = 0 i = 1; : : :m; m � n; (5.2)

The vector form of the constraints is

g(x) = 0

where g is a m-dimensional vector-function of an n-dimensional vector x.

To �nd the minimum, we add the constraints with the Lagrange multipliers
� = (�1; : : : �p) and end up with the problem

J = min
x

"
f(x) +

mX
i

�igi(x)

#

89
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The stationary conditions become:

@f

@xk
+

mX
i

�i
@gi
@xk

= 0; k = 1; : : : ; n

or, in the vector form
@f

@x
+W � � = 0 (5.3)

where the m� n Jacobian matrix W is

W =
@g

@x
or, by elements, Wnm =

@gn
@xm

The system (5.3) together with the constraints (5.2) forms a system of n + p
equations for n+ p unknowns: Components of the vectors x and �.

Example Consider the problem

J = min
x

X
i

A2
ixi subject to

X
i

1

xi � k
=

1

c
:

Using Lagrange multiplier � we rewrite it in the form:

Ja = min
x

X
i

A2
ixi + �

 X
i

1

xi � k
� 1

c

!
:

From the condition @Ja
@x = 0 we obtain

A2
i �

�

(xi � k)2
= 0; or

1

xi � k
=
jAijp
�

i = 1; : : : ; n:

We substitute these values into expression for the constraint and obtain an
equation for �

1

c
=
X
i

1

xi � k
=

1p
�

X
i

jAij

Solving this equation, we �nd �, the minimizer xi

p
� = c

X
i

jAij; xi = k +

p
�

jAij ;

and the value of the minimizing function J :

J = k
X
i

A2
i + c

 X
i

jAij
!2

Observe, the minimum is a sum of squares of L2 and L1 norms of the vector
A = [A1; : : : ; An].
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How does it work? (Min-max approach) Consider again the �nite-
dimensional minimization problem

J = min
x1;:::xn

F (x1; : : : xn) (5.4)

subject to one constraint

g(x1; : : : xn) = 0 (5.5)

and assume that there exist solutions to (5.5) in the neighborhood of the minimal
point.

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

J� = min
x1;:::xn

max
�

(F (x1; : : : xn) + �g(x1; : : : xn)) (5.6)

Indeed, the inner maximization gives

max
�

�g(x1; : : : xn) =

�1 if g 6= 0
0 if g = 0

because � can be made arbitrary large or arbitrary small. This possibility
forces us to choose such x that delivers equality in (5.5), otherwise the cost of
the problem (5.6) would be in�nite (recall that x \wants" to minimize J�). By
assumption, such x exists. At the other hand, the constrained problem (5.4)-
(5.5) does not change its cost J if zero g = 0 is added to it. Thereby J = J�
and the problem (5.4) and (5.5) is equivalent to (5.6).

If we interchange the sequence of the two extremal operations in (5.6), we
would arrive at the augmented problem JD

JD(x; �) = max
�

min
x1;:::xn

(F (x1; : : : xn) + �g(x1; : : : xn)) (5.7)

The interchange of max and min- operations preserves the problems cost if
F (x1; : : : xn) + �g(x1; : : : xn) is a convex function of x1; : : : xn; in this case J =
JD. In a general case, we arrive at an inequality J � JD (see the min-max
theorem in Sectionintro)

The extended Lagrangian J� depends on n + 1 variables. The stationary
point corresponds to a solution to a system

@L

@xk
=

@F

@xk
+ �

@g

@xk
= 0; k = 1; : : : n; (5.8)

@L

@�
= g = 0 (5.9)

The procedure is easily generalized for several constrains. In this case, we add
each constraint with its own Lagrange multiplier to the minimizing function and
arrive at expression (5.3)
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5.1.2 Exclusion of Lagrange multipliers and duality

We can exclude the multipliers � from the system (5.3) assuming that the
constraints are independent, that is rank(W ) = m. We project n-dimensional
vector rF onto a n�m-dimensional subspace allowed by the constraints, and
require that this projection is zero. The procedure is as follows.

1. Multiply (5.3) by W T :

W T @f

@x
+W TW � � = 0; (5.10)

Since the constraints are independent, p� p matrix W TW is nonsingular,
det(W TW ) 6= 0.

2. Find m-dimensional vector of multipliers �:

� = �(W TW )�1W T @f

@x
;

3. Substitute the obtained expression for � into (5.3) and obtain:

(I �W (W TW )�1W T )
@f

@x
= 0 (5.11)

Matrix W (W TW )�1W T is called the projector to the subspace W . Notice
that the rank of the matrix W (W TW )�1W T is equal to p; it has p eigenval-
ues equal to one and n � p eigenvalues equal to zero. Therefore the rank of
I �W (W TW )�1W T is equal to n � p, and the system (5.11) produces n � p
independent optimality conditions. The remaining p conditions are given by the
constraints (5.2): gi = 0; i = 1; : : : p. Together these two groups of relations
produce n equations for n unknowns x1; : : : ; xn.

Below, we consider several special cases.

Degeneration: No constraints When there is no constraints, W = 0, the
problem trivially reduces to the unconstrained on, and the necessary condition
(5.11) becomes @f

@x
= 0 holds.

Degeneration: n constraints Suppose that we assign n independent con-
straints. They themselves de�ne vector x and no additional freedom to choose
it is left. Let us see what happens with the formula (5.11) in this case. The
rank of the matrix W (W TW )�1W T is equal to n, (W�1 exists) therefore this
matrix-projector is equal to I :

W (W TW )�1W T = I

and the equation (5.11) becomes a trivial identity. No new condition is produced
by (5.11) in this case, as it should be. The set of admissible values of x shrinks
to the point and it is completely de�ned by the n equations g(x) = 0.
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One constraint Another special case occurs if only one constraint is imposed;
in this case p = 1, the Lagrange multiplier � becomes a scalar, and the condi-
tions (5.3) have the form:

@f

@xi
+ �

@g

@xi
= 0 i = 1; : : : n

Solving for � and excluding it, we obtain n� 1 stationary conditions:

@f

@x1

�
@g

@x1

��1
= : : : =

@f

@xn

�
@g

@xn

��1
(5.12)

Let us �nd how does this condition follow from the system (5.11). This time,
W is a 1� n matrix, or a vector,

W =

�
@g

@x1
; : : : ;

@g

@xn

�

We have:

rank W (W TW )�1W T = 1; rank(I �W (W TW )�1W T ) = n� 1

Matrix I �W (W TW )�1W T has n � 1 eigenvalues equal to one and one zero
eigenvalue that corresponds to the eigenvectorW . At the other hand, optimality
condition (5.11) states that the vector

rf =

�
@f

@x1
; : : : ;

@f

@xn

�

lies in the null-space of the matrix I �W (W TW )�1W T that is vectors @f
@x and

W are parallel. Equation (5.12) expresses parallelism of these two vectors.

Quadratic function Consider minimization of a quadratic function

F =
1

2
xTAx+ dTx

subject to linear constraints

Bx = �

where A > 0 is a positive de�nite n�nmatrix, B is a n�mmatrix of constraints,
d and � are the n- and m-dimensional vectors, respectively. Here, W = B. The
optimality conditions consist ofm constraintsBx = � and n�m linear equations

(I �B(BTB)�1BT )(Ax + d) = 0
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Duality Let us return to the constraint problem

JD = min
x

max
�

(F (x) + �T g(x))

with the stationarity conditions,

rF + �TW (x) = 0

Instead of excluding � as is was done before, now we do the opposite: Exclude
n-dimensional vector x from n stationarity conditions, solving them for x and
thus expressing x through �: x = �(�). When this expression is substituted
into original problem, the later becomes

JD = max
�
fF (�(�)) + �T g(�(�))g;

it is called dual problem to the original minimization problem.

Dual form for quadratic problem Consider again minimization of a quadratic.
Let us �nd the dual form for it. We solve the stationarity conditionsAx+d+BT�
for x, obtain

x = �A�1(d+BT�)

and substitute it into the extended problem:

JD = max
�2Rm

�
1

2
(dT + �TB)A�1(d+BT�)� �TBA�1(d+BT�)� �T�

�

Simplifying, we obtain

JD = max
�2Rm

�
�1

2
�TBA�1BT�� �T� +

1

2
dTA�1d

�

The dual problem is also a quadratic form over the m dimensional vector of La-
grange multipliers �; observe that the right-hand-side term � in the constraints
in the original problem moves to the sift term in the dual problem. The shift d
in the original problem generates an additive term 1

2d
TA�1d in the dual one.

5.1.3 Finite-dimensional variational problem revisited

Consider the optimization problem for a �nite-di�erence system of equations

J = min
y1;:::;yN

NX
i

fi(yi; zi)

where f1; : : : ; fN are given value of a function f , y1; : : : ; yN is the N -dimensional
vector of unknowns, and zi i = 2; : : : ; N are the �nite di�erences of yi:

zi = Di�(yi) where Di�(yi) =
1

�
(yi � yi�1); i = 1; : : : ; N (5.13)
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Assume that the boundary values y1 and yn are given and take (5.13) as con-
straints. Using Lagrange multiplies �1; : : : ; �N we pass to the augmented func-
tion

Ja = min
y1;:::;yN ; z1;:::;zN

NX
i

�
fi(yi; zi) + �i

�
zi � 1

�
(yi � yi�1)

��

The necessary conditions are:

@Ja
@yi

=
@fi
@yi

+
1

�
(��i + �i+1) = 0 2 = 1; : : : ; N � 1

and
@Ja
@zi

=
@fi
@zi

+ �i = 0 i = 2; : : : ; N � 1

Excluding �i from the last equation and substituting their values into the pre-
vious one, we obtain the conditions:

@Ja
@yi

=
@fi
@yi

+
1

�

�
@fi
@zi

� @fi+1

@zi+1

�
= 0 i = 2; : : : ; N � 1

or, recalling the de�nition of the Di� -operator,

Di�

�
@fi+1

@zi+1

�
� @fi
@yi

= 0 zi = Di�(yi) (5.14)

One can see that the obtained necessary conditions have the form of the di�er-
ence equation of second-order.

On the other hand, Di�-operator is an approximation of a derivative and
the equation (5.14) is a �nite-di�erence approximation of the Euler equation.

5.1.4 Inequality constraints

Nonnegative Lagrange multipliers Consider the problem with a constraint
in the form of inequality:

min
x1;:::xn

F (x1; : : : xn) subject to g(x1; : : : xn) � 0 (5.15)

In order to apply the Lagrangian multipliers technique, we reformulate the con-
straint:

g(x1; : : : xn) + v2 = 0

where v is a new auxiliary variable.
The augmented Lagrangian becomes

L�(x; v; �) = f(x) + �g(x) + �v2

and the optimality conditions with respect to v are

@L�
@v

= 2�v = 0 (5.16)

@2L�
@v2

= 2� � 0 (5.17)



96 CHAPTER 5. CONSTRAINED PROBLEMS

The second condition requires the nonnegativity of the Lagrange multiplier and
the �rst one states that the multiplier is zero, � = 0, if the constraint is satis�ed
by a strong inequality, g(x0) > 0.

The stationary conditions with respect to x

rf = 0 if g � 0
rf + �rg = 0 if g = 0

state that either the minimum correspond to an inactive constraint (g > 0) and
coincide with the minimum in the corresponding unconstrained problem, or the
constraint is active (g = 0) and the gradients of f and g are parallel and directed
in opposite directions:

rf(xb) � rg(xb)
jrf(xb)j jrg(xb)j = �1; xb : g(xb) = 0

In other terms, the projection of rf(xb) on the subspace orthogonal to rg(xb)
is zero, and the projection of rf(x) on the direction of rg(xb) is nonpositive.

The necessary conditions can be expressed by a single formula using the
notion of in�nitesimal variation of x or a di�erential. Let x0 be an optimal point,
xtrial { an admissible (consistent with the constraint) point in an in�nitesimal
neighborhood of x0, and �x = xtrial�x0. Then the optimality condition becomes

rf(x0) � �x � 0 8�x (5.18)

Indeed, in the interior point x0 (g(x0) > 0) the vector �x is arbitrary, and the
condition (5.18) becomes rf(x0) = 0. In a boundary point x0 (g(x0) = 0), the
admissible points are satisfy the inequality rg(x0) � �x � 0, the condition (5.18)
follows from (13.21).

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

L� = min
x1;:::xn

max
�>0

(F (x1; : : : xn) + �g(x1; : : : xn)) (5.19)

that di�ers from (5.7) by the requirement � > 0.

Several constraints: Kuhn-Tucker conditions Several inequality con-
straints are treated similarly. Assume the constraints in the form

g1(x) � 0; : : : ; gm(x) � 0:

The stationarity condition can be expressed through nonnegative Lagrange mul-
tipliers

rf +
mX
i=1

�irgi = 0; (5.20)

where
�i � 0; �igi = 0; i = 1; : : : ;m: (5.21)
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The minimal point corresponds either to an inner point of the permissible set
(all constraints are inactive, gi(x0) < 0), in which case all Lagrange multipliers
�i are zero, or to a boundary point where p � m constraints are active. Assume
for de�niteness that the �rst p constraints are active, that is

g1(x0) = 0; : : : ; gp(x0) = 0: (5.22)

The conditions (5.21) show that the multiplier �i is zero if the ith constrain
is inactive, gi(x) > 0. Only active constraints enter the sum in (5.23), and it
becomes

rf +
pX
i=1

�irgi = 0; �i > 0; i = 1; : : : ; p: (5.23)

The term
Pp

i=1 �irgi(x0) is a cone with the vertex at x0 stretched on the
rays rgi(x0) > 0, i = 1; : : : ; p. The condition (5.23) requires that the negative
of rf(x0) belongs to that cone.

Alternatively, the optimality condition can be expressed through the admis-
sible vector �x,

rf(x0) � �x � 0 (5.24)

Assume again that the �rst p constraints are active, as in (??)

g1(x0) =; : : : ;= gp(x0) = 0:

In this case, the minimum is given by (5.24) and the admissible directions of �x
satisfy the system of linear inequalities

�x � rgi � 0; i = 1; : : : ; p: (5.25)

Assume that

These conditions are called Kuhn-Tucker conditions, see []

5.2 Isoperimetric problem

5.2.1 Stationarity conditions

Isoperimetric problem of the calculus of variations is

min
u

Z b

a

F (x; u; u0)dx subject to

Z b

a

G(x; u; u0)dx = 0 (5.26)

Applying the same procedure as in the �nite-dimensional problem, we reformu-
late the problem using Lagrange multiplier �:

min
u

Z b

a

[F (x; u; u0) + �G(x; u; u0)] dx (5.27)
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To justify the approach, we may look on the �nite-dimensional analog of the
problem

min
ui

NX
i=1

Fi(ui;Di�(ui)) subject to

NX
i=1

Gi(ui;Di�(ui)) = 0

The Lagrange method is applicable to the last problem which becomes

min
ui

NX
i=1

[Fi(ui;Di�(ui)) + �Gi(ui;Di�(ui))] :

Passing to the limit when N !1 we arrive at (5.27).
The procedure of solution is as follows: First, we solve Euler equation for

the problem(5.27)

d

dx

@

@u0
(F + �G)� @

@u
(F + �G) = 0:

Keeping � unde�ned and arrive at minimizer u(x; �) which depends on param-
eter �. The equation

Z b

a

G(x; u(x; �); u0(x; �))dx = 0

de�nes this parameter.

Remark 5.2.1 The method assumes that the constraint is consistent with the
variation: The variation must be performed upon a class of functions u that sat-
isfy the constraint. Parameter � has the meaning of the cost for violation of the
constraint.

Of course, it is assumed that the constraint can be satis�ed for all varied func-
tions that are close to the optimal one. For example, the method is not applicable
to the constraint Z b

a

u2dx � 0

because this constraint allows for only one function u = 0 and will be violated at
any varied trajectory.

5.2.2 Dido problem revisited

Let us apply the variational technique to Dido Problem discussed in Chapter
??. It is required to maximize the area A between the OX axes and a positive
curve u(x)

A =

Z b

a

udx u(x) � 08x 2 [a; b]
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assuming that the length L of the curve is given

L =

Z b

a

p
1 + u02dx

and that the beginning and the end of the curve belong to OX-axes: u(a) = 0
and u(b) = 0. Without lose of generality we assume that a = 0 and we have to
�nd b.

The constrained problem has the form

J = A+ �L =

Z b

0

�
u+ �

p
1 + u02

�
dx

where � is the Lagrange multiplier.

The Euler equation for the extended Lagrangian is

1� �
d

dx

�
u0p

1 + u02

�

Let us �x � and �nd u as a function of x and �. Integrating, we obtain

�
u0p

1 + u02
= x� C1

where C1 is a constant of integration. Solving for u0 = du
dx
, we rewrite the last

equation as

du = � (x� C1)dxp
�2 + (x� C1)2

;

integrate it:

u = �
p
�2 + (x� C1)2 + C2

and rewrite the result as

(x � C1)
2 + (u� C2)

2 = �2 (5.28)

The extremal is a part of the circle. The constants C1, C2 and � can be found
from boundary conditions and the constraints.

To �nd the length b of the trajectory, we use the transversality condition
(??):

u0
@F

@u0
� F = � �p

1 + u02
� u = 0

which gives ju0(b)j = 1 { the optimal trajectory approaches OX-axis perpen-
dicular to it. By symmetry, ju0(a)j = 1, and the optimal trajectory is the
semicircle of the radius �, symmetric with respect to OX-axis. We �nd � = L

�
,

C1 = a+ L
2� , and C2 = 0.
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5.2.3 Catenoid

The classical problem of the shape of a heavy chain (catenoid, from Latin catena)
was considered by Euler ?? using a variational principle. It is postulated, that
the equilibrium minimizes minimizes the potential energy W of the chain

W =

Z 1

0

g�u ds = g�

Z 1

0

u
p
1 + (u0)2dx

de�ned as the limit of the sum of vertical coordinates of the parts of the chain.
Here, � is the density of the mass of the chain, ds is the element of its length,
x and u are the horizontal and vertical coordinates, respectively. The length of
the chain

L =

Z 1

0

p
1 + (u0)2dx

and the coordinates of the ends are �xed. Normalizing, we put g� = 1. Formally,
the problem becomes

I = min
u(x)

(W (u) + �L(u)); W (u) + �L(u) =

Z 1

0

(u+ �)
p
1 + (u0)2dx

The Lagrangian is independent of x and therefore permits the �rst integral

(u+ �)

 
(u0)2p
1 + (u0)2

�
p
1 + (u0)2

!
= C

that is simpli�ed to
u+ �p
1 + (u0)2

= C:

We solve for u0

du

dx
=

s�
u+ �

C

�2

� 1

integrate

x = ln

0
@�+ u+

s�
u+ �

C

�2

� 1

1
A� lnC + x0

and �nd the extremal u(x)

u = �C cosh

�
x� x0
C

�
+ �

The equation { the catenoid { de�nes the shape of a chain; it also gave the name
to the hyperbolic cosine.
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5.2.4 General form of a variational functional

Lagrange method allows for reformulation of an extremal problem in a general
form as a simplest variational problem. The minimizing functional can be the
product, ratio, superposition of other di�erentiable function of integrals of the
minimizer and its derivative. Consider the problem

J = min
u

�(I1; : : : ; In) (5.29)

where

Ik(u) =

Z b

a

Fk(x; u; u
0)dx k = 1; : : : n (5.30)

and � is a continuously di�erentiable function. Using Lagrange multipliers
�1; �n, we transform the problem (5.29) to the form

J = min
u

min
I1;:::;In

max
�1;:::�n

(
�+

nX
k=1

�k

 
Ik �

Z b

a

Fk(x; u; u
0)dx

!)
: (5.31)

The stationarity conditions for (5.31) consist of n algebraic equations

@�

@Ik
+ �i = 0 (5.32)

and the di�erential equation { the Euler equation

S(	; u) = 0

�
recall that S(	; u) =

d

dx

@	

@u0
� @	

@u

�

for the function

	(u) =

nX
k=1

�kFk(x; u; u
0)

Together with the de�nitions (5.30) of Ik, this system enables us to determine
the real parameters Ik and �k and the function u(x). The Lagrange multipliers
can be excluded from the previous expression using (5.32), then the remaining
stationary condition becomes an integro-di�erential equation

S( �	; u) = 0; �	(Ik; u) =
nX
k=1

@�

@Ik
Fk(x; u; u

0) (5.33)

Next examples illustrate the approach.



102 CHAPTER 5. CONSTRAINED PROBLEMS

The product of integrals

Consider the problem

min
u
J(u); J(u) =

 Z b

a

�(x; u; u0)dx

! Z b

a

 (x; u; u0)dx

!
:

We rewrite the minimizing quantity as

J(u) = I1(u)I2(u); I1(u) =

Z b

a

�(x; u; u0)dx; I2(u) =

Z b

a

 (x; u; u0)dx;

apply stationary condition (5.33), and obtain the condition

I1�I2 + I2�I1 = I2(u)S(�(u); u) + I1(u)S( (u); u) = 0:

or  Z b

a

�(x; u; u0)dx

!�1
S(�(u); u) +

 Z b

a

 (x; u; u0)dx

!�1
S( (u); u) = 0

The equation is nonlocal: Solution u at each point depends on its �rst and second
derivatives and integrals of �(x; u; u0) and �(x; u; u0) over the whole interval
[a; b].

Example 5.2.1 Solve the problem

min
u

�Z 1

0

(u0)2dx
��Z 1

0

(u+ 1)dx

�
u(0) = 0; u(1) = a

We compute the Euler equation

u00 �R = 0; u(0) = 0; u(1) = a:

where

R =
I1
I2

= 0; I1 =

Z 1

0

(u0)2dx; I2 =

Z 1

0

(u� 1)dx

The integration gives

u(x) =
1

2
Rx2 +

�
a� 1

2
R

�
x;

We obtain the solution that depends on R { the ratio of the integrals of two
function of this solution. To �nd R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2; I2 = � R

12
+

1

2
a+ 1



5.2. ISOPERIMETRIC PROBLEM 103

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R + 6a+ 12

Solving it, we �nd R = 1
2 (3a+ 6�p36 + 36a� 15a2).

At this point, we do not know whether the solution correspond to minimum or
maximum. This question is investigated later in Chapter 6.

The ratio of integrals

Consider the problem

min
u
J(u); J(u) =

R b
a
�(x; u; u0)dxR b

a
 (x; u; u0)dx

:

We rewrite it as

J =
I1
I2
; I1(u) =

Z b

a

�(x; u; u0)dx; I2(u) =

Z b

a

 (x; u; u0)dx; (5.34)

apply stationary condition (5.33), and obtain the condition

1

I2(u)
S(�(u); u)� I1(u)

I22 (u)
S( (u); u) = 0:

Using de�nition (5.34) of the goal functional, we bring the previous expression
to the form

S(�(x; u; u0)� J (x; u; u0); u) = 0

Observe that the stationarity condition depends on the cost J of the problem.
The examples will be given in the next section.

Superposition of integrals

Consider the problem

min
u

Z b

a

R

 
x; u; u0;

Z b

a

�(x; u; u0)dx

!
dx

We introduce a new variable I

I =

Z b

a

�(x; u; u0)dx

and reformulate the problem as

min
u

Z b

a

�
R(x; u; u0; I) + �

�
�(x; u; u0)� I

b� a

��
dx
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where � is the Lagrange multiplier. The stationarity conditions are:

S((R+ ��); u) = 0;
@R

@I
� 1

b� a
= 0:

and the above de�nition of I .

The general procedure is similar: We always can rewrite a minimization
problem in the standard form adding new variables (as the parameter c in the
previous examples) and corresponding Lagrange multipliers.

Inequality in the isoperimetric condition Often, the isoperimetric con-
straint is given in the form of an inequality

min
u

Z b

a

F (x; u; u0)dx subject to

Z b

a

G(x; u; u0)dx � 0 (5.35)

In this case, the additional condition � � 0 is added to the Euler-Lagrange
equations (13.21) according to the (13.21).

Remark 5.2.2 Sometimes, the replacement of an equality constraint with the cor-
responding inequality can help to determine the sign of the Lagrange multiplier. For
example, consider the Dido problem, and replace the condition that the perimeter
is �xed with the condition that the perimeter is smaller than or equal to a constant.
Obviously, the maximal area corresponds to the maximal allowed perimeter and the
constraint is always active. On the other hand, the problem with the inequality
constraint requires positivity of the Lagrange multiplier; so we conclude that the
multiplier is positive in both the modi�ed and original problem.

5.2.5 Homogeneous functionals and Eigenvalue Problem

The next two problems are homogeneous: The functionals do not vary if the
solution is multiplied by any number. Therefore, the solution is de�ned up to a
constant multiplier.

The eigenvalue problem correspond to the functional

min
u

R 1
0
(u0)2dxR 1
0 u

2dx
x(0) = x(1) = 0

it can be compared with the problem:

min
u

R 1
0
(u0)2dx�R 1
0
udx

�2 x(0) = x(1) = 0

Do these problem have nonzero solutions?
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5.3 Constraints in boundary conditions

Constraints on the boundary, �xed interval Consider a variational prob-
lem (in standard notations) for a vector minimizer u. If there are no constrains
imposed on the end of the trajectory, the solution to the problem satis�es n
natural boundary conditions

�u(b) � @F
@u0

����
x=b

= 0

(For de�niteness, we consider here conditions on the right end, the others are
clearly identical).

The vector minimizer of a variational problem may have some additional
constraints posed at the end point of the optimal trajectory. Denote the bound-
ary value of ui(b) by vi The constraints are

�i(v1; : : : vn) = 0 i = 1; : : : ; k; k � n

or in vector form,

�(x;v) = 0;

where � is the corresponding vector function. The minimizer satis�es these
conditions and n � k supplementary natural conditions that arrive from the
minimization requirement. Here we derive these supplementary boundary con-
ditions for the minimizer.

Let us add the constrains with a vector Lagrange multiplier � = (�1; : : : :�k)
to the problem. The variation of v = u(b) gives the conditions

�v �
"
@F

@u0

����
x=b;u=v

+
@�

@v
�

#
= 0

The vector in the square brackets must be zero because of arbitrariness of � =
�u(b).

Next, we may exclude � from the last equation (see the previous section
5.1.2):

� = �
"�

@�

@u

�T
@�

@u

#�1
@F

@u0

����
x=b;u=v

(5.36)

and obtain the conditions0
@I � @�

@u

T
"�

@�

@u

�T
@�

@u

#�1
@�

@u

1
A @F

@u0

����
x=b;u=v

= 0 (5.37)

The rank of the matrix in the parenthesis is equal to n � k. Together with
k constrains, these conditions are the natural conditions for the variational
problem.
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Example

min
u1;u2

Z b

a

(u021 + u022 + u03)dx; u1(b) + u2(b) = 1; u1(b)� u3(b) = 1;

We compute

@F

@u0
=

0
@ 2u1
2u2
1

1
A ;

@�

@u
=

0
@ 1 1
1 0
0 �1

1
A ;

(please continue..)

Free boundary with constraints Consider a general case when the con-
straints �(x; u) = 0 are posed on the solution at the end point. Variation of
these constrains results in the condition:

��(x; u)jx=b = @�

@u
�u+

�
@�

@x
+
@�

@u
u0
�
�x

Adding the constraints to the problem with Lagrange multiplier �, performing
variation, and collecting terms proportional to �x, we obtain the condition at
the unknown end point x = b

F (x; u; u0)� @F

@u0
u0 + �T

�
@�

@x
+
@�

@u
u0
�
= 0

where � is de�ned in (5.36). Together with n � k conditions (5.37) and k
constraints, they provide n+ 1 equations for the unknowns u1(b); : : : ; un(b); b.

5.4 Pointwise Constraints

5.4.1 Stationarity conditions

Consider a variational problem for a vector-valued minimizer u = u1; : : : un.

min
u

Z b

a

F (x;u;u0)dx

Assume that the minimizer obeys certain constraint(algebraic or di�erential) in
each point of any admissible trajectory,

G(x;u;u0) = 0;8x 2 (a; b) (5.38)

The number of constraints is less than the number of minimizers. This way, we
arrive at the constrained variational problem

min
u

Z b

a

F (x;u;u0)dx subject to G(x;u;u0) = 0;8x 2 (a; b) (5.39)
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As in the isoperimetric problem, we use the Lagrange multipliers method to
account for the constrain. This time, the constraint must be enforced in every
point of the trajectory, therefore the Lagrange multiplier becomes a function
of x. To prove the method, it is enough to pass to �nite-dimensional problem;
after discretization, the constraint is replaced by the array of equations

G(x; u; u0) = 0 ) Gi(ui;Di� (ui)) = 0; i = 1; : : :N:

Each of this constrains, multiplied by its own Lagrange multiplier �1; : : : �N ,
must be added to the functional. The array of these multipliers converge to a
function �(x) when N !1. The variational problem becomes

min
u

Z b

a

[F (x; u; u0) + �(x)G(x; u; u0)] dx (5.40)

The necessary conditions are expressed in the form of di�erential constraints
(5.38) and Euler equation:

G(x; u; u0) = 0 (5.41)�
d

dx

@

@u0
+

@

@u

�
(F + �G) = 0: (5.42)

They de�ne functions u(x) and �(x).

Algebraic constraints Notice that if the constraints are algebraic, G =
G(x; u), then (5.42) does not depend on �0 and is an algebraic relation for
�.

Consider the case of one constraint G(x; u) = 0 The Euler equations are

@F

@uk
� d

d x

@F

@u0k
+ �

@G

@uk
= 0; k = 1 : : : ; n:

We may exclude � = �(x) from the system and obtain n� 1 equations

�
@F

@u1
� d

d x

@F

@u01

��
@G

@u1

��1
=

�
@F

@uk
� d

d x

@F

@u0k

��
@G

@uk

��1
; k = 2; : : : ; n

for u1; : : : un; this system is supplemented with the constraint G(x; u) = 0.
The general case is considered similarly. Euler equation forms a linear system

for vector-function �; it can be excluded from the system, as it will be shown
in following examples.

Example 5.4.1 (Euler equation revisited) As a �rst example, we derive Eu-
ler equation in a di�erent manner: The minimization problem

min
u

Z b

a

F (x; u; v)dx subject to v = u0 (5.43)
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is obviously equivalent to the canonic variational problem.
Using Lagrange multiplier, we rewrite the problem as

min
u

Z b

a

(F (x; u; v) + �(u0 � v)) dx

Variation with respect to u; v gives, respectively,

�0 � @F

@u
= 0; �+

@F

@v
= 0

(the term �u0 is transformed by integration by parts). We exclude � by di�erenti-
ation of the second equation and subtraction of the �rst one:�

@F

@v

�0
� @F

@u
= 0

Accounting for the constraint v = u0 we arrive at Euler equation.

Geodesics as constrained problem We return to the problem of geodesics
{ the shortest path on a surface between two points at this surface. Here we will
develop a general approach to the problem without assumptions that the local
coordinates and the metric is introduced on the surface. We simply assume that
the surface is parameterized as

 (x1; x2; x3) = 0 (5.44)

where x1; x2; x3 are Cartesian coordinates. The distanceD along a path x(t); y(t); z(t)
is

D =

Z 1

0

q
x01(t)2 + x02(t)2 + x03(t)2dt

The extended Lagrangian is

F =
q
x01(t)2 + x02(t)2 + x03(t)2 + �(t) (x1; x2; x3) = 0

where �(t0 is the Lagrange multiplier. Euler equations are

d

dt

x0ip
x0i(t)2 + x02(t)2 + x03(t)2

� �
@ 

@xi
= 0; i = 1; 2; 3:

Excluding �, we obtain two equalities

�
@ 

@xi

��1
d

dt

 
x0ip

x0i(t)2 + x02(t)2 + x03(t)2

!
= �(t) i = 1; 2; 3

which together with equation (5.44) for the surface determine the optimal tra-
jectory: the geodesic.
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5.4.2 Constraints in the form of di�erential equations

The same idea of constrained variational problem can be used to take into
account the di�erential equations of the motion as constraints

g(u; u0) = 08x 2 [0; 1]: (5.45)

This idea is fully exploited in the control theory, (see below, Section 10.1). The
formal scheme is as in the previous case, but this time the derivatives of the
Lagrange multipliers participate in the Euler equation:

dd

dx

�
@F

@u0
+ �

@g

@u0

�
� @F

@u
� @g

@u0

that should be solved together with (5.45) to determine u and �. Here we
illustrate it by an example.

Sailing boat Consider the problem: How to use the minimal resources to
sail to a proper destination. First, let us do the modelling. The equations of
the boat in the water are

m�x+  _x = f(t)

where x is the coordinate of the boat, m is its mass,  is the dissipation, and
f(t) is the time-dependent driving force that depends on the used amount of
fuel

jf j = rq :

It is required to bring the boat to the moorage x(T ) = P from the moorage
x(0) = 0 in the given time T ; the speed in the beginning and in the end must
be zero, _x(0) = _x(T ) = 0.

The total amount R of the fuel

R =

Z T

0

r(t)dt (5.46)

must be minimized:

Remark 5.4.1 In the modelling, it was assumed that the boat is moving straight
from the start to the destination and the forward and backward acceleration require
the same amount of fuel.

We formulate the variational problem for the unknown fuel consumption
rate r(t) and the boat's speed v(t) = _r subject to di�erentia constraint

m _v + v = rq (5.47)

boundary conditions

v(0) = v(T ) = 0
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and the integral constraint Z T

0

v(t) = L: (5.48)

Accounting for the constrains (5.47) and (5.48) by Lagrange multiplier � =
�(x) and � = constant, we obtain the variational problem

min
x(x);r(x)

Z b

a

F (r; v; �; �)dx; v(0) = 0

with the Lagrangian

F = r + �(m _v + v � rq) + �v

The Euler equations are respectively (from the variation with respect to v and
r)

�v : �m _�+ �+ � = 0

�r : 1 + qrq�1� = 0

Solving this system, we �nd

� = ��

+ C exp

�
t

m

�
; ; r(t) =

1

q
�

1
q�1 =

1

q

�
��

+ C exp

�
t

m

�
;

� 1
q�1

where � and C are still unde�ned constants. Those are found evaluating v(t)

v(t) = � exp

�
�t
m

�Z t

0

r(t)q

m
exp

�
t

m

�
dt

and applying the integral constraint (5.48) and boundary condition v(T ) = 0.

5.4.3 Notion of variational inequalities

The variational problem with pointwise constraints in the form of inequalities,
called variational inequalities, were investigated only recently, see [?]. These
problems are formulated as a variational problem plus an inequality.

min
u(x)��(x)

Z b

a

F (x; u; u0)dx (5.49)

The increment of the objective functional I(u+ �u)� I(u) is nonnegative at
the optimal trajectory

I(u+ �u)� I(u) = �
Z b

a

S(F; u)�u dx � 0:

Here, (F; u) is the Euler equation (13.21). Let us analyze this formula.
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When the constraint is satis�ed as strict inequality, u > �(x), an in�nitesi-
mal variation variation �u is not constrained and the minimizer u satis�es the
Euler equation S(F; u) = 0 to keep the increment nonnegative. Otherwise, the
extremal is coincide with the constraint, u = �(x), variation �u of the trajec-
tory but must be positive �u � 0 because all admissible trajectories u+ �u are
above the constraint �(x), u(x) + �u(x) � �(x) for all x. Correspondingly, the
variation I(u+ �u)� I(u) is nonnegative if the inequality holds

(F; u)ju(x)=�(x) � 0:

To sum up, we formulate the obtained optimality conditions. The optimal
trajectory satis�es one of the two supplementary conditions:
Either

S(F; u) = 0 and u(x) � �(x)

or

u(x) = �(x) and S(F; u) � 0

The equalities de�ne the minimizer in each regime, and the inequalities check
the optimality of the regime.

String (membrane) over an obstacle

Consider again the problem of catenoid, assuming in addition that the chain
is hanged over a plane surface and is cannot go beneath it. The variational
problem is

min
u(x)�0;u(a)=A;u(b)=B

Z b

a

()dx

and its solution is
u(x) = a u00 � 0
u00(x) = q u > a

Convex envelope

Consider the problem about the shortest path around an obstacle discussed in
Chapter ?? in geometric terms. Now we formulate the problem as a variational
inequality. We �nd a curve u(x) � 0 that has the shortest length L

L =

Z b

a

p
1 + u02dx;

passes through the points (a; 0) and (b; 0), lies over the obstacle �(x)

u(x) � �(x); 8x 2 [a; b]

Remark 5.4.2 We assume that the equation of the obstacle �(x) is de�ned for
all x 2 [a; b]. If it is not de�ned for some x, we put �(x) = 0 for these x.
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The Euler equation S(F; u) = 0 corresponds to the operator

S(F; u) =
d

dx

u0p
1 + u02

=
u00p

1 + u02
3

its sign coincide with the sign of u00,

S(F; u) = A2u00; where A =
1

(1 + u02)
3
4

> 0

The extremal is found from the conditions (??) which take the form:

Either u(x) = �(x) and u00 � 0;
or u00 = 0 and u(x) > �(x)

Multidimensional version The problem of the convex envelope of a function
of a vector argument can be formulated as the variational inequality as well. The
conditions of convexity of a di�erentiable function are

u(x) = f(x) H(u) � 0
detH(u) = 0; H(u) � 0; u(x) < f(x)

This problem will be discussed in Chapter ??

5.5 Summary

1. Euler equations and Lagrange method in variational problems can be
viewed as limits of stationary conditions of a �nite-dimensional minimiza-
tion problem.

2. Lagrange method allows to solve isoperimetric or constrained extremal
problem of a rather general form, reducing it to the canonic variational
problem. The solution is �rst de�ned as a function of the unknown multi-
pliers, which are later determined from the constraints. Alternatively, the
multipliers can be algebraically excluded from the optimality condition.

3. The total number of boundary conditions in a variational problem always
matches the order of di�erential equations. The boundary conditions are
either given or can be obtained from the minimization requirement.

4. The length of the interval of integration, if unknown, also can be obtained
from the minimization requirement.

We will observe these features also in the optimization of multiple integrals:
The variational problems supply of missing components of the problem formu-
lation. We will see that they also can make the solution \better" that is more
stable and even can help de�ne the solution to the problem where no solution
exist.



Chapter 6

Distinguishing minimum

from maximum or saddle

Stationary conditions point to a possibly optimal trajectory but they do not
answer the question of the sense of extremum. A stationary solution can cor-
respond to minimum, local minimum, maximum, local maximum, of a saddle
point of the functional. In this chapter, we establish methods aiming to dis-
tinguish local minimum from local maximum or saddle. In addition to being a
solution to the Euler equation, the true minimizer satis�es necessary conditions
in the form of inequalities. Here, we introduce two variational tests, Weierstrass
and Jacobi conditions, that supplement each other examining various variations
of the stationary trajectory.

6.1 Local variations

6.1.1 Legendre and Weierstrass Tests

The Weierstrass test detects stability of a solution to a variational problem
against strong local perturbations. It compares trajectories that coincide every-
where except a small interval where their derivatives signi�cantly di�er.

Suppose that u0 is the minimizer of the variational problem (3.1) that sat-
is�es the Euler equation (3.7). Additionally, u0 should satisfy another test that
uses a type of variation �u di�erent from (3.3). The variation used in the Weier-
strass test is an in�nitesimal triangle supported on the interval [x0; x0 + "] in a
neighborhood of a point x0 2 (0; 1) (see ??):

�u(x) =

8<
:
0 if x 62 [x0; x0 + "];
v1(x� x0) if x 2 [x0; x0 + �"];
v2(x� x0)� �"(v1 � v2) if x 2 [x0 + �"; x0 + "]

where the parameters �; v1; v2 are related

�v1 + (1� �)v2 = 0: (6.1)

113
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which provides the continuity of u0 +�u at the point x0 + ", because it yields
to the equality �u(x0 + "� 0) = 0.

The considered variation (the Weierstrass variation) is localized and has an
in�nitesimal absolute value (if " ! 0), but its derivative (�u)0 is �nite, unlike
the variation in (3.3) (see ??):

(�u)0 =

8<
:
0 if x 62 [x0; x0 + "];
v1 if x 2 [x0; x0 + �"];
v2 if x 2 [x0 + �"; x0 + "]:

(6.2)

Computing �I from (3.2) and rounding up to ", we �nd that the inequality holds

�I = "[�F (x0; u0; u
0
0 + v1) + (1� �)F (x0; u0; u

0
0 + v2)

�F (x0; u0; u00)] + o(") � 0
(6.3)

for a minimizer u0. Notice that we approximately replace u0 + �u0 with u0
keeping only terms of the order of O(1) in the varied integrand, but we have to
count for di�erent value of the derivative.

The last expression yields to the Weierstrass test and the necessary Weier-
strass condition. Any minimizer u(x) of (3.1) satis�es the inequality

�F (x0; u0; u
0
0 + v1) + (1� �)F (x0; u0; u

0
0 + v2)� F (x0; u0; u

0
0) � 0: (6.4)

Comparing this with the de�nition of convexity (??), we observe that the
Weierstrass condition requires convexity of the Lagrangian F (x; y; z) with re-
spect to its third argument z = u0. The �rst two arguments x; y = u here are
the coordinates x; u(x) of the testing minimizer u(x). Recall that the tested
minimizer u(x) is a solution to the Euler equation.

Theorem 6.1.1 (Weierstrass test) A di�erentiable minimizer u(x) of the sim-
plest variational problem that solves Euler equation yields to convexity of the inte-
grand F (x; u; v) with respect of its third argument v = u0 when x; u(x); u0(x) is
an arbitrary point of the stationary trajectory.

Example 6.1.1 Consider the Lagrangian

F (u; u0) = [(u0)2 � u2]2

It is convex as a function of u0 if ju0j � juj. Consequently, the solution u of Euler
equation

d

dx
[(u0)3 � u2u0] + u(u0)2 � u3 = 0; u(0) = a0; u(1) = a1

or
(3(u0)2 � u2)u00 � u((u0)2 + u2) = 0 u(0) = a0; u(1) = a1

corresponds to a local minimum of the functional if, in addition, the inequality
ju0(x)j � ju(x)j is satis�ed in all points x 2 (0; 1).
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Remark 6.1.1 Convexity of the Lagrangian does not guarantee the existence of
a solution to variational problem. It states only that a di�erentiable minimizer (if
it exists) is stable against �ne-scale perturbations. However, the minimum may not
exist at all or be unstable to other variations.

If the solution of a variational problem fails the Weierstrass test, then its
cost can be decreased by adding in�nitesimal centered wiggles to the solution.
The wiggles are the Weierstrass trial functions, which decrease the cost. In this
case, we call the variational problem ill-posed, and we say that the solution is
unstable against �ne-scale perturbations.

Example 6.1.2 Notice that Weierstrass condition is always satis�ed in the geo-

metric optics. The Lagrangian depends on the derivative as L =

p
1+y02

v(y) and its

second derivative
@2L

@y0 2
=

1

v(y)(1 + y02)
3
2

is always nonnegative if v > 0. It is physically obvious that the fastest path is stable
to short-term perturbations.

Vector-Valued Minimizer The Euler equation and the Weierstrass condi-
tion can be naturally generalized to the problem with the vector-valued mini-
mizer.

The Weierstrass test requires convexity of F (x;y; z) with respect to the
last vector argument. Here again y = u0(x) represents a minimizer. If the
Lagrangian is twice di�erentiable function of z, the convexity condition becomes

He(F; z) � 0 (6.5)

(see Section 2.1) where He(F; z) is the Hessian

He(F; z) =

0
@ @2F

@z1@z1
: : : @2F

@z1@zn
: : : : : : : : :
@2F

@z1@zn
: : : @2F

@zn@zn

1
A

and inequality in (6.5) means that the matrix is nonnegative de�nite (all eigen-
values are nonnegative).

Example 6.1.3 Notice that Weierstrass condition is always satis�ed in the La-
grangian mechanics. The Lagrangian depends on the derivatives of the generalized
coordinates through the kinetic energy T = 1

2 _qR(q) _q and its Hessian equals general-
ized inertia R which is always positive de�nite. Physically speaking, inertia does not
allow for in�nitesimal oscillations because they always increase the kinetic energy
while potential energy is insensitive to them.
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Figure 6.1: The construction of Weierstrass E-function. The graph of a convex
function and its tangent plane.

Weierstrass E-function Weierstrass suggested a convenient test for convex-
ity of Lagrangian, the so-called E-function equal to the di�erence between the
value of Lagrangian L(x; u; ẑ) in a trial point u; z = z0 and the tangent hy-

perplane L(x; u; u0)� (ẑ � u0)T @L(x;u;u
0)

@u0
to the optimal trajectory at the point

u; u0:

E(L(x; u; u0; ẑ) = L(x; u; ẑ)� L(x; u; u0)� (ẑ � u0)T
@L(x; u; u0)

@u0

Function E(L(x; u; u0; ẑ) vanishes together with the derivative @E(L)
@ẑ

when ẑ =
u0:

E(L(x; u; u0; ẑ)jẑ=u0 = 0;
@

@ẑ
E(L(x; u; u0; ẑ)jẑ=u0 = 0:

According to the basic de�nition of convexity, the graph of a convex function
is greater than or equal to a tangent hyperplane. Thereafter, the Weierstrass
condition of minimum of the objective functional can be written as the condition
of positivity of the Weierstrass E-function for the Lagrangian,

E(L(x; u; u0; ẑ) � 0 8ẑ; 8x; u(x)
where u(x) tested trajectory.

Example 6.1.4 Check the optimality of Lagrangian

L = u04 � �(u; x)u02 +  (u; x)

where � and  are some functions of u and x using Weierstrass E-function.
The Weierstrass E-function for this Lagrangian is

E(L(x; u; u0; ẑ) = �ẑ4 � �(u; x)ẑ2 +  (u; x)
�

� �u04 � �(u; x)u02 +  (u; x)
�� (ẑ � u0)(4u03 � 2�(u; x)u):

or
E(L(x; u; u0; ẑ) = (ẑ � u0)2

�
ẑ2 + 2ẑu0 � �+ 3u02

�
:

As expected, E(L(x; u; u0; ẑ) is independent of an additive term  and contains a
quadratic coe�cient (ẑ�u0)2. It is positive for any trial function ẑ if the quadratic

�(ẑ) = �ẑ2 � 2ẑu0 + �� 3u02

does not have real roots, or if

�(u; x)� 2u2 � 0

If this condition is violated at a point of an optimal trajectory u(x), the trajectory
is nonoptimal.
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6.1.2 Null-Lagrangians and convexity

Find the Lagrangian cannot be uniquely reconstructed from its Euler equation.
Similarly to antiderivative, it is de�ned up to some term called null-Lagrangian.

De�nition 6.1.1 The Lagrangians �(x;u;u0) for which the operator S(�; u) of
the Euler equation (3.26) identically vanishes

S(�; u) = 0 8u
are called Null-Lagrangians.

Null-Lagrangians in variational problems with one independent variable are
linear functions of u0. Indeed, the Euler equation is a second-order di�erential
equation with respect to u:

d

dx

�
@

@u0
�

�
� @

@u
� =

@2�

@(u0)2
� u00 + @2�

@u0@u
� u0 + @2�

@u@x
� @�

@u
� 0: (6.6)

The coe�cient of u00 is equal to @2�
@(u0)2 . If the Euler equation holds identically,

this coe�cient is zero, and therefore @�
@u0 does not depend on u0. Hence, �

linearly depends on u0:

�(x;u;u0) = u0 �A(u; x) +B(u; x);

A = @2�
@u0@u ; B = @2�

@u@x � @�
@u :

(6.7)

If, inn addition, the following equality holds

@A

@x
=
@B

@u
; (6.8)

then the Euler equation vanishes identically. In this case, � is a null-Lagrangian.
We notice that the Null-Lagrangian (6.7) is simply a full di�erential of a

function �(x; u):

�(x;u;u0) =
d

dx
�(x; u) =

@�

@x
+
@�

@u
u0;

equations (6.8) are the integrability conditions (equality of mixed derivatives)
for �. The vanishing of the Euler equation corresponds to the Fundamental
theorem of calculus: The equalityZ b

a

d�(x; u)

dx
dx = �(b; u(b))� �(a; u(a)):

that does not depend on u(x) only on its end-points values.

Example 6.1.5 Function � = uu0 is the null-Lagrangian. Indeed,we check

d

dx

�
@

@u0
�

�
� @

@u
� = u0 � u0 � 0:

Remark 6.1.2 We will show in Section ?? that nonlinear null-Lagrangians in
multivariable problems exist that express the integrability conditions.
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Null-Lagrangians and Convexity The convexity requirements of the La-
grangian F that follow from the Weierstrass test are in agreement with the
concept of null-Lagrangians (see, for example [?]).

Consider a variational problem with the Lagrangian F ,

min
u

Z 1

0

F (x;u;u0)dx:

Adding a null-Lagrangian � to the given Lagrangian F does not a�ect the Euler
equation of the problem. The family of problems

min
u

Z 1

0

(F (x;u;u0) + t�(x;u;u0)) dx;

where t is an arbitrary number, corresponds to the same Euler equation. There-
fore, each solution to the Euler equation corresponds to a family of Lagrangians
F (x;u; z) + t�(x;u; z), where t is an arbitrary real number. This says, in par-
ticular, that a Lagrangian cannot be uniquely de�ned by the solution to the
Euler equation.

The stability of the minimizer against the Weierstrass variations should be a
property of the Lagrangian that is independent of the value of the parameter t.
It should be a common property of the family of equivalent Lagrangians. On the
other hand, if F (x;u; z) is convex with respect to z, then F (x;u; z)+t�(x;u; z)
is also convex. Indeed, �(x;u; z) is linear as a function of z, and adding the term
t�(x;u; z) does not a�ect the convexity of the sum. In other words, convexity
is a characteristic property of the family. Accordingly, it serves as a test for the
stability of an optimal solution.

6.2 Weak and strong local minima

6.2.1 Norms in functional space

Calculus of variation studies increment of a functional at close-by curves. The
answer to the question whether or not two curves are close to each other, depends
on de�nition of closeness. This question is studied in theory of topological
spaces. Unlike the distance between two points in �nite-dimensional Euclidian
space, the same two curves can be considered to be in�nitesimally close or far
parted depending of the meaning of \distance." The variational tests examine
the stability of the stationary solutions to small perturbations; di�erent tests
di�erently de�ne the smallness of perturbation.

In calculus of variations, there are three mostly used criteria to measure
the closeness of two di�erentiable functions f1(x) and f2(x): The norm N1 of
di�erence �f(x) = f1(x)� f2(x) in the values of functions

N1(�f) = max
x2(0;1)

j�f(x)j
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the norm N2 of di�erence of their derivatives,

N2(�f) = max
x2(0;1)

j�f 0(x)j

and the length N3 of the interval on which these functions are di�erent

N3(�f) = � if �f(x) = 0 8x 62 [x; x+�]

None of variational tests guarantees the global optimality of the tested tra-
jectory, only local minimum; at the other hand, these tests are simple enough
to be applied to practically interesting problems. The local minimum satis�es
the inequality

I(u) � I(u+ �u) 8�u : N (�u(x)) < "

where " is in�nitesimally small and N is a norm. The de�nition of what is local
minimum depends on the above de�nitions of the norm N .

If the perturbation is small in the following sense

NLegendre(�u) = N1(�u) +N2(�u) +N3(�u) < "

the Legendre text is satis�ed. The test assumes that the compared functions
and their derivatives are close everywhere, and they are identical outside of an
in�nitesimal interval.

The Weierstrass text assumes that the compared functions are close ev-
erywhere, and they are identical outside of an in�nitesimal interval, but their
derivatives are not close in that in�nitesimal interval of variation:

NWeierstrass(�u) = N1(�u) +N3(�u) < "; N2(�u) is arbitrary:

If the objective functional satisfy the Weierstrass test we say that the extremal
u(x) realizes a strong local minimum. The Weierstrass test is stronger than the
Legendre test.

The Jacobi test (see below, Section 6.3) assumes that

NJacobi(�u) = N1(�u) +N2(�u) < "; N3(�u) is arbitrary

that is the compared functions and their derivatives are close everywhere, but
the variation is not localized. The Jacobi test is stronger than the Legendre
test. If Jacobi test is satis�ed we say that the extremal u(x) realizes a weak local
minimum (not to be confused with minimum of weakly convergent sequence or
with minimum for localized variations). Neither Weierstrass and Jacobi tests
is stronger than the other: They test the stationary trajectory from di�erent
angles.

6.2.2 Su�cient condition for the weak local minimum

We assume that a trajectory u(x) satis�es the stationary conditions and Legen-
dre condition. We investigate the increment caused by a nonlocal variation �u
of an in�nitesimal magnitude:

NJacobi(�u) = N1(�u) +N2(�u) < "; N3(�u) is arbitrary:
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To compute the increment, we expand the Lagrangian into Taylor series keeping
terms up to O(�2). Recall that the linear of � terms are zero because the Euler
equation S(u; u0) = 0 for u(x) holds. We have

�I =

Z r

0

S(u; u0)�u dx+
Z r

0

�2Fdx+ o(�2) (6.9)

where

�2F =
@2F

@u2
(�u)2 + 2

@2F

@u@u0
(�u)(�u0) +

@2F

@(u0)2
(�u0)2 (6.10)

No variation of this kind can improve the stationary solution if the quadratic
form

Q(u; u0) =

 
@2F
@u2

@2F
@u@u0

@2F
@u@u0

@2F
@(u0)2

!

is positively de�ned,

Q(u; u0) > 0 on the stationary trajectory u(x) (6.11)

This condition is called the su�cient condition for the weak minimum because
it neglects the relation between �u and �u0 and treats them as independent trial
functions. If the su�cient condition is satis�ed, no trajectory that is smooth
and su�ciently close to the stationary trajectory can increase the objective
functional of the problem compared with the objective at that tested stationary
trajectory.

Notice that the term @2F
@u02

is nonnegative because of the Legendre condition
(??).

Example 6.2.1 Show that the su�cient condition is satis�ed for the Lagrangians

F =
1

2
u2 +

1

2
(u0)2 and F2 =

1

juj(u
0)2

Next example shows that violation of the su�cient conditions can yield to nonex-
istence of the solution.

Example 6.2.2 (Stationary solution is not a minimizer) Consider the vari-
ational problem:

I = min
u

Z r

0

�
1

2
(u0)2 � c

2
u2
�
dx u(0) = 0; u(r) = A

where c is a constant. The �rst variation �I is zero,

�I =

Z r

0

�
u00 + c2u

�
�udx = 0

if u(x) satis�es the Euler equation

u00 + c2u = 0; u(0) = 0; u(r) = A: (6.12)
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The stationary solution u(x) is

u(x) =

�
A

sin(cr)

�
sin(cx)

The Weierstrass test is satis�ed, because the dependence of the Lagrangian on the
derivative u0 is convex, @L

@2u02
= c2.

The second variation equals

�2I =

Z r

0

�
1

2
(�u0)2 � c2

2
(�u)2

�
dx

Since the ends of the trajectory are �xed, the variation �u satis�es homogeneous
conditions �u(0) = �u(r) = 0. Let us choose the variation as follow:

�u =

�
�x(a� x); 0 � x � a
0 x > a

where the interval of variation [0; a] is not greater that [0; r], a � r. Computing
the second variation, we obtain

�2I(a) =
�2

60
a3(c2a2 � 10); a � r

If second variation �2I(a) is negative, �2I(a) < 0 the stationary solution does not
correspond to the minimum of I . The second variation of the chosen type depends
on a and �2I is maximal when a = r. This maximum is negative when

r > rcrit =

p
10

c

We conclude that the stationary solution does not correspond to the minimum of
I if the length of the trajectory is larger than rcrit. If the length is smaller than
rcrit, the situation is inconclusive because we could choose another type of variation
di�erent from considered here and disprove the optimality of the stationary solution.

6.3 Jacobi variation

The Jacobi condition examines the optimality of "long" trajectories. It comple-
ments the Weierstrass test that investigates stability of a Lagrangian to strong
localized variations. Jacobi condition tries to disprove optimality of a stationary
trajectory by testing the dependence of Lagrangian on the minimizer itself not
of its derivative. This condition is stronger than the su�cient condition for the
weak minimum. We assume that a trajectory u(x) satis�es the stationary con-
ditions and Weierstrass condition but does not satisfy the su�cient conditions
for weak minimum, Q(u; u0) is not positively de�ned.

To derive Jacobi condition, we apply again an in�nitesimal nonlocal varia-
tion: �u = O(�)� 1 and �u0 = O(�)� 1 and examine the expression (6.10) for
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the second variation. Notice that we denote the upper limit of integration in
(6.10) by r; we are testing the stability of the trajectory depending on its length.
When a nonlocal "shallow" variation is applied, the increment increases because

of assumed positivity of @2F
@(u0)2 and decreases because of assumed nonpositivity

of the matrix Q. Depending on the length r of the interval of integration and
of chosen form of the variation �u, one of these e�ects prevails. If the second
e�ect is stronger, the extremal fails the test and is nonoptimal.

Let us choose the best shape �u of the variation. The expression (6.10)
itself is a variational problem for �u which we rename as v; the Lagrangian is
quadratic of v and v0 and the coe�cients are functions of x determined by the
stationary trajectory u(x):

�I =

Z r

0

�
Av2 + 2B v v0 + C(v0)2

�
dx; v(0) = v(r) = 0 (6.13)

where

A =
@2F

@u2
; B =

@2F

@u@u0
; C =

@2F

@(u0)2

The problem (6.13) correspond to the Euler equation that is a solution to Storm-
Liusville problem:

d

dx
(Cv0 +Bv) �Av = 0; v(0) = v(rconj) = 0 if r < rconj (6.14)

with boundary conditions v(0) = v(r) = 0. The point rconj is called a conjugate
point to the end of the interval. The problem is homogeneous: If v(x) is a
solution and c is a real number, cv(x) is also a solution.

Jacobi condition is satis�ed if the interval does not contain conjugate points,
that is there is no nontrivial solutions to (6.14) on any subinterval of [0; rconj],
that is if there are no nontrivial solutions of (6.14) with boundary conditions
v(r) = v(rconj) = 0 where 0 � rconj � r.

If this condition is violated, than there exist a family of trajectories

u(x)

�
u0 + v if x 2 [0; rconj]
u0 if x 2 [rconj; r]

that deliver the same value of the cost. Indeed, v is de�ned up to a multiplier:
If v is a solution, �v is a solution too. These trajectories have discontinu-
ous derivative at the points r1 and r2 which leads to a contradiction to the
Weierstrass-Erdman condition that does not allow a broken extremal at these
points.

Examples

Example 6.3.1 (Nonexistence of the minimizer: Blow up) Consider again
the problem in example 6.2.2

I = min
u

Z r

0

�
1

2
(u0)2 � c2

2
u2
�
dx u(0) = 0; u(r) = A
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The stationary trajectory and the second variation are give by formulas (13.21) and
(13.21), respectively.

Instead of arbitrary choosing the second variation, we now choose it as a solution
to the homogeneous problem (6.14) for v = �u

v00 + c2v = 0; u(0) = 0; u(rconj) = 0; rconj � r (6.15)

This problem has a nontrivial solution v = � sin(cx) if the length of the interval is
large enough to satisfy homogeneous condition of the right end, crconj = � or

r � r(conj) =
�

c

The second variation �2I is negative when r is large,

�2I � 1

r
�2
�
�2

r2
� c2

�
< 0 if r >

�

c

which shows that the a stationary solution is not a minimizer.
To clarify the phenomenon, let us compute the stationary solution from the

Euler equation (6.12). We have

u(x) =

�
A

sin(cr)

�
sin(cx) and I(u) =

A2

sin2(cr)

�
�2

r2
� c2

�

When r increases approaching the value c
�
, the magnitude of the stationary solution

inde�nitely grows, and the cost inde�nitely decreases:

lim
r! c

�
�0
I(u) = �1

Obviously, the solution of the Euler equation that corresponds to �nite I(u)
when r > �

c
is not a minimizer.

Remark 6.3.1 Comparing this result with the result in Example (6.3.1), we see
that the optimal choice of variation improved the result at only 0:65%.

6.3.1 Does Nature minimize action?

The next example deals with a system of multiple degrees of freedom.
Consider the variational problem with the Lagrangian

L =

nX
i=1

1

2
mui

02 � 1

2
C(ui � ui�1)2; u(0) = u0

We will see later in Chapter ?? that this Lagrangian describes the action of a
chain of particles with masses m connected by springs with constant C. The
second variation

�2L =

nX
i=1

1

2
m _vi

2 � 1

2
C(vi � vi�1)2; v0 = 0; vn = 0
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corresponds to the Euler equation { the eigenvalue problem

m �V =
C

m
AV

where V = v1(t); : : : ; vn(t) and

A =

0
BBB@
�2 1 0 : : : 0
1 �2 1 : : : 0
0 1 �2 : : : 0
: : : : : : : : : : : : : : :
0 0 0 : : : �2

1
CCCA :

The problem has a solution { vector v(t)

v(t) =
X

�kvk sin!kt v(0) = v(Tconj) = 0; Tconj � T

where vk are the eigenvectors, � are coe�cients found from initial conditions,
and !k are the square roots of eigenvalues of the matrix A. Solving the charac-
teristic equation for eigenvalues det(A�!2I) = 0 we �nd that these eigenvalues
are

!k = 2

r
C

m
sin2

 r
C

m

�k

n

!
; k = 1; : : : n

The Jacobi condition is violated if v(t) is consistent with the homogeneous initial
and �nal conditions that is if the time interval is short enough. Namely, The
condition is violated when the duration T is larger than

T � �

max(!k)
� 2�

r
m

C

.
The continuous limit of the chain with the masses is achieved when the

number N of notes inde�nitely growth and their mass decreases correspondingly
as m

N
, and the sti�ness of one link growth as CN as it become N times shorter.

Correspondingly, s
C(N)

m(N)
= N

s
C(0)

m(0)

and the maximal eigenvalue tends to in�nity as N !1. This implies that the
action J of the continuous system is not minimized at any time interval T .

What is minimized in classical mechanics?



Chapter 7

Irregular solutions and

Relaxation

Every problem of the calculus of variations has a solution, provided

that the word \solution" is suitably understood.

David Hilbert

7.1 Exotic and classical solutions

The classical approach to variational problems assumes that the optimal trajec-
tory is a di�erentiable curve { a solution to the Euler equation that, in addition,
satis�es the Weierstrass and Jacobi tests. In this chapter, we consider the varia-
tional problems which solutions do not satisfy necessary conditions of optimality.
Either the Euler equation does not have solution, or Jacobi or Weierstrass tests
are not satis�ed; in any case, the extremal cannot be found from stationar-
ity conditions. We have seen such solution in the problem of minimal surface
(Goldschmidt solution, Section 4.1.3).

A minimization problem always can be solved in a way because it allows for
a minimizing sequence: the functions us(t) with the property I(u�) � I(us+1).
The functionals I(u�) form a monotonic sequence of real number that converges
to a real or improper limit. In this sense, every variational problem can be
solved, but the limiting solution lims!1 uS may be irregular; in other terms,
it may not exist in an assumed set of functions. Especially, derivation of Euler
equation uses an assumption that the minimum is a di�erentiable function. This
assumption leads to complications because the set of di�erentiable functions is
open and the limits of sequences of di�erentiable functions are not necessary
di�erentiable functions themselves. For example, the limit of the sequence of
in�nitely di�erentiable function

�n(x) =
n

2�
exp

�
x2

2n

�

125
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is not even a function but a distribution - the � function. The limit H(x) of
in�nitely di�erentiable functions

H(x) =

Z x

�1
�n(x)dx =

�
0 if x < 0
1 if x > 1

is a discontinuous Heaviside function. The limit

lim
n!1

sin(nx)

does not exist for any x 6= 0. The sequence 1
n
sin(nx) converges to zero, but

its derivative does not converge to a limit but in�nitely often oscillates in the
interval [�1; 1], and derivative of a converging to zero sequence 1p

n
sin(nx) does

not converge to a limit and is unbounded. These or similar sequences can
represent minimizing sequences in a variational problems. Here we give a brief
introduction to the methods to deal with such "exotic" solutions"

How to deal with irregular problems The possible nonexistence of mini-
mizer poses several challenging questions. First, criteria are needed to establish
which problems have a classical solution and which have not. These criteria
analyze the type of Lagrangians and results in existence theorems.

The are two alternative ideas in handling problems with nondi�erentiable
minimizers. The admissible class of minimizers can be enlarged and closed it in
a way so that the "exotic" limits of minimizers would be included in the admis-
sible set. This procedure, the relaxation underlined in the Hilbert's quotation
motivated the introduction of distributions and the corresponding functional
spaces, as well as development of relaxation methods. Below, we consider sev-
eral ill-posed problems that require rethinking of the concept of a solution.

Alternatively, the minimization problem can be constrained so that the ex-
otic solutions are penalized and the problem will avoid them; this approach
called regularization forces the problem select a classical solution at the expense
of increasing the objective functional.

Existence conditions We do not prove here existence theorems because the
arguments use theorems from functional analysis. Instead, we outline the ideas
of such theorems and refer to more advance and rigorous books for the proofs.
We formulate here a list of conditions guarantying the smooth classical solution
to a variational problem.

1. The Lagrangian superlinearly growths with respect to u0:

lim
ju0j!1

F (x; u; u0)
ju0j =1 8x; u(x) (7.1)

This condition forbids any �nite jumps of the optimal trajectory u(x); any
such jump leads to an in�nite penalty in the problem's cost.
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2. The cost of the problem growths inde�nitely when juj ! 1. This condi-
tion forbids a blow-up of the solution.

3. The Lagrangian is convex with respect to u0:

F (x; u; u0) is convex function of u0 8x; u(x)
at the optimal trajectory u. This condition forbids in�nite oscillations
because they would increase the cost of the problem.

Idea of the proof:

1. First two conditions guarantee that the limit of any minimizing sequence
is bounded and continuous. The cost of the problem unlimitedly growths
when either the function or its derivative tent to in�nity at a set of nonzero
measure.

2. It is possible extract a weakly convergent subsequence uS + u0 from a
bounded minimizing sequence. Roughly, this means that the subsequence
u�(x) in a sense approximates a limiting function u0, but may wiggle
around it in�nitely often.

3. The convexity of Lagrangian eliminates the possibility of wiggling, because
the cost of the problem with convex Lagrangian is smaller at a smooth
function than on at any close-by wiggling function.

The conditions of the theorem can be alternated. Example?

7.2 Unbounded solutions. Regularization

7.2.1 Examples of discontinuous solutions

We start with three simple examples of variational problems with discontinuous
solution. We apply regularization to it, an approach to deal with ill-posed
variational problems as (7.2). According to this approach, we slightly change
the Lagrangian and arrive at a regular (di�erentiable) solution. Then we may
consider the sequence of perturbed solutions when the perturbation parameter
tends to zero.

A problem with discontinuous extremal

Consider the minimization problem

I0 = min
u(x)

I(u); I(u) =

Z 1

�1
x2u02dx; u(�1) = �1; u(1) = 1; (7.2)

We observe that I(u) � 0 8u, and therefore I0 � 0. The Lagrangian is convex
function of u0, and the third condition is satis�ed. However, the second condition
is violated in x = 0:

lim
ju0j!1

x2u02

ju0j
����
x=0

= 0
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The functional is of sublinear growth at only one point x = 0.
Let us show that the solution is discontinuous. Assume the contrary, that

the solution satis�es the Euler equation (x2u0)0 = 0 everywhere. The equation
admits the integral

@L

@u0
= 2x2u0 = C:

If C 6= 0, the value of I(u) is in�nity, because then u0 = C
2x2 , the Lagrangian

becomes

x2u02 =
C2

x2
if C 6= 0:

and the integral of Lagrangian diverges. A �nite value of the objective corre-
sponds to C = 0 which implies that u00(x) = 0 if x 6= 0. Accounting for the
boundary conditions, we �nd

u0(x) =

��1 if x < 0
1 if x > 0

and u0(0) is not de�ned.
We arrived at the unexpected result that violate the assumptions used when

the Euler equation is derived: u0(x) is discontinuous at x = 0 and u00 exists only
in the sense of distributions:

u0(x) = �1 + 2H(x); u00(x) = 2�(x)

The question is how should this result be interpreted. In the classical sense, the
solution of this problem does not exist. However, the discontinuous minimizer
makes sense even if it does not belong to the set of di�erentiable functions.

Stabilizers We may slightly perturb the problem so that it has a classical
solution that is close to the discontinuous solution of the original problem. Reg-
ularization can be performed by adding to the Lagrangian a stabilizer, a strictly
convex function ��(u0) of superlinear growth.

Consider the perturbed problem for the Example 7.2:

I� = min
u(x)

I�(u); I�(u) =

Z 1

�1

�
x2u02 + �2u02

�
dx; u(�1) = �1; u(1) = 1;

(7.3)
Here, the perturbation �2u0 is added to the original Lagrangian �2u0; the per-
turbed Lagrangian is of superlinear growth everywhere.

The �rst integral of the Euler equation for the perturbed problem becomes

(x2 + �2)u0 = C; or du = C
dx

x2 + �2

Integrating and accounting for the boundary conditions, we obtain

u�(x) = C arctan
x

�
; C =

�
arctan

1

�

��1
When �! 0, the solution u�(x) converges to u0(x) although the convergence

is not uniform at x = 0.
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Solution with �-sequence

Consider the variational problem with an inequality constraint

max
u(x)

Z �

0

u0 sin(x)dx; u(0) = 0; u(�) = 1; u0(x) � 0 8x:

The minimizer either corresponds to the limit of derivative

u0(x) = 0; x 2 [�i; �i];

on subintervals [�i; �i] of [0; �], or it satis�es the stationary condition in [�i; �i+1]
between the intervals of constancy. The derivative cannot be zero everywhere,
because this would correspond to a constant u(x) and would violate the bound-
ary conditions.

However, the minimizer cannot correspond to the solution of Euler equation
at any interval. Indeed, the Lagrangian depends only on x and u0. The �rst
integral @L

@u0
= C of the Euler equation yields to an absurd result

sin(x) = constant 8x 2 [�i; �i+1]

The Euler equation does not gives the minimizer. Something is wrong!
This problem can be immediately solved by the inequalityZ �

0

f(x)g(x)dx �
�
max
x2[0;�]

g(x)

�Z �

0

jf(x)jdx:

that is valid for all functions f and g if the involved integrals exist. We set
g(x) = sin(x) and f(x) = jf(x)j = u0 (because u0 is nonnegative), account for
the constraintsZ �

0

jf(x)jdx = u(�)� u(0) = 1 and max
x2[0;�]

sin(x) = 1;

and obtain the upper bound

I(u) =

Z �

0

u0 sin(x)dx � 1 8u:

This bound is achievable by the limit the minimizing sequence that tends to
a Heaviside function �n(x) ! H(x � �=2). Notice that the derivative of such
sequence tends to the �-function, u0(x) = �(x� �=2). We check that the bound
is realizable, Z �

0

�
�
x� �

2

�
sin(x)dx = sin

��
2

�
= 1:

but the minimizer is discontinuous.
This problem also can be regularized. Here, we show another way to regular-

ization, by imposing an additional pointwise inequality u0(x) �M 8x. Because
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the intermediate values of u0 are never optimal, it would alternate the limiting
values:

u0M (x) =

�
0 if x =2 ��2 � 1

2M ; �2 +
1

2M

�
;

M if x 2 ��2 � 1
2M ; �2 +

1
2M

�
;

The objective functional is equal to

I(uM ) =M

Z �
2
+ 1

2M

�
2
� 1

2M

sin(x)dx = 2M sin

�
1

2M

�

When M tends to in�nity, IM goas to its limit

lim
M!1

IM = 1;

the length 1
M

of the interval where u0 = M goes to zero so that u0M (t) weakly
converges to the �-function for u0, u0M (t)+ �

�
x� �

2

�
.

The constrained variational problems are subject to control theory; they are
are discussed later in Chapter 10.1.

Discontinuities in problems of geometrical optics

We have already seen in Section 4.1.3 that the minimal surface problem

I0 = min
u(x)

I(u); I(u) =

Z L

o

u
p
1 + (u0)2dx; u(�1) = 1; u(1) = 1; (7.4)

can lead to a discontinuous solution (Goldschmidt solution)

u = �H(x+ 1) +H(x� 1)

if L is larger than a threshold. The minimal surface is an example of problem of
geometric optics. We should ask: What is the reason of discontinuous solutions
in such problems? Notice that the Lagrangian in minimal surface problem (and
in any other problem of geometric optics) is of linear growth:

F = u
p
1 + (u0)2; lim

ju0j!1
F (x; u; u0)

ju0j = u

which hints of a possible appearance of the discontinuous solution.

Let us investigate the discontinuous solutions of Lagrangians of linear growth.
Suppose that a minimizing sequence u� of di�erentiable functions tends to a dis-
continuous at the point x0 function, as follows

u�(x) = ��(x) +  �(x)

��(x) + �(x)

��(x) + �H(x� x0); � 6= 0
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where � and  are di�erentiable functions. More speci�cally, assume that  is
piece-wise linear,

 �(x) =

8<
:
0 if x < x0 � �
�
�
(x� x0 + �) if x0 � � � x � x0

� if x > x0:

where � = 1
s
.

Notice that  0 is zero outside of the interval [x0 � �; x0] where it is equal to
a large constant,

 0 =
�
0 if x =2 [x0 � �; x0]
1
�

if x 2 [x0 � �; x0]

and compute

q
1 + [(u�)0]2 =

8><
>:
q
1 + [(��)0]2 if x =2 [x0 � �; x0]r
1 +

�
�2

�2
+ (��)0

�2
= �

�
+ o

�
1
�

�
if x 2 [x0 � �; x0]

We observe that

q
1 + [(u�)0]2 is independent of  outside of the interval [x0 �

�; x0] where it is equal to a large constant that depends only on the magnitude
of the jump.

The objective integral stays �nite in spite of the inde�nite growth of the
derivative in [x0 � �; x0] because of smallness of this interval,

I(u�) =

Z x0��

0

��
q
1 + (��0)2dx

+ M +

Z L

x0

(� + ��)
q
1 + (��0)2dx+ o

�
1

�

�

where M represent the contribution of the interval [x0 � �; x0]. Computing M ,
we replace the term

p
1 + (u�0)2 by its estimate,

M =

Z x0

x0��
u�
p
1 + (u�0)2dx � �

�

Z x0

x0��
�(x)dx +

�

�

Z x0

x0��
 �(x))dx:

Substituting the expression for  � and using the continuity of �, we obtain

M = ��(x0) +
1

2
�2 if �! 0

The contribution M due to the discontinuity of the minimizer is �nite when
the magnitude j�j of the jump is �nite. Therefore, discontinuous solutions are
tolerated in the geometric optics: They do not lead to in�nitely large values of
the objective functionals. The Goldschmidt solution corresponds to zero smooth
component u(x) = 0, x = (a; b) and two jumps M1 and M2 of the magnitudes
u(a) and u(b), respectively. The smooth component gives zero contribution, and
the contributions of the jumps are

I =
1

2

�
u2(a) + u2(b)

�
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Why are the problems nonregular Notice that both examples, (7.4) and
(7.2) do not satisfy assumption (??). Notice also, that in the problem (7.2),
assumption (??) is violated at only one point, x = 0.

To the contrary, problems of Lagrange mechanics do satisfy this assumption
because kinetic energy depends of the speed _q quadratically.

7.2.2 Regularization

Regularization as smooth approximation The smoothing out feature of
regularization is easy demonstrated on the following example of a quadratic
approximation of a function by a smoother one.

Approximate a function f(x) where x 2 R, by the function u(x), adding a
quadratic stabilizer; this problem takes the form

min
u

Z 1

�1
[�2(u0)2 + (u� f)2]dx

The Euler equation

�2u00 � u = �f (7.5)

can be easily solved using the Green function

G(x; y) =
1

2�
exp

�
�jx� yj

�

�

of the operator in the left-hand side of (7.5). We have

u(x) =
1

2�

Z 1

�1
exp

�
�jx� yj

�

�
f(y)dy

that is the expression of the averaged f . The smaller is � the closer is the average
to f .

Quadratic stabilizers Besides the stabilizer "u02 , other stabilizers can be
considered: The added term "u2 penalizes for large values of the minimizer,
"(u00)2 penalizes for the curvature of the minimizer and is insensitive to linearly
growing solutions. The stabilizers can be inhomogeneous like "(u � utarget)

2;
they force the solution stay close to a target value. The choice of a speci�c
stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

F = �4(u00)2 + (u� f(x)2

Show that u = f(x) if f(x) is any polynomial of the order not higher than three.
Find an integral representation for u(f) if the function f(x) is de�ned at the
interval jxj � 1 and at the axis x 2 R.
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7.2.3 Regularization of a �nite-dimensional problem

As the most of variational methods, the regularization has a �nite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have in�nitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a �nite dimensional
problem. Consider a linear system

Ax = b (7.6)

where A is a square n� b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

� If detA 6= 0, the problem has a unique solution:

x = A�1b if detA 6= 0 (7.7)

� If detA = 0 and Ab 6= 0, the problem has no solutions.

� If detA = 0 and Ab = 0, the problem has in�nitely many solutions.

In practice, we also deal with an additional di�culty: The determinant detA
may be a \very small" number and one cannot be sure whether its value is a
result of rounding of digits or it has a \physical meaning." In any case, the
errors of using the formula (7.7) can be arbitrary large and the norm of the
solution is not bounded.

To address this di�culties, it is helpful to restate linear problem (7.6) as an
extremal problem:

min
x2Rn

(Ax � b)2 (7.8)

This problem does have at least one solution, no matter what the matrix A
is. This solution coincides with the solution of the original problem (7.6) when
this problem has a unique solution; in this case the cost of the minimization
problem (7.8) is zero. Otherwise, the minimization problem provides "the best
approximation" of the non-existing solution.

If the problem (7.6) has in�nitely many solutions, so does problem (7.8).
Corresponding minimizing sequences fxsg can be unbounded, kxsk ! 1 when
s!1.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x2Rn

(Ax � b)2 + �x2

The solution of the last problem exists and is unique. Indeed, we have by
di�erentiation

(ATA+ �I)x�AT b = 0
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and
x = (ATA+ �I)�1AT b

We mention that

1. The inverse exists since the matrix ATA is nonnegative de�ned, and � is
positively de�ned. The eigenvalues of the matrix (ATA + �I)�1 are not
smaller than ��1

2. Suppose that we are dealing with a well-posed problem (7.6), that is the
matrix A is not degenerate. If � � 1, the solution approximately is x =
A�1b� �(A2AT )�1b When �! 0, the solution becomes the solution (7.7)
of the unperturbed problem, x! A�1b.

3. If the problem (7.6) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

kxk � 1

�
kbk

Remark 7.2.1 Instead of the regularizing term �x2, we may use any positively
de�ne quadratic �(xTPx + pTx) where matrix P is positively de�ned, P > 0, or
other strongly convex function of x.

7.2.4 Growth conditions and discontinuous extremals

Growth conditions of Lagrangians Assume that the Lagrangian is bounded
as follows:

CL(x; y)jzjL � lim
jzj!1

F (x; y; z) � CU (x; y)jzjU 8x; y

where CL and CU are lower and upper bound and L and U are positive numbers.
We prove that

Theorem 7.2.1 (Growth conditions) Depending on the growth conditions,
the problems can be classi�ed as follows.

� If L > 1 the Lagrangian is of superlinear growth. The derivative of a minimizer
is bounded almost everywhere. The minimizer is continuous. Euler equation
could correspond to a minimizer.

� If U < 1 the Lagrangian is of sublinear growth. Notice that it is also noncon-
vex, and the Weierstrass condition is violated. The derivative of a minimizer
can be unbounded almost everywhere. Optimal trajectory is a saw-teeth curve
with dense set of intervals of arbitrary fast growth. The Euler equation never
corresponds to a minimum. A variational problem with Lagrangian of sublin-
ear growth

I = inf
u:u(0)=a0;u(1)=a1

Z 1

0

Fsub(x; u; u
0)dx;
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has the objective functional equal to

I =

Z 1

0

�(x) dx �(x) = min
z

min
y
F (x; y; z)

independently of boundary values a1 and a2.

� If L � 1 and U � 1 the Lagrangian may have either continuous or discontin-
uous solutions. Euler equation could correspond to a minimizer.

Discontinuous minimizers We investigate here if the minimizer u(x) can
be discontinuous at a point x0 inside the interval of integration [0; 1]:

u(x) =

�
�1(x); x < x0
�2(x); x > x0

and
�1(x0 � 0) 6= �2(x0 + 0):

We start with a lemma:

Theorem 7.2.2 Consider a di�erentiable function F (x; y; z) and a sequence of
functions us(x) = u0(x)+ js(x) such that u0 and its derivative are bounded every-
where at [0; 1],

ju0(x)j � C; ju00(x)j � C 8x 2 [0; 1];

js(x) is constant everywhere except in an interval [x0; x0 +
1
s
] � [0; 1],

js(x) =

�
� if x 2 [0; x0]
� if x 2 �x0 + 1

s
; 1
�

where it growths unlimitedly fast, and a proper or improper limit exists

lim
z!1

F (x; y; z)

z
= A (7.9)

where �1 � A �1.
Then

lim
s!1

Z 1

0

F (x; us; u
0
s)dx =

Z x0

0

F (x; us + �; u0s)dx +Z 1

x0

F (x; us + �; u0s)dx +A(� � �) (7.10)

Proof: The �rst term in the right-hand side of (21.15) is obtained by direct
substitution of the value of js; the second term is the limit of the integralZ 1

x0+
1
s

F (x; us; u
0
s)dx
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when s!1. The third term appears by virtue of (7.9) and because j0s � u00:

lim
s!1

Z x0+
1
s

x0

F (x; u0 + js; u
0
0 + js)dx =

lim
s!1

Z x0+
1
s

x0

F (x; u0 + js; u
0
0 + j0s)

u00 + j0s
(u00 + j0s)dx =

A lim
s!1

Z x0+
1
s

x0

(j0s)dx = A(� � �)

We assume that the functions �1(x) and �2(x) minimize the variational
functional on the intervals [0; x0] and [x0; 1], respectively, respectively,

I1(�1) = min
u
J1(u); I2(�2) = min

u
J2(u)

If the Lagrangian is of superlinear growth, L > 1, then discontinuities never
occurs in minimizing sequences: The penalty for them is in�nitely high. If the
Lagrangian is of sublinear growth, U < 1, then the �nite discontinuities in min-
imizing sequences are not penalized at all. If the Lagrangian is of linear growth,
L = U = 1, then I3 is �nite. The discontinuities may occurs in minimizing
sequences: The penalty for them is �nite.

7.3 In�nitely oscillatory solutions: Relaxation

7.3.1 Nonconvex Variational Problems. An example

When a Lagrangian F (x;y; z) of the problem

inf
u

J(u); J(u) = inf
u

Z 1

0

F (x; u; u0)dx; u(0) = a0; u(1) = a1 (7.11)

is nonconvex with respect to z, the Weierstrass test fails. A minimizing sequence
cannot tend to a di�erentiable curve in the limit; otherwise it would satisfy the
Euler equation and the Weierstrass test,

De�nition 7.3.1 We call the forbidden region Zf the set of z for which F (x;y; z)
is not convex with respect to z,

The derivative u0 of a minimizer u of (7.11) should never belong to the
region Zf:

u0 62 Zf: (7.12)

Instead, the minimizer "jumps over" the forbidden set, and does it in�nitely
often. Because of this jumps, the minimizer stays outside of the forbidden
interval but its average can take any value within or outside the forbidden
region.
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We will demonstrate that a minimizing sequence tends to a \generalized
curve." It consists of in�nitesimal zigzags. The limiting curve has a dense set
of points of discontinuity of the derivative. A detailed explanation of this phe-
nomenon can be found, for example, in Young:1942:GSCa, Young:1942:GSCb,
Gamkrelidze:1962:SOS,Young:1969:LCV,Warga:1972:OCD,Gamkrelidze:1985:SMO.
Here we give a brief description of it, mainly by working on several examples.

To deal with a nonconvex problem, we \relax" it. Relaxation means that we
replace the problem with another one that has the same cost but whose solution
is stable against �ne-scale perturbations; particularly, it cannot be improved by
the Weierstrass variation. The relaxed problem has the following two basic
properties:

� The relaxed problem has a classical solution.

� The in�mum of the functional (the cost of the problem) in the initial
problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation based on necessary
and su�cient conditions. Each of them yields to the same construction but
uses di�erent arguments to achieve it. In the next chapters we will see similar
procedures applied to variational problems with multiple integrals; sometimes
they also yield the same construction, but generally they result in di�erent
relaxations.

A non-convex problem Consider a simple variational problem that yields
to an exotic solution [?]:

inf
u

I(u) = inf
u

Z 1

0

G(u; u0)dx; u(0) = u(1) = 0 (7.13)

where

G(u; v) = u2 +

8<
:
(v � 1)2; if v � 1

2
1
2 � v2 if � 1

2 � v � 1
2

(v + 1)2 if v � � 1
2

: (7.14)

The graph of the function G(:; v) is presented in ??B; it is a nonconvex twice
di�erentiable function of v of superlinear growth.

The Lagrangian G penalizes the trajectory u for having the speed ju0j di�er-
ent from �1 and penalizes the deection of the trajectory u from zero. These
contradictory requirements cannot be resolved in the class of classical trajecto-
ries.

Indeed, a di�erentiable minimizer satis�es the Euler equation (??) that takes
the form

u00 � u = 0 if ju0j � 1
2

u00 + u = 0 if ju0j � 1
2 :

(7.15)

The Weierstrass test additionally requires convexity of G(u; v) with respect
to v; the Lagrangian G(u; v) is nonconvex in the interval v 2 (�1; 1) (see ??).
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The Weierstrass test requires that the extremal (7.20) is supplemented by the
inequality (recall that v = u0)

u0 62 (�1; 1) at the optimal trajectory. (7.16)

and it is not clear how to satisfy it. Indeed, the Euler equation does not leave
a freedom to change the trajectory to avoid the forbidden interval. Notice also,
that the second regime in (7.20) is never optimal because it is realized inside of
the forbidden interval.

The Weierstrass-Erdman condition that requires continuity of @L
@u0

permits
switching between the �rst (u0 > 1=2) and third (u0 < �1=2) regimes in (??)
when

2
�
u0(1) � 1

�
= 2

�
u0(3) + 1

�
or when

u0(1) = 1; u0(3) = �1
which means the switching from one end of the forbidden interval to another

Remark 7.3.1 Observe, that the easier veri�able Legendre condition @2F
@(u0)2 � 0

gives a twice smaller forbidden region ju0j � 1
2 and is not in the agreement with

Weierstrass-Erdman condition. One should always use stronger conditions!

Minimizing sequence The minimizing sequence for problem (7.13) can be
immediately constructed. Indeed, the in�mum of (7.13) obviously is nonnega-
tive, infu I(u) � 0. Therefore, a sequence us with the property

lim
s!1 I(us) = 0 (7.17)

is a minimizing sequence.
Consider a set of functions ~us(x) with the derivatives equal to �1 at each

point,
~u0(x) = �1 8x:

These functions belong to the boundary of the forbidden interval of the noncon-
vexity of G(:; v); they make the second term in the Lagrangian (7.14) vanish,
G(u; v) = u2, and the problem becomes

I(~us; (~us)0) =
Z 1

0

(~us)2dx: (7.18)

The sequence ~us oscillates near zero if the derivative (~us)0 changes its sign on
intervals of equal length. The cost I(~us) depends on the density of switching
points and tends to zero when the number of these points increases (see ??).
Therefore, the minimizing sequence consists of the saw-tooth functions ~us; the
heights of the teeth tend to zero and their number tends to in�nity as s!1.

Note that the minimizing sequence f~usg does not converge to any classical
function. This minimizer ~us(x) satis�es the contradictory requirements, namely,
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the derivative must keep the absolute value equal to one, but the function itself
must be arbitrarily close to zero:

j(~us)0j = 1 8x 2 [0; 1]; max
x2[0;1]

~us ! 0 as s!1: (7.19)

The limiting curve u0 has zero norm in C0[0; 1] but a �nite norm in C1[0; 1].

Remark 7.3.2 Below, we consider this problem with arbitrary boundary values;
the solution corresponds partly to the classical extremal (7.20), (7.16), and partly
to the saw-tooth curve; in the last case u0 belongs on the boundary of the forbidden
interval ju0j = 1.

Regularization and relaxation This considered nonconvex problem is an-
other example of an ill-posed variational problem. For these problems, the
classical variational technique based on the Euler equation fails to work. Here,
The limiting curve is not a discontinuous curve as in the previous example, but
a limit of in�nitely fast oscillating functions, similar to lim!!1 sin(!x).

We may apply regularization to discourage the solution to oscillate in�nitely
often. For example, we may penalize for the discontinuity of the u0 adding the
stabilizing term �(u00)2 to the Lagrangian. Doing this, we pass to the problem

min
u

Z 1

0

(�2(u00)2 +G(u; u0))dx

that corresponds to Euler equation:

�2uIV � u00 + u = 0 if ju0j � 1
2

�2uIV + u00 + u = 0 if ju0j � 1
2 :

(7.20)

The Weierstrass condition this time requires the convexity of the dependence of
Lagrangian on u00; this condition is satis�es.

One can see that the solution of equation (7.20) is oscillatory; the period of
oscillation is of the order of �� 1: The solution still tends to an in�nitely often
oscillating distribution. When � is positive but small, the solution has �nite but
large number of wiggles. The computation of such solutions is di�cult and often
unnecessary: It strongly depends on an arti�cial parameter �, which is di�cult
to justify physically. Although formally the solution of regularized problem
exists, here the regularization does not accomplish much: The problem is still
computationally di�cult and the di�culty grows when � ! 0. Other methods
are needed to deal with such problems.

Below we describe the relaxation of a nonconvex variational problem. The
idea of relaxation is in a sense opposite to regularization. Instead of penalization
for fast oscillations, we admit them as a legitime minimizers enlarging set of
minimizers. The main problem is to �nd an adequate description of in�nitely
often switching controls in terms of smooth functions. It turns out that the limits
of oscillating minimizers allows for a parametrization and can be e�ectively
described by a several smooth functions: the values of alternating limits for u0

and the average time that minimizer spends on each limit.
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7.3.2 Minimal Extension

We introduce the idea of relaxation of a variational problem. Consider the
class of Lagrangians NF (x; y; z) that are smaller than F (x; y; z) and satisfy the
Weierstrass test W(NF (x; y; z)) � 0:�NF (x; y; z)� F (x; y; z) � 0;

W(NF (x; y; z)) � 0
8 x; y; z: (7.21)

Let us take the maximum on NF (x; y; z) and call it SF . Clearly, SF corre-
sponds to turning one of these inequalities into an equality:

SF (x; y; z) = F (x; y; z); W(SF (x; y; z)) � 0 if z 62 Zf;
SF (x; y; z) � F (x; y; z); W(SF (x; y; z)) = 0 if z 2 Zf: (7.22)

This variational inequality describes the extension of the Lagrangian of an un-
stable variational problem. Notice that

1. The �rst equality holds in the region of convexity of F and the extension
coincides with F in that region.

2. In the region where F is not convex, the Weierstrass test of the extended
Lagrangian is satis�ed as an equality; this equality serves to determine
the extension.

These conditions imply that SF is convex everywhere. Also, SF is the maximum
over all convex functions that do not exceed F . Again, SF is equal to the convex
envelope of F :

SF (x; y; z) = CzF (x; y; z): (7.23)

The cost of the problem remains the same because the convex envelope corre-
sponds to a minimizing sequence of the original problem.

Remark 7.3.3 Note that the geometrical property of convexity never explicitly
appears here. We simply satisfy the Weierstrass necessary condition everywhere.
Hence, this relaxation procedure can be extended to more complicated multidimen-
sional problems for which the Weierstrass condition and convexity do not coincide.

Recall that the derivative of the minimizer never takes values in the region
Zf of nonconvexity of F . Therefore, a solution to a nonconvex problem stays
the same if its Lagrangian F (x;y; z) is replaced by any LagrangianNF (x;y; z)
that satis�es the restrictions

NF (x;y; z) = F (x;y; z) 8 z 62 Zf;
NF (x;y; z) > CF (x;y; z) 8 z 2 Zf: (7.24)

Indeed, the two Lagrangians F (x;y; z) and NF (x;y; z) coincide in the region of
convexity of F . Therefore, the solutions to the variational problem also coincide
in this region. Neither Lagrangian satis�es the Weierstrass test in the forbidden
region of nonconvexity. Therefore, no minimizer can distinguish between these
two problems: It never takes values in Zf. The behavior of the Lagrangian in
the forbidden region is simply of no importance. In this interval, the Lagrangian
cannot be computed back from the minimizer.
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Minimizing Sequences Let us prove that the considered extension preserves
the value of the objective functional. Consider the extremal problem (7.11) of
superlinear growth and the corresponding stationary solution u(x) that may not
satisfy the Weierstrass test. Let us perturb the trajectory u by a di�erentiable
function !(x) with the properties:

max
x
j!(x)j � "; !(xk) = 0 k = 1 : : :N

where the points xk uniformly cover the interval (a; b). The perturbed trajectory
wiggles around the stationary one, crossing it at N uniformly distributed points;
the derivative of the perturbation is not bounded.

The integral J(u; !)on the perturbed trajectory

J(u; !) =

Z 1

0

F (x; u+ !; u0 + !0)dx

is estimated as

J(u; !) =

Z 1

0

F (x; u; u0 + !0)dx+ o("):

because of the smallness of !. The derivative !0(x) = v(x) is a new minimizer
constrained by N conditions

Z k+1

N

k
N

v(x)dx = 0; k = 0; : : :N � 1;

correspondingly, the variational problem can be rewritten as

J(u; !) =

N�1X
k=1

Z k+1
N

k
N

F (x; u; u0 + !0)dx + o

�
1

N

�
:

Perform minimization of a term of the above sum with respect of v:

Ik(u) = min
v(x)

Z k+1
N

k
N

F (x; u; u0 + v)dx subject to

Z k+1
N

k
N

v(x)dx = 0

This is exactly the problem (13.21) of the convex envelope with respect to v.

By referring to the Carath�eodory theorem (2.13) we conclude that the min-
imizer v(x) is a piece-wise constant function in ( k

N
; k+1
N

) that takes at most
n + 1 values v1; : : : vn+1 at the intervals of the length m1L; : : :mn+1L, where
L = k

N
is the length of the interval of integration. These values are subject to

the constraints (see (??))

mi(x) � 0;

nX
i=1

mi = 1;

pX
i=1

mivi = 0: (7.25)
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Average
derivative

Pointwise deriva-
tives

Optimal concen-
trations

Convex enve-
lope CG(u; v)

v < �1 v01 = v02 = v m0

1 = 1; m0

2 = 0 u2 + (v � 1)2

jvj < 1 v01 = 1; v02 = �1 m0

1 = m0

2 =
1

2
u2

v > 1 v01 = v02 = v m0

1 = 0; m0

2 = 1 u2 + (v + 1)2

Table 7.1: Characteristics of an optimal solution in Example ??.

This minimum coincides with the convex envelope of the original Lagrangian
with respect to its last argument (see (2.13)):

Ik = min
mi;vi2(7:25)

1

N

 
pX
i=1

miF (x;u; u
0 + vi)

!
(7.26)

Summing Ik and passing to the limit N !1, we obtain the relaxed variational
problem:

I = min
u

Z 1

0

Cu0F (x;u(x);u0(x)) dx: (7.27)

Note that n + 1 constraints (7.25) leave the freedom to choose 2n + 2 inner
parameters mi and vi to minimize the function

Pp
i=1miF (u;vi) and thus to

minimize the cost of the variational problem (see (7.26)). If the Lagrangian is
convex, vi = 0 and the problem keeps its form: The wiggle trajectories do not
minimize convex problems.

The cost of the reformulated (relaxed) problem (7.27) corresponds to the
cost of the problem (7.11) on the minimizing sequence (??). Therefore, the
cost of the relaxed problem is equal to the cost of the original problem (7.11).
The extension of the Lagrangian that preserves the cost of the problem is called
the minimal extension. The minimal extension enlarges the set of classical
minimizers by including generalized curves in it.

7.3.3 Examples

Relaxation of nonconvex problem in Example ?? We revisit Example
??. Let us solve this problem by building the convex envelope of the Lagrangian
G(u; v):

CvG(u; v) = min
m1;m2

min
v1;v2

�
u2 +m1(v1 � 1)2 +m2(v2 + 1)2

	
;

v = m1v1 +m2v2; m1 +m2 = 1; mi � 0: (7.28)

The form of the minimum depends on the value of v = u0. The convex envelope
CG(u; v) coincides with either G(u; v) if v 62 [0; 1] or CG(u; v) = u2 if v 2 [0; 1];
see Example 2.1.6. Optimal values v01 ; v

0
2 ; m

0
1 m

0
2 of the minimizers and the

convex envelope CG are shown in Table 7.1. The relaxed form of the problem
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with zero boundary conditions

min
u

Z 1

0

CG(u; u0)dx; u(0) = u(1) = 0; (7.29)

has an obvious solution,
u(x) = u0(x) = 0; (7.30)

that yields the minimal (zero) value of the functional. It corresponds to the
constant optimal value mopt of m(x):

mopt(x) =
1

2
8x 2 [0; 1]

.
The relaxed Lagrangian is minimized over four functions u;m1; v1, v2 bounded

by one equality, u0 = m1v1 + (1�m1)v2 and the inequalities 0 � m � 1, while
the original Lagrangian is minimized over one function u. In contrast to the
initial problem, the relaxed one has a di�erentiable solution in terms of these
four controls.

Inhomogeneous boundary conditions Let us slightly modify this example.
Assume that boundary conditions are

u(0) = V (0 < V < 1); u(1) = 0

In this case, an optimal trajectory of the relaxed problem consists of two parts,

u0 < �1 if x 2 [0; x0); u = u0 = 0 if x 2 [x0; 1]

At the �rst part of the trajectory, the Euler equation u00 � u = 0 holds; the
extremal is

u =

�
Aex +Be�x if x 2 [0; x0)
0 if x 2 [x0; 1]

Since the contribution of the second part of the trajectory is zero, the problem
becomes

I = min
u;x0

Z x0

O

CvG(u; u0)dx

To �nd unknown parameters A;B and x0 we use the conditions

u(0) = V; u(x0) = 0; u0 = �1
The last condition expresses the optimality of x0, it is obtained from the con-
dition (see (??))

CvG(u; u0)jx=x0 = 0:

We compute

A+B = V; Aex0 +Be�x0 = 0; Aex �Be�x = 1
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which leads to

u(x) =

�
sinh(x� x0) if x < x0;
0 if x > x0;

x0 = sinh�1(V )

The optimal trajectory of the relaxed problem decreases from V to zero and
then stays equal zero. The optimal trajectory of the actual problem decays to
zero and then become in�nite oscillatory with zero average.

Relaxation of a two-wells Lagrangian We turn to a more general example
of the relaxation of an ill-posed nonconvex variational problem. This example
highlights more properties of relaxation. Consider the minimization problem

min
u(x)

Z z

0

Fp(x; u; u
0)dx; u(0) = 0; u0(z) = 0 (7.31)

with a Lagrangian
Fp = (u� �x2)2 + Fn(u

0); (7.32)

where
Fn(v) = minfa v2; b v2 + 1g; 0 < a < b; � > 0:

Note that the second term Fn of the Lagrangian Fp is a nonconvex function of
u0.

The �rst term (u� �x2)2 of the Lagrangian forces the minimizer u and its
derivative u0 to increase with x, until u0 at some point reaches the interval of
nonconvexity of Fn(u

0). The derivative u0 must vary outside of the forbidden in-
terval of nonconvexity of the function Fn at all times.. Formally, this problem is
ill-posed because the Lagrangian is not convex with respect to u0 (??); therefore,
it needs relaxation. Convexi�cation of the Lagrangian (top) and the minimizer
(bottom); points a and b are equal to v1 and v2, respectively. Convexi�cation
of the Lagrangian and the minimizer f2.4 0.4

To �nd the convex envelope CF we must transform Fn(u
0) (in this example,

the �rst term of Fp (see (7.32)) is independent of u
0 and it does not change after

the convexi�cation). The convex envelope CFp is equal to
CFp = (u� �x2)2 + CFn(u0): (7.33)

The convex envelope CFn(u0) is computed in Example 2.1.7 (where we use the
notation v = u0). The relaxed problem has the form

min
u

Z
CFp(x; u; u0)dx; (7.34)

where

CFp(x; u; u0) =

8><
>:
(u� �x2)2 + a(u0)2 if ju0j � v1;

(u� �x2)2 + 2u0
q

ab
a�b � b

a�b if v1 � ju0j � v2;

(u� �x2)2 + b(u0)2 + 1 if ju0j � v2:
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Note that the variables u; v in the relaxed problem are the averages of the
original variables; they coincide with those variables everywhere when CF = F .
The Euler equation of the relaxed problem is8<

:
au00 � (u� �x2) = 0 if ju0j � v1;
(u� �x2) = 0 if v1 � ju0j � v2;
bu00 � (u� �x2) = 0 if ju0j � v2:

(7.35)

The Euler equation is integrated with the boundary conditions shown in (7.31).
Notice that the Euler equation degenerates into an algebraic equation in the
interval of convexi�cation. The solution u and the variable @

@u0
CF of the relaxed

problem are both continuous everywhere.
Integrating the Euler equations, we sequentially meet the three regimes when

both the minimizer and its derivative monotonically increase with x (see ??).
If the length z of the interval of integration is chosen su�ciently large, one
can be sure that the optimal solution contains all three regimes; otherwise, the
solution may degenerate into a two-zone solution if u0(x) � v2 8x or into a
one-zone solution if u0(x) � v1 8x (in the last case the relaxation is not needed;
the solution is a classical one).

Let us describe minimizing sequences that form the solution to the relaxed
problem. Recall that the actual optimal solution is a generalized curve in the
region of nonconvexity; this curve consists of in�nitely often alternating parts
with the derivatives v1 and v2 and the relative fractions m(x) and (1�m(x)):

v = hu0(x)i = m(x)v1 + (1�m(x))v2; u0 2 [v1; v2]; (7.36)

where h i denotes the average, u is the solution to the original problem, and hui
is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic one
hui = �x2 because of the linear dependence of the Lagrangian on hui0 in this
region. The �rst term of the Euler equation,

d

dx

@F

@ hui0 � 0 if v1 � j hui0 j � v2; (7.37)

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime.

This variable can be found by di�erentiation of the optimal solution:

(hui � �x2)0 = 0 =) hui0 = 2�x: (7.38)

This equality, together with (7.36), implies that

m =

8<
:
0 if ju0j � v1;
2�

v1�v2 x� v2
v1�v2 if v1 � ju0j � v2;

1 if ju0j � v2:
(7.39)

Variable m linearly increases within the second region (see ??). Note that the
derivative u0 of the minimizing generalized curve at each point x lies on the
boundaries v1 or v2 of the forbidden interval of nonconvexity of F ; the average
derivative varies only due to varying of the fraction m(x) (see ??).
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7.4 Lagrangians of sublinear growth

Discontinuous extremals Some applications, such as an equilibrium in or-
ganic or breakable materials, deal with Lagrangians of sublinear growth. If the
Lagrangian Fsub(x; u; u

0) growths slower that ju0j,

lim
jzj!1

Fsub(x; y; z)

jzj = 0 8x; y

then the discontinuous trajectories are expected because the functional is insen-
sitive to �nite jumps of the trajectory.

The Lagrangian is obviously a nonconvex function of u0, The convex envelope
of a bounded from below function Fsub(x; y; z) of a sublinear with respect to z
growth is independent of z.

CFsub(x; y; z) = min
z
Fsub(x; y; z) = Fconv(x; y)

In the problems of sublinear growth, the minimum f(x) of the Lagrangian
correspond to pointwise condition

f(x) = min
u

min
v
F (x; u; v)

instead of Euler equation. The second and the third argument become inde-
pendent of each other. The condition v0 = u is satis�ed (as an average) by
fast growth of derivatives on the set of dense set of interval of arbitrary small
the summary measure. Because of sublinear growth of the Lagrangian, the
contribution of this growth to the objective functional is in�nitesimal.

Namely, at each in�nitesimal interval of the trajectory x0; x0 + " the mini-
mizer is a broken curve with the derivative

u0(x) =
�
v0 if x 2 [x0; x0 + "]
v0 if x 2 [x0 + "; x0 + "]

where v0 = argminz F (x; y; z), 1�  � 1, and v1 is found from the equation

u0(x) � u(x+ ")� u(x)

"
=
v1"+ v2(1� )"

"

to approximate the derivative u0. When  ! 1, the contribution of the second
interval becomes in�nitesimal even if v2 !1.

The solution u(x) can jump near the boundary point, therefore the main
boundary conditions are irrelevant. The optimal trajectory will always satisfy
natural boundary conditions that correspond to the minimum of the functional,
and jump at the boundary points to meet the main conditions.

Example 7.4.1

F = log2(u+ u0) u(0) = u(1) = 10

The minimizing sequence converges to a function from the family

u(x) = A exp(�x) + 1 x 2 (0; 1)

(A is any real number) and is discontinuous on the boundaries.
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Problem with everywhere unbounded derivative This example shows
an instructive minimizing sequence in a problem of sublinear growth. Consider
the problem with the Lagrangian

J(u) =

Z 1

0

F (x; u; u0)dx; F = (ax� u)2 +
p
ju0j

This is an approximation problem: we approximate a linear function f(x) = ax
on the interval [0; 1] by a function u(x) using function

pju0j as a penalty. We
show that the minimizer is a distribution that perfectly approximate f(x), is
constant almost everywhere, and is nondi�erentiable everywhere.

We mention two facts �rst: (i) The cost of the problem is nonnegative,

J(u) � 0 8u;

and (ii) when the approximating function simply follows f(x), utrial = ax, the
cost J of the problem is J =

p
a > 0 because of the penalty term.

Minimizing sequence Let us construct a minimizing sequence uk(x) with
the property:

J(uk)! 0 if s!1
Partition the interval [0; 1] into N equal subintervals and request that approxi-
mation u(x) be equal to f(x) = ax at the ends xk =

k
N

of the subintervals, and
that the approximation is similar in all subintervals of partition,

u(x) = u0

�
x� k

N

�
+ a

k

N
if x 2

�
k

N
;
k + 1

N

�
;

u0(0) = 0; u0

�
1

N

�
=

a

N

Because of self-similarity, he cost J of the problem becomes

J = N

Z 1
N

0

�
(ax� u0)

2 +
q
ju00j
�
dx (7.40)

The minimizer u0(x) in a small interval x 2 �0; 1
N

�
is constructed as follows

u0(x) =

�
0 if x 2 [0; �]
a 1+�

�
(x� �) if x 2 [�; �(1 + �)]

Here, � and � are two small positive parameters, linked by the condition �(1 +
�) = 1

N
. The minimizer stays constant in the interval x 2 [0; �] and then linearly

growths on the supplementary interval x 2 [�; �(1 + �)]. We also check that

u0

�
1

N

�
= u0(�+ ��) =

a

N
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Derivative u00(x) equals

u00(x) =
�
0 if x 2 [0; �]
a 1+�

�
if x 2 [�; �(1 + �)]

Computing the functional (7.40) of the suggested function u0,

J = N

 Z �

0

((ax)2dx+

Z �+�

�

"�
ax� a

1 + �

�
(x� �)

�2

+

r
a
1 + �

�

#
dx

!

we obtain, after obvious simpli�cations,

J = N

�
a2�3

3
(1 + �) + �

p
a(1 + �)�

�

Excluding � = 1
N(1+�) we �nally compute

J =
a2

3N2(1 + �)2
+

r
a�

1 + �

Increasing N , N !1 and decreasing �, � ! 0 we can bring the cost functional
arbitrary close to zero.

The minimizing sequence consists of the functions that are constant almost
everywhere and contain a dense set of intervals of rapid growth. It tends to
a nowhere di�erentiable function of the type of Cantor's "devils steps." The
derivative is unbounded on a dense in [0; 1] set. Because of slow growth of F ,

lim
ju0j!1

F (x; u; u0)
ju0j ! 0

the functional is not sensitive to large values of u0, if the growth occurs at the
interval of in�nitesimal measure. The last term of the Lagrangian does not
contribute at all to the cost.

Regularization and relaxation To make the solution regular, we may go
in two di�erent directions. The �rst way is to forbid the wiggles by adding a
penalization term �(u0 � a)2 to the Lagrangian which is transformed to:

F� = (u� ax)2 +
p
ju0j+ �(u0 � a)2

The solution would become smooth, but the cost of the problem would signi�-
cantly increase because the term

pju0j contributes to it and the cost J� = J(F�)
would depend on � and will rapidly grow to be close to

p
a. Until the cost grows

to this value, the solution remain nonsmooth.
Alternatively, we may "relax" the problem, replacing it with another one that

preserves its cost and has a classical solution that approximates our nonregular
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minimizing sequence. To perform the relaxation, we simply ignore the termpju0j and pass to the Lagrangian

Frelax = (u� ax)2

which corresponds the same cost as the original problem and a classical solu-
tion uclass = ax that in a sense approximate the true minimizer, but not its
derivative; it is not di�erentiable at all.

7.5 Nonuniqueness and improper cost

Unbounded cost functional An often source of ill-posedness (the nonexis-
tence of the minimizer) is the convergence to minimizing functional to �1 or
the maximizing functional to +1. To illustrate this point, consider the opposite
of the brachistochrone problem: Maximize the travel time between two points.
Obviously, this time can be made arbitrary large by di�erent means: For exam-
ple, consider the trajectory that has a very small slop in the beginning and then
rapidly goes down. The travel time in the �rst part of the trajectory can be
made arbitrary large (Do the calculations!). Another possibility is to consider
a very long trajectory that goes down and then up; the larger is the loop the
more time is needed to path it. In both cases, the maximizing functional goes
to in�nity. The sequences of maximizing trajectories either tend to a discontin-
uous curve or is unbounded and diverges. The sequences do not convergence to
a �nite di�erentiable curve.

Generally, the problem with an improper cost does not correspond to a
classical solution: a �nite di�erentiable curve on a �nite interval. Such prob-
lems have minimizing sequences that approach either non-smooth or unbounded
curve or do not approach anything at all. One may either accept this "exotic
solution," or assume additional constraints and reformulate the problem. In
applications, the improper cost often means that something essential is missing
in the formulation of the problem.

Nonuniqueness Another source of irregular solutions is nonuniqueness. If
the problem has families of many extremal trajectories, the alternating of them
can occur in in�nitely many ways. The problem could possess either classical or
nonclassical solution. To detect such problem, we investigate the Weierstrass-
Erdman conditions which show the possibilities of broken extremals.

An example of nonuniqueness, nonconvex Lagrangian As a �rst exam-
ple, consider the problem

I(v) = min
u

Z 1

0

�
1� (u0)2

�2
dx; u(0) = 0; u(1) = v (7.41)

The Euler equation admits the �rst integral, because the Lagrangian depends
only on u0, �

1� (u0)2
�
(1� 2u0) = C;
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the optimal slope is constant everywhere and is equal to V .

When �1 � v � 1, the constant C is zero and the value of I is zero as well.
The solution is not unique. Indeed, in this case one can joint the initial and the
�nal points by the curve with the slope equal to either one or negative one in
all points. The Weierstrass-Erdman condition

��
1� (u0)2

�
(1� 2u0)

�+
� = 0

is satis�ed if u0 = �1 to the left and to the right of the point of break. There
are in�nitely many extremals with arbitrary number of breaks that all join the
end points and minimize the functional making it equal to zero. Notice that
Lagrangian is not convex function of u0.

Similarly to the �nite-dimensional case, regularization of variational prob-
lems with nonunique solutions can be done by adding a penalty �(u0)2, or �(u00)2

to the minimizer. Penalty would force the minimizer to prefer some trajecto-
ries. Particularly, the penalty term may force the solution to become in�nitely
oscillatory at a part of trajectory.

Another example of nonuniqueness, convex Lagrangian Work on the
problem

I(v) = min
u

Z 1

0

(1� u0)2 sin2(mu)dx; u(0) = 0; u(1) = v (7.42)

As in the previous problem, here there are two kinds of "free passes" (the
trajectories that correspond to zero Lagrangian that is always nonnegative):
horizontal (u = �k=m, u0 = 0) and inclined (u = c+x, u0 = 1). The Weierstrass-
Erdman condition

[sin(mu)2(1� u0)]+� = 0

allows to switch these trajectories in in�nitely many ways.

Unlike the previous case, the number of possible switches is �nite; it is
controlled by parameter m. The optimal trajectory is monotonic; it becomes
unique if v � 1 or v � 0, and if jmj < 1

�
.

7.6 Conclusion and Problems

We have observed the following:

� A one-dimensional variational problem has the �ne-scale oscillatory min-
imizer if its Lagrangian F (x; u; u0) is a nonconvex function of its third
argument.

� Homogenization leads to the relaxed form of the problem that has a clas-
sical solution and preserves the cost of the original problem.
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� The relaxed problem is obtained by replacing the Lagrangian of the ini-
tial problem by its convex envelope. It can be computed as the second
conjugate to F .

� The dependence of the Lagrangian on its third argument in the region of
nonconvexity does not e�ect the relaxed problem.

To relax a variational problem we have used two ideas. First, we replaced the
Lagrangian with its convex envelope and obtained a stable variational problem
of the problem. Second, we proved that the cost of variational problem with
the transformed Lagrangian is equal to the cost of the problem with the original
Lagrangian if its argument u is a zigzag-like curve.

Problems

1. Formulate the Weierstrass test for the extremal problem

min
u

Z 1

0

F (x; u; u0; u00)

that depends on the second derivative u00.

2. Find the relaxed formulation of the problem

min
u1;u2

Z 1

0

�
u21 + u22 + F (u01; u

0
2)
�
;

u1(0) = u2(0) = 0; u1(1) = a; u2(1) = b;

where F (v1; v2) is de�ned by (2.18). Formulate the Euler equations for
the relaxed problems and �nd minimizing sequences.

3. Find the relaxed formulation of the problem

min
u

Z 1

0

�
u2 +min fju0 � 1j; ju0 + 1j+ 0:5g� ;

u(0) = 0; u(1) = a:

Formulate the Euler equation for the relaxed problems and �nd minimizing
sequences.

4. Find the conjugate and second conjugate to the function

F (x) = min
�
x2; 1 + ax2

	
; 0 < a < 1:

Show that the second conjugate coincides with the convex envelope CF of
F .
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5. Let x(t) > 0, y(t) be two scalar variables and f(x; y) = x y2. Demonstrate
that

f(hxi; hyi) � hyi2
�
1

x

��1
:

When is the equality sign achieved in this relation?

Hint: Examine the convexity of a function of two scalar arguments,

g(y; z) =
y2

z
; z > 0:



Chapter 8

Hamiltonian, Invariants,

and Duality

In this chapter, we return to study of the Euler equations transforming them
to di�erent forms. The variational problem is viewed here as the convenient
and compact form to generate these equations. We will also focus on invariant
properties of solutions that can be obtained from variational formulations. We
will see that the stationary conditions in classical mechanics usually do not lead
to a true minimizer but are adequate to describe the motion and equilibria of a
mechanical system.

8.1 Hamiltonian

8.1.1 Canonic form

The structure of Euler equations can be simpli�ed and uni�ed if we consider
2N �rst-order di�erential equations instead of N second-order ones

d

dx

@L

@u0i
� @L

@ui
= 0:

A �rst-order system can be obtained from the above equations if we introduce
a new variable p,

p(x) =
@L(x; u; u0)

@u0
(8.1)

In mechanics, p is called the impulse. The Euler equation takes the form

p0 =
@L(x; u; u0)

@u
= n(x; u; u0); (8.2)

where n is function of x; u; u0.

153
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The system (8.1), (8.2) becomes symmetric with respect to p and u if we
algebraically solve (8.1) for u0 as follows:

u0 = �(x; u; p); (8.3)

and substitute this expression (8.2):

p0 = n(x; u; �(x; u; p)) =  (x; u; p) (8.4)

where  is a function of the variables u and p but not of their derivatives.
In summary, system (8.1), (8.2) is transferred to the canonic from (or Cauchy

form)
u0 = �(x; u; p)
p0 =  (x; u; p)

: (8.5)

It is resolved for the derivatives u0 and p0 and is symmetric with respect to
variables u and p. The properties of the solution are entirely determined by
the algebraic vector functions �;  in the right-hand side, which do not contain
derivatives.

Remark 8.1.1 The equation (8.1) can be solved for u0 and (8.3) can be obtained
if the Lagrangian is convex function of u0 of a superlinear growth. As we know, (see
Chapter (7)), we expec this condition to be satis�ed if the problem has a classical
minimizer.

Impulses The equations of Lagrangian mechanics correspond to the station-
arity of the action

L =
1

2
_qTR(q) _q � V (q)

Variables p = @L
@ _q are called impulses are are equal to p = R(q) _q. The canonic

system becomes

_q = R�1p; _p =
@L

@q
= pTR�1

@R

@q
R�1p� @V

@q

The last equation is obtained by excluding _q from the @L
@q
.

Example 8.1.1 (Quadratic Lagrangian) Assume that

L =
1

2
(a(x)u02 + b(x)u2):

We introduce p as in (8.1)

p =
@L(x; u; u0)

@u0
= au0

and obtain the canonic system

u0 =
1

a(x)
p; p0 = b(x)u:

Notice that the coe�cient a(x) is moved into denominator.
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Next example deals with the pendulum problem in Example 13.21

Example 8.1.2 (Two-link pendulum)

8.1.2 Hamiltonian

Although the system (8.5) is a convenient �rst-order system to deal with, we
may rewrite it in a more symmetric form introducing a special function called
Hamiltonian.

The Hamiltonian is de�ned by the formula:

H(x; u; p) = pu0(x; u; p)� L(x; u; u0(u; p)) = p�(x; u; p)� L(x; u; �(x; u; p))

where u is a stationary trajectory { the solution of Euler equation. Let us
compute the partial derivatives:

@H

@u
= p

@�

@u
� @L

@u
� @L

@�

@�

@u

But, by the de�nition of p, p = @L
@u0

= @L
@�

the �rst and third term in the right-

hand side cancel. By virtue of the Euler equation, the remaining term @L
@u

is
equal to p0 and we obtain

p0 = �@H
@u

(8.6)

Next, compute @H
@p

. We have

@H

@p
= p

@�

@p
+ �� @L

@�

@�

@p

By de�nition of p, the �rst and the third term in the right-hand side cancel,
and by de�nition of � (� = u0) we have

u0 =
@H

@p
(8.7)

The system (8.6), (8.7) is called the canonic system, it is remarkable symmetric.
In Lagrangian mechanics, the Hamiltonian H is equal to the sum of kinetic

and potential energy, H = T + V where _q = R(q)p is excluded,

H(q; p) =
1

2
pTR�1p+

@

@q
(pTR�1p+ V )

Here, we use the we already established property @T
@�q = 2T of kinetic energy {

a homogeneous second degree function of _q.

Example 8.1.3 Compute the Hamiltonian and canonic equations for the system
in the previous example.
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We have

L =
1

2
(a(x)u02 + b(x)u2) =

1

2

�
1

a(x)
p2 + b(x)u2

�

then

H = p
�p
a

�
� L =

1

2

�
1

a(x)
p2 � b(x)u2

�
and

@H

@u
= �b(x)u = �p0; @H

@p
=

1

a(x)
p = u0

which coincides with the previous example.

Natural boundary conditions and end-point conditions Using Hamilto-
nian, we conveniently reformulate the variations of the boundary condition and
the length of the interval of integration. Natural boundary conditions (13.21)
become @L

@u0
= p = 0, and the condition (13.21) for the interval of unknown

length becomes L� u0 @L
@u0

= H = 0. The �rst variation takes the form

�I = pi�ui +H�xjT0 +

Z T

0

�
p0 � @H

@u

�
�u dx (8.8)

The Weierstrass-Erdman conditions at the moving boundary are rewritten
as

[p � �u+H�x]+� = 0 (8.9)

If both variations �u and �x are free, we obtain the condition for a broken
extremal [p]+� = 0 and [H ]+� = 0.

8.1.3 Geometric optics

The results of study of geometic optics (Section13.21) can be conveniently pre-
sented using Hamiltonian. It is convenient to introduce the slowness w(x; y) =

1
v(x;y) - reciprocal to the speed v. Then the Lagrangian for the geometric optic

problem is
L(x; y; y0) = w

p
1 + (y0)2 y0 > 0:

Canonic system To �nd a canonic system, we use the outlined procedure:
De�ne a variable p dual to y(x) by the relation p = @L

@y0

p =
wy0p

1 + (y0)2
:

Solving for y0, we obtain �rst canonic equation:

y0 =
pp

w2 � p2
= �(x; y; p); (8.10)
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Excluding y0 from the expression for L,

L(x; y; �) = L�(w(x; y); p) =
w2p
w2 � p2

:

and recalling the representation for the solution y of the Euler equation

p0 =
@L

@y
=
@L�
@w

dw

dy

we obtain the second canonic equation:

p0 = � wp
w2 � p2

dw

dy
(8.11)

Hamiltonian Hamiltonian H = p��L�(x; y; p) can be simpli�ed to the form

H = �
p
w2 � p2

It satis�es the remarkably symmetric relation

H2 + p2 = w2

that contains the whole information about the geometric optic problem. The
elegancy of this relation should be compared with messy straightforward calcu-
lations that we previously did. The geometric sense of the last formula becomes
clear if we denote as � the angle of declination of the optimal trajectory to OX
axis; then y0 = tan�, and (see (13.21))

p =  (x; y) sin�; H = � (x; y) cos�:

Refraction: Snell's law Assume the media has piece-wise constant prop-
erties, speed v = 1= is piece-wise constant v = v1 in 
1 and v = v2 in 
2;
denote the curve where the speed changes its value by y = z(x). Let us derive
the refraction law. The variations of the extremal y(x) on the boundary z(x)
can be expressed through the angle � to the normal to this curve

�x = sin �; �y = cos �

Substitute the obtain expressions into the Weierstrass-Erdman condition (8.9)
and obtain the refraction law

[ (sin� cos � � cos� sin �)]+� = [ sin(�� �)]+� = 0

Finally, , recall that  = 1
v
and rewrite it in the conventional form (Snell's law)

v1
v2

=
sin 1
sin 2

where 1 = �1 � � and 2 = �2 � � are the angles between the normal to the
surface of division and the incoming ?? and the refracted rays respectively.
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Weierstrass-Erdman condition Although the classical derivation of the
Euler equation required the existence of second derivative of u, the system (8.5)
is di�erent: The functions � and  do not need to be even continuous functions
of x. However, the variables p and u are to be di�erentiable to satisfy (8.5).

The Weierstrass-Erdman condition, see Section 3.2.1, expresses the continu-
ity of

p =
@F

@u0

along the optimal trajectory. In each point, the jump of p is zero,�
@F

@u0

�+
�
= 0; along the optimal trajectory u(x)

Example 8.1.4 (Quadratic Lagrangian, continuity) In the previous Exam-
ple 8.1.3 we may assume that the coe�cient a = a(x) is discontinuous and it
switches from a� to a+ at the point x0. Applying the Weierstrass-Erdman condi-
tion, we �nd that

a�u0� = a+u
0
+

at the point x0. This shows that the extremal breaks at this point; it is called the
broken extremal.

8.1.4 Fast oscillating coe�cients. Homogenization

The mentioned continuity of the canonic variables u and p allows for easy han-
dling of system with fast oscillating coe�cients.

Consider again the Lagrangian

F =
1

2
(a(x)u02 + b(x)u2):

and assume that a(x) > 0 and b(x) are rapidly oscillating functions of x. Ac-
cordingly, the solution u(x) is also an oscillating function. Dealing with such
problems, it is desirable to �nd a variational formulation of the averaged La-
grangian. This approach is called homogenization. The averaged variables are
denoted by a subindex �. They are de�ned as follows:

z�(x) =
1

2�

Z x+�

x��
z(�)d�

Let us average the equations (8.5) over an interval of x that is small com-
paring with b� a but large comparing with a scale of oscillations.

Averaged Lagrangian is

[F ]� =
1

2

�
[a(x)u02]� + [b(x)u2]�

�
:

This form, however, is not convenient since it is not clear how to compute
the average derivative [u0]�. The derivative is not a smooth or even continuous
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function and the term [a(x)u02]� is a product of two oscillatory terms. Therefore,
we pass to the canonic variables p and u that are both di�erentiable, and their
derivatives are bounded. Therefore, we may use the continuity of u and p and
consider them as constants on the interval of averaging. If � � 1, we may
assume that all di�erentiable variables are close to their average, in particular,

u�(x) = u(x) +O(�); p�(x) = p(x) +O(�):

We compute, as before:

p =
u0

a
; L =

1

2a
p2 +

b

2
u2

In terms of canonic variables, the average Lagrangian becomes

[F ]� =
1

2

��
1

a(x)

�
�

p2 + [b(x)]�u
2

�
:

Here we use the continuity of u and p to compute averages:�
p2

a(x)

�
�

=

�
1

a(x)

�
�

p2 +O(�); [b(x)u2]� = [b(x)]�u
2 +O(�)

Returning to the original notations, we �nd that

[u0]� =
�

1

a(x)

��1
�

p�

and we obtain the homogenized Lagrangian

L(u�; u
0
�) =

1

2

�
1

a(x)

��1
�

(u0)2 + [b(x)]� u
2

We arrive at interesting results: the oscillating coe�cients a and b are replaced
by their harmonic and arithmetic means, respectively, in the homogenized sys-
tem.

Let us �nd the equation for the extremal. The averaged (homogenenized)
Hamiltonian is

[H ]� =
1

2

 �
1

a(x)

��1
�

p2 � [b(x)]�u
2

!
:

The canonic system for the averaged canonic variables u�; p� becomes

u0� =
�

1

a(x)

��1
�

p� p0� = [b(x)]� u� (8.12)

Example 8.1.5 Let us specify the oscillating coe�cients a(x) and b(x) as follows

a(x) = �1 + �2 sin
2
�x
�

�
; b(x) = �1 + �2 sin

2
�x
�

�
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where �1 > 0; a2 > 0. The homogenized coe�cients are computed (with the help
of Maple) as:

a� =

 
1

T

Z T

0

1

�1 + �2 sin
2
�
x
�

�dx
!�1

; lim
�!0

a� = �1

r
1 +

�2
�1

;

b� =
1

T

Z T

0

h
�1 + �2 sin

2
�x
�

�i
dx; lim

�!0
b� = �1:

We observe that the average coe�cients nonlinearly depend on the magnitude �2
of oscillations of the a(x), but not on the magnitude �2. The homogenized problem
corresponds to Hamiltonian

H =
1

2

�
�1

r
1 +

�2
�1

�
p2 � 1

2
�1u

2:

Derive equation of the stationary trajectory.

8.2 Symmetries and invariants

We discuss here methods of systematically determination of invariants of solu-
tions to variational problems. We want to �nd quantities that stay constant
along the trajectory { solution to the Euler equation.

8.2.1 Poisson brackets

There is an algebraic construction for checking whether a function G(x; u; p)
is constant at a stationary trajectory based on the so-called Poisson brackets.
Compute the whole di�erential of G:

dG

dx
=
@G

@x
+
@G

@u
� u0 + @G

@p
� p0

The derivatives u0 and p0 at the stationary trajectory can be expressed through
Hamiltonian (see (??)), u0 = @H

@p
; p0 = �@H

@u
; consequently, we rewrite the ex-

pression for the derivative of G,

dG

dx
=
@G

@x
+ [G;H ] (8.13)

where [G;H ] are the Poisson brackets:

[G;H ] =
@G

@p
� @H
@u

� @G

@u
� @H
@p

(8.14)

or, in coordinates,

[G;H ] =

nX
i=1

�
@G

@pi

@H

@ui
� @G

@ui

@H

@pi

�
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The function G stays constant at the trajectory if the right-hand side of (8.13) is
zero. To clarify the use of the Poisson brackets, we derive the already discussed
�rst integrals by their means.

Example 8.2.1 (Time-independent Hamiltonian) Assume thatH does not
explicitly depend on x: H = H(u; p) or @H

@x
= 0. Then H is constant along the

trajectory. Indeed, we set G = H and compute (8.13):

dH

dx
= [H;H ] = 0 ) H = constant(t)

The equality [H;H ] = 0 immediately follows from the de�nition (8.14) of the
Poisson brackets.

Example 8.2.2 (Conservation of impulse) Assume thatH is independent of
uk:

@H
@uk

= 0. Then pk is constant

pk = constant (8.15)

To prove, set G = pk and compute (8.13) using the de�nition (8.14)

dpk
dx

= [pk; H ] =
@H

@uk

Since by assumption @H
@uk

= 0, the result (8.15) follows.

Example 8.2.3 (Conservation of coordinate) Similarly, if H is independent
of the impulse pk:

@H
@pk

= 0, the coordinate uk is constant along the extremal
trajectory:

uk = constant(t)

Again, set G = uk and compute (8.13)

duk
dx

= [uk; H ] = �@H
@pk

= 0

The technique does not tell how to guess the quantity G from a special form
of Hamiltonian but provides a method to check a guess.

8.2.2 N�other's Theorem

N�other's Theorem proves a relationship between symmetries and conservation
principles: "Every symmetry gives a conserved quantity." Assume, for example,
that motion of a system of particles is described by a Lagrangian L(q; q0) that
depends on distances between the particles but is independent of their absolute
locations and of time. According to N�other's theorem, a quantity must be
conserved; here, the conserved quantities are the whole energy, the main moment
and the main angular moment. The theorem, proved in 1915 by Emmy N�other,
was praised by Einstein as a piece of "penetrating mathematical thinking."
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Transformation Suppose that the system is invariant to a transformation:
Lagrangian L(x; u; u0) doesn't change its value under some family of transfor-
mations that sends u and x to some new positions û and x̂:

x̂ = �(x; u; �) = x+ ��(x; u) + o(�2) (8.16)

û = 	(x; u; �) = x+ � (x; u) + o(�2) (8.17)

where � is a parameter of the transformation. It is assumed for de�niteness
that the transformation is identical (nothing is transformed) when � = 0 and
that it smoothly depend on the parameter � of transformation. For example,
the independence of time can be viewed as the invariance to the transformation
t̂ = t + �, the independence of shift { as invariance to the transformation
x̂ = x + �, the independence of rotation { as invariance to the transformation
x̂ = R(�)x, where R is the matrix of rotation, and vector � are is composed
from angles of rotation.

Lorentz transform preserves the quantity x2 � c2t2 and is invariant to the
transformation

x̂ = cosh(�)x + c sinh(�)t

t̂ = � sinh(�)x + c cosh(�)t

Theorem 8.2.1 (N�other) If the system with Hamiltonian H is invariant to the
transforms (8.16), (8.17), than the quantity W is conserved.

W = p �  �H� = constant (8.18)

Proof We observe that �x = �da, and �u =  � da. Substituting these expres-
sion into the formula for the �rst variation (8.8) we obtain (8.18) because da is
an arbitrary number.

Example 8.2.4 If Hamiltonian is independent of x, it is invariant to translation
(13.21); in this case � = 1;  = 0. By (8.18), we compute H = constant.

Example 8.2.5 The invariance to the shift (13.21) is expressed as in this case
� = 0;  i = 1. By (8.18), we compute

P
pi = constant.

Another proof for time-independent symmetries Assume that s is in-
dependent of x. Compute the x derivative of W by the chain rule:

W 0 = p0
du

d�
+ p

du0

d�

Recalling the de�nitions p0 = @L
@u
; p = @L

@u0
we obtain the result:

W 0 =
@L

@u

dq

ds
+
@L

@q0
dq0

ds
=

d

ds
L
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Since L is independent of s by assumption, d
ds
L = 0, then W 0 = 0 and W is

constant.

Related anecdote

In 1915, Emma N�other arrived in G�ottingen but was denied the
private-docent status. The argument was that a woman cannot at-
tend the University senate (essentially, the faculty meetings). Hilbert's
reaction was: "Gentlemen! There is nothing wrong to have a woman
in the senate. Senate is not a bath."

First integrals of the double pendulum What is conserved? The time
shift. The shift in space is not applicable because the �rst pendulum is fasten.
If we allow it to move along the OX axis, the shift in x-direction is invariant
and the corresponding �rst integral becomes

(0; 1)(p1 + p2) = constant

Also, if the gravity is neglected (the motion is only due to the inertia) then the
system is invariant to rotation around the hitch and the corresponding angular
momentum is preserved.

System of particles with central forces Consider a system of N particles
with the forces between them directed along the line between particles and had
a magnitude that depends only of the distance between particles

The Hamiltonian is

H =
1

2

X p2i
mi

+
X
i;j

�(jri � rj j)

Euler equations are

mi�r = fij ; fij =
X
j

�
�0

jri � rj j
�
(ri � rj)

The motion is the system is invariant to the shifts in time and space, and to the
rotation of the whole system. Let us �nd �rst integrals of this system.

The invariance to the time shift implies the constancy of the Hamiltonian

H = constant

The invariance to the space shift \ri = ri + � implies the conservation of
the total impulse (three scalar equations)X

pi = constant

The invariance to the space rotation \ri = �
� ri implies the conservation
of the total angular momentum (three scalar equations)X

! � pi = constant

The preservation of these integral allows for viewing the particle system as
a simpler object.
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8.2.3 Kepler's laws in Celestial mechanics

The studied variational principles enable to obtain Kepler's laws in celestial
mechanics. In cylindrical coordinates chosen so that the position of the Sun in
in the origin and the position of the planet and the vector of the planet's speed
are in the plane z = 0, the kinetic energy T of the planet is

T =
m

2

 
_r2 +

_�2

r2

!

and the potential energy V is de�ned by the Newton's law

V = �1

2

mM



1

r

The Lagrangian L depends on two unknown functions, r(t) and �(t):

L(r; �) = T � V =
m

2

�
_r2 + _�2r2 � M



1

r

�

Two �rst integrals are: The rule of the areas:

@L

@ _�
= m _�r2 = C1

(because the Lagrangian does not depend on �) and conservartion of energy

T + V =
m

2

�
_r2 + _�2r2 +

M



1

r

�
= C2

(because the Lagrangian does not depend on t)
From the �rst we obtain the conservation of the angular momentum (the

motion is in that plane all the time).
Then we have

�r � _�2r � M

r2
= 0

and, ()

Denote u = 1
r
, u0 = � r0

r2
and Find that

d2u

d�2
+ u = C5

and �nd the equation for the trajectory r(�):

r =
A

1 + " cos �

or, in Cartesian coordinates,

(1� p)x2 + ::x+ y2 = p
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ellipse.
Finally, let us apply N�other's theory to the Hamiltonian

H =

the invariants
the groups of transformations: �t = t+ c and �� = � + c

8.2.4 General case of central forces: Invariants

L = mij _rij2 �
X
j

mimjV (jri � rj j)

we compute pi = mij _rij and

H =
jpij2
mi

+
X
j

mimjV (jri � rj j)

Conservation of energy H is independent of time, therefore,

H = constant 8t
The Hamiltonian is equal (see (13.21)) to the whole energy T+V which remains
constant.

Conservation of momentum The shift of all positions by the same vector
�ri = ri + a keeps the Lagrangian invariant; therefore, the whole moment

P = p1 + : : : pN =
X

mi _ri = constant

is constant.

Conservation of angular momentum The transform �ri = ri+(ri�r0)�! {
the rotation across the center of mass r0 = mirr keeps the Lagrangian invariant;
therefore, the whole angular moment

PA =
X

mi _ri� = constant

is constant.
see Gelfand

8.2.5 Lorentz transform and invariants of relativity

8.3 Duality

8.3.1 Duality as solution of a constrained problem

The variational problem

I = min
u

Z 1

0

F (x; u; u0)dx (8.19)
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can be rewritten as the minimization of the constrained problem

I = min
u;v

Z 1

0

F (x; u; v)dx subject to u0 = v

where the constraint speci�es the di�erential dependence between arguments
of the Lagrangian. The last problem is naturally rewritten using Lagrange
multiplier p(x):

I = min
u;v

max
p

Z 1

0

[F (x; u; v) + p(u0 � v)] dx (8.20)

Let us analyze this problem. First, we integrate by parts the term p u0 and
interchange the sequence of extremal operations using the min-max theorem ??

min
x

max
y

f(x; y) � max
y

min
x
f(x; y): (8.21)

We obtain the inequality:

I � ID (8.22)

where the functional ID is

ID = max
p

Z 1

0

FD(x; p; p
0)dx+ p uj10 (8.23)

and

FD(x; p; p
0) = min

u;v
[F (x; u; v)� p0u� p v] (8.24)

Notice that FD depends on u and v but not on their derivatives; therefore
the variation with respect to these is performed independently in the each point
of the trajectory (under the integral):

The �rst variation of ID with respect to u and v is zero,

�ID =

Z 1

0

��
@F

@v
� p

�
�v +

�
@F

@u
� p0

�
�u

�
dx = 0:

The coe�cients by variations �u and �v vanish which gives the stationarity
conditions

p =
@F

@v
; p0 =

@F

@u
: (8.25)

Now, we may transform the problem in three di�erent ways.

1. Excluding p and p0 from (8.25), we obtain the conventional Euler equation:

d

dx

@F

@v
� @F

@u
= 0; u0 = v
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2. Excluding u and v from (8.25): u = �(p; p0), v =  (p; p0), we obtain the
dual variational problem

I � ID; ID = max
p

Z 1

0

[LD(x; p; p
0)] dx+ p �j10 (8.26)

where
LD(p; p

0) = F (x; �;  )� p0�� p 

The dual problem depends on dual variable p and its derivative p0 instead
of u and u0. If the Lagrangian F is convex, the minimax theorem delivers
to equality sign in (8.22) and both primary an dual problem have the same
cost.

3. Excluding v and p0 from (8.25) as follows: v = �(u; p) we obtain the
Hamiltonian H

H(u; p) = L(x; u; �(u; p))� �(u; p)p;

the Hamiltonian is independent of the derivatives of the arguments; the
variational problem becomes

IH = min
u

max
p

Z 1

0

[H(u; p) + u0p] dx

Example 8.3.1 (Quadratic Lagrangian) Find a conjugate to the Lagrangian

F (u; u0) =
1

2
�(u0)2 +



2
u2: (8.27)

Rewrite the Lagrangian using the Lagrange multiplier (impulse) to account for the
di�erential constraint,

�F =
1

2
�v2 +

1

2
u2 + p(u0 � v):

1. The impulse p is

p =
@F

@v
= �v:

Derivative u0 = v is expressed through p as

u0 =
p

�
:

2. The Hamiltonian H is

H =
1

2

p2

�
� u2:

The canonical system is

u0 =
p

�
; p0 = u;
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3. The dual form F � of the Lagrangian is obtained from the Hamiltonian using

canonical equations to exclude u, as follows: u = p0


; substituting this into the

expression for the Hamiltonian, we obtain

F �(p; p0) =
1

2

�
p2

�
� 1


(p0)2

�
:

The Legendre transform is an involution: The variable dual to the variable p is
equal to u.

8.3.2 Legendre and Young-Fenchel transforms

Duality in calculus of variation is closely related to the duality in the theory
of convex function; both use the same algebraic means to pass to the dual
representation. Here we review the Legendre and Young-Fenchel transforms
that serve to compute the dual Lagrangian. Namely, the inner minimization
problem (8.24) in the problem (8.22) is an algebraic one

FD(x; p; p
0) = min

z
(F (z)� z � q) z = (u; u0); q = (p; p0) (8.28)

Here, z and q are two vector arguments that in the variational problem represent
the minimizer and its derivative. We view arguments p and p0 as independent
variables and the problem (8.28) as a special algebraic transform. This trans-
form is studied in convex analysis and it is called Young-Fenchel transform.
If F is convex and di�erentiable everywhere, the transform is called Legendre
transform.

De�nition 8.3.1 Function L�(z�){the conjugate to the L(z){ is de�ned by the
relation

L�(z�) = max
z
fz� z � L(z)g ; (8.29)

The de�nition implies that z� is an analog of p (compare with (??)).

Geometric interpretation Consider graph of a convex function y = f(x)
of a scalar argument x. Assume that a straight line x�x + b touches the graph
approaching it from below moving up (that is, increasing b. When the line
touches the graph, we register the tangent x� of its angle and the coordinate b
of the intersection of the line with the axes OY . Then we change the angle and
repeat the experiment for all angles that is for all x� 2 R. Clearly, any convex
curve can be found if we know the set of all such curves. This curve is simply
an envelope of the family of straight lines.

The relation f�(x�) = �b(x�) between negative of b and x� is called the dual
or Young-Fenchel transform of the original function f(x). If f(x) is a convex
function it can be recovered back from its Young-Fenchel transform.

The multidimensional case is treated in the same way: a hyperplane b =P
i x

�
i xi is used instead of the straight line and the transform is given by the

relation (8.29) where z is a vector x1; ::xn.
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Legendre transform Let us compute the conjugate to the LagrangianL(x;y; z)
with respect to z, treating x;y as parameters. If L is a convex and di�erentiable
function of z, then (8.29) is satis�ed if

z� =
@L(z)

@z
: (8.30)

This formula is exactly the transform from the Lagrangian that depends on
z = u0 to the Hamiltonian which depends on the impulse p.

The similarity suggests that the Legendre transform u0 ! p and the Young{
Fenchel transform z� coincide if the Legendre transform is applicable, that is if
L is a convex and di�erentiable function of u0.

Example 8.3.2 (A conjugate to a quadratic)

F (x) =
1

2
(x� a)2 (8.31)

We have

F �(x�) =
1

2
(jx�j+ a)2 � 1

2
a2 (8.32)

In particular, F (x) = 1
2x

2 is stable to the transform:

F �(x�) =
1

2
(x�)2

The Young{Fenchel transform is well de�ned and �nite for a larger class of
non-di�erentiable functions, namely, for any Lagrangian that grows not slower
than an a�ne function:

L(z) � c1 + c2kzk 8z; (8.33)

where c1 and c2 > 0 are constants.

Example 8.3.3 (A conjugate to a function with discontinuous derivative)
Consider

F (x) = exp(jxj): (8.34)

From (8.29) we have

F �(x�) =
�
(jx�j(log jx�j � 1) if jx�j > 1;

0 if jx�j > 1:
(8.35)

Example 8.3.4 (Additional example)

F (x) =

�
1
2 (jxj � a)2 if jxj � a
0 if jxj � a

: (8.36)

The conjugate is .........
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A more telling example involves a function that growth linearly and is dis-
continuous.

Example 8.3.5 (A conjugate to jxj) Consider

F (x) = jxj: (8.37)

From (8.29) we have

F �(x�) =
�

0 if jx�j < 1;
1 if jx�j > 1:

(8.38)

Finally, consider the function with sublinear growth.

Example 8.3.6 (A conjugate to
pjxj)

F (x) =
p
jxj (8.39)

The function is not convex and the Legendre transform does not exist. The Young-
Fenchel transform gives

F �(x�) = 0 8x�: (8.40)

A multivariable example?

Observe that a corner point corresponds to a straight interval and vice versa.
Nonconvex parts of the graph of F (x) do not a�ect the conjugate.

8.3.3 Second conjugate and convexi�cation

It is easy to estimate minimum of a function from above:

f(xa) � min
x
f(x)

where xa is any value of an argument. The lower estimate is much more di�cult.
Duality can be used to estimate the minimum from below. The inequality

xx� � f(x) + f�(x�)

provides the lower estimate:

f(x) � xx� � f�(x�) 8x;8x�

Choosing a trial value x� we �nd the lower bound.

Example 8.3.7 Revisit above examples for the lower bound
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Second conjugate We can compute the conjugate to F �(z�), called the sec-
ond conjugate F �� to F ,

F ��(z) = max
z�

fz� � z � F �(z�)g : (8.41)

We denote the argument of F �� by z.
If F (z) is convex, then the transform is an involution. If F (z) is not convex,

the second conjugate is the convex envelope of F (see [?]):

F �� = CF: (8.42)

The convex envelope of F is the maximal of the convex functions that does not
surpass F .

Proof:

8.4 Variational principles of classical mechanics

All that is superuous displeases God and Nature
All that displeases God and Nature is evil.

Dante

There are two kinds of variational principles: Di�erential principles that
characterize properties of a motion in each time instance and integral or global
principles that characterize the action of motion at �nite time interval.

Lagrange principle of minimal action Principle of virtual deections: The
system is in equilibrium when the sum of work of all acting forces Fi on kine-
matically possible deections �ri is zero (starting from Galileo, J.Bernoulli {
Lagrange) X

Fi�ri = 0

If the forces have a potential F = rV , this principle says that in the equilibrium
�V = 0.

d'Alambert-Legendre principle The same principle works for dynamics, if
inertial forces �mi�r, where �r is the acceleration of the kinematically possible
deections, are added to the forces: (d'Alambert-Legendre principle)

X
(Fi �mi�r) � �ri = 0

Notice that there is no requirement for a quantity to reach minimum.


