
Note 3

1 Constrained minimum in vector problems

1.1 Lagrange Multipliers method

Reminding of the technique discussed in calculus, we first consider a finite-
dimensional problem of constrained minimum. Namely, we want to find the
condition of the minimum:

J = min
x

f(x), x ∈ Rn, f ∈ C2(Rn) (1)

assuming that m constraints are applied

gi(x1, . . . xn) = 0 i = 1, . . . m, m ≤ n, (2)

The vector form of the constraints is

g(x) = 0

where g is a m-dimensional vector-function of an n-dimensional vector x.
To find the minimum, we add the constraints with the Lagrange multipliers

µ = (µ1, . . . µp) and end up with the problem

J = min
x

[
f(x) +

m∑

i

µigi(x)

]

The stationary conditions become:

∂f

∂xk
+

m∑

i

µi
∂gi

∂xk
= 0, k = 1, . . . , n

or, in the vector form
∂f

∂x
+ W · µ = 0 (3)

where the m× n Jacobian matrix W is

W =
∂g

∂x
or, by elements, Wnm =

∂gn

∂xm

The system (3) together with the constraints (2) forms a system of n + p equa-
tions for n + p unknowns: Components of the vectors x and µ.
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Example Consider the problem

J = min
x

∑

i

A2
i xi subject to

∑

i

1
xi − k

=
1
c
.

Using Lagrange multiplier λ we rewrite it in the form:

Ja = min
x

∑

i

A2
i xi + λ

(∑

i

1
xi − k

− 1
c

)
.

From the condition ∂Ja

∂x = 0 we obtain

A2
i −

λ

(xi − k)2
= 0, or

1
xi − k

=
|Ai|√

λ
i = 1, . . . , n.

We substitute these values into expression for the constraint and obtain an
equation for λ

1
c

=
∑

i

1
xi − k

=
1√
λ

∑

i

|Ai|

Solving this equation, we find λ, the minimizer xi

√
λ = c

∑

i

|Ai|, xi = k +

√
λ

|Ai| ,

and the value of the minimizing function J :

J = k
∑

i

A2
i + c

(∑

i

|Ai|
)2

Observe, the the minimum is a sum of squares of L2 and L1 norms of the vector
A = [A1, . . . , An].

How does it work? (Min-max approach) Consider again the finite-
dimensional minimization problem

J = min
x1,...xn

F (x1, . . . xn) (4)

subject to one constraint
g(x1, . . . xn) = 0 (5)

and assume that there exist solutions to (5) in the neighborhood of the minimal
point.

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

J∗ = min
x1,...xn

max
λ

(F (x1, . . . xn) + λg(x1, . . . xn)) (6)
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Indeed, the inner maximization gives

max
λ

λg(x1, . . . xn) =
{∞ if g 6= 0

0 if g = 0

because λ can be made arbitrary large or arbitrary small. This possibility
forces us to choose such x that delivers equality in (5), otherwise the cost of
the problem (6) would be infinite (recall that x “wants” to minimize J∗). By
assumption, such x exists. At the other hand, the constrained problem (4)-(5)
does not change its cost J if zero g = 0 is added to it. Thereby J = J∗ and the
problem (4) and (5) is equivalent to (6).

If we interchange the sequence of the two extremal operations in (6), we
would arrive at the augmented problem JD

JD(x, λ) = max
λ

min
x1,...xn

(F (x1, . . . xn) + λg(x1, . . . xn)) (7)

The interchange of max and min- operations preserves the problems cost if
F (x1, . . . xn) + λg(x1, . . . xn) is a convex function of x1, . . . xn; in this case J =
JD. In a general case, we arrive at an inequality J ≤ JD (see the min-max
theorem in Sectionintro)

The extended Lagrangian J∗ depends on n + 1 variables. The stationary
point corresponds to a solution to a system

∂L

∂xk
=

∂F

∂xk
+ λ

∂g

∂xk
= 0, k = 1, . . . n, (8)

∂L

∂λ
= g = 0 (9)

The procedure is easily generalized for several constrains. In this case, we add
each constraint with its own Lagrange multiplier to the minimizing function and
arrive at expression (3)

1.2 Exclusion of Lagrange multipliers and duality

We can exclude the multipliers µ from the system (3) assuming that the con-
straints are independent, that is rank(W ) = m. We project n-dimensional
vector ∇F onto a n−m-dimensional subspace allowed by the constraints, and
require that this projection is zero. The procedure is as follows.

1. Multiply (3) by WT :

WT ∂f

∂x
+ WT W · µ = 0, (10)

Since the constraints are independent, p× p matrix WT W is nonsingular,
det(WT W ) 6= 0.
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2. Find m-dimensional vector of multipliers µ:

µ = −(WT W )−1WT ∂f

∂x
,

3. Substitute the obtained expression for µ into (3) and obtain:

(I −W (WT W )−1WT )
∂f

∂x
= 0 (11)

Matrix W (WT W )−1WT is called the projector to the subspace W . Notice
that the rank of the matrix W (WT W )−1WT is equal to p; it has p eigenval-
ues equal to one and n − p eigenvalues equal to zero. Therefore the rank of
I − W (WT W )−1WT is equal to n − p, and the system (11) produces n − p
independent optimality conditions. The remaining p conditions are given by
the constraints (2): gi = 0, i = 1, . . . p. Together these two groups of relations
produce n equations for n unknowns x1, . . . , xn.

Below, we consider several special cases.

Degeneration: No constraints When there is no constraints, W = 0, the
problem trivially reduces to the unconstrained on, and the necessary condition
(11) becomes ∂f

∂x = 0 holds.

Degeneration: n constraints Suppose that we assign n independent con-
straints. They themselves define vector x and no additional freedom to choose
it is left. Let us see what happens with the formula (11) in this case. The
rank of the matrix W (WT W )−1WT is equal to n, (W−1 exists) therefore this
matrix-projector is equal to I:

W (WT W )−1WT = I

and the equation (11) becomes a trivial identity. No new condition is produced
by (11) in this case, as it should be. The set of admissible values of x shrinks
to the point and it is completely defined by the n equations g(x) = 0.

One constraint Another special case occurs if only one constraint is imposed;
in this case p = 1, the Lagrange multiplier µ becomes a scalar, and the condi-
tions (3) have the form:

∂f

∂xi
+ µ

∂g

∂xi
= 0 i = 1, . . . n

Solving for µ and excluding it, we obtain n− 1 stationary conditions:

∂f

∂x1

(
∂g

∂x1

)−1

= . . . =
∂f

∂xn

(
∂g

∂xn

)−1

(12)
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Let us find how does this condition follow from the system (11). This time, W
is a 1× n matrix, or a vector,

W =
[

∂g

∂x1
, . . . ,

∂g

∂xn

]

We have:

rank W (WT W )−1WT = 1, rank(I −W (WT W )−1WT ) = n− 1

Matrix I − W (WT W )−1WT has n − 1 eigenvalues equal to one and one zero
eigenvalue that corresponds to the eigenvector W . At the other hand, optimality
condition (11) states that the vector

∇f =
[

∂f

∂x1
, . . . ,

∂f

∂xn

]

lies in the null-space of the matrix I −W (WT W )−1WT that is vectors ∂f
∂x and

W are parallel. Equation (12) expresses parallelism of these two vectors.

Quadratic function Consider minimization of a quadratic function

F =
1
2
xT Ax + dT x

subject to linear constraints
Bx = β

where A > 0 is a positive definite n×n matrix, B is a n×m matrix of constraints,
d and β are the n- and m-dimensional vectors, respectively. Here, W = B. The
optimality conditions consist of m constraints Bx = β and n−m linear equations

(I −B(BT B)−1BT )(Ax + d) = 0

Duality Let us return to the constraint problem

JD = min
x

max
µ

(F (x) + µT g(x))

with the stationarity conditions,

∇F + µT W (x) = 0

Instead of excluding µ as is was done before, now we do the opposite: Exclude
n-dimensional vector x from n stationarity conditions, solving them for x and
thus expressing x through µ: x = φ(µ). When this expression is substituted
into original problem, the later becomes

JD = max
µ
{F (φ(µ)) + µT g(φ(µ))};

it is called dual problem to the original minimization problem.
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Dual form for quadratic problem Consider again minimization of a quadratic.
Let us find the dual form for it. We solve the stationarity conditions Ax+d+BT µ
for x, obtain

x = −A−1(d + BT µ)

and substitute it into the extended problem:

JD = max
µ∈Rm

{
1
2
(dT + µT B)A−1(d + BT µ)− µT BA−1(d + BT µ)− µT β

}

Simplifying, we obtain

JD = max
µ∈Rm

{
−1

2
µT BA−1BT µ− µT β +

1
2
dT A−1d

}

The dual problem is also a quadratic form over the m dimensional vector of La-
grange multipliers µ; observe that the right-hand-side term β in the constraints
in the original problem moves to the sift term in the dual problem. The shift d
in the original problem generates an additive term 1

2dT A−1d in the dual one.

1.3 Finite-dimensional variational problem

Consider the optimization problem for a finite-difference system of equations

J = min
y1,...,yN

N∑

i

fi(yi, zi)

where f1, . . . , fN are given value of a function f , y1, . . . , yN is the N -dimensional
vector of unknowns, and zi i = 2, . . . , N are the finite differences of yi:

zi = Diff(yi) where Diff(yi) =
1
∆

(yi − yi−1), i = 1, . . . , N (13)

Assume that the boundary values y1 and yn are given and take (13) as con-
straints. Using Lagrange multiplies µ1, . . . , µN we pass to the augmented func-
tion

Ja = min
y1,...,yN ; z1,...,zN

N∑

i

[
fi(yi, zi) + µi

(
zi − 1

∆
(yi − yi−1)

)]

The necessary conditions are:

∂Ja

∂yi
=

∂fi

∂yi
+

1
∆

(−µi + µi+1) = 0 2 = 1, . . . , N − 1

and
∂Ja

∂zi
=

∂fi

∂zi
+ µi = 0 i = 2, . . . , N − 1
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Excluding µi from the last equation and substituting their values into the pre-
vious one, we obtain the conditions:

∂Ja

∂yi
=

∂fi

∂yi
+

1
∆

(
∂fi

∂zi
− ∂fi+1

∂zi+1

)
= 0 i = 2, . . . , N − 1

or, recalling the definition of the Diff -operator,

Diff
(

∂fi+1

∂zi+1

)
− ∂fi

∂yi
= 0 zi = Diff(yi) (14)

One can see that the obtained necessary conditions have the form of the differ-
ence equation of second-order.

Formal passage to differential equation Diff-operator is an approximation
of a derivative and the equation (14) is a finite-difference approximation of the
Euler equation. When N →∞,

Diff(yi) → dy

dx

and we obtain the differential equation of the second order (the Euler equation):

d

dx

∂F

∂u′
− ∂F

∂u
= 0

for the unknown minimizer – function y(x).

2 Inequality constraints

Nonnegative Lagrange multipliers Consider the problem with a constraint
in the form of inequality:

min
x1,...xn

F (x1, . . . xn) subject to g(x1, . . . xn) ≤ 0 (15)

In order to apply the Lagrangian multipliers technique, we reformulate the con-
straint:

g(x1, . . . xn) + v2 = 0

where v is a new auxiliary variable.
The augmented Lagrangian becomes

L∗(x, v, λ) = f(x) + λg(x) + λv2

and the optimality conditions with respect to v are

∂L∗
∂v

= 2λv = 0 (16)

∂2L∗
∂v2

= 2λ ≥ 0 (17)
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The second condition requires the nonnegativity of the Lagrange multiplier and
the first one states that the multiplier is zero, λ = 0, if the constraint is satisfied
by a strong inequality, g(x0) > 0.

The stationary conditions with respect to x

∇f = 0 if g ≤ 0
∇f + λ∇g = 0 if g = 0

state that either the minimum correspond to an inactive constraint (g > 0) and
coincide with the minimum in the corresponding unconstrained problem, or the
constraint is active (g = 0) and the gradients of f and g are parallel and directed
in opposite directions:

∇f(xb) · ∇g(xb)
|∇f(xb)| |∇g(xb)| = −1, xb : g(xb) = 0

In other terms, the projection of ∇f(xb) on the subspace orthogonal to ∇g(xb)
is zero, and the projection of ∇f(x) on the direction of ∇g(xb) is nonpositive.

The necessary conditions can be expressed by a single formula using the
notion of infinitesimal variation of x or a differential. Let x0 be an optimal point,
xtrial – an admissible (consistent with the constraint) point in an infinitesimal
neighborhood of x0, and δx = xtrial−x0. Then the optimality condition becomes

∇f(x0) · δx ≥ 0 ∀δx (18)

Indeed, in the interior point x0 (g(x0) > 0) the vector δx is arbitrary, and the
condition (18) becomes ∇f(x0) = 0. In a boundary point x0 (g(x0) = 0), the
admissible points are satisfy the inequality ∇g(x0) · δx ≤ 0, the condition (18)
follows from (17).

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

L∗ = min
x1,...xn

max
λ>0

(F (x1, . . . xn) + λg(x1, . . . xn)) (19)

that differs from (7) by the requirement λ > 0.

Several constraints: Kuhn-Tucker conditions Several inequality con-
straints are treated similarly. Assume the constraints in the form

g1(x) ≤ 0, . . . , gm(x) ≤ 0.

The stationarity condition can be expressed through nonnegative Lagrange mul-
tipliers

∇f +
m∑

i=1

λi∇gi = 0, (20)
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where
λi ≥ 0, λigi = 0, i = 1, . . . ,m. (21)

The minimal point corresponds either to an inner point of the permissible set
(all constraints are inactive, gi(x0) < 0), in which case all Lagrange multipliers
λi are zero, or to a boundary point where p ≤ m constraints are active. Assume
for definiteness that the first p constraints are active, that is

g1(x0) = 0, . . . , gp(x0) = 0. (22)

The conditions (21) show that the multiplier λi is zero if the ith constrain
is inactive, gi(x) > 0. Only active constraints enter the sum in (23), and it
becomes

∇f +
p∑

i=1

λi∇gi = 0, λi > 0, i = 1, . . . , p. (23)

The term
∑p

i=1 λi∇gi(x0) is a cone with the vertex at x0 stretched on the
rays ∇gi(x0) > 0, i = 1, . . . , p. The condition (23) requires that the negative of
∇f(x0) belongs to that cone.

Alternatively, the optimality condition can be expressed through the admis-
sible vector δx,

∇f(x0) · δx ≥ 0 (24)

Assume again that the first p constraints are active, as in (??)

g1(x0) =, . . . , = gp(x0) = 0.

In this case, the minimum is given by (24) and the admissible directions of δx
satisfy the system of linear inequalities

δx · ∇gi ≥ 0, i = 1, . . . , p. (25)

These conditions are called Kuhn-Tucker conditions, see []
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