
Regularization of a �nite-dimensional problem

As the most of variational methods, the regularization has a �nite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have in�nitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a �nite dimensional
problem. Consider a linear system

Ax = b (1)

where A is a square n� b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

� If detA 6= 0, the problem has a unique solution:

x = A�1b if detA 6= 0 (2)

� If detA = 0 and Ab 6= 0, the problem has no solutions.

� If detA = 0 and Ab = 0, the problem has in�nitely many solutions.

In practice, we also deal with an additional di�culty: The determinant detA
may be a \very small" number and one cannot be sure whether its value is a
result of rounding of digits or it has a \physical meaning." In any case, the errors
of using the formula (2) can be arbitrary large and the norm of the solution is
not bounded.

To address this di�culties, it is helpful to restate linear problem (1) as an
extremal problem:

min
x2Rn

(Ax� b)2 (3)

This problem does have at least one solution, no matter what the matrix A

is. This solution coincides with the solution of the original problem (1) when
this problem has a unique solution; in this case the cost of the minimization
problem (3) is zero. Otherwise, the minimization problem provides "the best
approximation" of the non-existing solution.

If the problem (1) has in�nitely many solutions, so does problem (3). Cor-
responding minimizing sequences fxsg can be unbounded, kxsk ! 1 when
s!1.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x2Rn

(Ax� b)2 + �x2

1



The solution of the last problem exists and is unique. Indeed, we have by
di�erentiation

(ATA+ �I)x�AT b = 0

and
x = (ATA+ �I)�1AT b

We mention several properties of regularization.

1. The inverse (ATA + �I)�1 exists since the matrix ATA is nonnegative
de�ned, and � is positively de�ned. The eigenvalues of the matrix (ATA+
�I)�1 are not smaller than ��1

2. Suppose that we are dealing with a well-posed problem (1), that is the
matrix A is not degenerate. If � � 1, the solution approximately is x =
A�1b� �(A2AT )�1b When �! 0, the solution becomes the solution (2) of
the unperturbed problem, x! A�1b.

3. If the problem (1) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

kxk = k(ATA+ �I)�1k kbk �
1

�
kbk

Instead of the regularizing term �x2, we may use any positively de�ne quadratic
�(xTPx+pTx) or where matrix P is positively de�ned, P > 0, or �((x�c)TP (x�
c) (the attractor to the target point c), or another strongly convex function of
x.
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