
1 Optimization of networks

1.1 Description of electrical networks

Consider an electrical network of N nodes n1; : : : nN andM links that join them
together. Each link lpq = lk joints the notes numbered p and q and has the the
resistivity Rpq = Rk. The potential di�erences v on some nodes are prescribed
that is batteries are added to the network at some links. The current sources are
added at some nodes as well. The potentials un and currents jk in the network
are found from the following linear system.

The potential di�erence upq = uk in each link is

ek = up � uq + vk or e = Au+Bv (1)

where u = (u1; : : : uN) is the vector of potentials at the nodes, v = (v1; : : : vM )
is the vector of added potential di�erences (batteries), A is the matrix of the
structure that shows whether two nodes are connected. It has entries equal to
zero, one or negative one, and each row has only two nonzero entries equal to
one and to negative one, respectively.

A =

�
0 : : : 1 0 : : : �1 0
: : : : : : : : : : : : : : : : : : : : :

�

Matrix B is the matrix of sources that shows to which link the battaries are
attached It structure is similar to the structure of A. One potential is assumed
to be zero, u1 = 0.

The currents jk in the links are equal to

jk =
1

Rk

ek; or j = R�1e = R�1(Au+Bv) (2)

where R is the M �M diagonal matrix of resistivity. Its entries represent the
resistances in the links, Rk =

1

�k
, where �k is the conductance of the link.

Finally, the Kircho� law states that the sum of all current at each node
equals zero, or

AT j �Bjj0 = 0 (3)

where j0 are the added independent external currents and Bj is the matrix
of current sources that shows where they are attached and how they are dis-
tributed. For example, if two equal positive currents are injected in the nodes
numbered one and two, and the negative current is injected into note four, the
matrix Bj is

Bj =

0
BBB@

1=2
1=2
0
�1
0

1
CCCA
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The total current injected in the system must be zero, therefore the sum of
vector entries Bjj0 is zero,

(1; : : : 1)Bjj0 = 0:

Excluding j by means of (1) and (2) we �nd the equation for the potentials u
in the nodes of the network

ATR�1Au = ATR�1Bv +Bjj0 = b (4)

where b = ATR�1Bv+Bjj0 is the vector or external excitation. that combines
both batteries and the current sources.

The potentials u at the nodes are

u = (ATR�1A)�1b

assuming that the matrix ATR�1A is nondegenerative that is that the all nodes
are really connected in one system and the potentials can be de�ned.

The currents j in the links are

j = R�1A
�
(ATR�1A)�1b+Bv

�

In optimization problem, we refer to equations (1)- (3) or (4) as \direct system".

1.2 Optimization of resistances

Consider the problems: Choose the resistors Rk in the network subject to con-
straints

0 � Rmin � Rk � Rmax �1

to minimize or maximize the potential di�erence between two nodes, or to min-
imize or maximize the total current at selected links. The minimizing function
for these problems can be represented as

F = �T j + �Tu (5)

where � 2 RM and � 2 RN are given vectors.
Using Lagrange multipliers � 2 RN and � 2 RM to account for the equations

(2) and (3) of the network, respectively, we rewrite the problem as

min
R

min
J;u

max
�;�

L(R; J; u; �; �)

where

L(R; J; u; �; �) = �T j + �Tu+ �T (AT j �Bjj0) + �T (j �R�1(Au+Bv): (6)
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is the extended Lagrangian. The stationary of u and j (@L
@u

= 0 and @L
@j

= 0)

corresponds to the conditions (adjoint system) for � and �:

� +ATR�1� = 0; � +A�+ � = 0 (7)

Excluding � from these conditions, we �nd

(ATR�1A)� = �� +ATR�1� (8)

This equation shows that � can be interpreted as a potentials in the nodes of the
same network excited by the batteries �� and the current sources ��. Vector
� is the corresponding current. Notice that the sources in the adjoint system
correspond to the goal function (5) and are independent of real sources.

The stationarity conditions with respect to the design variables { conductiv-
ities �k =

1

Rk

are easily derived since R�1 is a diagonal matrix. The optimality
of an intermediate value of �k corresponds to the conditions

@

@�k
�TR�1(Au+Bv) = �

@

@�k
(� +A�)TR�1(Au+Bv) = 0

Since the dependence on �k is linear, this conditions cannot be satis�ed unless
the potential di�erence in the corresponding link lk in either the direct or ad-
joint problem is zero. The last condition would mean that the function F is
invariant to this resistance. We conclude that the resistance take only the lim-
iting values Rmin or Rmax. The choice depends only on the sign of the product
(� + A�)k(Au + Bv)k of elements (� + A�)k and (Au + Bv)k which represent
the currents in the direct and adjoint systems through the kth link.

Rk =

�
Rmax if (� +A�)k(Au+ Bv)k > 0
Rmin if (� +A�)k(Au+ Bv)k < 0

(9)

If these current are codirected, the resistance is minimal, and if they are opposite
directed, the resistance is maximal.

Minimal networks Assume that Rmax = 1 or that we can remove a link
from the system. Then the optimal network consists of only links in which the
currents are codirected. How many links survive?

1.3 Energy minimization

The special case is minimization or maximization of the total energy of the
network or its total resistance. Assume for clearness that there is no battaries
v = 0 and the equation for the network is

(ATR�1A)u = Bjj0
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and minimize the work of external currents

F = uTBjj0

equal to the energy of the network. The corresponding objective function (5)
correspond to the vectors

� = 0; � = Bjj0

and the adjoint system becomes

(ATR�1A)� = �� = �Bjj0:

Its solution is negative to the solution u of the direct system, � = �u.
The optimality conditions (9) for the resistances show that Rk = Rmin for all

k which is physically evident: To minimize the total resistivity, use the smaller
resistances everywhere.

Additional constraints on the resistors To make the problem nontrivial,
let us add an additional constraint: Assume that the number of each type
of resistors is prescribed: There are T resistors with resistivity Rmin and the
rest have the resistivity Rmax. The stationarity conditions are correspondingly
changed: In this case, the smaller current is put through the larger resister and
larger current { through smaller resistance. To �nd the layout of the resistors,
we need to range the currents and renumber them

jj1j � jj2j � : : : � jjM j

Then we assign the resistors Rmin to the links with currents jjM�T j � : : : � jjM j
and resistors Rmax to the rest of links.

1.4 Optimization of sources

The sources j0 and v can be optimized as well. Assume that these vectors are
free but two linear constraints are prescribed

�T j0 = 1 and  T v = 1 (10)

where � and  are given vectors, together with inequalities

j0 � 0 v � 0 (11)

(these mean that each element of the corresponding vector is nonnegative).
Adding these two constraints with the Lagrange multipliers � and �, respec-

tively, to the extended Lagrangian and computing the stationarity conditions.
The conditions for stationarity of u and j are given by (7). Stationarity with

4



respect to j0 and v we obtain conditions for the potential and currents in the
adjoined system at the points of excitation

� = �(Bj)T �; R�1� = ��(B)T (12)

Here, we face the problem: the potentials � and the currents � in the ad-
jointed system are completely de�ned from the system (7) or (8) and the extra
conditions (12) cannot be satis�ed. The only remaining possibility is that the
optimal excitation corresponds to the boundary of the set of currents set by
inequalities (11). This means that all independent sources j0 but one are zero

(j0)opt = (0; : : : ; 1=�k; : : : ; 0)

and similarly,
(v)opt = (0; : : : ; 1= k; : : : ; 0)

1.5 Optimization of sources and resistances

When the resistances are optimized along with the sources, the rule for optimal
resistances must be added to the equations, this rule determines the matrix R.
Here me may expect that the resistivity layout is chosen to equalize the impact
of several di�erent current sources.

1.6 Numerical solution

The optimization problems are solved using iterative scheme. Consider opti-
mization of the resistances. Assigning the design parameters Rk, one solves the
direct and adjoint problem and checks the optimality conditions (9) for Rk. If
some of them are not satis�ed, the design changes; then the iteration repeats
until all conditions are satis�ed. Similar scheme is used for optimization of
sources.
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