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Rules

Class meets at 10:45 MWF

Office hours: After the class and by appointment

The class is Addressed to graduate and senior under-
graduate students in math, science, and engineering. Grade
is based on regular homework assignments and a course
project.

Text: Gilbert Strang. Introduction to Applied Mathe-
matics. Instructors notes (will be distributed).

Syllabus:

1.G. Strang: Chapters 1,2, 3

2. Notes: Extremal problems.

The grade will be based on homework scores, in-class
exam, and course project. As a rule, the homework will be
assigned each week.

What is Applied mathematics?

Applied math is a group of methods aimed to solve prob-
lems in sciences, engineering, economics. Examples: Math-
ematical physics, Mathematical biology, Control theory, Aero-
space engineering, planning, math finance.

Generally, applied math deals with complicated objects,
allow many ways to approach and describe the problem,
manipulation of objectives, variety of methods. Success is
a new elegant simple model that catch the phenomenon and
novel clever methods to solve it.
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There is a fuzzy boundary between applied math and
engineering and, at the other side, applied and pure math-
ematics. Applied math discovers new problems which could
become subjects of pure math (like geodesics), or develop
to a new engineering discipline (like elasticity theory).

Requires: Expertise in many areas of mathematics and
science, engineering intuition and common sense, and col-
laboration skills.

Methods of applied math

1. Data proceeding and formulation of the problem: Math
Modelling and Statistics. There is a limited freedom
of choice of the model.

The art of simplification to make the problem solvable
but not trivial. Often we deal with large system (thou-
sands of variables, equations and inequalities). No one
need a one-to-one map. A clever model separates the
main phenomenon and allows for analytic treatment,
followed by extensive numerical development.

Models have ranges of applicability (Ideal gas and black
holes)

Numerical models allow to solve classical problems and
address novel classes of problems (like math finance,
math genetics, weather prediction). Development of
the theory of free boundary problems was caused by
the possibility of numerical solution the problem in an
arbitrary domain.
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2. Method of solutions (What causes the effect?): Linear
algebra, differential and integral equations, approxi-
mation theory, variational principles, numerical meth-
ods. These will be intensively discussed in the course.

The same physical problem can be approached differ-
ently, using either statistics, of differential equations,
or variational methods, or a combination of them.

Examples: Weather forecast; conflict situation: Worst
case scenario or average outcome.

3. Improvement and recommendation (How to maximize
an objective?): Optimization, variational methods, con-
trol theory, game theory. Optimization is the ultimate
objective of study of an engineering problem. Some-
times the improvement is achieved by varying the pa-
rameters, but generally it is a serous math problem
that will be discussed in the class.
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Example: Optimal design

Intuitive design In practice, the process of design always
includes a mysterious element: The designer chooses the
shape and materials for the construction using intuition
and experience. Since ancient times this technique has
proved effective, and for centuries engineering landmarks
such as aqueducts, cathedrals, and ships were all built with-
out mathematical or mechanical theories.

Math models However, from the time of Galileo and Hooke,
engineers and mathematicians have developed theories to
determine stresses, deflections, currents and temperature
inside structures. This information helps in the selection of
a rational choice of structural elements.

Common-sense improvement, educated guess Certain prin-
ciples of optimality are rooted in common sense. For exam-
ple, one wants to equalize the stresses in a designed elastic
construction by a proper choice of the layout of materials.
The overstressed parts need more reinforcement, and the
understressed parts can be lightened. These simple prin-
ciples form a basis for rational construction of amazingly
complicated mechanical structures, like bridges, skyscrap-
ers, and cars. Still, knowledge of the stresses in a body
is mostly used as a checking tool, parallel with the design
proper, which remains the responsibility of the design en-
gineer.
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Preconditions In the past few decades, it has become possi-
ble to turn the design process into algorithms thanks to ad-
vances in computer technology. Large contemporary projects
require the use of computer-aided design systems. These
systems often incorporate algorithms that gradually im-
prove the initial design by a suitable variation of design
variables, namely, the materials’ cost and layout. Opti-
mization techniques are used to effect changes in a design
to make it stronger, lighter, or more reliable.

Theory is developing This progress has stimulated an in-
terest in the mathematical foundations of structural op-
timization. These foundations are the main topic of this
book. The theory of extremal problems is used to address
problems of design. A design problem asks for the best ge-
ometry of layouts of different materials in a given domain.
Of course, this approach simplifies (or, as a mathematician
would say, idealizes) the real engineering problem, because
questions such as convenience or cost of manufacturing are
not considered.

Analysis of optimal structures allows us to formulate
general principles of an optimally designed construction. In
particular, we can extend the intuitive principle of equally
stressed construction to a multidimensional situation and
find optimal structures that are, in a sense, hybrids of sim-
ple mechanisms.

The construction that adapts to the varying load has
some common features of living tissues: Bridge to math
biology.


