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1 Reminder of multivariable calculus

This part deals with multivariable variational problems that describe minimal
surface areas, equilibria and dynamics of continua, optimization of shapes, etc.
These problems require minimization of an integral of a multivariable function
and its gradient over a region Ω of a plane or space. The arguments of the
Lagrangian are vector u of minimizers and matrix Du = ∇u of gradients of these
minimizers. Analysis of these problems requires differentiation with respect to
vectors and matrices. First, we recall several formulas of vector (multivariable)
calculus which will be commonly used in the following chapters.

1.1 Vector differentiation

We remind the definition of a vector derivative or derivative of a scalar function
with respect to a vector argument a ∈ Rn.

Definition 1.1 If φ(a) is a scalar function of a column vector argument a =
(a1, . . . , an)T , then the derivative dφ

da is a row vector

dφ

da
=

(
dφ

da1
, . . . ,

dφ

dan

)
if a =

 a1

. . .
an

 (1)

assuming that all partial derivatives exist.

This definition comes from consideration of differential dφ of the scalar function
φ(a):

dφ(a) = φ(a+ da)− φ(a) =
dφ(a)

da
· da+ o(‖a‖)

and the left-hand side is a scalar. Here, da is a column vector, therefore the
first multiplier dφ

da is a row vector defined in (1)

Examples of vector differentiation The next examples show the calcula-
tion of derivative for several often used functions. The results can be checked
by straightforward calculations. We assume here that a ∈ Rn.

1. If φ(a) = |a|2 = a2
1 + . . . a2

n, the derivative is

d

da
|a|2 = 2aT

2. The vector derivative of the euclidean norm |a| of vector a is a row vector
b,

b =
d

da

√
|a|2 =

aT√
|a|2

=
aT

|a|

Observe that b is codirected with a and has unit length.
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3. The derivative of a scalar product c ·a, where c is an n-dimensional vector,
c ∈ Rn, is equal to c:

d

da
cTa = cT

Similarly, if C is a k × n matrix, derivative of a product Ca equals C,

d

da
Ca = C

4. Derivative of a quadratic form aTCa where C is a symmetric matrix,
equals

d

da
aTCa = 2aTC = 2(Ca)T .

Directional derivative Let φν be a directional derivative of a scalar function
φ in a direction ν: φν = ν · ∇φ. Partial derivative of F (∇φ) with respect to φν
is defined as:

∂F

∂φν
=

∂F

∂∇φ
· ν (2)

Gradient of a scalar function. Integrability conditions If u = u(x1, . . . xd),
x ∈ Rd, is a function of position vector x then the gradient of u is defined as a
vector denoted ∇u or Du, ∇u = ∂u

∂xi
, or, in elements,

∇u = Du =

 ∂u
∂x1

. . .
∂u
∂xd

 (3)

The d entries of the vector v = ∇u depend on one scalar function u and
therefore are connected. Indeed

∂vi
∂xj

=
∂2u

∂xi∂xj
,

∂vj
∂xi

=
∂2u

∂xj∂xi
,

Because the mixed partials are equal, we find integrability conditions

∂vi
∂xj

=
∂vj
∂xi

, i, j = 1, . . . , d (4)

They are conveniently expressed through the curl-operator (∇×) which acts on
a vector W as follows:

∇×W =

 0 − ∂
∂x3

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0

 W1

W2

W3

 =

−∂W2

∂x3
+ ∂W3

∂x2
∂W1

∂x3
− ∂W3

∂x1

−∂W1

∂x2
+ ∂W2

∂x1


The compatibility conditions (4) can be written as

∇×∇u = 0 (5)

for any u(x).
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Gradient of a vector function If u = (u1, . . . , un) is a vector function,
uj = uj(x1, . . . xd), x ∈ Rd, then the gradient of u is defined as a d× n matrix

denoted ∇u or Du, ∇u =
∂uj
∂xi

, or, in elements,

∇u = Du =

 ∂u1

∂x1

∂u2

∂x1
. . . ∂un

∂x1

. . . . . . . . . . . .
∂u1

∂xd
∂u2

∂xd
. . . ∂un

∂xd

 = (∇u1|∇u2|...|∇un) (6)

The columns of this matrix are gradients of the components of the vector func-
tion u.

1.2 Matrix differentiation

Similarly to the vector differentiation we define matrix differentiation consider-
ing a scalar function φ(A) of a matrix argument A. As in the vector case, the
definition is based on the notion of scalar product.

Definition 1.2 The scalar product a.k.a. the convolution of the n×m matrix A
and m× n matrix B is defined as following

A : B =

n∑
i=1

m∑
j=1

aijbji.

One can check the formula

A : B = Tr (AB) (7)

that brings the convolution into the family of familiar matrix operations.
The convolution allows us to for calculate the increment of a matrix-differentiable

function of a matrix argument caused by variation of this argument:

dφ(A) = φ(A+ dA)− φ(A) =
dφ(A)

dA
: dA+ o(‖dA‖).

and to give the definition of the matrix-derivative.

Definition 1.3 The derivative of a scalar function φ by an n×m matrix argument
A is an m× n matrix D = dφ

dA with elements

Dij =
∂φ

∂aji

where aij is the ij-element of A.

In element form, the definition becomes

dφ

dA
=

 ∂φ
∂a11

∂φ
∂a21

. . . ∂φ
∂am1

. . . . . . . . . . . .
∂φ
∂a1n

∂φ
∂a2n

. . . ∂φ
∂amn

 (8)
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Examples of matrix differentiation Next examples show the derivatives
of several often used functions of matrix argument.

1. As the first example, consider φ(A) = TrA =
∑n
i=1 aii. Obviously,

dφ

daij
=

{
1 if i = j
0 if i 6= j

,

therefore the derivative of the trace is the unit matrix,

d

dA
TrA = I.

2. Using definition of the derivative, we easily compute the derivative of the
scalar product or convolution of two matrices,

d(A : B)

dA
= TrA B = B.

3. Assume that A is a square n× n matrix. The derivative of the quadratic
form xTAx =

∑n
i,j=1 xixjaij with respect to matrix A is an n × n dyad

matrix
d(xTAx)

dA
= xxT

4. Compute the derivative of the determinant of matrix A for A ∈ Rn×n.
Notice that the determinant linearly depends on each matrix element,

detA = aijMij + constant(aij)

where Mij is the minor of the matrix A obtained by eliminating the ith
row and the jth column; it is independent of aij . Therefore,

∂detA

∂aij
= Mij

and the derivative of detA is the matrix M of minors of A,

d

dA
detA = M =

M11 . . . M1n

. . . . . . . . .
Mn1 . . . Mnn


Recall that the inverse matrix A−1 can be conveniently expressed through
these minors as A−1 = 1

detAM , and rewrite the result as

d

dA
detA = (detA)A−1

We can rewrite the result once more using the logarithmic derivative
d
dx log f(x) = f ′(x)

f(x) . The derivative becomes more symmetric,

d

dA
(log detA) = A−1.
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Remark 1.1 If A is symmetric and positively defined, we can bring the
result to a perfectly symmetric form

d

dlogA
(log detA) = I

Indeed, we introduce the matrix logarithmic derivative similarly to the loga-
rithmic derivative of a real positive argument,

df

dlog x
= x

df

dx
,

which reads
df

dlogA
= A

df

dA
.

Here, logA is the matrix that has the same eigenvectors as A and the eigen-
values equal to logarithms of the corresponding eigenvalues of A. Notice that
log detA is the sum of logarithms of the eigenvalues of A,

log detA = Tr logA

. Notice also that when the matrix A is symmetric and positively defined
which means that the eigenvalues of A are real and positive, the logarithms
of the eigenvalues are real.

5. Using the chain rule, we compute the derivative of the trace of the inverse
matrix:

d

dA
TrA−1 = −A−2.

6. Similarly, we compute the derivative of the quadratic form associated with
the inverse matrix:

d

dA
xTA−1x = −xA−2xT .

Remark 1.2 (About the notations) The historical Leibnitz notation g = ∂f
∂z

for partial derivative is not the most convenient one and can even be ambiguous.
Indeed, the often used in one-variable variational problems partial ∂f

∂u′ becomes in

multivariable problem the partial of the partials ∂u
∂x . Since there is no conventional

analog for the symbol ′ in partial derivatives, we need a convenient way to express
the fact that the argument z of differentiation can itself be a partial derivative like
z = ∂u1

∂x2
. If we were substitute this expression for z into ∂f

∂z , we would arrive at an
a bit awkward expression

g =
∂f

∂ ∂u1

∂x2

(still used in Gelfand & Fomin) which replaces the expression ∂f
∂u′ used in one-

variable variational problem.
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There are several ways to fix the inconvenience. To keep analogy with the one-
variable case, we use the vector of partials ∂f

∂(∇u) in the place of ∂F
∂u′ . If needed, we

specify a component of this vector, as follows

g =

[
∂f

∂(∇u1)

]
2

Alternatively, we could rename the partial derivatives of u with a single indexed
array Dij arriving at the formula of the type

g =
∂f

∂D12
, where D12 =

∂u1

∂x2
.

or use comma to show the derivative

g =
∂f

∂u1,2
, where u1,2 =

∂u1

∂x2
.

The most radical and logical solution (which we do not dare to develop in the
textbook) replaces Leibnitz notation with something more convenient, namely with
Maple-like notation

g = D(f,D(u1, x2))

Remark 1.3 (Ambiguity in notations) A more serious issue is the possible
ambiguity of partial derivative with respect to one of independent coordinates. The
partial ∂

∂x means the derivative upon the explicitly given argument x of a function
of the type F (x, u). If the argument x is one of the independent coordinates, and if
u is a function of these coordinates, in particular of x (as it is common in calculus of
variations problems), the same partial could mean ∂F

∂x + ∂F
∂u

∂u
∂x . To fix this, we need

to specify whether we consider u as a function of x u = u(x) or as an independent
argument, which could make the notations awkward.

For this reason, we always assign the symbol x for a vector of independent vari-
ables (coordinates). When differentiation with respect to independent coordinates
is considered, we use the gradient notations as ∇u. Namely, the vector is introduced

∇F (u, x) =

 ∂F
∂x1

..
∂F
∂xd

+

 ∂F
∂u

∂u
∂x1

..
∂F
∂u

∂u
∂xd


where ∂

∂xk
always means the derivative upon explicit variable x. The partials corre-

sponds to components of this vector. If necessary, we specify the argument of the
gradient, as follows ∇ξ.

1.3 Multidimensional integration

Change of variables Consider the integral

I =

∫
Ω

f(x) dx
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and assume that x = x(ξ), or in coordinates

xi = xi(ξ1, . . . , ξd), i = 1, . . . , d

In the new coordinates, the domain Ω is mapped into the domain Ωξ and the
volume element dx becomes det J dξ where J is the Jacobian, the matrix gra-
dient

J = ∇ξx = {Jij}, Jij =
∂xi
∂ξj

, i, j = 1, . . . , d.

The integral I becomes

I =

∫
Ωξ

f(x(ξ))(det∇ξx) dx (9)

The change of variables in the multivariable integrals is analogous to the one-
dimensional case.

Green’s formula The Green’s formula is a multivariable analog of the Leib-
nitz formula a.k.a. the fundamental theorem of calculus. For a differentiable in
the domain Ω vector-function a(x) it has the form∫

Ω

∇ · a dx =

∫
∂Ω

a · ν ds (10)

Here, ν is the outer normal to Ω.

Integration by parts We will use multivariable analogs of the integration
by parts. Suppose that b(x) is a differentiable scalar function in Ω and a(x) is a
differentiable vector field in Ω. Then the following generalization of integration
by parts holds ∫

Ω

(a · ∇b) dx = −
∫

Ω

(b∇ · a) dx+

∫
∂Ω

(a · ν)b ds (11)

The formula follows from the differential identity (differentiation of a product)

a · ∇b+ b∇ · a = ∇ · (ba)

and Green’s formula ∫
Ω

(∇ · c)dx =

∫
∂Ω

(c · ν) ds

A similar formula holds for curls of two differentiable in Ω vector fields a and c:∫
Ω

(c · ∇ × b) dx =

∫
Ω

(b · ∇ × c) dx−
∫
∂Ω

(c× b · ν) ds (12)

It immediately follows from the Green’s formula and the identity

∇ · (c× b) = b · ∇ × c− c · ∇ × b
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2 Euler equations for multiple integrals

2.1 Euler equation

Consider the simplest problem of multivariable calculus of variation: Mini-
mize an integral of a twice differentiable Lagrangian F (x, u,∇u) over a regular
bounded domain Ω with a smooth boundary ∂Ω. The Lagrangian F depends
on the minimizer u and its gradient ∇u with the function u taking prescribed
values u0 on the boundary ∂Ω,

min
u:u|∂Ω=u0

I(u), I(u) =

∫
Ω

F (x, u,∇u)dx (13)

As in the one-variable version (see Chapter 2), the Euler equation expresses the
stationarity of the functional I with respect to the variation of u. To derive
the Euler equation, we consider the variation δu of the minimizer u and the
increment of the functional δI = I(u + δu) − I(u). We assume that for any x,
the variation δu is localized in an ε-neighborhood of point x, twice differentiable,
and small: the norm of δu of its gradient goes to zero if ε→ 0,

δu(x+ z) = 0, ∀z : |z| ≥ ε, |∇(δu)| < Cε, ∀x (14)

If u is a minimizer, the increment δI must be nonnegative, δI(u, δu) ≥ 0, ∀δu.

Increment When the variation δu and its gradient are both infinitesimal and
F is twice differentiable, we can linearize the perturbed Lagrangian:

F (x, u+ δu,∇(u+ δu)) = F (x, u,∇u) +
∂F (x, u,∇u)

∂u
δu

+
∂F (x, u,∇u)

∂∇u
δ∇u+ o(||δu||, ||∇(δu)||)

Here, the term ∂F (x,u,∇u)
∂∇u denotes the vector of the partial derivatives of F with

respect to partial derivatives of u,

∂F (x, u,∇u)

∂∇u
=

∂F (x, u,∇u)

∂
(
∂u
∂x1

) , . . . ,
∂F (x, u,∇u)

∂
(
∂u
∂xn

)
 .

Substitution of the linearized Lagrangian into the expression for δI results in
the following expression:

δI =

∫
Ω

(
∂F

∂u
δu+

∂F

∂∇u
· δ∇u

)
dx+ o(||δu||, ||∇δu||).

Next, we transform the underlined term. Interchanging two linear operators of
variation and differentiation, δ∇u = ∇δu, and performing integration by parts
(see (11)), we obtain∫

Ω

(
∂F

∂∇u
· ∇(δu)

)
dx = −

∫
Ω

δu

(
∇ · ∂F

∂∇u

)
dx+

∫
∂Ω

δu

(
∂F

∂∇u
· n
)
ds
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so that

δI =

∫
Ω

(
∂F

∂u
−∇ · ∂F

∂∇u

)
δu dx+

∫
∂Ω

δu

(
∂F

∂∇u
· n
)
ds

The coefficient by δu in the first integral is called the variational derivative in
Ω or the sensitivity function:

SF (u) =
∂F

∂u
−∇ ·

(
∂F

∂∇u

)
(15)

The coefficient by δu in the boundary integral is called the variational derivative
on the boundary ∂Ω:

S∂F (u, n) =
∂F

∂∇u
· n =

∂F

∂
(
∂u
∂n

) (16)

Hence, we represent the linearized increment δI as a sum of two terms:

δI =

∫
Ω

SF (u)δu dx+

∫
∂Ω

S∂F (u, n)δu ds. (17)

Notice that we use (2) to write the last term in (16).

Stationarity The condition δI ≥ 0 and the arbitrariness of variation δu in the
domain Ω and possibly on its boundary ∂Ω leads to the stationarity condition
in a form of differential equation:

SF (u) = 0 or −∇ · ∂F
∂∇u

+
∂F

∂u
= 0 in Ω (18)

with the boundary condition

S∂F (u, n) δu = 0 on ∂Ω (19)

Equation (18) with the boundary condition (19) is the Euler-Lagrange equa-
tion for variational problems dealing with multiple integrals. Notice that we
keep δu in the expression for the boundary condition. This allows us to either
assign u on the boundary or leave it free, which corresponds to two different
types of boundary condition.

The main boundary condition In the considered simplest problem, the
partial differential equation (18) is given in Ω with the boundary condition
u = u0. The boundary term (19) of the increment vanishes because the value of
u on the boundary is prescribed, hence the variation δu is zero. This condition
is called the main boundary condition. It is assigned independently of any
variational requirements. When u is prescribed on some component of the
boundary, we say that the main boundary condition is given; in this case the
variation of u on this part of the boundary is zero, δu = 0, and (19) is satisfied.
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Natural boundary condition If the value of u on the boundary is not spec-
ified, the term (19) supplies additional boundary condition. If no condition
is prescribed on a boundary component, δu is an arbitrary function, and the
natural condition

S∂F (u, n) =
∂F

∂(∇u)
· n = 0 or

∂F

∂un
= 0 (20)

must be satisfied. The natural boundary condition follows from the minimiza-
tion requirement; it must be satisfied to minimize the functional in (13).

Thus the boundary value problem in the domain Ω has one condition, main
or natural, on each component of the boundary.

Remark 2.1 Notice that the stationarity and the natural boundary conditions are
in direct analogy with corresponding conditions for a one-variable Euler equation.
The derivative d

dx with respect to the independent variable is replaced by ∇ or by

∇·. At the boundary, the derivative du
dx is replaced by ∂u

∂n = ∂
∂∇u · n. In the last

case, the derivative with respect to x is changed to the directional derivative along
the normal to the boundary.

2.2 Examples of Euler-Lagrange equations

Here, we give several examples of Lagrangians, the corresponding Euler equa-
tions, and natural boundary conditions

Example 2.1 (Laplace’s equation) Consider a Lagrangian that quadratically
depends on ∇u:

F =
1

2
∇u · ∇u

This Lagrangian corresponds to the energy of a linear conducting medium of unit
conductivity. We compute the variational derivative of F :

∂F

∂∇u
= ∇u, SF (u) = −∇ · ∂F

∂∇u
= −∇ · ∇u.

The stationarity condition or the Euler equation, SF (u) = 0, is Laplace’s equation:

−∇ · ∇u = −∆u = 0

where (-∆) is the Laplace operator, or the Laplacian. In the coordinate notation,
Laplace’s equation has the form:

SF (u) = −
d∑
i=1

∂2u

∂x2
i

= 0.

The natural boundary condition is

S∂F (u, n) = ∇u · n =
∂u

∂n
= 0
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Notice, that if no values of function u is prescribed on the boundary, so that the
natural boundary condition is posed on whole boundary ∂Ω, then identically zero
solution, u = 0, is the only solution of this problem. To get a non-trivial solution,
the main boundary condition should be given on a part of the boundary or the
Lagrangian should be modified.

Example 2.2 (Linear elliptic equation) We consider a more general Lagrangian
corresponding to the energy density of a linear conducting heterogeneous anisotropic
material:

F =
1

2
∇u ·A(x)∇u

Here A(x) = {Aij(x)} is a symmetric positive definite conductivity tensor that
represents the material properties, and u is the potential such as temperature,
electric potential, or concentration of particles. The steady state distribution of
the potential minimizes the total energy or solves the variational problem (13) with
the Lagrangian F . We comment on the derivation of this energy below in Section
??. Here, we are concerned with the form of the stationarity condition for this
Lagrangian. The variational derivative is the following:

∂F

∂∇u
= A∇u, SF (u) = −∇ · ∂F

∂∇u
= −∇ ·A∇u.

The stationarity condition (Euler equation) is the second-order elliptic equation:

SF (u) = −∇ ·A(x)∇u = 0

which in the coordinate notation, has the form:

SF (u) = −
d∑
i=1

d∑
j=1

∂

∂xi
Aij

∂u

∂xj
= 0.

The natural boundary condition is S∂F (u, n) = A∇u · n = 0.
In the general case of anisotropic conductivity given by a tensor A, main bound-

ary condition is called the Dirichlet boundary condition:

u = u0 on ∂Ω

The natural boundary condition corresponding to the homogeneous Neumann
condition is:

A(x)
∂u

∂n
= 0 on ∂Ω

Notice that in this case, the directional derivative, not the normal derivative, is zero
on the boundary.

When A is proportional to the unit matrix I, A = κ(x)I, where κ > 0 is the
scalar conductivity, the Lagrangian becomes

F =
κ(x)

2
∇u · ∇u

12



The corresponding Euler equation

∇ · κ(x)∇u = 0

describes conduction process in a inhomogeneous isotropic medium with a spatially
varying scalar conductivity function κ(x) > 0. Using coordinate notation, the
equation is written as:

d∑
i=1

∂

∂xi
k(x)

∂u

∂xi
= 0

The natural boundary condition is called the homogeneous Neumann condition:

k(x)
∂u

∂n
= 0 on ∂Ω

it can be simplified to ∂u
∂n = 0.

Example 2.3 (Poisson and Helmholtz equations) Let us demonstrate that
classical linear elliptic equations of mathematical physics originate from a variational
problem of minimization of a quadratic Lagrangian. The Lagrangian of a form:

F =
1

2
|∇u|2 − 1

2
au2 − bu (21)

corresponds to the Euler equation SF (u) = 0:

∆u+ au+ b = 0

which is called the inhomogeneous Helmholtz equation. The natural boundary
condition ∂u

∂n = 0 is independent of a and b. If a = 0, the inhomogeneous Helmholtz
equation degenerates into Poisson equation. If b = 0, it becomes homogeneous
Helmholtz equation, and if a = b = 0 it degenerates into Laplace equation.

Example 2.4 (Nonlinear elliptic equation) Assume that the Lagrangian de-
pends only on magnitude of the gradient:

F = φ(|∇u|) (22)

where φ is a monotonically increasing convex function, φ′(z) > 0, ∀z ∈ [0,∞).
Such Lagrangians describe the steady state conductivity or diffusion process in an
isotropic nonlinear medium; u is the potential or concentration of diffusing particles.

Let us assume that |∇u| does not turn to zero. The Euler equation is computed
as

∇ · (κ(|∇u|)∇u) = 0, κ(z) =
φ′(z)

|z|
Since φ′ > 0, the equation is elliptic. It also can be rewritten as two first-order
equations

∇ · j = 0, j = φ′(|∇u|) ∇u
|∇u|
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where j is a divergence free vector of current. The first equation expresses the
equilibrium of the current density. The second equation is called the constitutive
relation. It demonstrates the property of the material and characterizes the depen-

dence of the current on the field ∇u. The coefficient φ′(|∇u|)
|∇u| is the conductivity of

a nonlinear material; it depends on the magnitude of the field.
The natural boundary condition is

φ′(|∇u|)
|∇u|

∂u

∂n
= 0

Because φ′ > 0, it simplifies to ∂u
∂n = 0 and again expresses the vanishing of the

normal derivative of u on the boundary.

In the next examples, we specify the function φ and obtain the variational
form of well-studied nonlinear equations.

Example 2.5 (Nonlinear elliptic equation) The previous problem simplifies
if the Lagrangian depends on the squared magnitude of the gradient:

F = ψ(|∇u|2) (23)

we assume again here that ψ is a monotonically increasing convex function. Differ-
entiating F , we have:

∂F

∂∇u
= 2ψ′(|∇u|2)∇u

So that the Euler equation is

∇ ·
(
ψ′(|∇u|2)∇u

)
= 0

The conductivity of the nonlinear medium in this case, is ψ′(|∇u|2); as in the
previous case, it depends on the magnitude of the field. Special case, when ψ(z) = z
results in Laplace equation.

Example 2.6 (p-Laplacian) Consider the Lagrangian that corresponds to spe-
cial nonlinearity φ(z) = 1

pz
p in (22)

F =
1

p
|∇u|p (24)

The Euler equation is:
∇ ·
(
|∇u|p−2∇u

)
= 0

The equation is called p-Laplacian. It degenerates into Laplace equation when
p = 2.

Example 2.7 (p = 1) Another interesting case p = 1. We consider the two-
dimensional case, d = 2. The Lagrangian becomes the norm of the gradient,

F = |∇u| =

√(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

(25)
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The corresponding Euler equation is:

∇ ·
(
∇u
|∇u|

)
= 0 in Ω

In this case, the isotropic nonlinear conductivity function is |∇u|−1. Here again, we
assume that |∇u| 6= 0, otherwise |∇u| can be approximated as |∇u| =

√
|∇u|2 + β

for some small parameter β.
Similar to the general case, the Euler equation can be written as a system of

two first-order partial differential equations

j =
∇u
|∇u|

, ∇ · j = 0, |j| = 1,

Observe that in this case |j| = 1. Here, the current j is codirected with ∇u and
has the unit magnitude. In 2D case, any unit vector admits the representation

j = (j1, j2), j1 = cos θ, j2 = sin θ

where θ(x) is an unknown scalar function, that is defined by the first-order equation
∇ · j = 0 or

− sin θ
∂θ

∂x1
+ cos θ

∂θ

∂x2
= 0

Potential u is found from another first-order equation that states that j is parallel
to ∇u, or j ×∇u=0. In the coordinate form, the equation becomes

∂u

∂x1
j2 −

∂u

∂x2
j1 = 0

Notice the Euler equation is split into two first order equations.

2.3 Smooth approximation and continuation

As a first application of the multivariable extremal theory, consider a problem
of approximation of a given scalar function f of several variables by a function
u with assumed smoothness. The problem of approximation of a bounded, inte-
grable, but may be discontinuous function f(x), with x being in some subdomain
D ⊂ R3, by a smooth function u(x) results in the variational problem

min
u

1

2

∫
R3

(
(u− f)2 + ε2|∇u|2

)
dx

where the term ε2|∇u|2 represents penalization. If ε � 1, the first term of
the integrand prevails, and u accurately approximates f . As the parameter ε
grows, the approximation becomes less accurate but the function u becomes
more smooth. When ε � 1, the approximation u tends to a constant function
equal to the mean value of f .
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The Euler equation for the approximation u is the inhomogeneous Helmholtz
equation:

ε2∇2u− u = −f in D, lim
|x|→∞

u(x) = 0

This inhomogeneous Helmholtz problem can be explicitly solved using Green’s
function representation. In 3D case, we have:

u(x) =

∫
R3

f(y)K(x− y)dy

Here K(x− y) is the Green’s function which satisfies the equation:

(ε2∇2 − 1)K(r) = −δ(r), lim
|r|→∞

u(r) = 0

The Green’s function for this Helmholtz problem for the whole R3 is

K(r) =
1

4ε2π|r|
exp

(
−|r|
ε

)
, |r| =

√
x2

1 + x2
2 + x2

3

Using this representation, we obtain expression for u

u(x) =
1

4ε2π

∫
R3

exp

(
−|x− y|

ε

)
f(y)

|x− y|
dy

One observes that the smoothness of u is controlled by ε. When ε → 0, the
kernel K(r) tends to the delta-function, and u(x)→ f(x).

Remark 2.2 Similar explicit solutions can be derived for R2 and for some bounded
domains, such as rectangles or circles (spheres). Considering the approximation
problem on a bounded domain, a more efficient way to construct solution is to use
the eigenfunction expansion, as it was explained in Section ??.

Remark 2.3 In contrast with one-dimensional problems, the Green’s function is
unbounded but integrable.

Example 2.8 (Analytic continuation) A close problem is the analytic con-
tinuation. Let Ω ⊂ R2 be a domain in a plane with a differentiable boundary ∂Ω.
Let φ(s) be a differentiable function of the point s of ∂Ω. Consider the following
problem of analytic continuation: Find a function u(x) in Ω such that it coincides
with φ on the boundary, u(s) = φ(s), ∀s ∈ ∂Ω and minimizes the integral of (∇u)2

over Ω. Thus, we formulate a variational problem:

min

∫
Ω

(∇u)2dx in Ω, subject to u|∂Ω = φ

Compute the stationarity conditions. We have

∂(∇u)2

∂∇u
= 2∇u, ∇ · ∂(∇u)2

∂∇u
= 2∇ · ∇u = 2∆u = 0

which demonstrates that the minimizer must be harmonic in Ω or be a real part of
an analytic function. This explains the name “analytic continuation”.
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Remark 2.4 Notice that the one-dimensional case is trivial: Ω is an interval,
the boundary consists of two points, the minimizer is a straight line between
these points. In this sense, harmonic functions are two-dimensional (or higher-
dimensional) generalization of linear functions.

2.4 Change of coordinates

In order to transform the variational conditions to polar, spherical, or other
coordinates, consider the transformation of the independent variables x = w(ξ)
in a multivariable variational problem. Consider the Jacobian of the transfor-
mation J , J being the matrix with the elements Jij = {∂wi∂ξj

}, and assume that

det(J) is not zero in all points of Ω. In the new variables, the domain Ω becomes
Ωξ, the differential dx is transformed as

dx = det(J)dξ

. By the chain rule, gradient ∇xu in x coordinates becomes

∇xu = ∇ξu
∂ξ

∂x
= J−1∇ξu

where ∇ξ is the gradient in ξ-coordinates.
The integral

R =

∫
Ω

F (x, u,∇u)dx

becomes

R =

∫
Ωξ

Fξ(ξ, u,∇ξu)dξ

where Fξ is defined as follows

Fξ(ξ, u,∇ξu) = F (w(ξ), u, J−1(ξ)∇ξu) detJ(ξ) (26)

The Euler equation in the ξ-coordinates becomes SFξ(u) = 0, where

SFξ(u) =
∂Fξ
∂u
−∇ξ ·

∂Fξ
∂∇ξu

(27)

and the derivatives are related as

∂Fξ
∂u

= (det J)
∂F

∂u
and

∂Fξ
∂∇ξu

= (det J)J−1 ∂F

∂∇u

Example 2.9 (Helmholtz equation in polar coordinates) Let F be the La-
grangian corresponding to the Helmholtz equation on the plane with Cartesian co-
ordinates (x, y):

F = |∇u|2 + αu2 = u2
x + u2

y + αu2
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We transform it to the polar coordinates (r, θ) using x = r cos θ, y = r sin(θ) and
compute the Euler equation for F . We have

J =

(
cos θ −r sin θ
sin θ r cos θ

)
, det J = r

Then

Fξ = Fξ(r, θ, u,∇ξu) = r

[(
∂u

∂r

)2

+
1

r2

(
∂u

∂θ

)2

+ αu2

]
and the Euler equation for the problem (the Helmholtz equation) becomes

∂

∂r

(
r
∂u

∂r

)
+

1

r

∂2u

∂θ2
− αru = 0

or, in a more conventional form,

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
− αu = 0

2.5 First integrals

Independence of the gradient of minimizer If the Lagrangian is inde-
pendent of ∇u, F = F (x, u), the Euler equation becomes an algebraic relation

∂F

∂u
= 0.

As in one-dimensional case, the minimizer u that solves this equation does not
need to be differentiable, even continuous function of x.

Independence of the minimizer If the Lagrangian is independent of u,
F = F (x,∇u) then Euler equation becomes

∇ ·
(
∂F

∂∇u

)
= 0.

Instead of the constancy of ∂F
∂u′ in one-dimensional case, here we state only the

divergencefree nature of ∂F
∂∇u . Any divergence-free vector admit the representa-

tion through curl of a vector potential.

∂F

∂∇u
= ∇× ψ (28)

In the one-variable case, ∇×ψ is replaced by a constant and we obtain the first
integral; in multivariable case, no additional first integrals exist.
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Example 2.10 The Lagrangian F1 =
(
du
dt

)2
, t ∈ R1 is a one-dimensional analog

of the two-dimensional Lagrangian F2 = |∇u|2. The Euler equation for the one-
dimensional problem with this Lagrangian d

dt
∂L
∂u′ − ∂L

∂u , where u′ = du
dt , has the first

integral

C1 =
∂F1

∂u′
=
du

dt

that has a solution u = C1t+ C2.
In multivariable case, for F2 = |∇u|2 we compute ∂F

∂∇u = 2∇u = V . Here, we
denote the gradient by V = (v1, v2), V = ∇u. The stationarity condition ∇·V = 0
or

∂

∂x1
v1 +

∂

∂x2
v2 = 0

are identically satisfied if v admits the representation

v1 =
∂ψ

∂x2
and v2 = − ∂ψ

∂x1

where ψ(x1, x2) is an arbitrary potential, that is if (28) holds. Function ψ is called
the dual potential, see below, Section ??. Instead of being a linear function as in
one-dimensional case, the the minimizer u is harmonic – a solution to the Laplace
equation ∆u = 0. Potential ψ is a conjugate harmonic function.
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