
Remarks on Convexity

March 22, 2019

Contents

1 Convexity: Scalar dunction 2
1.1 Convex function of a scalar argument . . . . . . . . . . . . . . . 2
1.2 Convex envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Convexity: Vector function 6
2.1 Convex function of vector argument . . . . . . . . . . . . . . . . 6
2.2 Convex envelope. Vector case . . . . . . . . . . . . . . . . . . . . 7
2.3 Convex envelope of a three-well function . . . . . . . . . . . . . . 10

1



Figure 1: Convexity

1 Convexity: Scalar dunction

1.1 Convex function of a scalar argument

Convex function A real-valued continuous function f(x) of a scalar argu-
ment x ∈ [a, b] is convex on an interval if for any two points x1 and x2 in [a, b]
and any t, 0 < t < 1, the inequality holds

f(mx1 + (1−m)x2] ≤ mf(x1) + (1−m)f(x2) ∀m ∈ (0, 1) (1)

which states that the graph of f(x) lies below the secant line between x1 and
x2.

Convexity in a point Another useful form of that inequality defines convex-
ity in a point x ∈ R. If we rename the arguments in (1) as:

x = mx1 + (1−m)x2, v1 = x1 − x, v2 = x2 − x

inequality (1) will define the convexity of f(x), x ∈ R in the point x:

f(x) ≤ m1f(x+ v1) +m2f(x+ v2) ∀m1,m2, v1, v2 such that

m1 ≥ 0, m2 ≥ 0, m1 +m2 = 1, m1v1 +m2v2 = 0, (2)

Here v1 and v2 are any perturbations of the argument x with zero mean value,
see (2).

Example 1.1 Function f(x) =
(
x2 − 1

)2
is convex in all points outside the in-

terval x 6∈ [−1, 1] and is not convex inside this interval.

Jensen’s inequality, integral form The definition of convexity (2) in the
point x is extended to the Jensen inequality for a function f(x), x ∈ R

f(x) ≤
n∑
i=1

mif(x+ vi), ∀mi, vi, i = 1, . . . n, such that (3)

mi ≥ 0,

n∑
i=1

mi = 1,

n∑
i=1

mivi = 0 (4)

We define convexity of an integrable function f(x) where x ∈ [a, b] at the
point x = A. Jensen inequality is naturally extended to the statement: Function
an integrable function f(x) is convex, if the inequality holds

f(A) ≤ 1

b− a

∫ b

a

f(A+ v(x))dx ∀v(x) such that

∫ b

a

v(x)dx = 0 (5)

Here, function v(x) is a perturbation with zero mean value. The relation (5)
says that any perturbation v(x) with zero mean value does not decrease the
value of the integral.
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Perturbation of a strictly convex function Function f(x) is strictly con-
vex, if the equality

f(A) =
1

b− a

∫ b

a

f(A+ v(x))dx (6)

implies that v(x) = 0. In other words, any nonzero perturbation with zero mean
value increases the value of the integral.

Example 1.2 Function f(x) = x2 is strictly convex because

1

b− a

∫ b

a

(A+ v(x))2dx

= A2 +
2A

b− a

∫ b

a

v(x) dx +
1

b− a

∫ b

a

v2(x)dx > A2 if

∫ b

a

v2(x)dx 6= 0

Notice, that the second term in the right-hand side in the above sum is zero because
the mean value of v is zero and the third term is positive if v(x) 6= 0.

Example 1.3 Affine function f(x) = c x + d is convex but not strictly convex
because

1

b− a

∫ b

a

(c(A+ v(x)) + d) dx

= cA+ d+
c

b− a

∫ b

a

v(x) dx = cA+ d = f(A)

Example 1.4 Function f(x) = |x| is convex everywhere but it is not strictly
convex if x 6= 0. At the point x = 0, it is strictly convex.

1.2 Convex envelope

Assume that a differentiable function f(x) grows superlinearly and is bounded
from below

lim
|x|→∞

f(x)

|x|
=∞, ∃c : f(x) ≥ c ∀x ∈ R

Assume also that f(x) is nonconvex and inequality (5) is not valid. There
exist perturbations that make the integral in the right-hand side of (5) smaller
than f(A). A natural question arises: Find a perturbation v(x) with zero mean
that delivers minimum of this integral

Cf(A) = min
v(x)

1

b− a

∫ b

a

f(A+ v(x))dx subject to :

∫ b

a

v(x)dx = 0 (7)

This minimum Cf(A) is called the convex envelope of f(A).
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Figure 2: Convex envelope

Since that f(x) is differentiable and grows faster than a linear function, the
optimal v(x) is finite and satisfies the equation:

d

dv
(f(A+ v(x)) + λv(x)) = 0

where λ is the Lagrange multiplier by the integral constraint in (7).
The optimal values of v(x) must have a common derivative:

d

dv
f(A+ vi) = λ i = 1, 2;

It is geometrically clear that optimal perturbation v(x) is piece-wise con-
stant and takes no more than two values. Convex envelope Cf(x) of f(x) either
coincides with f(x) or is a linear function on an interval of non-convexity; it
is supported by two boundary points v1, v2 of this interval that have the same
derivative. Because the component of the convex envelope being a linear func-
tion is supported by two points, optimal v(x) takes no more than two values.
The convex envelope is defined as

Cf(x) = min
v1,v2,t

(m1 f(x+ v1) +m2f(x+ v2)) , (8)

m1 ≥ 0, m2 ≥ 0, m1 +m2 = 1, m1v1 +m2v2 = 0 (9)

in the points x where f(x) is convex, m1 = 1, m2 = 0 and the convex envelope
Cf(x) coincides with the function itself, Cf(x) = f(x).

Properties of convex envelopes
• The derivative d

dxCf(x) of Cf(x) monotonically increases; it coincides with
f ′(x) in the intervals where f(x) is convex and is constant in the intervals of
non-convexity of f(x).

• The second derivative d2

dx2 Cf(x) is nonnegative; it is equal to zero in the
interval of non-convexity.
• One can show that Cf(x) is the maximal convex function that is smaller

than or equal to f(x) in each point x.

1.3 Examples

Example 1.5 Function

f(x) =
(
x2 − 1

)2
, x ∈ R

is not convex in the interval (−1, 1), and is convex outside of this interval. Convex
envelope of function f(x) is

Cf(x) =

{
f(x) |x| ≥ 1

0 |x| < 1
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the supporting points are x1,2 = ±1. In these points, the function and its derivative
coincide with the convex envelope and its derivative, respectively, Cf(x)|x=±1 =
f(x)|x=±1 and Cf ′(x)|x=±1 = f ′(x)|x=±1. The derivatives of f(x) and Cf(x) are
shown at Figure 49

Example 1.6 Consider the nonconvex function F (v) called a two-well function

F (v) = min{(v − 1)2, (v + 1)2}.

F is the minimum of two convex functions (wells).
It is easy to see that the convex envelope CF is

CF (v) =

 (v + 1)2 if v ≤ −1,
0 if v ∈ (−1, 1),
(v − 1)2 if v ≥ 1.

The next example deals with more general case:

Example 1.7 Consider a two-well function

F (v) = min{W1(v),W2(v)}, W1 = av2, W2 = b v2 + 1, (10)

where parameters are arranged as 0 < a < b.
Compute convex envelope CF (v). It coincides with either the graph of the

original function or with an affine function l(v) = Av+B that touches the original
graph in two points. This affine function can be found as the common tangent l(v)
to both convex branches (wells) of F (v).

Recall that equations of the tangent line to a convex curve g(v) is l(v)−g(vs) =
g′(v(s)(v − vs), where vs is the supporting point where the tangent touches the
graph of g(v).

Let v1 and v2 be the supporting points or the points where CF (v) touches F (v).
Compute the values of the common tangent l(v) in the supporting points:

l′(v1) =
dW1

dv

∣∣∣∣
v=v1

= 2a v1, l′(v2) =
dW2

dv

∣∣∣∣
v=v2

= 2b v2.

. where the supporting points v1 and v2 belong to the corresponding wells. The
equation l′(v1) = l′(v2) gives one relation between v1 and v2

av1 = bv2 (11)

From (10), we write tangent lines to each well:{
l(v) = a v21 + 2a v1(v − v1), v1 ∈W1

l(v) = (b v22 + 1) + 2b v2(v − v2), v2 ∈W2
(12)

Setting v = 0, we obtain the the second relation:

a v21 = b v22 − 1 (13)
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Figure 3: Convex set, convex function on a convex set

and solve (11), (13) for the coordinates of the supporting points v1 and v2:

v1 =

√
b

a(a− b)
, v2 =

√
a

b(a− b)
, (14)

Using (12) and (14) we compute linear component of the envelope and the convex
envelope itself:

CF (v) =


av2 if |v| < v1,

2v
√

ab
a−b −

b
a−b if v ∈ [v1, v2],

1 + bv2 if |v| < v2

(15)

CF linearly depends on v in the interval of non-convexity of F and coincides with
F outside of this interval.

2 Convexity: Vector function

2.1 Convex function of vector argument

Convex set, convex hull A domain Ω in Rn is called convex if for any points
x1 and x2 in Ω and for any t in the interval [0, 1], all points x = (1− t)x1 + t x2
belong to Ω. In other words, any point of the line segment belong to Ω if its
ends x1 and x2 are in Ω.

The convex hull or convex envelope CΩ of a nonconvex set Ω is a linear space
is the smallest convex set that contains Ω. It can be also defined as the set of
all convex combinations zof points x ∈ Ω.

z(x) = {x : x =
∑
i

(mixi), ∀xi ∈ Ω
∑
i

mi = 1,mi ≥ 0}

Particularly, the convex envelope of a set of any n points a1, . . . an in Rn is
a polygon

P (x) = {x : x =

n∑
i=1

mi ai,
∑
i

mi = 1,mi ≥ 0}

stretched at these points. Parameters mi with the stated properties are called
the barycentric coordinates of x in the polygone P .

Convex function Consider a real-valued continuous function f(x), where
x ∈ Rn belongs to a convex set Ω. Function f is called convex if the inequality
(1) holds, in which x, v1, v2 are now n-vectors not scalars.

Another equivalent geometrical definition of convexity is: f(x) is convex, if
the n+ 1-dimensional set (x, z) where x ∈ Ω and z ≥ f(x) of the points above
its graph y ≥ f(x) is convex.
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Convexity in a point; Jensen inequality As in the scalar case, the function
f is convex in a point x if

f(x) ≤
n+1∑
i=1

mif(x+ vi) ∀mi, vi i = 1, . . . n+ 1, such that (16)

mi > 0, x+ vi ∈ Ω,

n∑
i=1

mi = 1,

n+1∑
i=1

mi vi = 0 (17)

Derivatives. Hessian Convex differentiable functions satisfy inequality

f(y) ≥ f(x) + (y − x)?∇f(x) ∀x, y ∈ Ω (18)

Second derivatives of a twice differentiable functions is characterized by the
Hessian H(f) which is a symmetric n×n matrix of the second derivatives with
entries

Hij =
∂2f

∂xi∂xj
, i, j = 1, . . . n

If f(x) is convex, its Hessian is non-negatively defined,

zTHz ≥ 0, ∀z ∈ Rn, |z| 6= 0

If f is strictly convex, its Hessian is positively defined.

Gradient of a convex function is monotone From (18), one can deduct
that monotonicity of a derivative of a convex function, that is an analog of
monotonicity of the derivative of a convex function of a scalar argument. We
rewrite inequality (18) for the pair y, x instead of x, y:

f(x) ≥ f(y) +∇f(y)(x− y) ∀x, y ∈ Ω

and subtract it from (18), obtaining

(y − x)T (∇f(y)−∇F (x)) ≥ 0

for all x, y ∈ Ω. The last inequality is called the monotonicity of a vector-valued
function. Monotonicity means that projection of the difference of gradients in
any two points to the vector of difference between these points is non-negative.
If f(x) is convex, ∇f(x) is monotone.

Comment is not clear

2.2 Convex envelope. Vector case

Convex envelope Cf(x), x ∈ Rn satisfies the equation

Cf(x) = min
ρ1,...ρn+1

n+1∑
i=1

mif(ρi), (19)

x =

n+1∑
i=1

miρi,

n+1∑
i=1

mi = 1, mi ≥ 0 (20)
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Figure 4: Supporting points

Figure 5: barycentric coordinates

that is similar to the scalar case.

Definition 2.1 The convex envelope CF is a solution to the following minimal
problem:

CF (x0) = inf
v:v+x0∈C

1

l

∫
C

F (x0 + v(x)) dx ∀ v :

∫
C

v(x) dx = 0. (21)

This definition determines the convex envelope as the minimum of all paral-
lel secant hyperplanes that intersect the graph of F ; it is based on Jensen’s
inequality (??).

Supporting points To compute the convex envelope CF one can use the
Carathéodory theorem (see [?, ?]). It states that the argument v(x) = [v1(x), . . . , vn(x)]
that minimizes the right-hand side of (21) takes no more than n + 1 different
values. This theorem refers to the obvious geometrical fact that the convex en-
velope consists of the supporting hyperplanes to the graph F (v1, . . . , vn). Each
of these hyperplanes is supported by no more than (n+ 1) arbitrary points.

The Carathéodory theorem allows us to replace the integral in the right-
hand side of the definition of CF by the sum of n+ 1 terms; the definition (21)
becomes:

CF (x) = min
mi∈M

min
vi∈v

(
n+1∑
i=1

miF (x+ vi)

)
, (22)

where

M =

{
mi : mi ≥ 0,

n+1∑
i=1

mi = 1

}
(23)

and

v =

{
vi :

n+1∑
i=1

mivi = 0

}
. (24)

Parameters mi are called barycentric coordinates of the convex hull stretched
at the vertices x+ vi.

The convex envelope CF (x) of a function F (x) at a point x coincides with
either the function F (x) or the hyperplane that touches the graph of the function
F . The hyperplane remains below the graph of F except at the tangent points
where they coincide.

The position of the supporting hyperplane generally varies with the point
x. Fewer than n + 1 points can support a convex envelope of F ; in this case,
several of the parameters mi are zero.
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Figure 6: Convex envelope: Cone and paraboloid

On the other hand, the convex envelope is the greatest convex function that
does not exceed F (x) in any point x [?]:

CF (x) = maxφ(x) : φ(x) ≤ F (x) ∀x and φ(x) is convex. (25)

Example 2.1 Obviously, the convex envelope of a convex function coincides with
the function itself, so all mi but m1 are zero in (22) and m1 = 1; the parameter v1
is zero because of the restriction (24).

The convex envelope of a “two-well” function,

Φ(x) = min {F1(x), F2(x)} , (26)

where F1, F2 are convex functions of x, either coincides with one of the functions
F1, F2 or is supported by no more than two points for every x; supporting points
belong to different wells. In this case, formulas (22)–(24) for the convex envelope
are reduced to

CΦ(x) = min
m,v
{mF1(x− (1−m)v) + (1−m)F2(x+mv)} . (27)

Indeed, the convex envelope touches the graphs of the convex functions F1

and F2 in no more than one point. Call the coordinates of the touching points
x + v1 and x + v2, respectively. The restrictions (24) become m1v1 + m2v2 =
0, m1 +m2 = 1. It implies the representations v1 = −(1−m)v and v2 = mv.

Example 2.2 Consider the special case of the two-well function,

F (v1, v2) =

{
0 if v21 + v22 = 0,
1 + v21 + v22 if v21 + v22 6= 0.

(28)

Indeed, the graph of the function F (v1, v2) is axisymmetric in the plane v1, v2;
therefore, the convex envelope is axisymmetric as well: CF (v1, v2) = f(

√
v21 + v22).

It is therefore enough constructing the envelope of function F (v), where v =√
v21 + v22

F (v) =

{
0 if v = 0,
1 + v2 if v2 6= 0.

(29)

The convex envelope CF (v) is supported by the point va = 0 and by a point
vb that (i) belongs to the parabola f(v) = 1 + v2b and (ii) is such that the tangent
line to the parabola at the point vb passes through the origin. The equation of the
tangent line in the plane v, y is y − f(vb) = f ′(b)(v − vb). Setting y = v = 0 due
to (ii), we find f(vb) = f ′(vb)vb or 1 + v2b = 2v2b and vb = 1. The values of F are:
F (v1) = 0, F (Vb) = 2, and the envelope is CF (v) = 2v, if 0 ≤ v ≤ 1. Coming
back to original notations we find the supporting circumferences of F (v1, v2):

A : (v1, v2) = (0, 0), B : (v1, v2) : v21 + v22 = 1
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Figure 7: Three-well function

and the surface of the envelope is

CF (v1, v2) =

{
2
√
v21 + v22 if v21 + v22 ≤ 1,

1 + v21 + v22 if v21 + v22 > 1.
(30)

The envelope is a cone if it does not coincide with F , CF < F , and a paraboloid if
it coincides with F , CF = F .

Hessian of Convex Envelope We mention here property of the convex en-
velope that we will use later. If the convex envelope Cf(x) does not coincide
with f(x) for some x = x0, then CF (x0) is convex, but not strongly convex. At
these points the Hessian H((f) is semipositive; its determinant is zero:

H(Cf(x)) ≥ 0, detH(Cf(x)) = 0 if Cf < f (31)

which say that H(Cf) is a nonnegative degenerate matrix. These relations can
be used to compute Cf(x).

For example, compute the Hessian H of the cone F (v1, v2) = 2
√
v21 + v22 ,

from (30). We have

H =
1

(v21 + v22)
3
2

(
v22 −v1v2
−v1v2 v21

)
and we see that det(H) = 0.

2.3 Convex envelope of a three-well function

The convex envelope is a multi-face surface. The next problem demonstrates
the variety of the components of its surface.

Describe convex envelope Cf of three-well function f(x1, x2)

f(x1, x2) = min{φ1, φ2, φ3} (32)

φ1 = x21 + x22 (33)

φ2 = x21 + (x2 − 1)2 (34)

φ3 = (x1 − 1)2 + x22 (35)

Convex functions φi are called wells.
The convex envelope is a multi-face surface that is stretched between the

wells. No more than three supporting points support each component of the
envelope; the convex wells contain no more than one supporting point each.

The convex envelope is a solution to the optimization problem

Cf(x) = min
m

min
ρ

3∑
i=1

miφi(ρi) (36)

x = m1ρ1 +m2ρ2 +m3ρ3, (37)

m1 +m2 +m3 = 1, mi ≥ 0, i = 1, 2, 3. (38)
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Here, mi are barycentric coordinates of x in the triangle with vertices at ρi.
Convex envelope Cf consists of several components:

Bottom component The bottom part Ω0 is correspond to the case when all
mi > 0; the minimization with respect to ρi gives: =

ρ1 = (0, 0), ρ2 = (1, 0), ρ3 = (0, 1)

The envelope is supported by three points ρi in three wells. Argument x belongs
to a convex hull Ω0, stretched on these points x ∈ Ω0,

Ω0 = {x1, x2 : (x1, x1, x2) =

3∑
i=1

µiρi,

3∑
i=1

µi = 1, µi ≥ 0}

We compute:

Ω0 = {x1, x2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}, (39)

The values of φi are, respectively:

φ1(ρ1) = 0, φ2(ρ2) = 0, φ3(ρ3) = 0

The convex envelope in Ω0 is

Cf(x1, x2) =

3∑
i=1

µiφi(ρi) = 0 if (x1, x2) ∈ Ω0, (40)

The coordinates of a point in the convex hull are

x1 = µ2, x2 = µ3, 0 ≤ µ2 + µ3 ≤ 1, µ2 ≥ 0, µ3 ≥ 0

Notice that supporting points do not vary with x ∈ Ω0, only the barycentric
coefficients µi (µ3 = 1− µ1 − µ2) vary.

Side components First side component of the boundary corresponds to the
case when m3 = 0. This component is supported by by two points at two two
convex wells φ1 and φ2. The domain Ω1 that support this case, is

Ω1 = {x1, x2 : (x1, x2) = µ1(0, x2) + µ2(1, x2), m1 + µ2 = 1, µi ≥ 0

it is a strip:
Ω1 = {x1, x2 : x1 ∈ [0, 1], x2 ∈ [−∞, 0], (41)

The supporting points are

ρ1 = (0, x2), ρ2 = (1, x2)

We compute
φ1(0, x2) = x22, φ1(1, x2) = x22,
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Figure 8: Contourplot of the convex envelope

The convex envelope in the region Ω2 is

Cf(x1, x2) = µ1φ1(0, x2) + µ2φ2(1, x2) = x22, (x1, x2) ∈ Ω1, (42)

(Here, the coordinate x1 is x1 = µ2 and x1 ∈ (0, 1). This part lies between two
convex wells φ1 and φ2 and consists of moving parallel intervals supported by
two points at these wells. This type of surface is called a ruled surface, that is a
surface that can be swept out by moving a line in space. A variation of position
x ∈ Ω2 along the direction x1 results in the variation of µ1 = 1−µ2 with a fixed
position of the supporting points, and a variation along the direction x2 results
in the variation of supporting points ρ1 and ρ2 with a fixed fraction m2.

The second side component of the envelope correspond to m2 = 0 and
m1,m3 > 0. This part is similar to the previous case, it is obtained from it
by interchanging indices. We have

Ω2 = {x1, x2 : x2 ∈ [0, 1], x1 ∈ [−∞, 0]} (43)

ρ1 = (x1, 0), ρ3 = (x1, 1)

Cf(x1, x2) = x21, (x1, x2) ∈ Ω2 (44)

The third component correspond to m1 = 0 and m2,m3 > 0. Similarly to
the previous case we compute,:

Ω3 = {x1, x2 : |x1 − x2| ∈ [0, 1], x1 + x2 ∈ [1,∞]} (45)

ρ2 = (x1, 0), ρ3 = (x1, 1)

Cf(x1, x2) = (x1 + x2)2, (x1, x2) ∈ Ω3 (46)

Regions of convexity The remaining three regions correspond to the case
when one of coordinates mi equals to one, and the other two are equal to zero.
In these cases, the convex envelope coincides with the function itself, f(x) is
convex in these regions.

We compute

Cf = φ1, in Ω4 = {(x1, x2) : x1 ≤ 0, x2 ≤ 0 (47)

Cf = φ2, in Ω5 = {(x1, x2) : x2 > 1, 1 ≥ x2 − x1 (48)

Cf = φ3, in Ω6 = {(x1, x2) : x1 > 1, 1 ≥ x1 − x2 (49)

In Figure 8 the contour plot of the obtained convex envelope is shown.
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