Remarks on Convexity

March 22, 2019
Contents
1 Convexity: Scalar dunction 2
1.1 Convex function of a scalar argument 2
1.2 Convex envelope 3
1.3 Examples 4
2 Convexity: Vector function 6
2.1 Convex function of vector argument 6
2.2 Convex envelope. Vector case 7
2.3 Convex envelope of a three-well function 10

Figure 1: Convexity

1 Convexity: Scalar dunction

1.1 Convex function of a scalar argument

Convex function A real-valued continuous function $f(x)$ of a scalar argument $x \in[a, b]$ is convex on an interval if for any two points x_{1} and x_{2} in $[a, b]$ and any $t, 0<t<1$, the inequality holds

$$
\begin{equation*}
f\left(m x_{1}+(1-m) x_{2}\right] \leq m f\left(x_{1}\right)+(1-m) f\left(x_{2}\right) \quad \forall m \in(0,1) \tag{1}
\end{equation*}
$$

which states that the graph of $f(x)$ lies below the secant line between x_{1} and x_{2}.

Convexity in a point Another useful form of that inequality defines convexity in a point $x \in R$. If we rename the arguments in (1) as:

$$
x=m x_{1}+(1-m) x_{2}, \quad v_{1}=x_{1}-x, \quad v_{2}=x_{2}-x
$$

inequality (1) will define the convexity of $f(x), x \in R$ in the point x :

$$
\begin{array}{r}
f(x) \leq m_{1} f\left(x+v_{1}\right)+m_{2} f\left(x+v_{2}\right) \quad \forall m_{1}, m_{2}, v_{1}, v_{2} \quad \text { such that } \\
m_{1} \geq 0, \quad m_{2} \geq 0, \quad m_{1}+m_{2}=1, \quad m_{1} v_{1}+m_{2} v_{2}=0 \tag{2}
\end{array}
$$

Here v_{1} and v_{2} are any perturbations of the argument x with zero mean value, see (2).

Example 1.1 Function $f(x)=\left(x^{2}-1\right)^{2}$ is convex in all points outside the interval $x \notin[-1,1]$ and is not convex inside this interval.

Jensen's inequality, integral form The definition of convexity (2) in the point x is extended to the Jensen inequality for a function $f(x), x \in R$

$$
\begin{array}{r}
f(x) \leq \sum_{i=1}^{n} m_{i} f\left(x+v_{i}\right), \quad \forall m_{i}, v_{i}, \quad i=1, \ldots n, \quad \text { such that } \\
m_{i} \geq 0, \quad \sum_{i=1}^{n} m_{i}=1, \quad \sum_{i=1}^{n} m_{i} v_{i}=0 \tag{4}
\end{array}
$$

We define convexity of an integrable function $f(x)$ where $x \in[a, b]$ at the point $x=A$. Jensen inequality is naturally extended to the statement: Function an integrable function $f(x)$ is convex, if the inequality holds

$$
\begin{equation*}
f(A) \leq \frac{1}{b-a} \int_{a}^{b} f(A+v(x)) d x \quad \forall v(x) \quad \text { such that } \int_{a}^{b} v(x) d x=0 \tag{5}
\end{equation*}
$$

Here, function $v(x)$ is a perturbation with zero mean value. The relation (5) says that any perturbation $v(x)$ with zero mean value does not decrease the value of the integral.

Perturbation of a strictly convex function Function $f(x)$ is strictly convex, if the equality

$$
\begin{equation*}
f(A)=\frac{1}{b-a} \int_{a}^{b} f(A+v(x)) d x \tag{6}
\end{equation*}
$$

implies that $v(x)=0$. In other words, any nonzero perturbation with zero mean value increases the value of the integral.

Example 1.2 Function $f(x)=x^{2}$ is strictly convex because

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b}(A+v(x))^{2} d x \\
= & A^{2}+\frac{2 A}{b-a} \int_{a}^{b} v(x) d x+\frac{1}{b-a} \int_{a}^{b} v^{2}(x) d x>A^{2} \quad \text { if } \int_{a}^{b} v^{2}(x) d x \neq 0
\end{aligned}
$$

Notice, that the second term in the right-hand side in the above sum is zero because the mean value of v is zero and the third term is positive if $v(x) \neq 0$.

Example 1.3 Affine function $f(x)=c x+d$ is convex but not strictly convex because

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b}(c(A+v(x))+d) d x \\
& =c A+d+\frac{c}{b-a} \int_{a}^{b} v(x) d x=c A+d=f(A)
\end{aligned}
$$

Example 1.4 Function $f(x)=|x|$ is convex everywhere but it is not strictly convex if $x \neq 0$. At the point $x=0$, it is strictly convex.

1.2 Convex envelope

Assume that a differentiable function $f(x)$ grows superlinearly and is bounded from below

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=\infty, \quad \exists c: f(x) \geq c \quad \forall x \in R
$$

Assume also that $f(x)$ is nonconvex and inequality (5) is not valid. There exist perturbations that make the integral in the right-hand side of (5) smaller than $f(A)$. A natural question arises: Find a perturbation $v(x)$ with zero mean that delivers minimum of this integral

$$
\begin{equation*}
\mathcal{C} f(A)=\min _{v(x)} \frac{1}{b-a} \int_{a}^{b} f(A+v(x)) d x \quad \text { subject to }: \int_{a}^{b} v(x) d x=0 \tag{7}
\end{equation*}
$$

This minimum $\mathcal{C} f(A)$ is called the convex envelope of $f(A)$.

Figure 2: Convex envelope

Since that $f(x)$ is differentiable and grows faster than a linear function, the optimal $v(x)$ is finite and satisfies the equation:

$$
\frac{d}{d v}(f(A+v(x))+\lambda v(x))=0
$$

where λ is the Lagrange multiplier by the integral constraint in (7).
The optimal values of $v(x)$ must have a common derivative:

$$
\frac{d}{d v} f\left(A+v_{i}\right)=\lambda \quad i=1,2
$$

It is geometrically clear that optimal perturbation $v(x)$ is piece-wise constant and takes no more than two values. Convex envelope $\mathcal{C} f(x)$ of $f(x)$ either coincides with $f(x)$ or is a linear function on an interval of non-convexity; it is supported by two boundary points v_{1}, v_{2} of this interval that have the same derivative. Because the component of the convex envelope being a linear function is supported by two points, optimal $v(x)$ takes no more than two values. The convex envelope is defined as

$$
\begin{array}{r}
\mathcal{C} f(x)=\min _{v_{1}, v_{2}, t}\left(m_{1} f\left(x+v_{1}\right)+m_{2} f\left(x+v_{2}\right)\right) \\
m_{1} \geq 0, \quad m_{2} \geq 0, \quad m_{1}+m_{2}=1, \quad m_{1} v_{1}+m_{2} v_{2}=0 \tag{9}
\end{array}
$$

in the points x where $f(x)$ is convex, $m_{1}=1, m_{2}=0$ and the convex envelope $\mathcal{C} f(x)$ coincides with the function itself, $\mathcal{C} f(x)=f(x)$.

Properties of convex envelopes

- The derivative $\frac{d}{d x} \mathcal{C} f(x)$ of $\mathcal{C} f(x)$ monotonically increases; it coincides with $f^{\prime}(x)$ in the intervals where $f(x)$ is convex and is constant in the intervals of non-convexity of $f(x)$.
- The second derivative $\frac{d^{2}}{d x^{2}} \mathcal{C} f(x)$ is nonnegative; it is equal to zero in the interval of non-convexity.
- One can show that $\mathcal{C} f(x)$ is the maximal convex function that is smaller than or equal to $f(x)$ in each point x.

1.3 Examples

Example 1.5 Function

$$
f(x)=\left(x^{2}-1\right)^{2}, \quad x \in R
$$

is not convex in the interval $(-1,1)$, and is convex outside of this interval. Convex envelope of function $f(x)$ is

$$
\mathcal{C} f(x)=\left\{\begin{array}{cc}
f(x) & |x| \geq 1 \\
0 & |x|<1
\end{array}\right.
$$

the supporting points are $x_{1,2}= \pm 1$. In these points, the function and its derivative coincide with the convex envelope and its derivative, respectively, $\left.\mathcal{C} f(x)\right|_{x= \pm 1}=$ $\left.f(x)\right|_{x= \pm 1}$ and $\left.\mathcal{C} f^{\prime}(x)\right|_{x= \pm 1}=\left.f^{\prime}(x)\right|_{x= \pm 1}$. The derivatives of $f(x)$ and $\mathcal{C} f(x)$ are shown at Figure 49

Example 1.6 Consider the nonconvex function $F(v)$ called a two-well function

$$
F(v)=\min \left\{(v-1)^{2},(v+1)^{2}\right\}
$$

F is the minimum of two convex functions (wells).
It is easy to see that the convex envelope $\mathcal{C} F$ is

$$
\mathcal{C} F(v)= \begin{cases}(v+1)^{2} & \text { if } v \leq-1 \\ 0 & \text { if } v \in(-1,1) \\ (v-1)^{2} & \text { if } v \geq 1\end{cases}
$$

The next example deals with more general case:
Example 1.7 Consider a two-well function

$$
\begin{equation*}
F(v)=\min \left\{W_{1}(v), W_{2}(v)\right\}, \quad W_{1}=a v^{2}, W_{2}=b v^{2}+1 \tag{10}
\end{equation*}
$$

where parameters are arranged as $0<a<b$.
Compute convex envelope $\mathcal{C} F(v)$. It coincides with either the graph of the original function or with an affine function $l(v)=A v+B$ that touches the original graph in two points. This affine function can be found as the common tangent $l(v)$ to both convex branches (wells) of $F(v)$.

Recall that equations of the tangent line to a convex curve $g(v)$ is $l(v)-g\left(v_{s}\right)=$ $g^{\prime}\left(v(s)\left(v-v_{s}\right)\right.$, where v_{s} is the supporting point where the tangent touches the graph of $g(v)$.

Let v_{1} and v_{2} be the supporting points or the points where $\mathcal{C} F(v)$ touches $F(v)$. Compute the values of the common tangent $l(v)$ in the supporting points:

$$
l^{\prime}\left(v_{1}\right)=\left.\frac{d W_{1}}{d v}\right|_{v=v_{1}}=2 a v_{1}, \quad l^{\prime}\left(v_{2}\right)=\left.\frac{d W_{2}}{d v}\right|_{v=v_{2}}=2 b v_{2}
$$

. where the supporting points v_{1} and v_{2} belong to the corresponding wells. The equation $l^{\prime}\left(v_{1}\right)=l^{\prime}\left(v_{2}\right)$ gives one relation between v_{1} and v_{2}

$$
\begin{equation*}
a v_{1}=b v_{2} \tag{11}
\end{equation*}
$$

From (10), we write tangent lines to each well:

$$
\begin{cases}l(v)=a v_{1}^{2}+2 a v_{1}\left(v-v_{1}\right), & v_{1} \in W_{1} \tag{12}\\ l(v)=\left(b v_{2}^{2}+1\right)+2 b v_{2}\left(v-v_{2}\right), & v_{2} \in W_{2}\end{cases}
$$

Setting $v=0$, we obtain the the second relation:

$$
\begin{equation*}
a v_{1}^{2}=b v_{2}^{2}-1 \tag{13}
\end{equation*}
$$

Figure 3: Convex set, convex function on a convex set
and solve (11), (13) for the coordinates of the supporting points v_{1} and v_{2} :

$$
\begin{equation*}
v_{1}=\sqrt{\frac{b}{a(a-b)}}, \quad v_{2}=\sqrt{\frac{a}{b(a-b)}}, \tag{14}
\end{equation*}
$$

Using (12) and (14) we compute linear component of the envelope and the convex envelope itself:

$$
\mathcal{C} F(v)= \begin{cases}a v^{2} & \text { if }|v|<v_{1} \tag{15}\\ 2 v \sqrt{\frac{a b}{a-b}}-\frac{b}{a-b} & \text { if } v \in\left[v_{1}, v_{2}\right] \\ 1+b v^{2} & \text { if }|v|<v_{2}\end{cases}
$$

$\mathcal{C} F$ linearly depends on v in the interval of non-convexity of F and coincides with F outside of this interval.

2 Convexity: Vector function

2.1 Convex function of vector argument

Convex set, convex hull A domain Ω in R^{n} is called convex if for any points x_{1} and x_{2} in Ω and for any t in the interval [0,1], all points $x=(1-t) x_{1}+t x_{2}$ belong to Ω. In other words, any point of the line segment belong to Ω if its ends x_{1} and x_{2} are in Ω.

The convex hull or convex envelope $\mathcal{C} \Omega$ of a nonconvex set Ω is a linear space is the smallest convex set that contains Ω. It can be also defined as the set of all convex combinations z of points $x \in \Omega$.

$$
z(x)=\left\{x: x=\sum_{i}\left(m_{i} x_{i}\right), \quad \forall x_{i} \in \Omega \quad \sum_{i} m_{i}=1, m_{i} \geq 0\right\}
$$

Particularly, the convex envelope of a set of any n points $a_{1}, \ldots a_{n}$ in R^{n} is a polygon

$$
P(x)=\left\{x: x=\sum_{i=1}^{n} m_{i} a_{i}, \quad \sum_{i} m_{i}=1, m_{i} \geq 0\right\}
$$

stretched at these points. Parameters m_{i} with the stated properties are called the barycentric coordinates of x in the polygone P.

Convex function Consider a real-valued continuous function $f(x)$, where $x \in R^{n}$ belongs to a convex set Ω. Function f is called convex if the inequality (1) holds, in which x, v_{1}, v_{2} are now n-vectors not scalars.

Another equivalent geometrical definition of convexity is: $f(x)$ is convex, if the $n+1$-dimensional set (x, z) where $x \in \Omega$ and $z \geq f(x)$ of the points above its graph $y \geq f(x)$ is convex.

Convexity in a point; Jensen inequality As in the scalar case, the function f is convex in a point x if

$$
\begin{array}{r}
f(x) \leq \sum_{i=1}^{n+1} m_{i} f\left(x+v_{i}\right) \quad \forall m_{i}, \quad v_{i} i=1, \ldots n+1, \quad \text { such that } \\
m_{i}>0, \quad x+v_{i} \in \Omega, \quad \sum_{i=1}^{n} m_{i}=1, \quad \sum_{i=1}^{n+1} m_{i} v_{i}=0 \tag{17}
\end{array}
$$

Derivatives. Hessian Convex differentiable functions satisfy inequality

$$
\begin{equation*}
f(y) \geq f(x)+(y-x)^{?} \nabla f(x) \quad \forall x, y \in \Omega \tag{18}
\end{equation*}
$$

Second derivatives of a twice differentiable functions is characterized by the Hessian $H(f)$ which is a symmetric $n \times n$ matrix of the second derivatives with entries

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots n
$$

If $f(x)$ is convex, its Hessian is non-negatively defined,

$$
z^{T} H z \geq 0, \quad \forall z \in R^{n}, \quad|z| \neq 0
$$

If f is strictly convex, its Hessian is positively defined.

Gradient of a convex function is monotone From (18), one can deduct that monotonicity of a derivative of a convex function, that is an analog of monotonicity of the derivative of a convex function of a scalar argument. We rewrite inequality (18) for the pair y, x instead of x, y :

$$
f(x) \geq f(y)+\nabla f(y)(x-y) \quad \forall x, y \in \Omega
$$

and subtract it from (18), obtaining

$$
(y-x)^{T}(\nabla f(y)-\nabla F(x)) \geq 0
$$

for all $x, y \in \Omega$. The last inequality is called the monotonicity of a vector-valued function. Monotonicity means that projection of the difference of gradients in any two points to the vector of difference between these points is non-negative. If $f(x)$ is convex, $\nabla f(x)$ is monotone.

Comment is not clear

2.2 Convex envelope. Vector case

Convex envelope $\mathcal{C} f(x), x \in R^{n}$ satisfies the equation

$$
\begin{align*}
\mathcal{C} f(x)= & \min _{\rho_{1}, \ldots \rho_{n+1}} \sum_{i=1}^{n+1} m_{i} f\left(\rho_{i}\right), \tag{19}\\
x=\sum_{i=1}^{n+1} m_{i} \rho_{i}, \quad & \sum_{i=1}^{n+1} m_{i}=1, \quad m_{i} \geq 0 \tag{20}
\end{align*}
$$

Figure 4: Supporting points

Figure 5: barycentric coordinates
that is similar to the scalar case.

Definition 2.1 The convex envelope $\mathcal{C} F$ is a solution to the following minimal problem:

$$
\begin{equation*}
\mathcal{C} F\left(x_{0}\right)=\inf _{v: v+x_{0} \in C} \frac{1}{l} \int_{C} F\left(x_{0}+v(x)\right) d x \quad \forall v: \int_{C} v(x) d x=0 \tag{21}
\end{equation*}
$$

This definition determines the convex envelope as the minimum of all parallel secant hyperplanes that intersect the graph of F; it is based on Jensen's inequality (??).

Supporting points To compute the convex envelope $\mathcal{C} F$ one can use the Carathéodory theorem (see [?, ?]). It states that the argument $v(x)=\left[v_{1}(x), \ldots, v_{n}(x)\right]$ that minimizes the right-hand side of (21) takes no more than $n+1$ different values. This theorem refers to the obvious geometrical fact that the convex envelope consists of the supporting hyperplanes to the graph $F\left(v_{1}, \ldots, v_{n}\right)$. Each of these hyperplanes is supported by no more than $(n+1)$ arbitrary points.

The Carathéodory theorem allows us to replace the integral in the righthand side of the definition of $\mathcal{C} F$ by the sum of $n+1$ terms; the definition (21) becomes:

$$
\begin{equation*}
C F(x)=\min _{m_{i} \in M} \min _{v_{i} \in v}\left(\sum_{i=1}^{n+1} m_{i} F\left(x+v_{i}\right)\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\left\{m_{i}: \quad m_{i} \geq 0, \quad \sum_{i=1}^{n+1} m_{i}=1\right\} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\left\{v_{i}: \quad \sum_{i=1}^{n+1} m_{i} v_{i}=0\right\} . \tag{24}
\end{equation*}
$$

Parameters m_{i} are called barycentric coordinates of the convex hull stretched at the vertices $x+v_{i}$.

The convex envelope $\mathcal{C} F(x)$ of a function $F(x)$ at a point x coincides with either the function $F(x)$ or the hyperplane that touches the graph of the function F. The hyperplane remains below the graph of F except at the tangent points where they coincide.

The position of the supporting hyperplane generally varies with the point x. Fewer than $n+1$ points can support a convex envelope of F; in this case, several of the parameters m_{i} are zero.

Figure 6: Convex envelope: Cone and paraboloid

On the other hand, the convex envelope is the greatest convex function that does not exceed $F(x)$ in any point $x[?]$:

$$
\begin{equation*}
\mathcal{C} F(x)=\max \phi(x): \phi(x) \leq F(x) \forall x \quad \text { and } \phi(x) \text { is convex. } \tag{25}
\end{equation*}
$$

Example 2.1 Obviously, the convex envelope of a convex function coincides with the function itself, so all m_{i} but m_{1} are zero in (22) and $m_{1}=1$; the parameter v_{1} is zero because of the restriction (24).

The convex envelope of a "two-well" function,

$$
\begin{equation*}
\Phi(x)=\min \left\{F_{1}(x), F_{2}(x)\right\} \tag{26}
\end{equation*}
$$

where F_{1}, F_{2} are convex functions of x, either coincides with one of the functions F_{1}, F_{2} or is supported by no more than two points for every x; supporting points belong to different wells. In this case, formulas (22)-(24) for the convex envelope are reduced to

$$
\begin{equation*}
\mathcal{C} \Phi(x)=\min _{m, v}\left\{m F_{1}(x-(1-m) v)+(1-m) F_{2}(x+m v)\right\} \tag{27}
\end{equation*}
$$

Indeed, the convex envelope touches the graphs of the convex functions F_{1} and F_{2} in no more than one point. Call the coordinates of the touching points $x+v_{1}$ and $x+v_{2}$, respectively. The restrictions (24) become $m_{1} v_{1}+m_{2} v_{2}=$ $0, m_{1}+m_{2}=1$. It implies the representations $v_{1}=-(1-m) v$ and $v_{2}=m v$.

Example 2.2 Consider the special case of the two-well function,

$$
F\left(v_{1}, v_{2}\right)= \begin{cases}0 & \text { if } \quad v_{1}^{2}+v_{2}^{2}=0 \tag{28}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } \quad v_{1}^{2}+v_{2}^{2} \neq 0\end{cases}
$$

Indeed, the graph of the function $F\left(v_{1}, v_{2}\right)$ is axisymmetric in the plane v_{1}, v_{2}; therefore, the convex envelope is axisymmetric as well: $\mathcal{C} F\left(v_{1}, v_{2}\right)=f\left(\sqrt{v_{1}^{2}+v_{2}^{2}}\right)$. It is therefore enough constructing the envelope of function $F(v)$, where $v=$ $\sqrt{v_{1}^{2}+v_{2}^{2}}$

$$
F(v)= \begin{cases}0 & \text { if } \quad v=0 \tag{29}\\ 1+v^{2} & \text { if } \quad v^{2} \neq 0\end{cases}
$$

The convex envelope $\mathcal{C} F(v)$ is supported by the point $v_{a}=0$ and by a point v_{b} that (i) belongs to the parabola $f(v)=1+v_{b}^{2}$ and (ii) is such that the tangent line to the parabola at the point v_{b} passes through the origin. The equation of the tangent line in the plane v, y is $y-f\left(v_{b}\right)=f^{\prime}(b)\left(v-v_{b}\right)$. Setting $y=v=0$ due to (ii), we find $f\left(v_{b}\right)=f^{\prime}\left(v_{b}\right) v_{b}$ or $1+v_{b}^{2}=2 v_{b}^{2}$ and $v_{b}=1$. The values of F are: $F\left(v_{1}\right)=0, F\left(V_{b}\right)=2$, and the envelope is $\mathcal{C} F(v)=2 v$, if $0 \leq v \leq 1$. Coming back to original notations we find the supporting circumferences of $F\left(v_{1}, v_{2}\right)$:

$$
A:\left(v_{1}, v_{2}\right)=(0,0), \quad B:\left(v_{1}, v_{2}\right): v_{1}^{2}+v_{2}^{2}=1
$$

Figure 7: Three-well function
and the surface of the envelope is

$$
\mathcal{C} F\left(v_{1}, v_{2}\right)= \begin{cases}2 \sqrt{v_{1}^{2}+v_{2}^{2}} & \text { if } v_{1}^{2}+v_{2}^{2} \leq 1 \tag{30}\\ 1+v_{1}^{2}+v_{2}^{2} & \text { if } v_{1}^{2}+v_{2}^{2}>1\end{cases}
$$

The envelope is a cone if it does not coincide with $F, \mathcal{C} F<F$, and a paraboloid if it coincides with $F, \mathcal{C} F=F$.

Hessian of Convex Envelope We mention here property of the convex envelope that we will use later. If the convex envelope $\mathcal{C} f(x)$ does not coincide with $f(x)$ for some $x=x_{0}$, then $\mathcal{C} F\left(x_{0}\right)$ is convex, but not strongly convex. At these points the Hessian $H((f)$ is semipositive; its determinant is zero:

$$
\begin{equation*}
H(\mathcal{C} f(x)) \geq 0, \quad \operatorname{det} H(\mathcal{C} f(x))=0 \quad \text { if } \mathcal{C} f<f \tag{31}
\end{equation*}
$$

which say that $H(\mathcal{C} f)$ is a nonnegative degenerate matrix. These relations can be used to compute $\mathcal{C} f(x)$.

For example, compute the Hessian H of the cone $F\left(v_{1}, v_{2}\right)=2 \sqrt{v_{1}^{2}+v_{2}^{2}}$, from (30). We have

$$
H=\frac{1}{\left(v_{1}^{2}+v_{2}^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{cc}
v_{2}^{2} & -v_{1} v_{2} \\
-v_{1} v_{2} & v_{1}^{2}
\end{array}\right)
$$

and we see that $\operatorname{det}(H)=0$.

2.3 Convex envelope of a three-well function

The convex envelope is a multi-face surface. The next problem demonstrates the variety of the components of its surface.

Describe convex envelope $\mathcal{C} f$ of three-well function $f\left(x_{1}, x_{2}\right)$

$$
\begin{align*}
f\left(x_{1}, x_{2}\right) & =\min \left\{\phi_{1}, \phi_{2}, \phi_{3}\right\} \tag{32}\\
\phi_{1} & =x_{1}^{2}+x_{2}^{2} \tag{33}\\
\phi_{2} & =x_{1}^{2}+\left(x_{2}-1\right)^{2} \tag{34}\\
\phi_{3} & =\left(x_{1}-1\right)^{2}+x_{2}^{2} \tag{35}
\end{align*}
$$

Convex functions ϕ_{i} are called wells.
The convex envelope is a multi-face surface that is stretched between the wells. No more than three supporting points support each component of the envelope; the convex wells contain no more than one supporting point each.

The convex envelope is a solution to the optimization problem

$$
\begin{array}{r}
\mathcal{C} f(x)=\min _{m} \min _{\rho} \sum_{i=1}^{3} m_{i} \phi_{i}\left(\rho_{i}\right) \\
x=m_{1} \rho_{1}+m_{2} \rho_{2}+m_{3} \rho_{3} \\
m_{1}+m_{2}+m_{3}=1, \quad m_{i} \geq 0, \quad i=1,2,3 \tag{38}
\end{array}
$$

Here, m_{i} are barycentric coordinates of x in the triangle with vertices at ρ_{i}.
Convex envelope $\mathcal{C} f$ consists of several components:

Bottom component The bottom part Ω_{0} is correspond to the case when all $m_{i}>0$; the minimization with respect to ρ_{i} gives: $=$

$$
\rho_{1}=(0,0), \quad \rho_{2}=(1,0), \quad \rho_{3}=(0,1)
$$

The envelope is supported by three points ρ_{i} in three wells. Argument x belongs to a convex hull Ω_{0}, stretched on these points $x \in \Omega_{0}$,

$$
\Omega_{0}=\left\{x_{1}, x_{2}:\left(x_{1}, x_{1}, x_{2}\right)=\sum_{i=1}^{3} \mu_{i} \rho_{i}, \quad \sum_{i=1}^{3} \mu_{i}=1, \quad \mu_{i} \geq 0\right\}
$$

We compute:

$$
\begin{equation*}
\Omega_{0}=\left\{x_{1}, x_{2}: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1\right\} \tag{39}
\end{equation*}
$$

The values of ϕ_{i} are, respectively:

$$
\phi_{1}\left(\rho_{1}\right)=0, \quad \phi_{2}\left(\rho_{2}\right)=0, \quad \phi_{3}\left(\rho_{3}\right)=0
$$

The convex envelope in Ω_{0} is

$$
\begin{equation*}
\mathcal{C} f\left(x_{1}, x_{2}\right)=\sum_{i=1}^{3} \mu_{i} \phi_{i}\left(\rho_{i}\right)=0 \quad \text { if } \quad\left(x_{1}, x_{2}\right) \in \Omega_{0} \tag{40}
\end{equation*}
$$

The coordinates of a point in the convex hull are

$$
x_{1}=\mu_{2}, \quad x_{2}=\mu_{3}, \quad 0 \leq \mu_{2}+\mu_{3} \leq 1, \quad \mu_{2} \geq 0, \quad \mu_{3} \geq 0
$$

Notice that supporting points do not vary with $x \in \Omega_{0}$, only the barycentric coefficients $\mu_{i}\left(\mu_{3}=1-\mu_{1}-\mu_{2}\right)$ vary.

Side components First side component of the boundary corresponds to the case when $m_{3}=0$. This component is supported by by two points at two two convex wells ϕ_{1} and ϕ_{2}. The domain Ω_{1} that support this case, is

$$
\Omega_{1}=\left\{x_{1}, x_{2}:\left(x_{1}, x_{2}\right)=\mu_{1}\left(0, x_{2}\right)+\mu_{2}\left(1, x_{2}\right), \quad m_{1}+\mu_{2}=1, \quad \mu_{i} \geq 0\right.
$$

it is a strip:

$$
\begin{equation*}
\Omega_{1}=\left\{x_{1}, x_{2}: x_{1} \in[0,1], \quad x_{2} \in[-\infty, 0]\right. \tag{41}
\end{equation*}
$$

The supporting points are

$$
\rho_{1}=\left(0, x_{2}\right), \quad \rho_{2}=\left(1, x_{2}\right)
$$

We compute

$$
\phi_{1}\left(0, x_{2}\right)=x_{2}^{2}, \quad \phi_{1}\left(1, x_{2}\right)=x_{2}^{2}
$$

Figure 8: Contourplot of the convex envelope

The convex envelope in the region Ω_{2} is

$$
\begin{equation*}
\mathcal{C} f\left(x_{1}, x_{2}\right)=\mu_{1} \phi_{1}\left(0, x_{2}\right)+\mu_{2} \phi_{2}\left(1, x_{2}\right)=x_{2}^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{1}, \tag{42}
\end{equation*}
$$

(Here, the coordinate x_{1} is $x_{1}=\mu_{2}$ and $x_{1} \in(0,1)$. This part lies between two convex wells ϕ_{1} and ϕ_{2} and consists of moving parallel intervals supported by two points at these wells. This type of surface is called a ruled surface, that is a surface that can be swept out by moving a line in space. A variation of position $x \in \Omega_{2}$ along the direction x_{1} results in the variation of $\mu_{1}=1-\mu_{2}$ with a fixed position of the supporting points, and a variation along the direction x_{2} results in the variation of supporting points ρ_{1} and ρ_{2} with a fixed fraction m_{2}.

The second side component of the envelope correspond to $m_{2}=0$ and $m_{1}, m_{3}>0$. This part is similar to the previous case, it is obtained from it by interchanging indices. We have

$$
\begin{array}{r}
\Omega_{2}=\left\{x_{1}, x_{2}: x_{2} \in[0,1], \quad x_{1} \in[-\infty, 0]\right\} \\
\rho_{1}=\left(x_{1}, 0\right), \quad \rho_{3}=\left(x_{1}, 1\right) \\
\mathcal{C} f\left(x_{1}, x_{2}\right)=x_{1}^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{2} \tag{44}
\end{array}
$$

The third component correspond to $m_{1}=0$ and $m_{2}, m_{3}>0$. Similarly to the previous case we compute,:

$$
\begin{align*}
\Omega_{3} & =\left\{x_{1}, x_{2}:\left|x_{1}-x_{2}\right| \in[0,1], \quad x_{1}+x_{2} \in[1, \infty]\right\} \tag{45}\\
\rho_{2} & =\left(x_{1}, 0\right), \quad \rho_{3}=\left(x_{1}, 1\right) \\
\mathcal{C} f\left(x_{1}, x_{2}\right) & =\left(x_{1}+x_{2}\right)^{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega_{3} \tag{46}
\end{align*}
$$

Regions of convexity The remaining three regions correspond to the case when one of coordinates m_{i} equals to one, and the other two are equal to zero. In these cases, the convex envelope coincides with the function itself, $f(x)$ is convex in these regions.

We compute

$$
\begin{array}{ll}
\mathcal{C} f=\phi_{1}, & \text { in } \Omega_{4}=\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 0, x_{2} \leq 0\right. \\
\mathcal{C} f=\phi_{2}, & \text { in } \Omega_{5}=\left\{\left(x_{1}, x_{2}\right): x_{2}>1,1 \geq x_{2}-x_{1}\right. \\
\mathcal{C} f=\phi_{3}, & \text { in } \Omega_{6}=\left\{\left(x_{1}, x_{2}\right): x_{1}>1,1 \geq x_{1}-x_{2}\right. \tag{49}
\end{array}
$$

In Figure 8 the contour plot of the obtained convex envelope is shown.

