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1 Canonical system and Hamiltonian

In this section, we bring Euler equations to the standard form using a modified
form of Lagrangian.

1.1 canonical form of Euler equations

The Euler equations for a vector minimizer u = (u1, . . . , uN ) is a system of N
second-rank differential equations:

d

dx

∂L

∂u′i
− ∂L

∂ui
= 0, i = 1, . . . , N (1)

with boundary conditions

Θa(u, u′)|x=a = 0, Θb(u, u
′)|x=b = 0 (2)

where Θa and Θb are N -dimensional vector functions.
The structure of this system can be simplified and unified if it is rewritten

as a system of 2N first-order differential equations in a standard form

zi = fi(z1, . . . , z2N ), i = 1, . . . , 2N

instead of N second-order equations. This system can be obtained from (??) if
new variables pi are introduced,

pi(x) =
∂L(x, u, u′)

∂u′i
, i = 1, . . . , N (3)

In mechanics, p = (p1, . . . , pN ) is called the vector of impulse. The Euler equa-
tion takes the form

p′ =
∂L(x, u, u′)

∂u
= f(x, u, u′), (4)
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where f is a vector-valued function of x, u, u′. The system (??), (??) becomes
symmetric with respect to p and u if we algebraically solve (??) for u′ and find:

u′ = φ(x, u, p). (5)

Then, substitute this expression into (??) and obtain:

p′ = f(x, u, φ(x, u, p)) = ψ(x, u, p) (6)

where ψ is a function of the variables u and p but not of their derivatives.
Equations (??), (??) form the canonical system of 2N equations for 2N unknown
functions ui, pj , i, j = 1, . . . , N .

The boundary conditions (??) are rewritten in terms of u and p excluding
u′ by (??); they take the form

Θa(u, φ(a, u, p), )|x=a = θa(u, p) = 0, Φb(u, u
′)|x=b = θb(u, p) = 0 (7)

where θa and θb are N -dimensional vector functions.
In summary, system (??), (??) transfers Euler equation to the canonical

form (or Cauchy form)

u′ = φ(x, u, p)
p′ = ψ(x, u, p)

(8)

θa(u, p) = 0, θb(u, p) = 0. (9)

The solution to the canonical system is entirely determined by the algebraic
vector functions φ, ψ in the right-hand side which do not contain derivatives,
and by the boundary conditions. Notice that functions u and p are differentiable.

Example 1.1 (Quadratic Lagrangian) Assume that Lagrangian L and bound-
ary conditions are:

L =
1

2
a(x)u′2 +

1

2
b(x)u2, u(x0) = u0,

∂L

∂u′
|x=x1 = 0

The Euler equation
(a u′)′ − bu = 0

is transformed as follows. We introduce p as in (??)

p =
∂L(x, u, u′)

∂u′
= au′

and obtain the canonical system and boundary conditions

u′ = 1
a(x)p

p′ = b(x)u
u(x0) = u0, p(x1) = 0

Notice that the coefficient a(x) is moved into denominator.
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Canonical system for equations of Lagrangian mechanics The equa-
tions of Lagrangian mechanics correspond to stationarity of the action. The
functional of action is

L(t, q, q′) = T (q, q′)− V (q), T (q, q′) =
1

2
(q′)TR(q)q′

where positively defined symmetric matrix R(q) is the matrix of inertia, and
V (q) (potential energy) is a convex function of the N dimensional vector of
generalized coordinates q = q1, . . . , N .

The vector-valued Euler equation

d

dt

∂T

∂q′
=
∂T

∂q
− ∂V

∂q
(10)

is of order 2N .
To bring the system (??) to canonical form, we introduce vector of impulses

p =
∂T

∂q′
= R(q)q′

The Euler equation becomes:

p′ =
∂T

∂q
− ∂V

∂q

Kinetic energy T is expressed through p as

T =
1

2
(q′)TRq′ =

1

2
pT
(
R−1

)
p.

The first term in the right-hand side of (??) becomes

∂T

∂q
=

1

2
pT
(
dR−1

dq

)
p

The canonical system becomes

q′ = R−1p,

p′ = ∂T
∂q −

∂V
∂q = 1

2p
T
(
dR−1

dq

)
p− ∂V

∂q

Example 1.2 (Rotating mass 1) Consider a mass m attached by a spring to
a fixed point; call this point the origin. The force F in the spring is the derivative
of a potential V (|r|), where r = (r1, r2, r3) is the vector of coordinates of a point,
|r| =

√
r21 + r22 + r23 is the distance fro the origin. The force F is computed as

F =
dV

dr
=
dV ′

d|r|
d|r|
dr

=

(
1

|r|
dV

d|r|

)
r = φ(|r|)r

where

φ(|r|) =
1

|r|
dV

d|r|
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The Lagrangian is

L = T − V =
1

2
mr′

T
r′ − V (|r|)

Euler equations are

(mr′)′ − ∂V

∂r
= 0 or (mr′)′ − φ(|r|)r = 0

Introducing the impulse vector p = mr′ and we write canonical system as

r′ =
1

m
p, p′ = φ(|r|)r (11)

Planar motion Analyzing system (??), we conclude that the motion is planar.
Indeed, consider vector product z = r × p and compute its time derivative:

dz

dt
=

d

dt
(r × p) = r′ × p+ r × p′ = 0

This vector is constant because vector r′ is proportional to p and p′ is proportional
to r, see (??). The constancy of z indicates that vectors r(t) and p(t) remain
all the time perpendicular to vector z; they are moving in a plane L, that passes
through the point of initial conditions r(0) = r0, p(0) = p0 and the origin.

In the plane L, we introduce polar coordinates ρ, θ; Potential energy depends
only on ρ, V = V (ρ), and kinetic energy becomes

T =
m

2
(ρ′2 + ρ2θ′2) =

1

2
pTR−1p

where

p =

(
pρ
pθ

)
R =

(
m 0
0 mρ2

)
The canonical system becomes

ρ̇ =
1

m
pρ, (12)

θ̇ =
1

mρ2
pθ, (13)

ṗρ = − 2

mρ3
pρ −

∂V

∂ρ
(14)

ṗθ = 0 (15)

Example 1.3 (Geometrical optics) In geometrical optics, Lagrangian F =

w(y)
√

1 + y′2 corresponds to Euler equation

d

dt

(
w(y)y′√
1 + y′2

)
=
dw

dy
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To derive the canonical system, we call

p =
w(y)y′√
1 + y′2

(16)

The canonical system for geometric optics is

p′ =
dw

dy

y′ = ± p√
w2 − p2

The first equation is obtained by substitution of p from (??) into Euler equattion.
The second equation is obtained when we solve (??) for y′ as follows:

p2 =
w(y)2y′

2

1 + y′2
, y′

2
=

p2

w2 − p2

1.2 Hamiltonian

We can rewrite the system (??) in a more symmetric form introducing a spe-
cial potential function called Hamiltonian. The Hamiltonian is defined by the
formula (see (??)):

H(x, u, p) = pu′(x, u, p)− L(x, u, u′(u, p))

or
H(x, u, p) = pφ(x, u, p)− L(x, u, φ(x, u, p)) (17)

where u is a stationary trajectory – the solution of Euler equation.
Hamiltonian allows to write canonical system (??) in a remarkable symmetric

form

p′ = −∂H
∂u

, p′ = −∂H
∂u

(18)

To show this form, compute the partial derivatives of H (??) : We have

∂H

∂u
= p

∂φ

∂u
− ∂L

∂u
− ∂L

∂φ

∂φ

∂u

By the definition (??) of p, p = ∂L
∂u′ = ∂L

∂φ , hence the first and third term in

the right-hand side cancel. By virtue of the Euler equation (??), the remaining
term ∂L

∂u is equal to p′ and we obtain the first equation in (??)

Next, compute ∂H
∂p . We have

∂H

∂p
= φ+ p

∂φ

∂p
− ∂L

∂φ

∂φ

∂p

By definition of p, the second and the third term in the right-hand side cancel,
and by definition of φ (φ = u′) we obtain the second equation in (??)

The right-hand side functions in the canonical system (??) are expressed
through the partial derivatives of a single function potential H(u, p).
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Hamiltonian for Lagrangian mechanics In Lagrangian mechanics, the
Hamiltonian H is equal to the sum of kinetic and potential energy or to the
whole energy, H = T + V where q′ is expressed through p, and q, q′ = R(q)−1p

H(q, p) =
1

2
pTR−1p+ V

Indeed, kinetic energy is a second degree homogeneous function of p, which
implies

pT
∂T

∂p
= pTR(q)p = 2T

and

H = pT
∂T

∂p
− L = 2T − (T − V ) = T + V

Hamiltonian and canonical equations in Example (??) are

L =
1

2
(a(x)u′2 + b(x)u2) =

1

2

(
1

a(x)
p2 + b(x)u2

)
then the Hamiltonian is

H = p
(p
a

)
− L =

1

2

(
1

a(x)
p2 − b(x)u2

)
and the canonical system is

∂H

∂u
= −b(x)u = −p′, ∂H

∂p
=

1

a(x)
p = u′

which coincides with the system in Example (??).

1.3 The first integrals through the Hamiltonian

System (??) demonstrates that

if H = constant(ui), then pi = constant (19)

and
if H = constant(pi), then ui = constant (20)

This equations correspond to the fist integrals in the Euler equation

d

dx

∂L

∂u′i
− ∂L

∂ui
= 0, i = 1, . . . , N

If Lagrangian L is independent of ui,
∂L
∂ui

= 0, ∂L
∂u′

i
= constant.

If Lagrangian is independent of u′i,
∂L
∂u′

i
= 0, then ∂L

∂ui
= 0
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Example 1.4 (Rotating mass 2) The Hamiltonian in the example ?? is

H =
1

2m
(p2ρ +

1

ρ2
p2θ) + V (ρ) (21)

The Hamiltonian is independent of θ, see (??); therefore pθ is constant, pθ = C1,
and Hamiltonian becomes function of ρ and pρ only:

H =
1

2m
(p2ρ +

1

ρ2
C2

1 ) + V (ρ) (22)

Conservative system: Lagrangian is independent of x If F = F (u, u′),
than

Ĥ(u, p) = constant (23)

Indeed, compute the time derivative of the Hamiltonian using the chain rule

d

dx
H(x, u, p) =

∂H

∂x
+
∂H

∂u
u′ +

∂H

∂p
p′ =

∂H

∂x

because of equalities (??), u′ = ∂H
∂p and p′ = −∂H∂u . If Lagrangian does not

explicitly depend on x, the Hamiltonian is independent of x as well, ∂H
∂x = 0

and we arrive at (??). This feature corresponds to the conservation of the total
energy.

Example 1.5 (Rotating mass 3) The Hamiltonian (??) is independent of time
t therefore is constant,

H =
1

2m
(p2ρ +

1

ρ2
C2

1 ) + V (ρ) = C2. (24)

This equality allows to find pρ as a funtion of ρ:

pρ =

√
2mC2 − V (ρ)− 1

ρ2
C2

1

Then using (??) we end up with the first-order equation for ρ(t) that permit sepa-
ration of variables

m
dρ

dt
=

√
2mC2 − V (ρ)− 1

ρ2
C2

1

Natural boundary conditions The natural or variational boundary condi-
tions that are imposed at the endpoint b from the requirement of minimization
of the functional, are ∂L

∂u′ = 0 at x = b. By definition of the impulse, it is
rewritten as

p = 0 at x = b;

7



Transversality condition The transversality condition (??) at the unknown
endpoint x = b of the trajectory u(x) is expressed through Lagrangian L(x, u, u′)
as

L− u′ ∂L
∂u′

= 0

The expression in the left-hand side is Hamiltinian, therefore the condition takes
a simple form:

H = 0 at x = b.

The Hamiltonian for a conservative system is constant (??); therefore, there is
no optimal endpoint for such systems.

Weierstrass-Erdmann condition This condition states that at all points of
optimal trajectory, ∂L

∂u′ is continuous. It translates into a statement that impulse
p is continuous everywhere. Notice that by virtue of (??), p is differentiable.

Lagrangian and Hamiltonian Both functions describe the same process,
but

• Hamiltonian is an algebraic function of differentiable arguments p and u,
and Lagrangian is an expression for u, and it’s derivative u′, the derivative
that may be discontinuous.

• Optimality conditions for Hamiltonian are expressed as a system of first-
order differential equations in canonical form. Optimality conditions for
Lagrangian are expressed as a system of second-order differential equa-
tions.

• Invariant properties and boundary conditions are more conveniently ex-
pressed through Hamiltonian.

• Lagrangian deals with the minimizer and its derivatives; its minimization
is a realization of the minimal principle.

1.4 Hamiltonian for geometric optics

The results of study of geometric optics (Section ??) can be conveniently pre-
sented using Hamiltonian. It is convenient to introduce the slowness w(x, y) =

1
v(x,y) - reciprocal to the speed v. Then the Lagrangian for the geometric optic

problem is
L(x, y, y′) = w

√
1 + (y′)2 y′ > 0.

To find the canonical system, we use the outlined procedure: Define a variable
p dual to y(x) by the relation p = ∂L

∂y′

p =
wy′√

1 + (y′)2
. (25)
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Solving for y′, we obtain first canonical equation:

y′ =
p√

w2 − p2
= φ(x, y, p), (26)

Excluding y′ from expression for L(x, y, y′)we find by means of (??), we find

L(x, y, y′) = L∗(x, y, y
′(p)) =

w2√
w2 − p2

.

and recalling the representation for the solution y of the Euler equation

p′ =
∂L

∂y
=
∂L∗
∂w

∂w

∂y

we obtain the second canonical equation:

p′ = − w√
w2 − p2

∂w

∂y
(27)

Hamiltonian Hamiltonian H = pφ−L∗(x, y, p) can be simplified to the form

H = −
√
w2 − p2

It satisfies the remarkably symmetric relation

H2 + p2 = w2

that contains the whole information about the geometric optic problem. The
elegancy of this relation should be compared with messy straightforward calcu-
lations that we previously did.

2 Hamiltonian and differential constraints

2.1 Differential constraints that introduce Hamiltonian

Here, we derive Hamiltonian with all its remarkable properties from the analysis
of a constrained variational problem. The problem

I = min
u

∫ 1

0

F (x, u, u′)dx

for the vector-valued minimizer u(x) can be presented as the constrained prob-
lem

I = min
u,v

∫ 1

0

F (x, u, v)dx subject to u′ = v (28)
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where the constraint u′ = v specifies the differential dependence between two
arguments of the Lagrangian. The last problem is naturally rewritten using
Lagrange function p = p(x):

I = min
u,v

max
p

J, J =

∫ 1

0

[F (x, u, v) + p(u′ − v)] dx (29)

Integration by parts of the term p u′ in the integrand gives

J =

∫ 1

0

FD(x, u, v, p)dx+ p u|10 FD(x, u, v, p) = [F (x, u, v)− p′u− p v]

Interchange the sequence of extremal operations in eqham2 and obtain the in-
equality:

I ≥ max
p

ID; ID = min
u,v

∫ 1

0

FD(x, u, v, p)dx+ p u|10 (30)

Notice that the integrand for minimal problem ID includes u and v but not
their derivatives, therefore the minimization is performed independently in each
point of the trajectory The stationarity conditions for ID are are the coefficients
by variations δu and δv are, respectively

∂F

∂u
− p′ = 0,

∂F

∂v
− p = 0. (31)

2.2 Transformation of stationarity conditions

Now, we can transform the problem in three different ways

Excluding Lagrange function p. Original Euler equation Exclude p
and p′ from (??). Differentiate second equation in (??) and substract the result
from the first equation; obtain

d

dx

∂F

∂v
− ∂F

∂u
= 0, u′ = v

Thus, we return to the Euler equation in the original form.

Excluding the minimizer: Dual problem. Lower bound Exclude u and
v from two equations (??) solving them for u and v: u = φ(p, p′), v = ψ(p, p′).

Since v = u′, we we obtain the dual from of stationarity condition

d

dx
φ(p, p′)− ψ(p, p′) = 0

This is a second-order differential equation for p; the corresponding variational
problem is

I ≥ ID; ID = max
p

∫ 1

0

[
FD(x, p, p′)

]
dx (32)
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where
FD(p, p′) = F (x, φ, ψ)− p′φ− pψ (33)

The dual problem (??) asks for maximum of the functional with Lagrangian
FD(p, p′), (??). Any trial function p that is consistent with the boundary con-
ditions produces the lower bound of I.

Remark 2.1 (Lower bound) The duality is an essential tool because it provides
the means to estimate the lower bound of the variational problem. The upper bound
is easy to obtain: every trial function utrial consistent with the main boundary
conditions provides such a bound to a minimal variational problem. To find the
lower bound, we use the dual problem (??). This relation implies that any trial
function ptrial with the main boundary conditions corresponds to the lower bound
of the functional.∫ b

a

FD(x, u, ptrial)dx ≤ I ≤
∫ b

a

F (x, utrial, p)dx ∀ptrial, utrial (34)

The difference between the upper and lower bound provide the measure of the
preciseness of both approximations:

Excluding derivatives: Hamiltonian. canonical system Excluding v
from (??): v = ρ(u, p) we express the problem through the Hamiltonian H(u, p)

IH = min
u

max
p

∫ 1

0

[u′p−H(u, p)] dx (35)

where
H(u, p) = ρ(u, p)p− F (x, u, ρ(u, p)) (36)

Necessary conditions for maximum in (??) with respect to p recover the
condition (??):u′ = ∂H

∂p . To recover the second condition, p′ = ∂H
∂u , we integrate

by parts the term u′p in the integrand in (??). This argument explains the
remarkable feature of Hamiltonian as the potential to the canonical system.

2.3 Constraints in the form of differential equations

min
u

∫ b

a

F (u)dx+ Ψ(u(b)) subject to (37)

u′i = fi(x, u), i = 1, . . . , n, u(a) = Ua (38)

where u(x) is vector of minimizers.
The Lagrangian has the form

L = F (u) + pT (u′ − f(x, u)

Hamiltonian is computed as

H = pTu′ − L = −F (u) + pT f(x, u) (39)
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One chan check that
∂H

∂p
= f(x, u) = u′

Equations for p (adjoint system) are linear with respect to p::

p′i = −∂H
∂u

= pT
∂f

∂ui
− ∂F

∂u

Compementary boundary conditions at the endpoint x = b are:

p+
∂Ψ

∂u
= 0, x = b.
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