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1 Optimal control

The theory of optimal control was developed starting from the1950s to meet
the needs of designed automatic control systems. Optimal control problem is
essentially the variational problem with some additional constraints.

1.1 Formulation

Preliminaries Optimal control theory was developed to solve the problem
of optimal navigation of a mechanical system. It is assumed that the motion
is described by a system of differential equations and is controlled by some
parameters, called controls u(t) which depend on time t. The equation of motion
are written in a standard form which allow for the universal analysis of a large
class of problems.

The motion of the system is described by an N dimensional vector z(t) =
[z1(t), . . . zN (t)] that is a solution to a system of differential equations in Cauchy
form

z′i = fi(t, z, u), zi(0) = Zi, i = 1, . . . , N (1)

with the known initial conditions Z1, . . . ZN . The right-hand side f = (f1, . . . fN )
is a bounded function that depends on independent variable t, on vector z and
on a vector u(t) of controls. The control u(t) takes values in the known bounded
set U of controls,

u ∈ U(z, t) (2)

in each point t. The control is allowed to instantly vary within U at any value
of t. The set of controls may depend on time t and trajectory z.

For example, differential equation (1) may describe the motion of a car, and
control u(t) = (u1(t), u2(t), u3(t)) consists of a position u1 of the gas pedal,
angle of the steering wheel u2, and position u3 of the gear stick. Here u1 and
u2 are real numbers that vary in a range ui ∈ (U−i , U

+
i ) and u3 is a discrete

variable that takes several values. We assume that if the controls u(t) and the
initial conditions Z are known, one can find a differentiable solution z(t) from
(1).

Typically (but not always) the goal of the control is the maximization of a
function φ(z) at the final time T . The optimization problem is formulated as:

I = max
u∈U

φ(z(T )) subject to (1), (2) (3)

The goal functional of the form (3) does not limit the generality of the for-
mulation. We will show next how to transform a variational problem to this
form.

A simplest variational problem as a control problem A classical vari-
ational problem

I = min
w

∫ T

0

F (t, w,w′)dt, w(0) = w0 (4)

2



can be reformulated as an optimal control problem.
The minimizer w is a differentiable function, but its derivative w′ is free of

any point-wise constraints. We rewrite (4) introducing a new variable u = z′

called control. The control can be arbitrarily assigned at each point of trajectory.
When the control is fixed, the trajectory w is uniquely defined. However, here
the set of control is not bounded, U = R.

We rewrite variational problem (4) in the form (1), (3). Variable w will be
called z1, it satisfies the equation z′1 = u. We also introduce a new variable:

z′2(t) = F (t, z1, u), z2(0) = 0

where z2 equal to the accumulated value of the integral z2(x) =
∫ x
0
F (t, w,w′)dt.

One can see from (4) that z2(T ) = I.
The problem (3) takes the form

I = min
u∈R

z2(T ) subject to (5)

z′1 = u, z′2 = F (t, z1, u), z1(0) = w0, z2(0) = 0. (6)

In the same fashion, we account for isoperimetric constraints

I =

∫ T

0

Φ(t, w,w′)dt.

We introduce a new variable z3 equal to accumulated quantity:

z′3 = Φ(t, z1, u), z3(0) = 0, z3(T ) = I.

Here, as before, z1 = w and u = w′. Variable z3 satisfies two boundary condi-
tions which is either possible by a special choice of control u(t) or is impossible
at all. Recall, that isoperimetric problems in calculus of variations have similar
features. For example, in the problem of a hanging chain, the given length of
the chain must be larger than the distance between the points of supports of its
ends.

Remark 1.1 It is always possible but not necessary to transform integral goal
functional into the optimization of a variable at the end point. We may as well
optimize the classical integral functional

I = min
w

∫ T

0

F (t, w,w′)dt+ bw(T ) (7)

and also keep isoperimetric constraints in their original form.

A generic form of a control problem Summary: In control problems,
there are two groups of variables
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1. Controls u = [u1 . . . , uk] that are arbitrarily assigned at each point and
may be subject to some point-wise algebraic constraints

u ∈ U(z, t)

so that the controls ui are bounded.

2. Phase variables z = [z1, . . . , zn] that are (i) differentiable and (ii) entirely
defined by the controls through differential constraints that are repre-
sented in the Cauchy form:

z′i = fi(t, z, u), i = 1, . . . , N (8)

Some boundary conditions are applied

b(z(0), z(T )) = 0 (9)

where b(a, b) is a give function of two vector arguments. The goal functional
may consist of an integral term and a boundary term:

I =

∫ T

t0

Φ(t, z, u)dt+ φ(z(T )). (10)

This formulation separates the control from the goal; they are connected via
differential equations of motion.

1.2 Adjoint system

Consider the problem (10), (8), (9). Accounting for the differential constraints
with Lagrange functions µi = µi(t), the minimization problem can be rewritten
in the form ∫ t1

t0

L(t, z, z′, u, µ)dt+ φ(z(t1)), u(t) ∈ U (11)

where the Lagrangian L(t, z, z′, u, µ) is

L(t, z, z′, u, µ) = Φ(t, z, u) + µT [−z′ + f(t, z, u)]

The stationary conditions (Euler equation) with respect of z are:

δzi :

(
∂Φ

∂zi
+ µT

∂f

∂zi
+ µ′i

)
= 0, i = 1, . . . , N (12)

with the variational boundary conditions:

[δzi (µi)]t=t0 = 0,

[
δzi

(
µi +

∂φ

∂zi

)]
t=t1

= 0, i = 1, . . . , N (13)

Because of the assigned initial conditions, δzi(t0) = 0 and δzi(t1) are arbitrary.
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The Lagrange functions (dual variables) satisfy the system of linear differ-
ential equations that has a standard form:

µ′i = −µT ∂f
∂zi
− ∂Φ

∂zi
(14)

µi +
∂φ

∂zi

∣∣∣∣
t=T

= 0 (15)

Generally, the boundary conditions for µ are derived as stationarity conditions
for the end point of the trajectory

µT · δz|t=0 = 0,

(
∂φ

∂z
+ µT

)
· δz|t=T = 0 (16)

where δz may be subject to constraints originated from the given initial or
boundary conditions.

Notice that the total order of the system for differential constraints and
Lagrange functions is 2N , and there are 2N boundary conditions for it.

Hamiltonian The system (10), (8), (9) is further rewritten through Hamil-
tonian

H = z′
∂

∂z′
L(t, z, z′, µ, u)− L(t, z, z′, µ, u)

We compute
∂L

∂z′
= −µ, z′ = f(t, z, u)

and
H(z, µ, u) = µT f(t, z, u)− Φ(t, z, u) (17)

The stationarity equations take the canonical form

µ′ =
∂H

∂z
= −µT ∂f

∂z
, z′ = −∂H

∂µ
= f(t, z, u) (18)

The Hamiltonian contains all the information of the extremal problem and it is
an algebraic function of its arguments.

1.3 Stationarity conditions for controls

It remains to find optimality conditions for optimal control. The specifics of
control problems is that vector u of control varies in a bounded and may be
multi-connected domain, u ∈ U , and the controls can take values at the bound-
aries of U .

First, we discuss a case when each entry of the control vector varies in an
interval

u = (u1, . . . , um), ui ∈ [U−i , U
+
i ], i = 1, . . . ,m
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The stationarity condition with respect to ui is

∂

∂ui

[
−Φ(t, z, u)− µT f(t, z, u)

]
δui =

∂H

∂ui
δui ≥ 0 (19)

The optimal control may lie in the interior of the interval [U−i , U
+
i ] or at one of

the boundaries; in the last case δui is either positive (if ui = U−i ) or negative
(if ui = U+

i ). We obtain the optimality relations

∂H

∂ui
= 0 if ui ∈ (U−i , U

+
i ) (20)

∂H

∂ui
≥ 0 if ui = U−i (21)

∂H

∂ui
≤ 0 if ui = U+

i (22)

that consist of one equality of ui and the inequalities for the interval where this
equality holds.

Linear problem with quadratic functional As an example, consider the
problem with a scalar control u ∈ U , U = [a, b]

min
u

1

2

∫ T

t0

(
c u2

)
dt+BT z|t=T (23)

z′ = Az +Du, z(t0) = Z, (24)

where A is an N ×N matrix, D is an N × k matrix, and B are N -vector.
Hamiltonian is

H = −1

2
c u2 − µT (Az +Du) (25)

The dual system is

µ′ =
∂H

∂z
= −ATµ, µ(T ) = B. (26)

The stationarity conditions for the control are

δu
∂H

∂u
= δu(−c u−DTµ) ≥ 0 (27)

Let us call us = − 1
cD

Tµ.
If us ∈ (a, b), then optimal control u0 equals us, u0(t) = − 1

cD
Tµ(t); if us < a,

then u0 = a and if us > b, then u0 = b
When c = 0, the control takes only boundary values. This solution is called

bang-bang control.
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2 Pontryagin’s maximum principle

2.1 Optimization problem

Needle variation Because of the constrained set of controls, the Weierstrass-
type variation is not always possible. Indeed, this variation would require such
a perturbation of u that its average value is zero, because u plays the role of
derivative in the classical variation problem. If u is on the boundary (say in a
corner point) of the set U , this variation is not allowed.

Instead of the Weierstrass variation, we may use the needle-type variation
(or McShane variation)

∆u(t) = 0, if t 6∈ [t∗, t∗ + ε], u(t) + ∆u = U ∈ U , if t ∈ [t∗, t∗ + ε].

The control u(t) changes its value to any point u+∆u ∈ U in the set of controls
at the infinitely small interval [t∗, t∗ + ε]. This variation does not assume that
the set U is connected; the set U may even consists of several isolated points.
The only requirement is that the control switches its value in a small interval.

Unlike the Weierstrass variation, the needle variation does not imply that
the variation of the trajectory δz is zero outside of the interval [t∗, t∗ + ε] of
variation; the variation is of the order of ε everywhere. The main term of the
increment is of the order of ε and consists of two parts:

δI = ε([H(t∗, , ., u, .)−H(t∗, .., U, .)] +

∫ T

t0

µ

(
δz′ − ∂H

∂z
δz

)
dt+ o(ε)

The first term is the main term of the expansion of the integral∫ t∗+ε

t∗

[H(t, z(u), µ(u), u)−H(t, z(U), µ(U), U)]dt =

ε[H(t∗, z, µ, u)−H(t∗, z, µ, U)] + o(ε).

Here, the continuity of z and µ is used. In the perturbed system, these quantities
differ from the optimal values not more than by the term of the order of ε, see (1),
(12), and therefore can be replaced with the optimal values in the approximation
of the order of ε. The second term∫ T

t∗

µ

(
δz′ − ∂H

∂z
δz

)
dt = −

∫ T

t∗

(
µ′ +

∂H

∂z

)
δz dt+ µ′δz|Tt0

also contains terms of the order of ε. This term, however, vanishes due to the
choice of the adjoint variables by virtue of (??; due to this choice, the variation
of the Lagrangian with respect of δz is zero up to O(ε2).

The remaining first term of the increment is nonnegative for all ∆u such
that u+ ∆u ∈ U . In other words, optimal control uopt delivers the minimum of
the Hamiltonian:

uopt(t) = arg

{
min
u∈U

H(t, z, µ, u)

}
∀t ∈ (t0, T ) (28)
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where z and µ are computed along the optimal trajectory. This condition is
called the Pontryagin’s maximum principle

Remark 2.1 Traditionally, problem of the control theory is to maximize (not min-
imize) the functional; wherefore the name maximum principle is originated.

Now we have the complete set of equations to determine u, z, µ: N first-order
differential equations (1) for the differential constraints, N first-order differential
equations (12) for the adjoint system, and k equations (28) for an optimal
control. The system is supplemented by 2N boundary conditions (16) and (27).

In summary, optimal control in each point of the trajectory is a solution
to the constrained optimization problem (28); it depends on the function H(u)
and on the set of admissible controls U . The optimal control may belong to the
interior of U or to its boundary. In contrast, the classical variational problems
deal with the minimum in an open set, which may lead to a solution with infinite
control (discontinuous minimizer).

Control inside U Particularly, if u is inside U , one can make U −u infinitely
small and obtain the stationary conditions

∂H

∂u
= 0,

∂2H

∂u2
≥ 0 if u ∈ Int (U) (29)

These equations serve to find u.

Control on the boundary of U If u is on the boundary of U , u ∈ ∂U , the
optimality condition depends on the type of the boundary point (a point on
a smooth component of the boundary, a corner point, an isolated point, etc.)
These conditions are differently expressed in these cases. For example, if the
constraint on a scalar control restricts its values, u− ≤ u(t) ≤ u+ the conditions
for the small variations are

u = u− if
∂H

∂u
> 0,

u = u+ if
∂H

∂u
< 0,

∂H

∂u
= 0,

∂2H

∂u2
≥ 0, if u− ≤ u(t) ≤ u+.

In all cases, we have one equality to find the optimal control and one inequality
to check. The maximum principle (28) is obviously stronger then these last
conditions, but its verification is also more difficult.

2.2 Chattering regimes of control

The Hamiltonian H(t, z, u) is generally nonconvex function of u ∈ U . Moreover,
the set U is generally also nonconvex. Therefore, minimizing H with respect
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of u we may find the global minimum u0 and local minima u1, . . . um. When
H(t, z, u) slowly changes together with z(t) and t, one of the local minima, say
u1, may become global, then the global minimum u0 becomes a local one. At
an instance, both minima are equal, H(t, z, u0) = H(t, z, u1). At this point, the
optimal control may jump from the branch u = u0(z, t) to branch u = u1(z, t).
Next, the optimal control may either follow the branch u1, or it may jump back
to u0. It the last case, the control jumps again to u1, then back, and these jumps
come out infinitely fast. Such control regimes are called chattering regimes of
control.

The homogenized (averaged, relaxed) description of the problem includes all
possible fast-oscillating regimes. It is obtained by replacing the set {H(., ., u), u ∈
CU} with its convex envelope that is the minimal convex set that contains U .
The added parts of the boundary of control set CU that do not coincide with
the boundary of U correspond to infinitely fast oscillations of the controls.

The relaxed Hamiltonian CH is a convex function of u, and u belongs to the
convexified set CU . Therefore, the problem of minimization of CH(., ., u) for
u ∈ CU does not have local minima but only the global minimum.

Example 2.1 The control problem is

I = inf J, J =

∫ 2π

0

[z − cos(t)]2(t)dt,

z(0) = .1, z(2π) = −.1 z′ = u, U = {1, − 1}
The admissible trajectories z(t) are piece-wise straight lines with slopes equal to
±1. The control function determines the instances of switching the slop.

We have

H(z, u) = −[z − cos(t)]2 − µu, µ′ = −2(z − cos(t))

and

u = argmin{H(z, u1), H(z, u2)} =

{
1, µ > 0
−1 µ < 0

where u1 = 1 and u2 = −1. The optimal control is u = u1 if z < cos(t) and u = u2
if z > cos(t). When z = cos(t), the control infinitely often oscillates between values
u1 and u2 with time fractions m and 1 −m. These fractions are found from the
equation:

z′ = sin(t) = uhom = mu1 + (1−m)u2 = 2m− 1.

Here uhom is the homogenized value of the control

uhom = lim
ε→0

1

ε

∫ t+ε

t

u(x)dx

Finally, we find optimal time fraction

m(t) =
sin(t) + 1

2
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