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1 Variation of Boundary terms

1.1 Boundary integrals and Mayer-Bolza problem

A natural extension of the simplest variational problem is the Mayer-Bolza
problem of minimization of the sum of the volume and the boundary integrals

I(u) = min
u

(∫
Ω

F (x, u,∇u)dx+

∫
∂Ω

f(s, u)ds

)
(1)

This problem arises in physical applications when the boundary energy is taken
into account, and in optimization theory where the functionals often have bound-
ary terms.

The increment of the functional consists of the bulk and boundary parts:

δI =

∫
Ω

S(x, u,∇u)δu dx+

∫
∂Ω

B(s, u, un)δu ds

The boundary integral does not contribute to the bulk part and to the Euler
equation in Ω. It remains the same as is defined in (??) and the bulk part of
stationarity condition remains

SF (u) =
∂F

∂u
−∇ ·

(
∂F

∂∇u

)
= 0.

The boundary term B consists of the term ∂F
∂∇u ·nδu that is supplied by the

variation of the bulk integral (via integration by parts, compare with (??)), and
∂f
∂uδu-term supplied by the variation of the boundary integral:

B(s, u, un)δu =

(
∂F

∂∇u
· n+

∂f

∂u

)
δu

When no extra conditions are prescribed on the boundary, the stationary con-
dition (natural boundary condition) holds:

B(s, u, un) =
∂F

∂∇u
· n+

∂f

∂u
= 0 on ∂Ω, if δu is arbitrary. (2)

Notice, that this condition degenerates into natural boundary condition (??)
when the boundary term is zero, f = 0. In physical applications, the boundary
integral often represents the work of external forces against the potential u. In
this case, the force p equals p = ∂f

∂u .
Next examples derive a variational problem corresponding to various classical

types of boundary value problems for Laplace equation.

Variational origin of the Dirichlet, Neumann, and Robin problems
Consider minimization of the functional:

I(u) = min
u

[
1

2

∫
Ω

|∇u|2dx+

∫
∂Ω

(
1

2
a(s)u2 + b(s)u

)
ds

]
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for given functions a(s), b(s). The Euler equation in the domain Ω is the Laplace
equation:

∆u = 0 in Ω

The natural boundary condition is:

∂u

∂n
+ a(s)u+ b(s) = 0 on ∂Ω

This is the so-called radiation condition (Robin condition) that specifies the rate
of radiation ∂u

∂n depending on the value of u.

• When a = b = 0, the condition becomes homogeneous Neumann condition
(an insulation condition);

• when a = 0 we deal with inhomogeneous Neumann conditions.

• To obtain inhomogeneous Dirichlet condition u = β(s), we use the rep-
resentation b(s) = β(s)a(s) and consider the limiting case of the natural
condition when a(s)→∞.

The work of external boundary force p against the potential u corresponds to
the force p = −a(s)u− b(s).

Problem 1.1 Determine the boundary term in the Mayer-Bolza problem which
corresponds to the boundary Lagrangian (boundary energy) f = αu3, α is a scalar.

1.2 Examples

Inversion: Determination of the Lagrangian from Euler equation Af-
ter the link between the variational problem and the boundary value problem
is established, one can invert the situation and ask what variational functional
corresponds to the given boundary value problem which we treat as the sta-
tionary condition to the unknown variational problem. Of course, we do not
expect to obtain a unique solution. For instance, the null-Lagrangians cannot
be accounted for. However, in many cases the variational problem can be easily
guessed, as it is demonstrated at the next example.

Example 1.1 (Radiation of the black body) Consider the following inverse
variational problem. Find the variational principle for the absolutely black body Ω
with the radiation law ()

∂θ

∂n
= γθ4 on ∂Ω

where is the absolute (Kelvin temperature; temperature θ is harmonic inside the
body.

Using the previous paragraph, we easily guess the bulk and boundary terms in
the Lagrangian

min
θ
I(θ), I(θ) =

[∫
Ω

1

2
(∇θ)2dx+

γ

5

∫
∂Ω

θ5ds

]
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and thus formulate the variational principle of the radiative absolutely black body
that obeys Stefan – Boltzmann law.

Example 1.2 (Relaxed harmonic continuation) Let us return to the prob-
lem of funding a harmonic extension to a boundary term, see Example ??. Now we
relax the problem’s condition: Instead of prescribing the boundary data u|∂Ω = φ(s)
at every boundary point, we penalize solution for its deviation from the prescribed
boundary value φ(s). Assuming that the penalty is proportional to the square of L2

norm of the difference, we formulate the problem of relaxed harmonic extension:

min
u
I, I =

∫
Ω

|∇u|2dx+ β

∫
∂Ω

(u− φ)2ds

where β > 0 is the penalization parameter. The stationarity conditions are

∆u = 0 in Ω,
1

β

∂u

∂n
+ u = φ on ∂Ω (3)

Minimizer u satisfies Laplace equation with the boundary conditions of the third
type, which is the Robin problem. Notice that the minimizer tends to the minimizer
of the problem in Example ?? if β →∞.

The solution allows for the following physical visualization. Imagine that u is the
temperature. The problem in Example ?? describes the temperature distribution
in a body with the fixed boundary temperature. The relaxed problem describes
the temperature distribution in a body with the radiation from /absorbtion at the
boundary. The rate of radiation is proportional to the difference (u − φ) between
the fixed boundary temperature and target function.

Example 1.3 (Relaxed harmonic extension in circular domain) Consider
the harmonic extension in a circular domain 0 ≤ r ≤ 1, −π < θ ≤ π. Let expand
the given on the boundary function φ(θ) into Fourier series

φ(θ) = a0 +

∞∑
k=1

ak cos(kθ)

where

a0 =
1

2π

∫ π

−π
φ(θ)dθ, ak =

1

π

∫ π

−π
φ(θ) cos(kθ)dθ.

are the known Fourier coefficients. The general solution of the Laplace equation in
the circle has the form

u(r, θ) = c0 +

∞∑
k=1

ckr
k cos(kθ),

the coefficients ck are found from the boundary condition in (3) as

c0 = a0,
k

β
ck + ck = ak
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The solution to the relaxed continuation problem becomes

u(r, θ) = a0 +

∞∑
k=1

β

β + k
ak r

k cos(kθ).

One observes that the coefficients by high harmonics (k � 1) in u(r, θ) are dumped
due to relaxation. In other words, the problem of relaxed extension is the extension
problem of (Example ??) with smoothed boundary data φsmooth instead of φ. This
smoothed data are given by the Fourier series

φsmooth(θ) = a0 +

∞∑
k=1

β

β + k
ak r

k cos(kθ).

The solution to the stationary problem may not exist We remind that
the stationarity is the necessary condition of the extremum. If the minimizer
to the variational problem is continuous and differentiable, then it satisfies the
stationary conditions. Next example shows that the Mayer-Bolza problem may
lead to contradictory requirements so that the stationary solution of the problem
does not exist.

Example 1.4 (Controversial boundary conditions) Consider the problem

I(u) = min
u

∫
Ω

|∇u|dx+

∫
∂Ω

au ds

or F = |∇u|, f = au. The Euler equation in Ω was derived in the previous
section, example ??. The boundary condition is

∇u · n
|∇u|

+ a = 0

The first term in the left-hand side of the last expression is equal to the cosine of
the angle between the normal n and the direction ∇u

|∇u| of the gradient; therefore

the boundary condition becomes

cos(n̂,∇u) = −a

The last condition is not controversial if |a| ≤ 1 everywhere on ∂Ω. If |a| = 1, the
direction of gradient coincide with the normal n, if a = 0, ∇u · n = 0. However,
if |a(s)| ≥ 1 for some s on ∂Ω, solution to the boundary values problem does
not exists. We conjecture that the true minimizer is discontinuous and does not
corresponds to the Euler equation.

1.3 Weierstrass-Erdman condition for discontinuous La-
grangians

Discontinuity in the coefficients of the Lagrangian results in the Weierstrass-
Erdman condition which should be satisfied on a surface where the gradient
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of the extremal is discontinuous. Assume that a two-dimensional domain Ω is
divided into two connected subdomains Ω1 and Ω2 with the common bound-
ary component ∂12 and that the boundary is assumed is a twice differentiable
surface; Lagrangian F is defined by two different expressions in Ω1 and Ω2

F (x, u,∇u) =

{
F1(x, u,∇u) if x ∈ Ω1

F2(x, u,∇u) if x ∈ Ω2
.

Consider the variational problem with the objective functional I,

I =

∫
Ω

F (x, u,∇u)dx =

∫
Ω1

F1(x, u,∇u)dx+

∫
Ω2

F2(x, u,∇u)dx (4)

over u(x). The Weierstrass-Erdman condition is the boundary condition on the
shared part ∂12 of the boundary. On this surface, two conditions on u and ∂u

∂n
are needed to uniquely continue the solution from one subdomain to the other.

First condition The first (main) condition is the requirement of continuity
of potential u. It is differentiable everywhere in Ω, including boundary ∂12,
therefore

[u]12 = 0 (5)

where []12 denotes the jump at ∂Ω,

[u]12 = u(x+ ε1)− u(x+ ε2), x ∈ ∂12, x+ εi ∈ Ωi, |εi| → 0 , i = 1, 2

This condition implies the continuity of the tangential derivative ∂u
∂t where

t is a tangent to ∂12. [
∂u

∂t

]1

2

= 0 on ∂12 (6)

Indeed, consider two pairs of point x1a, x2a and x1b, x2b lying on opposite
sides of ∂12, x1a, x1b ∈ Ω1 and x2a, x2b ∈ Ω2 such that the distances between
the points on the opposite sides of the boundary is much smaller than distance
between points on the same side:

‖x1a − x1b‖ = ε, ‖x2a − x2b‖ = ε, ‖x1a − x2a‖ = δε, ‖x1b − x2b‖ = δε,

where ε� 1, δ � 1 are positive parameters. Notice that the direction of vectors
x1a − x1b and x2a − x2b tends to the tangent t of ∂12 at the point x, when
ε→ 0, δ → 0.

lim
ε→0, δ→0

x1a − x1b

‖x1a − x1b‖
= t, lim

ε→0, δ→0

x2a − x2b

‖x2a − x2b‖
= t.

Compute the potential at these points and assume that u is differentiable:

|u(x+ δ)− u(x)| ≤ A|δ|, ∀δ, ∀x
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Then the differences

Df1 :=
u(x1a)− u(x1b)

ε
, Df2 =

u(x2a)− u(x2b)

ε

will differ by an order of δ:

|Df1 −Df2| ≤ 2Aδ

The limits of Df1 and Df2, as ε → 0, tend to the tangent derivatives on both
sides of ∂12,

lim
ε→0

Df1 =
∂u(x)

∂t 1
, lim

ε→0
Df2 =

∂u(x)

∂t 2
.

and the difference between them tends to zero, when δ → 0. We arrive at the
condition (6).

Remark 1.1 Notice that the condition is derived from the assumptions about
smoothness of the solution and of the boundary.

Remark 1.2 In a three-dimensional problem, there are two independent tangential
partial derivatives on the boundary in two orthogonal tangential directions. The both
derivatives are continuous, if the potential is continuous.

Second condition The second (variational) condition is called the Weierstrass-
Erdman condition. It comes from the first variation of the objective functional
(4)

δI =

∫
Ω1

SF1
(u)δu dx+

∫
Ω2

SF2
(u)δu dx

+

∫
∂Ω1

∂F1

∂∇u
n1 δu ds+

∫
∂Ω2

∂F2

∂∇u
n2 δu ds

where SF1(u) and SF2(u) are the terms in the Euler-Lagrange equations in
the corresponding subdomains. The condition of stationarity of the integrals
over Ω1 and Ω2 gives the Euler equations in these domains, and the boundary
integrals give the variational boundary conditions. The variational condition on
the shared boundary ∂12 involves both boundary integrals because the variation
of δu is the same in both integrals, and the normals have opposite directions,
n1 = −n2. (Different signs of the normal correspond to the agreement that the
normal is outer-pointing with respect to the domain of variation. The outer
normal to Ω1 is the inner normal to Ω2.) On the shared boundary ∂12, we write
the stationarity condition

δu :

∫
∂12

(
∂F1

∂∇u
− ∂F2

∂∇u

)
· n δu ds = 0

which leads to the Weierstrass-Erdman condition

∂F

∂∇u
· n
∣∣∣∣+
−

= 0 on ∂12. (7)
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This condition is the direct analog of the Weierstrass-Erdman condition on
the broken extremal in one-variable case (see Section ??) which has the form
[ ∂F∂u′ ]

+
− = 0. In multivariate case, the Weierstrass-Erdman condition depends on

the normal to the surface (line) of the discontinuity. Hence the normal derivative
of the minimizer can be discontinuous but instead the Weierstrass-Erdman con-
dition holds. Simultaneously, the tangent derivative of the minimizer u remains
continuous to preserve continuity of u at the common part of the boundary.

Example 1.5 (Inhomogeneous conducting medium) The steady state equa-
tion for a conducting medium corresponds to the variational problem with the La-
grangian F = κ

2 |∇u|
2, where κ = κ(x) is the conductivity. Assume that the medium

is heterogeneous, and κ(x) is a discontinuous function that takes two values κ1 and
κ2 in Ω1 and Ω2, respectively,

κ(x) = κ1χ(x) + κ2(1− χ(x)) (8)

where

χ(x) =

{
1 if x ∈ Ω1

0 if x 6∈ Ω1
(9)

Let us establish continuity conditions on the boundary ∂12 between Ω1 and Ω2. We
set Fi = κi

2 |∇u|
2, i = 1, 2 and compute ∂F

∂∇u ·n = κ ∂u∂n . The continuity conditions
(6), (7) on the boundary ∂12 become

∇u · t|12 = 0, κ∇u · n|12 = 0,

or, in coordinates,

∂u2

∂t
=
∂u1

∂t
, κ2

∂u2

∂n
= κ1

∂u1

∂n
on ∂12

where u1 and u2 are the minimizers in Ω1 and Ω2, respectively. These conditions
allow for the following physical interpretation: the tangent component of the field
∇u · t and the normal component of the current j · n = κ∇u · n are continuous on
the boundary between the domains of different conductivity.

1.4 Effective conductivity of a laminate

The derived formulas allow us to calculate the effective conductivity of a laminate
composite. Consider a periodic laminate put into a homogeneous field V . Let
Ω be a unit square Ω = [0, 1] × [0, 1] divided into Ω1 = [0, 1] × [0,m] and
Ω2 = [0, 1]× [m, 1]. Denote the components of the boundary as ∂1, . . . , ∂4

∂1 = {x : x1 = 0, x2 ∈ [0, 1]}, ∂2 = {x : x1 = 1, x2 ∈ [0, 1]},
∂3 = {x : x1 ∈ [0, 1], x2 = 0}, ∂4 = {x : x1 ∈ [0, 1], x2 = 1}.

The conductivity problem is subject to the boundary conditions u|∂k −u|∂k−1
=

V for all k and one pair of boundary componentsand homogeneous Neumann
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conditions (insulation) on the rest of the boundary. This problem is a solution
to the variational problem of minimization of the energy W (∇u)

W = min
u

1

2

∫
Ω

κ|∇u|2dx, κ(x) = κ1χ(x) + κ2(1− χ(x)) (10)

where χ is defined in (9) and the minimizer saisfies the corresponding conditions.
Consider the problem of the effective conductivity of the structure. To define

the effective conductivity k∗ we replace inhomogeneous conductivity in Ω with
a new equivalent homogeneous material. Our goal is to express the energy as a
quadratic form

W =
1

2
∇u∗ · κ∗∇u∗, ∇u∗ =

∫
Ω

∇u dx

so that W be a function of the average gradient ∇u∗, where u is the solution
of (10). This will determine the effective property κ∗. There are two cases that
should be considered separately.

Case A. Let the field be applied along the layers. This is modeled by the
main boundary conditions:

u = 0 if x ∈ ∂1, u = V if x ∈ ∂2.

Notice that V is the intensity of the average field in the unit square domain, V =
|∇u∗|. The stationary condition in the domains Ωi and the natural condition
∇u · n = 0 on the horizontal boundaries ∂3 and ∂4 have the form

κi∆u = 0 in Ωi, i = 1, 2,
∂u

∂x2
= 0 on ∂3 and ∂4

They are satisfied if the potential u is a linear function of x1:

u(x1, x2) = V x1 in Ω1 and Ω2

The Weierstrass-Erdman condition is trivially satisfied because the field ∇u is
parallel to the layers everywhere and ∂u

∂n = 0. The energy WA in this case is

WA =
1

2

∫
Ω

(
κ1|∇u|2χ(x) + κ2|∇u|2(1− χ(x))

)
dx =

1

2
κAV

2

where
κA = mκ1 + (1−m)κ2

is the (arithmetic) effective conductivity of the laminate for the field applied
along the layers.

Case B. Let the field be applied across the layers. The main boundary
conditions are

u = 0 if x ∈ ∂3, and u = V if x ∈ ∂4,
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where V is the intensity of the average field, |∇u∗| = V . The stationary condi-
tions are:

κi∇2u = 0 in Ωi, i = 1, 2,
∂u

∂x1
= 0 on ∂1 and ∂2

They are satisfied if the potential is a continuous piece-wise linear function of
x2:

u(x1, x2) =

{
A1x2 if x2 ∈ [0,m]
A1m+A2(x2 −m) if x2 ∈ [m, 1]

(11)

where A1 and A2 are chosen to satisfy the boundary condition

u(1) = A1m+A2(1−m) = V.

The second condition for the constants A1 and A2 follows from the Weierstrass-
Erdman condition (7) on the boundary between Ω1 and Ω2:

κ
∂u

∂x2

∣∣∣∣+
−

= κ2A2 − κ1A1 = 0

We find
A1 =

κ2

mκ2 + (1−m)κ1
V, A2 =

κ1

mκ2 + (1−m)κ1
V

Substituting the found values of A1 and A2 into (11) and computing the energy,
we have:

WB =
1

2

∫
Ω

(
κ1|∇u|2χ(x) + κ2|∇u|2(1− χ(x))

)
dx =

1

2
κHV

2

where κH

κH = κ1A
2
1m1 + κ2A

2
2m2 =

(
m

κ1
+

1−m
κ2

)−1

is the (harmonic mean) effective conductivity of the laminate across the layers.
The results for the two different directions of the applied field are different

from each other. This shows that the effective conductivity κ∗ is anisotropic.
The anisotropy is caused by the Weierstrass-Erdman condition which introduces
the dependence on the normal to the boundary dividing the subdomains of
different conductivity. One can show that effective conductivity is described by
a symmetric tensor

κ∗ =

(
κA 0
0 κH

)
with eigenvalues κA and κH .
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